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1 Introduction

The objective of filtering is to track the dynamic evolution of unobservable state variables

using (typically) noisy measurements of observables. This requires the computation of inte-

grals over the unobserved state. When models are linear and gaussian, these integrals obtain

analytically from the Kalman filter; departures entail integrals that must be approximated

numerically. A broad range of numerical techniques have been proposed to accomplish fil-

tering given departures from linearity/gaussianity. Here we propose an enhancement of the

particle filter (PF) developed by Gordon et al. (1993) and Kitagawa (1996).

The PF achives filtering via the construction of discrete approximations to the densi-

ties that appear in the predictive and updating stages of the filtering process. The discrete

supports of these approximations are known as swarms of particles. While the PF is concep-

tually simple and easy to program, it suffers from a major and well-documented shortcoming:

the discrete supports of period-t approximations are determined using period-(t − 1) infor-

mation, and thus ignore crucial information provided by period-t measurements. That is to

say, the supports are not adapted. This shortcoming can produce large biases in the filtered

estimates of the state; the elimination of these biases can require prohibitively large numbers

of particles.

A number of innovative techniques have been proposed to achieve adaption. For ex-

amples, see Pitt and Shephard (1999); the collection of papers in Doucet et al. (2001); Pitt

(2002); Ristic et al. (2004); and the collection housed at http://www.sigproc.eng.cam.ac.uk/

smc/papers.html. These techniques typically rely upon local (Taylor Series) approxima-

tions and/or perturbations (jittering particles) to produce partial adaption, but they lack

the flexibility needed for achieving full adaption.

Here we propose a generalization of the particle filter designed to achieved full adaption

in filtering applications. In a companion paper, DeJong et al. (2008), we discuss the achieve-

ment of adaption in the context of likelihood evaluation. The generalization features two key

extensions: the density approximations it constructs are continuous; and integrals are calcu-
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lated using the Efficient Importance Sampling (EIS) methodology developed by Richard and

Zhang (2007). The latter entails the iterative construction of global approximations of tar-

geted integrands, which then serve as importance sampling densities that are fully adapted

within the selected class of auxiliary samplers.

Full adaption comes at a cost: EIS entails conceptually simple but relatively time-

consuming auxiliary calculations, in the form of least squares regressions. Moreover, the

class of fully operational EIS approximations is limited largely to members of the exponen-

tial family of distributions (though flexible extensions beyond that family are currently being

developed). Nevertheless, as we shall illustrate in the context of a benchmark bearings-only

tracking problem, the EIS filter can produce unbaised estimates of state trajectories at high

degrees of numerical precision. In particular, the EIS filter can produce dramatic reductions

in Mean Squared Errors (MSEs) – by several orders of magnitude – relative to existing tech-

niques. Due to these reductions, its computational complexity can be more than offset by

its accuracy: e.g., to achieve reductions in MSEs on the scale delived by the EIS filter, the

PF routinely requires the use of enormous swarms entailing prohibitive computational costs.

The rest of the paper in organized as follows. Section 2 provides a brief overview of

the filtering problem using continuous densities. The PF and EIS filters are introduced in

Section 3. Section 4 discusses the critical continuous predictive stage. Application of the

EIS filter to the standard singular version of a bearings-only tracking problem is presented

in Section 5, and a non-singular version of the problem is analyzed in Section 6. Section 7

concludes.

2 Filtering

It proves convenient for our purposes to present filtering in terms of continuous densities.

Let st be a m-dimensional vector of unobserved state (target) variables, and denote {sj}tj=1

as St. Likewise, let yt be an n-dimensional vector of measurements, and denote {yj}tj=1 as
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Yt. We use the generic notation f(·) and f(·|·) to denote marginal and conditional densities,

respectively.

The state space is characterized by a state transition density f(st|st−1, Yt−1), initialized

by a known marginal density f(s0). It is often the case that st is independent of Yt−1

conditionally on st−1. Nevertheless, inclusion of Yt−1 as an explicit conditioning variable is

required for internal consistency of the filter. It also allows for control applications wherein

measurements initiate actions that feed back on the state transitions. The model is completed

by a measurement density f(yt|st, Yt−1). Let h(st) denote a function of interest for tracking.

Our objective is that of producing numerically accurate sequential estimates of the filtered

values E[h(st)|Yt].

Updating the filter in period t requires the following operations:

f (st|Yt−1) =

∫
f (st|st−1, Yt−1) f (st−1|Yt−1) dst−1, (1)

f (st|Yt) =
f (yt|st, Yt−1) f (st|Yt−1)

f (yt|Yt−1)
, (2)

where

f (yt|Yt−1) =

∫
f (yt|st, Yt−1) f (st|Yt−1) dst. (3)

Equations (1) and (2) characterize the filter’s predictive and updating stages, respectively.

Filtered values of interest are then computed as

E [h (st) |Yt] =

∫
h (st) f (st|Yt) dst, (4)

which amounts to a ratio of integrals, in view of (1) and (3).

The particle filter approximates the densities f(st|Yt−1) and f(st|Yt) by discrete swarms

of equiprobable particles, denoted by {s1,i
t }Ni=1 and {s0,i

t }Ni=1, respectively (the first superscript

denotes the time lag between observation and prediction). Most importantly, {s0,i
t }Ni=1 ob-

tains by drawing with replacement from {s1,i
t }Ni=1 using the re-sampling probabilities {π0,i

t }Ni=1
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obtained from the discretized version of (2); that is,

π0,i
t =

f
(
yt|s1,i

t , Yt−1

)∑N
j=1 f

(
yt|s1,j

t , Yt−1

) . (5)

Note that by construction the support of {s0,i
t }Ni=1 is a subset of that of {s1,i

t }Ni=1, and can

become very small under either of two conditions. First, due to the realization of an outlier

yt, f(yt|st, Yt−1) assigns the bulk of its weight in the far tails or even outside of the range

covered by {s1,i
t }Ni=1. Second, f(yt|st, Yt−1) can be tightly distributed relative to f(st|Yt−1), in

which case very few elements within {s1,i
t }Ni=1 receive appreciable weight. In either case, this

eventuality is known as sample impoverishment, and results from the absence of adaption

intrinsic to the particle filter.

