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Abstract

Particle filtering has been successfully used in target tracking appli-

cations when the state and measurement models are nonlinear and the

associated noise is non-Gaussian. Among the most difficult scenarios of

target tracking, are multiple target tracking (MTT) problems that require

the application of realistic and often multiple kinematic models. Recently

algorithms such as the independent partitions (IP) and coupled partitions

(CP), that make use of the particle filter, have proven their ability to

handle MTT problems effectively, demonstrating the possibilities offered

by the particle filter. The particle filter can also use different kinds of

additional information that may be available, with the use of likelihood

functions and sampling distributions. Such information may arise from

targets having constraints in their motion. The ability to incorporate

such kinematic behavior into the tracking algorithm can improve track-

ing performance. The IP and CP assume independence in target motion,

therefore ignore information about kinematic constraints, when available.

We introduce the constrained motion proposal (COMP) algorithm that

uses multitarget proposal densities and motion models that incorporate

kinematic constraint information into a particle filter. More specifically, it

uses methods of sampling and likelihood functions that take into account

motion constraint information. It also introduces variability in partition

proposal order, that reduces the effects of erroneously imposed constraints.

We compare error performance results of the COMP with those of other

proposal methods. We show that the methods used by the COMP make

effective use of motion constraint information and, thus, improve tracking

performance.
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1 Introduction

Target tracking involves the estimation of the target dynamic state using observations. The

solution of this problem might require methods that can deal with highly nonlinear appli-

cations such as multiple target tracking (MTT). To tackle this problem, some suboptimal

methods have been proposed. The method that this report mainly deals with is the particle

filtering method [1], a sequential Monte Carlo technique that has demonstrated its ability

of performing successful nonlinear and non-Gaussian tracking, thus, utilizing more accu-

rate models of the dynamics of physical systems and measurement devices. It also enables

on-line processing of data, reduces storage requirements and quickly adapts to changing

situations. Particle filtering is a Bayesian method that approximates probability densities

as point masses (particles). Using Bayes theorem, prior and current knowledge is combined

to form an updated version of our knowledge on the state of the targets. This method

encompasses all the benefits of Bayesian inference and can be applied using any motion and

measurement model.

In recent years, particle filtering has been successful in solving single target tracking

problems. This success has been extended to the MTT problem for which new algorithms

emerge with increased advantages such as lower computational expense, better performance

in difficult scenarios and the ability to utilize measurements from any kind of sensing scheme.

In MTT, challenges may include the estimation of the state of multiple moving targets or the

number of targets within the observation area at different time steps. MTT needs to utilize

measurements arising from the targets’ presence in the region of interest or from clutter.

However, one must distinguish which measurements to use for the estimation of the state of

a certain target and avoid using data from clutter or other targets. Explicitly, this can be

achieved using data association methods, which associate data with each target in order to

obtain estimates [2–5]. In data association methods, each measurement is associated with

a specific target or with clutter. Due to the increasing number of data associations that are

possible at each time step, this method can often be computationally prohibitive. Certain

methods exist, however, that can alleviate the computational burden such as screening the

data and removing data association hypotheses that are less likely. Other methods such

as the unified or no data association methods, keep track of the entire joint density of the

targets and observations, thus implicitly discriminating among the data for tracking each

target by taking into account the useful components of the joint density [6–10]. Methods

that do not use data association have been proposed, motivated by the need of simpler
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algorithms and less computational burden. These methods are based on estimating the

entire joint multitarget probability density using a purely Bayesian perspective, avoiding

any explicit data association. In [6, 7], the unified data approach is applied using particle

filters where each particle includes all the information of interest such as the number of

targets present and their states.

In moving target applications, information other than the observed measurements can

also contribute to the solution of the target state estimation. Such information may result

from the nature of the moving object and its interaction with the environment and other

targets. Some examples of such knowledge include the position of obstacles avoided by

objects, land avoided by ships, certain paths that restrict motion of objects or the position

of other moving objects. Therefore, one can face the challenge of tracking a group of targets

moving in a formation or having restrictions in their motion. Such group motion can be

the convoy movement, where vehicles should not approach each other closer than a certain

distance nor move away too far apart. Another type of constrained motion is when people

are moving in a prescribed manner such as the leapfrog motion in military applications.

Furthermore, some type of constrained motion can be performed by moving sensors, in

order to track targets more effectively.

The purpose of this report is to present current approaches in MTT with no data as-

sociation. We present existing approaches and introduce new ones, dealing with the MTT

problem with kinematic constraints among targets. We propose methods to model group

kinematic behavior, that also account for constraints on individual target motion. More

specifically, we introduce the Constrained Motion Proposal (COMP) algorithm [11], a gen-

eral method that can be used to perform tracking effectively considering motion constraints.

We investigate the effectiveness the approaches used by the COMP via simulations of con-

strained motion scenarios.

In this report, we describe the basics of target tracking in Section 2, we examine the

particle filtering method for a single target in Section 3 and general MTT approaches in

Section 4. We present current algorithms for the MTT problem, that use particle filtering

with no data association in Section 5. In Sections 6 and 7 we propose the algorithms for

MTT when targets move with constraints. We provide simulation results of the proposed

methods and compare them with existing MTT algorithms in Section 8. Finally, we suggest

extensions to the COMP and conclude in Section 9.
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2 Target Tracking

2.1 Algorithms

Tracking has been used to estimate target information such as position and velocity in many

applications [10,12–14,17]. Tracking can be performed in three ways: smoothing, estimation

and prediction. In smoothing, an available set of data is used to obtain an estimate of values

at a time prior to the latest measurement. In estimation, an estimate is obtained utilizing

measurements up to the current time of the estimate. Finally, prediction is used to obtain

an estimate at future time steps, based on previous data and any other kind of information

available.

The most common approach in target tracking problems is a probabilistic one. In this

approach, the kinematics of the target under investigation are given by a motion model

that describes the evolution of the state of a target. Using the Bayesian method, a belief

on the state of the target given some observation is found using the posterior probability

density function (pdf) that is calculated recursively at each time step. An optimal solution

to this tracking problem is offered through the Kalman filter [18, 19] that follows the steps

of prediction and update. This solution is attainable only when the motion and observation

models are assumed known and linear, and when the process and observation noise sequence

are assumed Gaussian. The assumptions of linearity and Gaussianity, however, are very

restrictive. Thus, in many situations, the Kalman filter fails to provide adequate tracking.

Some approximations can be used to modify Kalman filtering for these difficult scenarios [1].

Other suboptimal solutions are the grid-based methods that offer recursion of the posterior,

assuming that the state space is discrete. Grid-based methods can become computationally

intractable as the state space dimension increases and fail in difficult scenarios and multiple

target tracking situations.

Some suboptimal methods exist, however, that relax the strict assumptions of the above

methods. The extended Kalman filter (EKF) [20] uses local linearization techniques to

describe nonlinear motion and observation models. Since the posterior is approximated

by a Gaussian, the Kalman recursion can still be implemented. The unscented Kalman

filter (UKF) [21], approximates nonlinearities better by using the unscented transform,

which in this case calculates the statistics of Gaussian random variables propagated through

nonlinear systems.

Approximate grid-based methods [1] can be useful when the continuous state space can

be decomposed into cells. Then, non-Gaussian posterior densities can be approximated
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using this method. As the state space increases, however, there still exists a prohibitive

computational cost. Finally, particle filtering methods [1] require no linearity or Gaussianity

assumptions and the computational complexity associated with them is tractable and thus,

are becoming increasingly popular.