As noted, many procedures have been developed in efforts to achieve partial adaption.

We now characterize the EIS filter, which is designed to achieve full adaption within a

preselected class of continuous auxiliary samplers.

3 EIS-PF

3.1 Baseline algorithm

The EIS filter aims at constructing a fully adapted parametric importance sampling density

g(st|ât) for the product of densities in (3). Filtered values are then rewritten as

E [h (st) |Yt] =

∫
h(st)ω (st; ât) g (st|ât) dst∫
ω (st; ât) g (st|ât) dst

, (6)

where

ω (st; at) =
f (yt|st, Yt−1) f (st|Yt−1)

g (st|at)
. (7)
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The corresponding filtered estimate is then given by

ÊN [h(st)|Yt] =

∑N
i=1 h

(
s̃0,i
t

)
ω
(
s̃0,i
t ; ât

)∑N
i=1 ω

(
s̃0,i
t ; ât

) , (8)

where {s̃0,i
t }Ni=1 now denotes i.i.d. draws from the auxiliary importance sampling density

g(st|at).

The construction of ât is achieved via minimization of the MC sampling variance of the

ratio ω(st; at) given draws from g(st|at). Construction is achieved as follows. One initially

selects a parametric class of auxiliary density kernels K = {k(s; a); a ∈ A} with analytical

integrating constant χ(a). The relationship between kernel and density is given by

g (s|a) =
k(s; a)

χ(a)
, with χ(a) =

∫
k(s; a)ds. (9)

The selection of K is inherently problem-specific since these kernels are meant to provide

operational (global) approximations to the product of densities f(yt|st, Yt−1)f(st|Yt−1).

Following Richard and Zhang (2007), an (approximate) optimal value for at obtains as

the solution of the following auxiliary least squares problem:

(ât, ĉt) = arg min
a∈A,c∈R

R∑
i=1

{
ln
[
f
(
yt|s̃0,i

t , Yt−1

)
f(s̃0,i

t |Yt−1)
]
− c− ln k

(
s̃0,i
t ; a

)}2
, (10)

where, as above {s̃0,i
t }Ri=1 denotes i.i.d. draws from g(s|ât) with R typically smaller than N

in (8). The fact that these draws are conditional on ât implies that the latter obtains as

the fixed point solution of a sequence {â(v)
t }Vv=1, where â

(v)
t solves (10) given draws from

g(s|â(v−1)
t ). This sequence can be initialized e.g. by (local) Taylor Series expansion of the

product f(yt|st, Yt−1)f(st|Yt−1). The iterative search for ât could be viewed as drawback of

the EIS filter. However, for reasonably well-behaved problems convergence is fast, with V

typically less than 5. Moreover, iteration turns out to be the main driver for full adaption

(within the class K), as it allows k(s; a) to progressively reposition itself on the region of
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importance of the product being approximated.

Note from (10) that adaption requires that the density f(st|Yt−1) be computed for all

draws from g(st|at). The computational expense inherent in this requirement is unavoidable

if adaption is to be achieved: the fact that f(st|Yt−1) is represented by a predetermined

swarm {s̃0,i
t }Ni=1 is the root source of the numerical inefficiencies suffered by the particle

filter. In the next section we outline operational procedures for evaluating f(st|Yt−1).

We conclude this brief presentation of the EIS filter with two important remarks.

(i) In order to achieve smooth EIS convergence all draws under â
(v)
t must be obtained via

transformation of a single set of {ũit}Ri=1 Common Random Numbers (CRNs), where the ũits

denote draws from a canonical distribution – i.e. one that does not depend on a (typically

U(0, 1) or N(0, 1)) – to be transformed as needed into draws from g(st|at) using techniques

described, e.g., in Devroye (1986).

(ii) As discussed, e.g., in Geweke (1989), the use of a common set of CRNs for the numer-

ator and denominator of the filtered estimates in (8) typically induces positive correlation

between the two, reducing further the MC variance of the ratio.

3.2 Auxiliary EIS samplers

In its current form EIS is fully operational only for kernels from the exponential family

of distributions, in which case the auxiliary regressions are linear in a, where a denotes a

natural parametrization in the sense of Lehmann (1986, Section 2.7). Extensions outside

the exponential family of distributions (multivariate-t, mixtures, semiparametric, etc.) are

currently being developed. Essentially, they amount to embedding a one-step Gauss-Newton

iteration within each EIS-iteration step, thereby preserving the linearity of the auxiliary

regressions. Preliminary results in this direction are promising.

In the bearings-only tracking application described below, we specify a four-dimensional

EIS sampler as the product of a trivariate gaussian sampler for three ‘well-behaved’ state

variables, conditionally on a fourth one for which we introduce a highly flexible piecewise
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log-linear kernel. Additional flexibility in the selection of margins could be gained with the

introduction of copulas, in which case EIS iterations would alternate between adjusting the

copula and fitting the margins (for progress along this dimension, see Dharmarajan, 2008).

Finally, we are currently exploring the implementation of nonparametric importance

sampling densities. This is an idea that has already been partially exploited to construct

’regularized’ particle filters (jittering particles) – e.g., see Ristic et al. (2004, Section 3.5.3).

We propose to push this further by implementing EIS iterations relying on nonparametric

samplers to achieve full adaption, exploiting the fact that it is trivial to combine a nonpara-

metric density with a piecewise log-linear Taylor Series expansion of the target densities.

See DeJong et al. (2008) for further discussion of some of these proposed extensions. The

point is that, as illustrated below, (full) adaption can produce such large reductions in MSEs

for filtered values that it fully justifies investing in the development of increasingly flexible

auxiliary samplers for the EIS filter.

3.3 Piecewise log-linear approximations

In line with the preceeding discussion we introduce here a flexible one-dimensional impor-

tance sampler that can be used to approximate ill-behaved margins as part of a higher-

dimensional problem. This sampler consists of a piecewise-continuous log-linear approxi-

mation to the margin under consideration. It is characterized by a kernel k(s; a) whose

parameter a′ = (a0, . . . , aR) consists of a grid a0 < a1 < . . . < aR, where the interval covers

the support of the relevant margin1. We first describe the kernel k(s; a) for a preassigned

grid a. It is defined as follows:

ln kj(s; a) = αj + βjs ∀s ∈ [aj−1, aj] (11)

βj =
lnϕ(aj)− lnϕ(aj−1)

aj − aj−1

, αj = lnϕ(aj)− βjaj. (12)

1Extensions to infinite support require either truncation or tinkering with tail approximations, as is
commonly done for random variate generation – e.g., see Devroye (1986).
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Since k is piecewise integrable, its distribution function can be written as

Kj(s; a) =
χj(s; a)

χn(a)
, ∀s ∈ [aj−1, aj] , (13)

χj(s; a) = χj−1(a) +
1

βj
[kj(s; a)− kj(aj−1; a)] , (14)

χ0(a) = 0, χj(a) = χj(aj, a). (15)

Its inverse c.d.f. is given by

s =
1

βj

{
ln
[
kj(aj−1; a) + βj

(
u · χR(a)− χj−1(a)

)]
− αj

}
, (16)

u ∈ ]0, 1[ and χj−1(a) < u · χR(a) < χj(a). (17)

Next we discuss the iterative selection of the grid parameter a. Note that k(s; a) is

nonlinear in a and that a close fit might require a sufficiently large number of intervals (in

the application described below, R = 100 suffices to produce very accurate results). This

precludes implementing EIS iterations as described in Section 3.1 above. Instead we rely

upon the following iterative procedure designed to achieve the same objective.

The recursive construction of an equal-probability-division kernel k(s; â) is based upon

the non-random equal division of [ε, 1 − ε] with ui = ε + (2 − ε)i/R for i = 1, . . . , R − 1,

with ε sufficiently small (typically ε = 10−4) to avoid tail intervals of excessive length. It

proceeds as follows:

Step l + 1: Given the step-l grid âl, construct the density kernel k and its c.d.f. K as

described above. The step-l + 1 grid is then computed as

âl+1
i = K−1(ui), i = 1 . . . , R− 1. (18)

The algorithm iterates until (approximate) convergence.

The resulting approximation is highly adapted and computationally inexpensive. Given

a sufficiently large number of division points, it will outperform lower-dimensional paramet-
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ric classes of samplers. A two-dimensional version of this algorithm has been successfully

developed. Beyond two dimensions we propose to investigate the use of copulas to combine

together univariate continuous-piecewise approximations as well as kernels from the exponen-

tial family of distributions. See Dharmarajan (2008) for a preliminary bivariate application

of copulas in this context.

4 Constant weight approximation of f (st|Yt−1)

4.1 Principle

In the companion paper by DeJong et al. (2008), we discuss several alternatives to evaluate

f(st|Yt−1) at any value of st needed for EIS iterations. In the application below we rely upon

a constant-weight approximation that we briefly present here. Combining (1) to (3) we can

rewrite f(st|Yt−1) as a ratio of integrals:

f(st|Yt−1) =

∫
f(st|st−1, Yt−1)f(yt−1|st−1, Yt−2)f(st−1|Yt−2)dst−1∫

f(yt−1|st−1, Yt−2)f(st−1|Yt−2)dst−1

. (19)

Next note that if EIS delivers a good approximation g(st−1; ât−1) to the product of den-

sities in the denominator, then the weight ω(st−1; ât−1), as defined in (7), will be near-

constant over the the relevant range of integration. In such a case, we can replace the

product f(yt−1|st−1, Yt−2)f(st−1|Yt−2) by ω̄t−1 · g(st−1; ât−1), where ω̄t−1 denotes the average

EIS weight for period t− 1. It follows that f(st|Yt−1) is approximated by

f(st|Yt−1) '
∫
f(st|st−1, Yt−1)g(st−1; ât−1)dst−1, (20)

whose MC approximation is given by

f̂S(st|Yt−1) =
1

S

S∑
i=1

f(st|s0,i
t−1, Yt−1). (21)
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As illustrated below it is often possible to exploit an operational expression for the EIS sam-

pler g(st−1; ât−1) to evaluate the integral in (20) by combining partial analytical integration

with MC integration of the remainder.

4.2 Singular transitions

State transitions often include identities that effectively reduce the dimension of integration

in (20), since for any given st, the vector st−1 is then restricted to a strict subset of Rm.