2.2 Motion and Measurement Models

Kinematic models deal with the evolution of the state of one or many targets. These models

are mainly based on the nature of the moving objects. A state vector xk, usually comprising

of position and velocity, describes the state. The state vector evolves as

xk = fk(xk−1,vk−1) (1)

where fk : <ex ×<ev → <ex , with ex and ev denoting the dimension of x and v respectively,

is a function of xk−1 and can either be linear or nonlinear. vk−1 is an independent and

identically distributed (i.i.d) process noise sequence.

Another component of Bayesian estimation is the measurement model, that characterizes

the relationship between the observed data and the state of the targets. The measurement

model is represented as

yk = hx(xk,nk) (2)

where hk : <ex ×<en → <ey is a known linear or nonlinear function of the state xk and the

i.i.d measurement sequence nk.

Examples of measurements include range measurements that provide the distance of

the target to the sensor, range rate measurements that measure the rate of change of the

distance between the target and sensor, azimuth and elevation angles between the target

and sensor in the horizontal and vertical direction, respectively, and sequential images of

the position of the target. Some types of sensors often used for target tracking are radar,

Infrared, acoustic and optical.

2.3 Bayesian Inference

In order to provide the framework in which the particle filter operates, it is necessary to

provide the basics of Bayesian inference. Bayesian inference consists of finding the likelihood

function and combining it with the prior information using Bayes theorem to compute a

posterior distribution [8]. This will provide a Bayesian recursion useful in many applications.
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Let x1:K = [x1, . . . ,xK ], where the random vectors xk with time step k = 1, . . . , K,

take values in a state space <n. Information about x1:K is obtained through observations

y1:K = [y1, . . . ,yK ], with each yk being within a measurement space <m. The likelihood

function p(yk|xk) is obtained using the measurement model as in (2). With the Bayesian

perspective, it is possible, in two stages, to recursively obtain the posterior pdf, p(xk|y1:K),

which represents a belief in the state xk at time k based on the measurements up to time

k. The two stages are prediction and update.

In the prediction step, it is assumed that the pdf p(xk−1|y1:k−1) at time k−1 is available.

Using the kinematic prior, p(xk|xk−1), coming from the motion model given by (1), the

posterior p(xk|y1:k−1) is obtained, via the Chapman-Kolmogorov equation

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (3)

When a measurement yk becomes available at time k, the update stage follows, where

the prior is updated using Bayes theorem:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
. (4)

The recursive method described above constitutes the Bayesian inference and shows the

ability of this method to accommodate new data in updating information about the state

xk.

Different likelihood functions exist for different kinds of sensors, and the Bayesian infer-

ence can be built for many different kinds of motion models.

3 Particle Filtering Method

3.1 Particle Filter Algorithm

Monte Carlo methods are a family of methods that have the common characteristic of

solving problems by generating a set of random numbers, based on an educated guess, and

calculating the correctness of the guess based on standards given by the problem. Therefore,

the Monte Carlo approach is used for problems for which it is not possible to find analytical

solutions.

A specific example that proves very useful in tracking problems is the approximation of

a pdf by discrete samples. When possible, independent and identically distributed samples

are drawn from the target density. Wherever the pdf is peaked, more samples are gathered
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at that point due to higher probability of occurrence. Therefore, the value of the pdf at

discrete points can be estimated by the quantity of samples at that point. The greater the

number of samples, the better the density is characterized.

The procedure is, of course, computationally expensive as it requires an adequate amount

of discrete samples for representing the density at hand. Through the advancements in

computer technology, however, this problem was alleviated.

Sequential Monte Carlo (SMC) methods are used to solve estimation problems by se-

quentially updating knowledge about the estimates, based on sequentially arriving data.

An example of an SMC method is the sequential importance sampling (SIS) [22,23]; this is

also known as particle filtering [24], bootstrap filtering [25], the condensation algorithm [9],

interacting particle approximations [26,27], and survival of the fittest [28].

The main reason for using this SMC technique is to solve problems defined by nonlinear,

non-Gaussian scenarios, thus, removing the limitiations imposed by Kalman filtering. The

hard to compute posterior density can be approximated by a large set of point estimates

that are given weights according to their correctness in describing the density.

The particle filter approximates the posterior density p(xk|yk) as:

p(xk|yk) ≈
N∑

n=1

wn
k δ(xk − xn

k) (5)

where wn
k is the weight assigned to particle xn

k , n is the particle index, n = 1, . . . , N , and

N is the number of particles used. The particles xn
k , are from an appropriate importance

density q(xk|xk−1,yk) [22, 29]. The optimal importance density has been found to be the

one that incorporates information from the kinematics of previous time steps as well as

current observations. However, the use of an exact or approximately optimal importance

density can be a hard task to perform. If it is not possible to use an importance density that

incorporates the current measurements yk, then the kinematic prior p(xk|xk−1) is used as

the importance density. The weights of the particles are updated using the weight equation

which utilizes the measurement likelihood, the kinematic prior and the importance density

wn
k ∝ wn

k−1

p(yk|xn
k)p(xn

k |xn
k−1)

q(xn
k |xn

k−1,yk)
(6)

which reduces to

wn
k ∝ wn

k−1p(yk|xn
k) (7)
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if the kinematic prior is used as the importance density.

Using the particle filter posterior density approximation in (5) an estimate of the ex-

pected value of any function of the state g(xk) can be obtained as

E[g(xk)] =
∫

xk

g(xk)p(xk|yk)dxk ≈
N∑

n=1

wn
kg(xn

k). (8)

By increasing the number of particles, the SIS algorithm approaches optimality. By do-

ing so, however, the computational expense of the method increases, especially when dealing

with multiple targets. A good choice of importance density usually enables a reduction in

the number of particles required.

3.2 The Degeneracy Effect

A problem associated with particle filtering is that the variance of the importance weights

increases over time [22]. This implies that only few particles will receive significant weights

and thus will not represent the posterior density adequately. Therefore, a large computa-

tional effort will be allocated in propagating incorrect samples, with the additional drawback

of the few good particles being insufficient to represent the posterior. This is referred to as

the particle degeneracy problem [1].

Increasing the number of particles reduces the effect of degeneracy to some extent but

has the obvious computational drawbacks. Choosing a good importance density and the

use of resampling [1, 30] can reduce the degeneracy effect, as discussed next.

3.3 Choice of Importance Density

The optimal importance density is one that enables us to propose new particles based on

both the previous state and the current measurements and is described by p(xk|xk−1,yk).

This, however, is possible only in particular circumstances: when the state space is a mem-

ber of a finite set, or when the dynamics are Gaussian [1]. In most cases encountered,

however, this is not true, therefore other methods or densities need to be used. A local

approximation of the optimal importance density can be obtained with the use of local lin-

earization techniques [22]. A very simple to use importance density is the kinematic prior,

p(xk|xk−1), which is easy to sample from and its use reduces the weight equation on being

dependent on the measurement likelihood. This, however, often causes many particles to be

generated that do not represent the posterior adequately, especially when the measurement

likelihood is significantly more peaked than the kinematic prior. By the use of the optimal
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Table 1: SIR Single Target Tracking Algorithm

• For each particle n = 1, . . . , N

– Draw particle xn
k ∼ q(xk|xn

k−1,yk)

• Compute the weight of each particle as wn
k ∝ wn

k−1

p(yk|xn
k )p(xn

k |xn
k−1)

q(xn
k |xn

k−1,yk)

• Sample N particles with replacement from the distribution of wk

importance function or its approximation, the selection of the particles is biased towards

the data, therefore achieving lower particle rejection rates and, consequently, the reduction

in the number of particles needed to perform successful tracking.