With only minor loss of generality, let partition st into st = (pt, qt) in such a way that the

transition identities can be written as

qt = φ(pt, st−1). (22)

We reinterpret these identities as the limit of a uniform density for qt|pt, st−1 on the inter-

val [φ(pt, st−1) − ε , φ(pt, st−1) + ε]. Assuming that φ(pt, st−1) is differentiable and strictly

monotone in qt−1, with inverse

qt−1 = ψ(st, pt−1), (23)

we can take the limit of the integral in (20) as ε tends to zero, producing

f(st|Yt−1) '
∫
J(st, pt−1)f(pt|st−1, Yt−1)g(st−1; ât−1)|qt−1=ψ(st,pt−1)dpt−1, (24)

where

J(st, pt−1) =
∂

∂qt
ψ(st, pt−1). (25)

Since g(pt−1, ψ(st, pt−1); ât−1) is not a sampler for pt−1|st, we must evaluate (24) by a mix of

analytical, quadrature and/or own EIS methods.

One might infer from this discussion that the EIS filter is tedious to implement under

degenerate transitions, while the particle filter handles such degeneracy trivially in the transi-

tion from {s0,i
t−1} to {s1,i

t }. While this is true, it is also true that these situations are precisely
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those most prone to significant sample impoverishment problems (since given (pt, st−1), there

is no jittering in qt.)

5 Application to Bearings-Only Tracking

The bearings-only tracking problem has received much attention in the literature on

particle filters, and raises challenging numerical issues. References include Gordon et al.

(1993), Carpenter et al. (1999), and Pitt and Shephard (1999); we consider here the scenario

described by Gordon et al. (1993).

A ship moves in the (x, z) plane with speed following a bivariate random walk process.

Let λt =
(
xt, zt,

·
xt,

·
zt

)′
denote the quadrivariate latent state variable (shortly we

shall re-parameterize, and revert to the use of st to denote the state). The discrete version

of the model we consider first is characterized by the transition

λt+1 =

 I2 I2

0 I2

λt + σ

 1
2
I2

I2

ut, (26)

with ut ∼ i.i.d.N (0, I2) . The initial state vector is distributed as

λ1 ∼ N (µ1,∆1) , (27)

with (µ1,∆1) known and ∆1 diagonal.

An observer located at the origin of the (x, z) plane measures with error the angle θt =

arctan (zt/xt). The measured angle yt is assumed to be wrapped Cauchy with density

f (yt|θt) =
1

2π

1− r2

1 + r2 − 2r cos(yt − θt)
, (28)

with 0 ≤ (yt, θt) ≤ 2π and 0 ≤ r ≤ 1. Accordingly, we shall introduce a (partial) re-
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parametrization in polar coordinates. Let

λt = (αt, βt)
′ αt = (xt, zt)

′ βt = (
·
xt,

·
zt)
′,

αt = ρte (θt) , θt ∈ [0, 2π] ,

with e (θt) = (cos θt, sin θt)
′ and ρt = (x2

t + z2
t )

1/2 ≥ 0. The following notation will be used

for the transformed state vector:

st = h(λt) = (θt, ρt, β′t) = (θt, δ′t) . (29)

Note that (26) is based on a discretization over a time interval that coincides with the

interval between successive measurements. It implies that the transition from λt to λt+1 is

degenerate. We reinterpret this transition as the combination of a proper bivariate transition

αt+1|λt ∼ N (Aλt,Ω) , (30)

and a Dirac transition

βt+1 ≡ φ (αt+1, λt) = 2 (αt+1 − αt)− βt, (31)

with A = (I2, I2) and Ω = 1
4
σ2I2. Below we shall consider an alternative version of the

model discretized on a finer grid than that defined by observation times. This produces a

non-degenerate transition, and allows for observations that are spaced unequally over time.

The degenerate version just described is numerically challenging on three counts. First,

measurement is non-informative on three out of the four state components. Second, under

parameter values typically used in the literature, the density of θt|Yt is much tighter (though

with fat tails) than that of θt|Yt−1. This situation yields ‘sample impoverishment’, and thus

(very) high numerical inefficiency for the particle filter. Finally, the degenerate transition
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creates additional numerical problems since it implies a zero-measure support in R4 for the

density f (λt+1|λt).

Despite these challenges, we can implement an EIS version of the particle filter that can

accommodate these pathologies. While conceptually simple, the algebra of our implemen-

tation is somewhat tedious. The next presents the broad lines of our implementation; full

technical details are regrouped in the Appendix.

EIS computation of f (yt|Yt−1)

We momentarily take as given that f (st|Yt−1) can be computed for any st (as described

below). The period-t likelihood function is then given by

`t ≡ f (yt|Yt−1) =

∫
f (yt|θt) f (st|Yt−1) dst. (32)

Note that while f (st|st−1) is degenerate, f (st|Yt−1) is not. In the absence of observations,

f (st) would be quadrivariate Normal. The observation yt only measures θt, thus we shall

implement a (sequential) EIS sampler g (st; at) as the product of a trivariate Gaussian density

for δt|θt and a univariate piecewise loglinear density for θt. For ease of notation, the auxiliary

EIS parameter at is deleted from all subsequent equations.

The conditional EIS sampler g (δt; θt) is constructed as follows (accounting for the trans-

formation from λt to st): (i) We draw a swarm {λ̃
1,i

t }Ni=1. Specifically, the period-(t− 1) EIS

swarm {s̃0,i
t−1}Ni=1 is transformed into a swarm {λ̃

0,i

t−1}Ni=1 by means of the inverse transforma-

tion λt = h−1(st). Then λ̃
1,i

t is drawn from the (degenerate) transition density f(λt|λ̃
0,i

t−1)

associated with (26).

(ii) We construct an auxiliary quadrivariate EIS Gaussian kernel kλ,t (λt) approximating

f(λt|Yt−1). To do so, we use the swarm {λ̃
1,i

t }Ni=1 to construct an auxiliary OLS regression

of {ln f(λ̃
1,i

t |Yt−1)}Ni=1 on {λ̃
1,i

t }Ni=1 and the lower triangle of {(λ̃
1,i

t )(λ̃
1,i

t )′}Ni=1, for a total of

14 regressors plus one intercept. Let µt denote the unconditional mean of this quadrivariate
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kernel and Pt its precision matrix. The kernel is then written as

kλ,t (λt) = exp{−1

2
(λ′tPtλt − 2λ′tqt)}, (33)

with qt = P−1
t µt.

(iii) We introduce the transformation from λt to st = h (λt), with Jacobian ρt > 0. Let

ks,t (st) = ρtkλ,t
(
h−1
t (st)

)
. (34)

The conditional EIS sampler for δt|θt is then given by

gt (δt|θt) =
ks,t (st)

χt (θt)
, (35)

with

χt (θt) =

∫
∆

ks,t (st) dβtdρt, (36)

where ∆ = R2 × R+.

(iv) The likelihood integral in (32) is rewritten as

`t =

∫
[f (yt|θt)χt (θt)]

f (st|Yt−1)

ks,t (st)
gt (δt|θt) dδtdθt. (37)

The next EIS step consists of approximating the product f (yt|θt)χt (θt) on [0, 2π] by a

piecewise loglinear EIS sampler gt (θt). Equation (37) is rewritten as

`t =

∫
ws,t (st) gt (δt|θt) gt (θt) dst, (38)

with

ws,t (st) =

[
f (yt|θt)χt (θt)

gt (θt)

]
f (st|Yt−1)

ks,t (st)
. (39)
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Its EIS-MC estimate obtains as

̂̀
t =

1

N

N∑
i=1

ws,t
(
s̃0,i
t

)
, (40)

where {s̃0,i
t }Ni=1 denotes a swarm of i.i.d.N draws (under CRNs) from the EIS sampler

g (δt|θt) gt (θt).

In view of the structure of the problem (non-observability of 3 out of 4 Gaussian state

variables, and flexibility of the piecewise loglinear sampler along the fourth), we anticipate

close fit between the numerator and denominator of ws,t (st) as given in (39). Relatedly, we

anticipate dramatic reduction in the MC sampling variance of filtered values relative to that

of estimates obtained under the particle filter and commonly used extensions.

EIS computation of f (λt+1|Yt)

Having just discussed EIS for period t, it is notationally more convenient to discuss

the computation of f (λt+1|Yt) rather than that of f (λt|Yt−1). The reason for initially dis-

cussing f (λt+1|Yt) rather than f (st+1|Yt) is simply that Gaussian algebraic manipulations

are more transparent under the λ parametrization. Moreover, f (st+1|Yt) obtains directly

from f (λt+1|Yt) via the transformation st+1 = h(λt+1) with Jacobian ρt > 0. Relatedly, the

weights ws,t (st) in (39) can trivially be transformed into weights for λt. Let

wλ,t (λt) = ws,t
(
h−1 (st)

)
=
f (λt|Yt−1)

kλ,t (λt)

[
f (yt|θt)χt (θt)

gt (θt)

]
θt=θt(αt)

, (41)

with θt (αt) = arctan (zt/xt). Whence the density f (λt|Yt) , given by

f (λt|Yt) =
f (λt|Yt−1) f (yt|θt (αt))

`t
, (42)

can be rewritten as

f (λt|Yt) =
wλ,t (λt)

`t
kλ,t (λt)

gt (θt)

χt (θt)
|θt=θt(αt). (43)
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Under a non degenerate transition from λt to λt+1, f (λt+1|Yt) obtains as

f (λt+1|Yt) =

∫
R4

f (λt|Yt) f (λt+1|λt) dλt. (44)

In the present case, however, we have to properly account for the fact that the transition

from λt to λt+1 is degenerate. As discussed above, degeneracy is addressed by replacing βt

in (43) by the inverse of the Dirac transition in (31):

φ−1 (λt+1, αt) = βt = 2 (αt+1 − αt)− βt+1, (45)

and integrating only with respect to αt. Furthermore, since wλ,t (λt) is expected to be near

constant over the support of λt, we can safely rely upon a ‘constant weight’ approximation

whereby the ratio wλ,t (λt) /`t in (43) is set equal to 1. Whence f (λt+1|Yt) can be accurately

evaluated by the following bivariate integral:

f (λt+1|Yt) =

∫
gt (θt)

χt (θt)
kλ,t (λt) f (αt+1|λt) |θt=θt(αt),βt=φ−1(λt+1,αt)dαt. (46)

Numerically efficient evaluation of this integral requires the following additional steps:

(i) Combine analytically kλ,t (λt) and f (αt+1|λt) into a Gaussian kernel in (αt+1, λt);

(ii) Introduce the transformation from αt into (ρt, θt) with Jacobian ρt > 0;

(iii) Given (λt+1, θt), integrate analytically in ρt > 0;

(iv) Given λt+1, use gt (θt) as a natural sampler and compute the integral using the draws

of θt obtained in the previous round.

Note that the sequence of operations just described must be repeated for any value of λt+1

for which f (λt+1|Yt) is to be evaluated for period-(t+ 1) EIS evaluation of `t+1. However,

as illustrated below, the numerical efficiency of the EIS procedures we have just described

results in dramatic reductions in the number of MC draws required to reach a preassigned

level of numerical accuracy, and thus in significant reductions in overall computing time
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relative to the particle filter.