3.4 Resampling

Degeneracy can be solved by the use of resampling, by which the SIS becomes the sequential

importance resampling (SIR) particle filter. In this method, the particles that have small

weights are eliminated, and the particles with large weights, and that represent the posterior

better are propagated to the next step. The particles that survive the resampling procedure

are then given equal weights. This procedure can be applied whenever Neff falls below

a certain threshold. Different resampling schemes exist. The most preferred method is

systematic resampling [31], while other popular schemes are stratified and residual sampling

methods [32]. The sampling importance resampling (SIR) single particle filter algorithm

using systematic resampling is given in Table 1.

3.5 Single Target Example

To give an illustration on how particle filtering works in practice, we provide a single target

tracking trajectory and the attempted estimation of position by the filter. In Figures 1 and

2, the actual track of a moving object in a two-dimensional plane is traced by a continuous

line. Each of the groups of particles shown, denoted by points, represent the position

estimates of the object at each time step. A weighted average of these position estimates

for each group will give the final estimate on position. Figure 1 shows a successful tracking

situation. Sometimes, however, the tracker fails to follow the object’s actual path, due to
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clutter, insufficient number of particles, inaccurate motion or observation models etc. In

this case, particles are driven away from the actual track. This is illustrated in Figure 2.

4 6 8 10 12 14 16
0

5

10

15

y 
po

si
tio

n

x position

Figure 1: Successful tracking of a target in a two-dimensional plane. The actual track is denoted by
a continuous line, while the particle positions at each time step are denoted by points. Each group
of points denotes particles at a different time step.

4 Measurements and Multiple Target Tracking

The basic particle filter described in Section 3, deals with the tracking of single targets. In

recent years, researchers started to look into the problem of multiple targets, utilizing the

benefits of particle filtering with success. The particle filter formulation allows the use of

multiple motion models, thus, enabling us to track different multiple targets. Moreover, the

ability to utilize different types of measurements, enables us to process data coming from

multiple or different types of sensors.

In dealing with multiple targets, one of the main problems one faces is the ambiguity as
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Figure 2: Unsuccessful tracking of a target in a two-dimensional plane. The actual track is denoted
by a continuous line, while the particle positions at each time step are denoted by points. Each
group of points denotes particles at a different time step.

to the origin of the data received. Measurements may arise from targets or clutter, resulting

in false alarms. Furthermore, sensors may miss some valid measurements leading to missed

detections. In addition, each measurement that considered valid needs to be associated

with the target from which it originated. Another case often involves measurements that

arise from two or more targets, or, in a more rare case, one target produces two distinct

measurements. Therefore, some methods need to be used in order to deal with clutter

and correctly assign observations to targets. Towards this goal, a broad category of data

association methods was developed [2,8]. In data association, measurements are associated

with targets, and then these associations are used to produce estimates of the target states.

Another technique, the unified data or no data association method, tracks the joint mul-

titarget probability density using a purely Bayesian perspective, avoiding to perform data
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association explicitly. This aims to remove the complexity associated with data associa-

tion. Other tasks that need to be performed by multiple target tracking algorithms include

accounting for target birth and death which can consist of target splitting or merging, the

entry or exit of targets within the measurement space, and confirming of existing tracks. In

this section, we provide a review of the data association and the unified approach methods.

4.1 Data Association

At different times, measurements are obtained coming either from targets or false alarms.

The measurements are then usually converted to a set of detections, via thresholding. Hy-

potheses are built by associating each valid measurement with a certain target or labeling

it as a false alarm. This describes the general approach of data association techniques.

Different approaches that tackle these ambiguous scenarios exist. In Joint Probabilistic

Data Association (JPDA) [33–35], each measurement to target association is assigned a

probability as to its validity. The state of each target is then estimated taking into account

a weighted combination of all the measurements based on their association probability. The

computational expense associated with this technique mainly lies in the computation of all

the possible associations at each time step. In cases when many of the hypotheses formed

are almost equiprobable, this method is not very effective. In a more complicated method,

the Multiple Hypothesis Tracking (MHT) method [8, 36–40] the decision on the validity

of the hypotheses is delayed until data from future time steps provide a clearer picture

of the situation at hand. The actual MHT operation consists of calculating the posterior

distribution of the target states given a certain data association and the probability the

association is true. The drawback of this technique is that the number of data association

hypotheses grows exponentially with the number of measurements over a number of time

steps. To combat this situation, two general methods, namely screening and pruning are

applied [41]. Screening is applied to restrict the number of measurements that are consid-

ered for association for each target. This step is, therefore, applied before constructing the

hypotheses. Pruning comes after the construction of the hypotheses to eliminate those that

are less likely.

A popular screening technique is gating [36]. In gating, a region is constructed for each

target in the measurement space in which the next measurement for that target is expected

to be found. There are different sizes and shapes for a gate, according to the situation

at hand. Larger regions or gates reduce the probability that a correct measurement is not
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considered, but potentially allow for more false associations to be established. Smaller gates

reduce association complexity, but are prone to missassociations.

In clustering screening method [41], targets are grouped according to the measurements

that they may be associated with. For example, two groups of targets that are close spatially

face a strong data association problem. The data, however, pertaining to each group can be

considered for data association only within that group. Thus, the data association issue is

partitioned, mitigating challenges in assigning measurements to targets. A form of gating

can be used in this case to facilitate the decision on the clustering of targets.

A third screening method is classification. In [41], four categories of targets are defined

that are classified according to the confidence level of the correctness of the track assigned

to them. A threshold is set on the amount of that confidence. Therefore, going from a

higher confidence level to a lower one, targets can be grouped as confirmed, intermediate,

tentative and born.

In pruning, the basic idea is to set a probability threshold and allow only the associations

for which the probability exceeds that threshold to be carried to the next time step. With

this method, the associations are not allowed to increase exponentially with time; this makes

the MHT computation tractable.

A non-probabilistic method is the Nearest Neighbor (NN) [42] approach. In this method,

a measurement is predicted for each target, and the target is associated with the mea-

surement that is spatially or otherwise closer to its predicted measurement than all other

measurements. This is a simple method to use. Its non-probabilistic approach on mak-

ing association decisions, however, causes it to fail to track adequately in dense clutter

environments.

Some algorithms for MMT using particle filtering are found in the literature. In [2],

the probabilistic multiple hypothesis tracker (PMHT) employs particle filtering to perform

MHT. In [43, 44], the JPDA, which uses a weighted sum over all association probabilities,

is combined with particle filtering.

4.2 Unified Approach or No Data Association

Data association approaches, in addition to being computationally demanding, are restric-

tive as to the sensor models and types of data that can be used. Some types of measurements

need to be thresholded so that they contain valid measurements and false alarms and, in

most cases, there is an assumption that each detection originates from only one target.
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Many sensor schemes, however, provide measurements for which data association is not

possible. An example of this is measurements from sensors that detect energy levels. If

it is assumed that each target produces an energy level that decays with distance, then

the energy level received by each sensor would be the sum of the energy levels, emanating

from all the targets, at the point in space where the sensor exists. To resolve this issue, a

unified tracking method can be used [8]. With this method, it is possible to calculate the

joint multitarget probability density [45] using the measurement state as a whole instead of

having to threshold it in order to assign each measurement to a target. In a data association

method thresholding would have to be used together with other assumptions that would

degrade the performance of the tracker in a possibly large extent. With the unified model

such measurements can be used as is. Thus, one utilizes the maximum information received

from the tracking environment using no data association.