Filtered Values

Filtered values for {λt}Ni=1 are defined as

E (λt|Yt) =

∫
λtf (λt|Yt) dλt. (47)

Substituting (43) for f (λt|Yt) and introducing the transformation from λt to st produces the

following operational expression for the filtered values of λt:

E (λt|Yt) =
1

`t

∫
h(st)ws,t (st) gt(δt|θt)gt(θt)dst. (48)

EIS estimates of these filtered values obtain as

̂E (λt|Yt) =

N∑
i=1

h(s̃0,i
t )ws,t

(
s̃0,i
t

)
N∑
i=1

ws,t
(
s̃0,i
t

) . (49)

Filtered values of st are obtained by replacing h(st) by st in (48) and (49). Note that, in

contrast with the evaluation of f (λt+1|Yt) , we do not implement here the ‘constant weight’

approximation under which wλ,t (λt) /`t is be set to 1 in (48) and filtered values simplify

into the arithmetic mean of {h
(
s̃0,i
t

)
}Ni=1. As discussed, e.g., by Geweke (1989), the reason

for preferring the ratio form in (49) is that the use of CRNs in the evaluation of the nu-

merator and denominator typically induces positive correlation between their respective MC

estimates, thereby reducing further the MC variance of the ratio.

A non-degenerate version of the problem

The singularity of the transition in (26) is a (spurious) consequence of a model specifica-
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tion that assumes measurements at each division point of the grid used for discretization of

the random walk for speed. We now consider the case in which a finer grid for discretization

is used relative to that used for measurement, while also allowing for measurements made

at varying time intervals.

For ease of notation, we focus on two successive measurements separated by D discretiza-

tion intervals. Equation (26) then must be transformed into a transition density for λt+D|λt

by implicit marginalization with respect to the state sequence {λt+j}D−1
j=1 . The random walk

process for speed is given by

βt+1 = βt + εt+1, εt ∼ N
(
0, σ2I2

)
, (50)

and position is discretized as

αt+1 = αt +
1

2

(
βt + βt+1

)
. (51)

It follows that

βt+D = βt + ut+D, (52)

αt+D = αt +Dβt + υt+D, (53)

with

ut+D =
D∑
j=1

εt+j, υt+D =
1

2

D∑
j=1

[2 (D − j) + 1] εt+j. (54)

The covariance matrix of (ut+D, υt+D) obtains by application of standard formulae for

the sums and sums of squares of natural numbers - see e.g. Gradshteyn and Ryzhik (1979,

0.122, 1 and 2). It follows that the transition density from λt to λt+D is given by

λt+D|λt ∼ N
(
ADλt, σ

2VD
)
, (55)
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with

AD =

 I2 DI2

0 I2

 , VD = D ·

 4D2−1
12

I2
D
2
I2

D
2
I2 I2

 . (56)

The case D = 1 obviously coincides with the degenerate transition in (26). The general-

ization from (26) to (55) does not affect EIS evaluation of the likelihood function. However,

the evaluation of f (λt+D|Yt) now requires four-dimensional integration, and is given by

f (λt+D|Yt) =

∫
gt (θt)

χt (θt)
kλ,t (λt) f (λt+D|λt) dλt. (57)

The numerical evaluation of equation (57) parallels that of equation (46) with the additional

(analytical) integration with respect to βt.

Application

We demonstrate our methodology in an application designed essentially along the lines

of that constructed by Gordon et al. (1993), and modified by Pitt and Shephard (1999).

For the singular and non-singular cases, σ in (26) and (55) is set to 0.001; and r in

(28) is set to 1 − (0.005)2. The initial latent vector λ1 is normally distributed with mean

vector (−0.05, 0.2, 0.001,−0.055) and diagonal covariance matrix with standard deviations

(0.05, 0.03, 0.0005, 0.001). In the non-singular case, the number Dt of discretization intervals

between measurements t and t + D is drawn from a multinomial {2, 3, ..., 11} with equal

probabilities pi = 0.1, i = 2, ..., 11. (Actually, the non-singular case need not be restricted to

integer values of Dt, and we have verified that solutions for the non-singular case converge

to those for the singular case as Dt tends towards 1.)

We set T = 10, and draw two sets of latent vectors {λst}
10
t=1 , one for the singular case

(s = 1) and one for the non-singular case (s = 2). Both sets are linear transformations of a

single set of N(0, 1) draws.

As in Pitt and Shephard (1999), we draw I = 40 different data sets
{
Y s,i
T

}40

i=1
based on
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the latent vectors {λst}
10
t=1 for s = 1, 2. For each data set, we produce 100 i.i.d. estimates

of the filtered means (differing by the seeds initializing the MC draws) using EIS-1K and

PF-40K, where the numbers following acronyms indicate the number of particles (computing

times associated with these procedures are similar).

Comparing MC estimates generated by these procedures with ‘true’ values of the filtered

means yields Mean Squared Error (MSE) comparisons identical to those used by Pitt and

Shephard (1999). Let l̄it, (i : 1→ 40, t : 1→ 10) denote ‘true’ filtered means for the states.

These must be computed with high numerical accuracy in order to validate the MSE com-

parisons that follow. Exploiting the relatively high numerical accuracy of EIS (highlighted

below), we estimate ‘true’ filtered means as the arithmetic means of 100 i.i.d. EIS-10K esti-

mates. Corresponding standard deviations are several orders of magnitude lower than those

of the estimates we propose to compare. In order to reach similar precision using the particle

filter, we must use the arithmetic means of 100 i.i.d. PF-4 million estimates. We ran this

experiment to verify that ‘true’ values produced by both EIS and PF estimators are numer-

ically identical. The latter number turns out to be needed in order to eliminate significant

biases characterizing PF estimates of filtered means (illustrated below).