In [6, 10, 46], some approaches with no explicit data association are described. The in-

dependent partition (IP) particle filter [6] partitions the state space to obtain a number

of partitions equal to the number of targets, and uses the particle filtering method to pro-

pose each partition separately. The proposed partitions are combined to propose particles.

The particles are then weighted according to the whole measurement space; thus, data

association is not explicitly performed.

The IP algorithm is much simpler and less computationally expensive than the data

association approaches. This algorithm, however, assumes independence between the tar-

gets. When the targets are spatially or otherwise close to each other, the independence

assumption is not valid. In [7, 47], the coupled partitions (CP) algorithm is provided, in

which a number of realizations are proposed for each partition, and one of these realiza-

tions is selected for each partition of each particle. The CP algorithm has the advantage of

performing well when the independence assumption between targets does not hold. How-

ever, it is very computationally expensive. An adaptive method, the adaptive partition

(AP) method, is also proposed in [7, 47], where switching between using the IP and CP is

performed based on whether the investigated targets are assumed independent or not, at

various time instances. This alleviates the computational burden of using the CP alone.

5 Particle Filter Algorithms for Multiple Target Tracking

Before describing the IP and CP algorithms in detail, we first provide the dynamic model

for MTT.
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5.1 State Space Formulation

We consider the motion of a fixed number of targets moving in a two dimensional plane.

The dynamics of the targets are modeled using the same motion model, assuming nearly

constant velocity. The targets are simultaneously tracked by three sets of passive sensors

providing angle-only measurements.

5.1.1 Motion Model

The system model describes the dynamics of L targets moving on a two dimensional plane.

The motion of the targets is considered to be linear and independent from other targets.

The state vector for the lth target, l = 1, . . . , L, comprises of four components:

xl,k =




xl,k

ẋl,k

yl,k

ẏl,k




corresponding to the position in the x and y directions, xl,k, yl,k and the velocity in the x

and y directions, ẋl,k, ẏl,k. The subscript k, k = 1, . . . , K, denotes the time step, and K is

the time of the completion of the tracking procedure. The motion is formulated as:

xl,k = Fxl,k−1 + Q1/2vk−1 (9)

where

F =




1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1




and τ is the time difference between state transitions. The matrix Q is the process noise

covariance matrix that is used to model the acceleration in the x and y directions and vk

denotes a zero mean, unit variance Gaussian process.

The state vector describing the dynamics of all targets is a concatenation of the indi-

vidual state vectors of each target

Xk = [xT
1,k xT

2,k . . . xT
L,k]

T (10)
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where xT denotes the transpose of x. We will refer to each component xl,k for l = 1, . . . , L

of the state vector Xk, as a partition.

5.1.2 Measurement Model

S sensors, positioned in the same plane as the targets, obtain angle measurements indicating

the relative angle between each sensor and the corresponding target. Each sensor observes

I cells as shown in Figure 3. Each cell covers a certain angle in the measurement space,

which is equal for all cells, and yields a measurement ys,i,k, s = 1, . . . , S, i = 1, . . . , I. Here,

s corresponds to the sensor number, and i to the cell number. This measurement takes

values of 1 or 0 according to whether a target is in a cell. The resulting output of each

sensor at each time step k is denoted as ys,k = [ys,1,k . . . ys,I,k]T , and the total output of

all sensors as Yk = [yT
1,k . . . yT

S,k]
T .

Next, we derive the likelihood p(Yk|Xk) of the measurements Yk conditional to the true

target state Xk. Each cell receives energy that originates from targets that are within its

angle of observation and noise. The decision on the measurement value that is output by

each cell is obtained based on a certain probability of false alarm (PFA). Assuming that the

energy measurements are Rayleigh-distributed with a signal-to-noise ratio (SNR) denoted

by λ that is equal for all targets, the probability of detection (PD) in a given cell i is, [7]

PD(ni) = P
1

1+niλ

FA (11)

where ni is the number of targets in cell i.

The likelihood related to each cell at time k is defined by

p(ys,i,k = 1|Xk) =

{
PFA if Xk has no targets in cell i

PD(ni) if Xk has ni targets in cell i

Each cell is assumed to obtain measurements independently. Therefore, the likelihood

relative to sensor s is obtained by the product of the likelihoods for each cell:

p(ys,k|Xk) =
I∏

i=1

p(ys,i,k|Xk). (12)

Finally, the total likelihood is given by the product of the likelihoods of all the sensors:

p(Yk|Xk) =
S∏

s=1

p(ys,k|Xk). (13)

19



Figure 3: Schematic of a typical sensor used. Each cell covers a certain angle, reporting a detection
or no detection at its output.

5.2 Particle Filtering Algorithms

5.2.1 IP Algorithm

The SIR single target particle filter [1] extends directly to the SIR multitarget particle

filter [7], using the definitions of the motion and measurement models in Section 5.1. This

filter proposes particles that consist of partitions, each representing one of the targets of

interest. The partitions in a particle, however, are proposed simultaneously and placed

into particles without any additional assessment of their validity. Therefore, many of the

particles that are built receive low weights at the particle weighing step. For example, some

of the partitions of the particle might be very good estimates of the state vector of certain

targets, while other partitions in the same particle can be bad estimates of other target’s

state vectors. Thus, many particles can be composed of both good and bad estimates. This

results in particles receiving an overall low weight, due to the bad partitions.

The IP algorithm [6], offers a method of constructing better particles. This is achieved by

independently proposing partitions for each particle, weighing them and choosing the par-

titions that receive the best weights by sampling from the weight density of each partition.

This constitutes the proposal subroutine. More specifically, the partitions are proposed via

a single partition importance density of our choice and weighted by a function that con-

tains useful information coming from the measurements. The chosen partitions are then

placed into particles, and the resulting particles are weighted. As a further advantage, the

overall better particles have greater chances of being propagated to the next time step, if

resampling is used. This results in a great reduction in the number of particles required
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for representing the posterior adequately and an improvement in overall performance when

compared to the SIR multitarget particle filter.

Usually an approximation of a density that involves single target measurement infor-

mation is used as a weighing function in the proposal subroutine. A simple choice is an

approximation to the single target measurement likelihood function. Note that each par-

tition can be weighed individually because all the measurements are well separated in the

sensor space. Then each partition will receive weights which are due only to the part of

the joint posterior that represents the target corresponding to that partition. This is true

even if, in practice, it is weighted against the whole posterior density. This is important as

partitions can be proposed performing no data association.

Next, the assumptions that are used to implement the IP algorithm are presented more

explicitly. The first assumption is that the dynamics of the particles are independent. Thus,

the state transition density of the combination of the partitions, each representing the state

of a targets, can be factorized as:

p(Xn
k |Xn

k−1) =
L∏

l=1

p(xn
l,k|xn

l,k−1). (14)

If each of these factors are used as the single proposal density, it is possible to propose each

partition of each particle, corresponding to a certain target, using the prior density of that

target. Also, the joint posterior distribution can be factorized as

p(Xk|Yk) =
L∏

l=1

p(xl,k|Yk). (15)

The above proceeds from the assumption that the targets are not coupled in the sensor

space,

Since the joint posterior distribution of the multitarget state can be factorized into in-

dependent components, each corresponding to one of the partitions, then, for each particle,

the partitions can be constructed independently. Therefore, partitions are proposed inde-

pendently through the kinematic prior, p(xn
l,k|xn

l,k−1), l = 1, . . . , L, and eventually weighted.

Therefore, the weight equation for each partition l = 1, . . . , L reduces to

wn
l,k ∝ p(Yk|xn

l,k). (16)

After resampling, that involves obtaining a sample j of the partition l from the distribution
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Proposed Particles Proposed particles
after partition sampling

Particle 1 : {x1
1,x

1
2,x

1
3} Particle 1 : {x3

1,x
1
2,x

2
3}

Particle 2 : {x2
1,x

2
2,x

2
3} −→ Particle 2 : {x1

1,x
3
2,x

2
3}

Particle 3 : {x3
1,x

3
2,x

3
3} Particle 3 : {x1

1,x
2
2,x

3
3}

Table 2: Schematic of three particles, n = 1, . . . , 3, with three partitions, l = 1, . . . 3: xn
1,k, xn

2,k and
xn

3,k, where the time subscript k was omitted above. The particles are formed after independent
proposal of individual partitions and sampling from the weight distribution of partitions. Here, the
partitions shown on the left received good weights and were more likely to be chosen, thus forming
particles that overall represent the posterior well.

of wl,k, the weight wj
l,k received by each partition l = 1, . . . , L becomes the bias bn

l,k for that

partition, corresponding to particle n. Therefore, bn
l,k=wj

l,k.

With the IP, one may permute the order of partitions corresponding to the same targets

between particles, constructing particles with good partitions. This is demonstrated in

Table 2.

Another benefit of the IP technique is that the choice of the particles is biased towards

the measurements. Since this is a biased sampling scheme, the bias of the partitions are

retained and used in the final weighing step. To express the procedure in a mathematical

form, a derivation of the weighing equation for the particles is presented. The weight of the

particle n = 1, . . . , N will be:

wn
k ∝ wn

k−1

p(Yk|Xn
k)p(Xn

k |Xn
k−1)

q(Xn
k |Xn

k−1,Yk)
(17)

where q(Xn
k |Xn

k−1,Yk) is the proposal density used to propose each of the particles. Recall

that each of the partitions of the particle was proposed by the kinematic prior of the target

it represents and weighted with the whole posterior. This weight biased its selection for

placement in the particle. Therefore,

q(Xn
k |Xn

k−1,Yk) =
L∏

l=1

q(xn
l,k|xn

l,k−1,Yk) (18)

and
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Table 3: Independent Partitions Algorithm [6]

• For each partition l = 1, . . . , L

– For each particle n = 1, . . . , N

∗ Sample xn
l,k ∼ p(xl,k|xn

l,k−1)
∗ Compute wn

l,k = wn
l,k−1p(Yk|xn

l,k)

– Normalize wl,k

– Resample by choosing a partition j from the distribution of wl,k

with replacement

– Keep the bias of each sample as bn
l,k = wj

l,k

• For each particle n = 1, . . . , N

– Compute wn
k = wn

k−1
p(Yk|Xn

k )QL
l=1 bn

l,k

q(xn
l,k|xn

l,k−1,Yk) = bn
l,kp(xn

l,k|xn
l,k−1). (19)

Combining (62) and (63), the weight of each particle becomes

wn
k ∝ wn

k−1

p(Yk|Xn
k)p(Xn

k |Xn
k−1)

(
∏L

l=1 bn
l,k)(

∏L
l=1 p(xn

l,k|xn
l,k−1))

(20)

which, using (14), becomes

wn
k ∝ wn

k−1

p(Yk|Xn
k)∏L

l=1 bn
l,k

. (21)

The steps of the IP method are summarized in Table 3.

5.2.2 CP Algorithm

The assumptions that are used for the IP are true only when the targets are sufficiently sep-

arated in the sensor space. This provides us with an uncorrelated measurement likelihood.

When, however, some targets are coupled or close in sensor space, then their partitions

cannot be rearranged in the way explained above. One way to solve this is to rearrange

only the uncoupled partitions, and treat the coupled and ones as a group, transfer them,

23



if necessary, to another particle without separating them. The drawback of this is that if

many targets are coupled for most of the time this would cause the performance of the IP

algorithm to degrade to the performance of the SIR multitarget filter. Another method

that does not require the assumptions used by the IP scheme is the CP method [7].

As the name suggests, the CP algorithm was designed to handle partitions that are

coupled. The main objective is to built good particles using the best possible partitions.

The best possible partitions are those that receive good weights, when weighted with the

joint posterior. The CP algorithm differs from the IP in that it proposes each partition

of each particle M times, and out of those M outcomes it chooses the best outcome to be

placed in the particle. Thus, the particles do not interact by exchanging their partitions but

rather each particle is built by choosing from a pool of candidates for each of its partitions

and remains intact for weighing. This feature is illustrated in Table 4.

This feature enables the CP algorithm to handle coupled targets, since the indepen-

dence assumption of the IP is no longer necessary. The proposal of each partition M times,

however, makes the CP computationally burdensome, especially with an increase in the

number of interacting targets. An adaptive proposal (AP) method suggested in [7] switches

between using the IP and the CP in proposing partitions, depending on whether the tar-

gets are coupled or not. This results in a reduction in computational complexity that is

proportional to the time that the targets are well-separated and the number of uncoupled

targets. The equation for weighing the particles in the CP method is constructed exactly in

the same way as in the case of the IP. The details of the CP algorithm are given in Table 5.

Another concern regarding the structure of the particles is the ordering of their parti-

tions. The proposal of each partition and the weighing of the whole particle are invariant to

permutations of partitions inside the particle. Therefore, the outcome of the CP algorithm

are particles that do not necessarily have their partitions identically placed according to tar-

get number. Partitions that are possibly swapped within the particle correspond to targets

that were coupled at some point. This is due to the fact that when targets become coupled,

some of their properties may become very similar. Therefore, differently labelled partitions

may represent the wrong targets with no penalty from the weight equation, since the quan-

tities they represent are almost the same. This event is referred partition swapping [7]. This

would cause errors in the final multitarget estimate, the calculation of which relies on the

fact that partitions are identically placed according to the target number for all particles.

To correct partition swapping, the K-means algorithm is used before estimation to group
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x1
1(1) x1

2(1) x1
3(1)

x1
1(2) x1

2(2) x1
3(2)

x1
1(3) x1

2(3) x1
3(3)

x1
1(4) x1

2(4) x1
3(4)

x1
1(5) x1

2(5) x1
3(5)

↓ ↓ ↓

x1
1(3) x1

2(4) x1
3(5)

↓

{x1
1(3),x1

2(4),x1
3(5)}

Table 4: For the choice of the partitions composing each particle, each partition is chosen from a
pool of candidates proposed for that partition. A single candidate, with the highest weight is chosen
for each partition.

all partitions corresponding to each target by placing them in the same order inside each

particle. An example of partition swapping and the subsequent correction by the K-means

algorithm are shown in Figure 4 and Figure 5, respectively. For the details concerning the

K-means refer to [7].

6 Tracking Targets Moving With Kinematic Constraints

In a multitarget scenario, one can face the challenge of tracking a group of targets moving

in a formation or having restrictions in their motion. This motion can be described by

equations or simply by some rules. An example of constrained motion is convoy movement

[15], where vehicles should not approach each other closer than a certain distance nor move

away too far apart. Another example is people moving in a prescribed manner such as

the leapfrog motion in military applications [16]. Furthermore, some type of constrained
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Table 5: Coupled Partitions Algorithm [7]

• For each partition l = 1, . . . , L

– For each particle n = 1, . . . , N

∗ For each proposal m = 1, . . . ,M

· Sample xn
l,k(m) ∼ p(xl,k|xn

l,k−1)
· Compute wn

l,k(m) = p(Yk|xn
l,k(m))

∗ Normalize wn
l,k and sample from it once

∗ Normalize wl,k

∗ Resample by choosing a partition j from the distribution of
wl,k with replacement

∗ Keep the bias of the sample as bn
l,k = wj

l,k

• For each particle n = 1, . . . , N

– Compute wn
k = wn

k−1
p(Yk|Xn

k )QL
l=1 bn

l,k

motion can be performed by moving sensors in order to track targets more effectively.