MSE comparisons are constructed as follows. Let l̃i,jt,k denote the MC estimate of the

filtered mean, for data set i, for replication j, at time t, for procedure k = {EIS-1K,PF-40K}.

The log mean squared error (LMSE) for procedure k, at time t is obtained as

LMSEt,k = ln

{
1

40

40∑
i=1

[
1

100

100∑
j=1

(
l̃i,jt,k − l̄

i
t

)2
]}

. (58)

Comparing estimates generated by these procedures with ‘true’ filtered means for the latent

variables yields LMSE comparisons analogous to those employed by Pitt and Shephard (1999)

to demonstrate the gains in precision and efficiency yielded by their extensions of the particle

filter.

Figure 1 depicts LMSEs for the two procedures applied to the singular case against time.
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As expected, the move from estimates obtained using the particle filter to those obtained

using the EIS filter leads to a large reduction in LMSEs: differences average between 4 and

6 on the log scale. These differences are far larger than those reported by Pitt and Shephard

(1999): their auxiliary particle filter yielded reductions averaging between 0.5 and 1 relative

to the particle filter.

To identify the source of the large differences in LMSEs, we computed separately MC vari-

ances and squared biases for EIS-1K and PF-40K. Logged variances and logged MSE/variance

ratios are plotted for both procedures in Figure 2. The logged MSE/variance ratio can be

interpreted as a ‘bias multiplier’ indicating the extent to which biases amplify differences

in logged variances in yielding corresponding LMSEs. Figure 2 indicates that differences in

logged variances are typically of the order of 2 to 2.5 in favor of EIS (corresponding roughly

to a 10-fold reduction in variance), except for t = 1. Logged bias ratios are virtually all close

to zero for EIS filter, while they typically lie between 1 and 4 (and as high as 10 for t = 1)

for the particle filter. Thus biases remain significant for the particle filter even using 40K

draws, and are the dominant component of the large differences in LMSEs generated by the

adoption of EIS. This is a manifestation of the ’sample impoverishment’ problem that results

from the very tight distribution of λt|Yt relative to that of λt|Yt−1 along the θt dimension.

The results obtained for the non-singular case of the bearings-only tracking are, as ex-

pected, very similar to those obtained for the singular case. Figure 3 plots the LMSEs and

Figure 4 the logged MC variances and the logged MSE/variance ratio for the non-singular

case.

6 Conclusion

We have proposed an efficient means of facilitating filtering in applications involving non-

linear and/or non-gaussian state-space representations: the EIS filter. The filter is adapted

using an optimization procedure designed to minimize numerical standard errors associated
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with targeted integrals. Implementation of the filter is straightforward, and the payoff of

adoption can be substantial as illustrated by means of the bearings-only tracking problem.

7 Appendix

7.1 Bearings-Only Tracking, Singular Case

Derivation of χt(θt)

For ease of notation we suppress t subscripts. The kernel gs (s) defined in (34) depends

upon the quadratic form

γ (s) =

 ρeθ

β


′

P

 ρeθ

β

− 2

 ρeθ

β

 q. (59)

We partition P and q conformably with (ρe′θ, β′) into

P =

 P11 P12

P21 P22

 , q =

 q1

q2

 . (60)

Standard Gaussian algebra operations (square completion in β and ρ successively) produce

the following expressions for γ (s) :

γ (s) = (β − bθ)′ P22 (β − bθ) + aθ (ρ− rθ)2 − s2
θ, (61)

bθ = P−1
22 (q2 − ρP21eθ) , aθ = e′θP11.2eθ, (62)

P11.2 = P11 − P12P
−1
22 P21, (63)

rθ =
1

aθ

(
q1 − P12P

−1
22 q2

)′
eθ, s2

θ = aθr
2
θ + q′2P

−1
22 q2. (64)
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It follows that χ (θ) , as defined in (36), is given by

χ (θ) = 2π|P22|−1dθ exp{1

2
s2
θ}, (65)

dθ =

∫ ∞
0

ρ exp{−1

2
aθ (ρ− rθ)2}dρ. (66)

Introducing the transformation of variables

φ =
√
aθ (ρ− rθ) , (67)

dθ can be written as

dθ =
1

aθ

∫ ∞
−cθ

(φ+ cθ) exp{−1

2
φ2}dφ (68)

=
1

aθ

[
exp(−1

2
c2
θ) + cθ

√
π

2
{1 + erf(

cθ√
2

)}
]
, (69)

with cθ = rθ
√
aθ > 0, and erf() denoting the error function

erf(z) =
2√
π

∫ z

0

exp(−φ2)dφ. (70)

(The properties of erf() are discussed, e.g., in Abramowitz and Segun, 1968, Ch. 7.) In

deriving (69), we have exploited the fact that rθ > 0.

CRN-EIS draws of (β, ρ, θ)

An EIS draw of (β, ρ, θ) obtains from a CRN draw (u1, u2, u3, u4), where (u1, u2) denotes

two U(0, 1) draws and (u3, u4) two i.i.d.N(0, 1) draws, through the following sequence of

transformations: (i) θ obtains from u1 by inversion of the cdf associated with the piecewise

loglinear EIS sampler m(θ). (ii) ρ|θ obtains from u2 by inversion of the cdf associated with

m (ρ|θ) =
1

dθ
ρ exp{−1

2
aθ (ρ− rθ)2}, ρ > 0. (71)
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Details of this transformation are provided below. (iii) β|ρ, θ obtains from the transformation

β = bθ + L

 u3

u4

 , (72)

where L denotes the Cholesky decomposition of P−1
22 .