Knowledge of such a kinematic behavior can be very useful as it can improve the tracking

performance if incorporated properly in the kinematic model and proposal distribution. In

fact, in certain scenarios, not taking into account such target motion behavior could result

in lost tracks. The IP and CP methods assume independent kinematics among targets,

therefore, they omit such useful information. Some books and papers have dealt with the

subject of group target motion [17,48] a problem similar to tracking points on an extended

object [49–51]. These approaches model target motion as having independent components

that are superimposed by a group effect. However, such methods deal with the problem

of targets moving together as a group, and not the more general case of constraint motion

where targets may move in their own paths but still influence each other’s motion.

Here, we investigate alternative methods to model group kinematic behavior that also

accounts for constraints on individual target motion. We propose the constrained motion

proposal (COMP) algorithm, a general method that can be used to perform tracking effec-

tively considering motion constraints. Two variations of the method are presented for the
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Figure 4: A situation of partition swapping. Each particle is built by 3 partitions tracking 3 targets.
The symbols 4, + and × correspond to each of the targets. In this situation, some + and some ×
partitions are mislabeled inside their particles because of the coupling of the targets they represent.
The K-means needs to be applied to reorder them accordingly.

case when the motion of the targets follows some rules and can be easily extended to the

case when the motion can be described by equations.

6.1 The COMP Algorithm

The COMP algorithm [11], similarly to the IP, assumes that the joint multitarget posterior

density factorizes into the measurement likelihood and the individual prior densities of the

targets as described in [6,7]. However, the COMP takes into account the dependency of the

motion of the targets on constraints by introducing importance densities incorporating the

constraints and the constraint likelihood function that reflects the constraints on the joint

density. The idea of using the constraint likelihood function is derived from the use of the

land avoidance function described by [8]. The proposal density tries to approximate the

joint posterior. Thus, it considers both the measurements and the constrained kinematics

in proposing particles.

The measurements are incorporated into the proposal as with the IP. The kinematics,

however, need to include the constraints that each target has in its motion. This is done
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Figure 5: The K-means algorithm has corrected the situation of partition swapping in Figure 4 by
labeling the partitions × and + in the correct way.

using two similar approaches. The first approach, that we call Reproposed Gaussian COMP

(RCOMP), proposes partitions repeatedly until the desired constraints are satisfied (see Ta-

ble 6). The second approach, that we call Truncated Gaussian COMP (TCOMP), proposes

partitions by truncated Gaussian distributions, where the truncation points correspond to

bounds in target motion (see Table 7). For both approaches, the constraints imposed on

partitions of certain targets depend on the nature of a target and its environment as well

as on other targets with which they interact. We will refer to the former as self-constraints

and the latter as group constraints.

Using either of these two approaches results in proposals that are constructed sequen-

tially for each partition and often depend on the values of the state vectors of previously

proposed partitions. These values, however, could be erroneous. Therefore, variability in

the order of proposing the partitions for each particle is introduced. For example, proposed

partition samples representing one target may take values which are far from the target’s

true value, therefore providing incorrect constraints for the subsequently proposed parti-

tions. As a consequence, other partitions will diverge from the true value of their respective

states due to one incorrectly tracked target. The effect of this may be easily reduced by
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Table 6: Reproposed Constrained Motion Proposal Algorithm

• For each permutation u = 1, . . . , L!

– For each index r = 1, . . . , L

∗ The current partition is `r,u

∗ For each particle n = (u−1)N
L! + 1, . . . , uN

L!

· Obtain Čn
`r,u,k by choosing the strictest bounds available for the parti-

tion
· Sample xn

`r,u,k ∼ q(x`r,u,k|xn
`r,u,k−1, Č

n
`r,u,k, {xn

`r′,u,k, `r′,u : r′ < r})
· If constraints not met, return to previous step
· Compute wn

`r,u,k ∝ p(Yk|xn
`r,u,k)I(x

n
`r,u,k, Č

n
`r,u,k)

∗ Normalize w`r,u,k

∗ For each particle n = (u−1)N
L! + 1, . . . , uN

L!

· Obtain a sample j from the distribution of wl,k with replacement

· Retain xn
`r,u,k = xj

`r,u,k and bn
`r,u,k = wj

`r,u,k

· Retain {xn
`r′,u,k = xj

`r′,u,k : r′ < r} and {bn
`r′,u,k = wj

`r′,u,k : r′ < r}

• For each particle n = 1, . . . , N

– Compute wn
k ∝ wn

k−1
p(Yk|Xn

k )I(Xn
k ,Cn

k )QL
l=1 bn

l,k

.

changing the ordering in which we propose partitions among subsets of particles.

In Section 6.2, we present the kinematic density and measurement model used in the

algorithms. In Section 6.3, we provide details concerning the way the variability in the

order of proposal is achieved and the formation of the region of constraints. In Section 6.4,

we derive the multitarget importance density utilized by the RCOMP and the TCOMP

and describe the RCOMP and TCOMP algorithms in detail. In Section 6.5, we derive

the partition and particle weight equations. In Section 6.6, we provide a simple example

showing how particles are built using the COMP. Finally, in Section 6.7 we provide a detailed

algorithm description.
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Table 7: Truncated Gaussian Constrained Motion Proposal Algorithm

• For each permutation u = 1, . . . , L!

– For each index r = 1, . . . , L

∗ The current partition is `r,u

∗ For each particle n = (u−1)N
L! + 1, . . . , uN

L!

· Obtain Čn
`r,u,k by choosing the strictest bounds available for the parti-

tion
· Sample xn

`r,u,k ∼ q(x`r,u,k|xn
`r,u,k−1, Č

n
`r,u,k, {xn

`r′,u,k, `r′,u : r′ < r})
· Compute wn

`r,u,k ∝ p(Yk|xn
`r,u

)Nn
`r,u

∗ Normalize w`r,u,k

∗ For each particle n = (u−1)N
L! + 1, . . . , uN

L!

· Obtain a sample j from the distribution of wl,k with replacement

· Retain xn
`r,u,k = xj

`r,u,k, Nn
`r,u,k = Nj

`r,u,k and bn
`r,u,k = wj

`r,u,k

· Retain {xn
`r′,u,k = xj

`r′,u,k : r′ < r}, {Nn
`r′,u,k = Nj

`r′,u,k : r′ < r} and

{bn
`r′,u,k = wj

`r′,u,k : r′ < r}

• For each particle n = 1, . . . , N

– Compute wn
k ∝ wn

k−1

p(Yk|Xn
k )
QL

l=1 Nn
l,kQL

l=1 bn
l,k

6.2 Kinematic Density and Measurement Model

As in the IP, the joint kinematic density is assumed to factorize into the kinematic densities

of individual targets. In this case, however, we need to take into account the dependency of

the targets on the group constraints and the self-constraints. Thus, we can still factorize our

density with the addition of an extra term that depends on the constraints. The kinematic

density for a particle n becomes

p(Xn
k |Xn

k−1) = I(Xn
k ,Cn

k)
L∏

l=1

p(xn
l,k|xn

l,k−1). (22)

where I(Xn
k ,Cn

k) is the particle constraint likelihood function that depends on the con-
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straints Cn
k . Cn

k represents a region where valid values of the particle state vector Xn
k can

be found. Thus, the particle constraint likelihood function takes values as

I(Xn
k ,Cn

k) =

{
1, If Xn

k is within Cn
k

0, If Xn
k is outside Cn

k .
(23)

The details of the constraint region Cn
k are discussed in Section 6.3.