Regarding step (ii), ρ|θ obtains from the transformation of (67), rewritten as

ρ =
1
√
aθ

(φ+ cθ) , (73)

where the density of φ|θ is given by

fφ (φ|θ) =
1

dθaθ
(φ+ cθ) exp{−1

2
φ2}, φ > −cθ, (74)

with cdf

Fφ (φ|θ) =
1

dθaθ

{
[exp(−1

2
c2
θ)− exp(−1

2
φ2)]

+cθ

√
π

2
[erf(

φ√
2

) + erf(
cθ√

2
)]
}
,

(75)

accounting for the fact that erf(−z) = − erf(z). For the application described in Section 6,

cθ turns out to be significantly larger than zero, so that φ is nearly N(0, 1). Thus for the

inversion of the CRN u2 ∼ U(0, 1), we take as a starting value the corresponding (inverse)

Gaussian draw φ(0) ∼ N(0, 1) and iterate once or twice by Newton

φ(k+1) = φ(k) − F (φ(k)|θ)− u2

F (φ(k)|θ)
. (76)

Derivation of f (λt+1|Yt)

We again suppress t subscripts for ease of notation; accordingly, the index t+1 is replaced

by +1. The product gλ (λ) f (α+1|λ) in (46) depends on the quadratic form

δ (α+1, λ) = (λ′Pλ− 2λ′q) + (α+1 − Aλ)′Ω−1 (α+1 − Aλ) . (77)
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It is transformed into a quadratic form in (α, λ+1) via the inverse Dirac transformation (45)

δ1 (α, λ+1) = δ (α+1, λ) |β=ψ(λ+1,α). (78)

This implies the following two transformations:

λ|β=ψ(λ+1,α) = C

 α

λ+1

 , (α+1 − Aλ) |β=ψ(λ+1,α) = D

 α

λ+1

 , (79)

(80)

with C and D respectively being 4× 6 and 2× 6 matrices partitioned in 2× 2 blocks:

C =

 I2 0 0

−2I2 2I2 −I2

 , D = (I2 − I2 I2) .

Thus

δ1 (α, λ+1) =

 α

λ+1


′

M

 α

λ+1

− 2

 α

λ+1


′

m, (81)

M = C ′PC +D′Ω−1D, m = C ′q. (82)

Note that δ1 (α, λ+1) is functionally similar to γ (s) in (59), with β replaced by λ+1.

Therefore, the subsequent transformations of δ1 (α, λ+1) are similar to those of γ (s) outlined

above, except that integration in (ρ, θ) is conditional on λ+1, since it is f (λ+1|Y ) that is

now being evaluated. M and m are partitioned conformably with
(
α′, λ′+1

)
as

M =

 M11 M12

M21 M22

 , m =

 m1

m2

 .
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After transformation from α to (ρ, θ), δ1 (α, λ+1) becomes

δ∗ (ρ, θ+1, λ+1) = λ′+1M22λ+1 − 2λ′+1m2 + a∗θ (ρ− r∗θλ)
2 − c∗θλ, (83)

with

a∗θ = e′θM11eθ, r∗θλ =
1

a∗θ
(m1 −M12λ+1)′ eθ, c∗θλ = r∗θλ

√
a∗θ.

Regrouping (80) and integrating with respect to ρ, we obtain

f (λ+1|Y ) =
|Ω|− 1

2

2π
exp{−1

2

(
λ′+1M22λ+1 − 2λ′+1m2

)
} (84)

×
∫ [ 1

χ (θ)
d∗θλ exp(

1

2
c∗2θλ)

]
m (θ) dθ,

where d∗θλ obtains from (69) by substituting (a∗θ, c
∗
θλ) for (aθ, cθ) . Since m (θ) is typically

a tight density in our application, the variance of the terms between brackets under the

integral sign is expected to be minimal, and the integral in (84) can be estimated accurately

by MC using the same EIS draws from m (θ) used for the evaluation of `t.

7.2 Bearings-Only Tracking, Non-Singular Case

The computation of χ (θ) and CRN-EIS draws of (β, ρ, θ) are the same as for the singular

case. The derivation of f (λt+D|Yt) under the non-singular transition defined in (55) is

straightforward. As above, we suppress the index t, and replace t+D by +D. The product

gλ (λ) f (λ+D|λ) in (57) depends on the quadratic form

δ (λ+D, λ) = (λ′Pλ− 2λ′q) + (λ+D − ADλ)V −1
D (λ+D − ADλ) , (85)

which is rewritten as

δ (λ+D, λ) = (λ′P0λ− 2λ′q0) + λ′+DV
−1
D λ+D, (86)
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with

P0 = P + A′DV
−1
D AD, q0 = q + A′DV

−1
D λ+D.

The integration with respect to λ in (84) proceeds exactly as described in the singular case,

except that (P, q) are replaced by (P0, q0). Thus f (λ+D|Y ) is given by

f (λ+D|Y ) =
|VD|−

1
2

2π
exp{−1

2

(
λ′+DV

−1
D λ+D

)
} (87)

×
∫ [ 1

χ (θ)
d0
θλ exp{1

2
(s0
θλ)

2}
]
m (θ) dθ,

where s0
θλ and d0

θλ are defined by (64) and (66), with (P, q) replaced by (P0, q0) . The EIS

evaluation of (87) parallels that of f (λ+|Y ) in (84).
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ẋ

,
(b

)→
ż.
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