For a measurement model for our simulations, we will use the three angle only sensor

scenario as provided in Section 5.1.2. For this model, for S sensors having I cells each, the

measurement likelihood is given as a product of the likelihoods from each sensor as

p(Yk|Xk) =
S∏

s=1

p(ys,k|Xk) (24)

where the likelihood relative each sensor s is obtained by the product of the likelihoods for

each cell i as

p(ys,k|Xk) =
I∏

i=1

p(ys,i,k|Xk). (25)

6.3 Partition Ordering and Constraint Region Modeling

Concerning the variability in the order of proposing partitions, assuming that we deal with

L partitions representing targets belonging in a group, the partitions can be ordered a

maximum number of L! = L(L− 1)...2 different ways. The number of orderings we choose

should be much less than the number of particles used. The reason for this is that in the

sampling step of the proposal, we sample several particles from each ordering. This number

of particles should be sufficiently large for sampling to be useful. If we have a large number

of partitions, we can reduce the number of orderings to however many we choose. A way

to use as many orderings as possible, is to use a subset of the set of orderings at a certain

time step and different subsets in subsequent time steps. The shorter the time intervals

compared to changes in target motion, the more effective this procedure will be.

As far as constraints are concerned, we have mentioned that these are categorized as

either self-constraints or group constraints. For example, a self-constraint is the restriction

placed on the motion of a vehicle by the edges of a road. This restriction is independent

of any other target positioning. Convoy movement imposes group constraints where the
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position of one target is constrained by the positions of other targets in its group.

For the different proposal orders, we can store different permutations of the indices of

the targets as rows in a matrix. We proceed with the mathematical formulation of the

constraints applied to each partition and the notation and organization of the different

proposal orders, for a specific particle n and a time step k. To simplify the discussion, we

focus on one group of targets imposing kinematic constraints on each other. The following

analysis applies to each of the target index permutations.

The uth permutation, u = 1, . . . , L!, at time k, denoted as

du,k = [`1,u `2,u . . . `L,u] (26)

consists of partition indexes `r,u where the index r runs from 1, . . . , L. Let

Dk = [d1,k d2,k . . . dL!,k]T (27)

be an L by L! matrix whose rows du,k contain permutations of partition indexes. An

example of such a matrix is given as:

Dk =




1 2 3 4 . . . L

1 3 2 4 . . . L

1 3 4 2 . . . L
...

...
...

...
. . .

...

2 1 3 4 . . . L

2 3 1 4 . . . L

2 3 4 1 . . . L
...

...
...

...
. . .

...

L L− 1 L− 2 L− 3 . . . 1




. (28)

For each of these permutations, the constraints applied to each of the partitions depend

on the previously proposed partitions, if any, and the self-constraints of each partition.

Strictly speaking, the group constraints applied to one target need to reflect the target’s

dependency on all other targets in the group. However, this is not possible. This prob-

lem resembles solving one equation with many unknowns, and thus cannot yield a unique

solution. Therefore, we use the following method to obtain the constraints applied to a
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partition: For the first target we propose, we use the self-constraints for that target, which

are the only constraints available. For the second target, we use its self-constraints and the

constraints due to the proposed state of the first target, and so on for the rest. Note that,

only for the last proposed target we have available its self-constraints and group constraints

imposed by all the state vector values of the other targets of the group. Variability in tar-

get proposal ordering will make up for the drawbacks of the necessary sequential approach

in the case where, partitions that have taken values significantly different from their true

values, provide misleading constraints to other targets’ partitions.

For the formulation of constraints, we form regions where allowable values of state

vectors lie. It is important to distinguish the constraint region associated with the entire

state vector Xn
k and denoted as Cn

k , from the constraint region associated with the individual

partitions xn
`r,u,k and denoted as Čn

`r,u,k. The former is found after all the components of

the state vector Xn
k have been proposed, while the latter is found during the proposal part

of the COMP and CLIP.

Region Cn
k can be found only after we have obtained values for all state vectors of the

partitions, that is after Xn
k is found, using the specific kinematic constraint rules of the

scenario at hand. In other words Cn
k can be found after the complete particle has been

proposed. Cn
k will be used in the particle weight equations of RCOMP (53) and CLIP (65)

as we will see in Sections 6.5 and 7.

On the other hand, Čn
`r,u,k is used in the proposal part of the COMP and CLIP. More

specifically, for the COMP Čn
`r,u,k will be used in Section 6.4 which describes the proposal

process. For the CLIP in the partition weighing function (60) alone. This is provided in

Section 7 . We go ahead to explain how the region Čn
`r,u,k is obtained. The constraints

described by Čn
`r,u,k include both self-constraints, denoted as C̆

n
`r,u,k and group constraints

imposed by other partitions and denoted as C̃n
`r,u,k. As mentioned previously, the self-

constraints C̆
n
`r,u,k are assumed available at the time when partition `r,u is proposed, while

the group constraints C̃n
`r,u,k coming from other partitions, are formed based only on the

partitions that have already been proposed. We denote the partitions that have been

proposed before partition `r,u as `r′,u, where r′ < r. Since the constraint region for partition

`r,u is the region where values of the partition exist, then the group constraint region for

the partition that is proposed first will be the set of real numbers for each of the elements

of the partition.

According to the explanation above, the constraint region for `r,u is given by
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Čn
`r,u,k = C̆

n
`r,u,k

⋂
C̃n

`r,u,k. (29)

The group constraints are found as

C̃n
`r,u,k =

⋂
{Ĉn

`r′,u,k} ∀ `r′,u,k, ε {`r′,u,k : r′ < r} (30)

where Ĉ
n
`r′,u,k are the constraints imposed by each previously proposed partition. In words,

the vector of group constraints is the intersection of the vectors of constraints imposed by

all partitions `r′,u . The partitions `r′,u are partitions imposing constraints on `r,u that have

been proposed prior to `r,u.

At each time step, the strictest of all the constraints are taken. This is what the

intersection of the self and group constraint vectors in (29), and the intersection of vectors

making up group constraints in (30), imply.

6.4 Importance Density

Constraints in target motion can be useful information when proposing particles. Proposing

particles that take into account that some values are not probable, helps avoid the undesired

effects of a bad proposal. It is important to note that, since we have many degrees of freedom

in choosing our importance density, we do not need to adhere strictly to these constraints,

nor include all of them. It could be the case that strict adherence to all the constraints

and making the allowable regions in which partitions can be proposed very small, can cause

the overall performance to degrade. This can be attributed to the fact that the kinematic

rules may make overconfident assertions on state vector range of values or greatly limit

that range. Specifically, since constraints on a partition state vector values depend upon

other proposed partitions, these are most often not so accurate as to be in position to apply

strict constraints. Therefore, such constraints would bias proposals to regions where most

often the true value state vector values do not exist. If the constraints are relaxed, however,

other kinematic or measurement information will have more influence in the overall proposal

method.

We suggest two methods of proposing particles. Both methods assume that the prior

density of partitions is Gaussian. The RCOMP consists of proposing particles with a Gaus-

sian density, and then checking whether the proposed values satisfy the constraints. If they

do not, the proposal is repeated a maximum number of times. The TCOMP method is

based on truncating a Gaussian density using upper and lower bounds as truncation points,
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and drawing values from the truncated density. We describe the steps common to both

methods in Section 6.4.1, and then provide the details pertaining to each of the RCOMP

and TCOMP in Sections 6.4.2 and 6.4.3 respectively. We compare the methods in Section

6.4.4.

6.4.1 Importance Density Formulation

The proposal subroutine consists of sampling from a single partition proposal and evaluating

their validity with a partition weighing function. This function may be an approximation of

the measurement likelihood. In this case, the use of the partition weighing function and the

subsequent sampling from the resulting particle weight distribution will bias the particle

proposal towards the measurements. The combination of sampling and weighing will lead

to the single partition importance density. Multiplying all the single partition importance

densities together, we obtain the multitarget importance density.

We proceed with the formulation of these densities. For a single partition, the proposal

density requires knowledge of the constraints. The self-constraints applied in the proposal of

a partition, are assumed to be known whenever required, which is the case for most realistic

scenarios. For the group constraints applied due to other partitions, however, we require the

knowledge of the values of the other partitions’ state vectors. As we have mentioned, the

problem is similar to having an equation with many unknowns, and thus, many solutions.

We propose to sequentially propose partitions based on whatever information is available at

that point. This sequential proposal is described mathematically as follows. For a certain

permutation u and r = 1, we propose the first partition with index `1,u as

xn
`1,u,k ∼ q(x`1,u,k|xn

`1,u,k−1, Č
n
`1,u,k) (31)

where

q(x`1,u,k|xn
`1,u,k−1, Č

n
`1,u,k) =





p(x`1,u,k|xn
`1,u,k−1)

Nn
`1,u,k

, x`1,u,k ε Čn
`1,u,k

0, otherwise

Čn
`1,u,k are the constraints in (29) available up to this point. These equal to the self-

constraints C̆
n
`1,u,k as the group constraints C̃n

k are not available at this point. Nn
`1,u,k is a

normalization factor equal to the integral of p(x`1,u,k|xn
`1,u,k−1) over the allowable region of

partition values given by Čn
`1,u,k. Having xn

`1,u,k we propose the second partition with index

`2,u as
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xn
`2,u,k ∼ q(x`2,u,k|xn

`2,u,k−1, Č
n
`2,u,k,x

n
`1,u,k) (32)

where Čn
`2,u,k is the intersection of the self-constraints of partition `2,u and the group con-

straints depending only on xn
`1,u,k. The proposal of the rest of the partitions follows in a

similar fashion, and eventually for the last partition `L,u we have

xn
`L,u,k ∼ q(x`L,u,k|x`L,u,k−1, Č

n
`L,u,k, {xn

`r,u,k}L−1
r=1 ). (33)

With this sequential proposal, the equation of the multitarget importance density with

kinematic constraints becomes

Xn
k ∼

L∏

r=1

q(x`r,u,k|xn
`r,u,k−1, Č

n
`r,u,k, {xn

`r′,u,k, `n
r′,u : r′ < r}). (34)

Thus, we have

Xn
k ∼

L∏

r=1

p(x`r,u,k|xn
`r,u,k−1)I(x

n
`r,u,k, Č

n
`r,u,k)

Nn
`r,u,k

. (35)

where Nn
`r,u,k is a normalization factor equal to the integral of p(x`r,u,k|xn

`r,u,k−1) over the

allowable region of partition values given by Čn
`r,u,k and where the partition constraint

likelihood function is defined as

I(xn
`r,u,k, Č

n
`r,u,k) =

{
1, If xn

`r,u,k is within Čn
`r,u,k

0, If xn
`r,u,k is outside Čn

`r,u,k.
(36)

After drawing from the above proposal, we weigh the samples by the single target

likelihood. Since there is no explicit data association, we need to use the whole measurement

space for weighing each partition of a particle. This is the function in (16) that the IP and

CP algorithms use. In the case of the RCOMP and TCOMP methods, however, it is

beneficial to add an extra factor that reflects the influence of the constraints.

Therefore, we weigh each partition as

wn
`r,u,k ∝ p(Yk|xn

`r,u,k, Č
n
`r,u,k, {xn

`r′,u,k, `r′,u : r′ < r}). (37)

The exact form of the above equation will be given for each of the RCOMP and TCOMP

in Sections 6.4.2 and 6.4.3 respectively.
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As in the case of the IP, these weights are normalized and partitions are sampled based

on the weight distribution. In the IP, however, the sampling took place from a collection of

all the L partitions of a particle. Here, due to the variability in the order of proposal, the

selection takes place among only partitions in the subsets of particles proposed with the same

permutation. This sampling occurs independently for each different proposal order. Since

we have a choice on the number of permutations we can use, and bearing in mind that as this

number increases the number of partitions that each subset contains decreases, we realize

that there is a tradeoff between the number of permutations and particles available in the

selection step. However, as mentioned earlier, variability in the order we propose partitions

can be extended to adjacent time steps. The result is the use of more permutations and

more particles per subset for individual time steps.

After sampling an index j from the weight distribution w`r,u,k of each group, we end

up with the bias for each partition bn
`r,u,k = wj

`r,u,k, where the weights wn
`r,u,k within each

subset have been normalized. Thus, the single partition proposal density becomes:

q(x`r,u,k|xn
`r,u,k−1, Č

n
`r,u,k,x

n
`r′,u,k,Yk) = bn

`r,u,kq(x`r,u,k|xn
`r,u,k−1, Č

n
`r,u,k,x

n
`r′,u,k), {`r′,u : r′ < r}.

(38)

Since

q(Xk|Xn
k−1,Yk) =

L∏

r=1

q(x`r,u,k|xn
`r,u,k−1, Č

n
`r,u,k, {xn

`r′,u,k, `r′,u : r′ < r}) (39)

then the multitarget proposal becomes,

q(Xk|Xn
k−1,Yk) =

L∏

r=1

bn
`r,u,kq(x`r,u,k|xn

`r,u,k−1, Č
n
`r,u,k, {xn

`r′,u,k, `r′,u : r′ < r}). (40)

The details of this density for the RCOMP and the TCOMP are given in Sections 6.4.2 and

6.4.3 respectively.

6.4.2 Reproposed Constrained Motion Proposal Algorithm (RCOMP)

In this method, for each particle n, we propose each element of each partition xn
`r,u,k using

a regular Gaussian, which is the kinematic prior p(x`r,u,k|xn
`r,u,k−1). Therefore, for the x
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position coordinate of the partition,

xn
`r,u,k ∼ N (xn

`r,u,k−1, σ
2
x) (41)

where σ2
x is the process noise for the x position coordinate. Then, a simple loop will continue

to sample from the Gaussian proposal until the value of the nth particle xn
`r,u,k satisfies the

constraints, that is, falls within the constraint region Čn
`r,u,k or a maximum number of

samples is exceeded. We proceed similarly with the rest of the elements of xn
`r,u,k. If the

constraints involve many elements simultaneously, we may propose all elements involved

and then check this result with the constraints.

Since the repeated Gaussian may fail to propose partitions inside the constraints, if it

reaches the maximum allowable number of tries, we need to remove the partitions that

lie inside the constraints. Otherwise, in the final resampling step, if partitions that are

outside the constraints exist, they will nullify the weights for particles that may have other

partitions that are good. The partition constraint likelihood function I(xn
`r,u,k, Č

n
`r,u,k) in

(36) will reduce the single partition weights in the proposal to zero and, thus, particles

conforming to the constraints, will be preferred at the subsequent sampling step. Therefore,

we weigh each partition as

wn
`r,u,k ∝ p(Yk|xn

`r,u,k)I(x
n
`r,u,k, Č

n
`r,u,k). (42)

Using (40) and the fact that we propose from p(x`r,u,k|xn
`r,u,k−1), we obtain the multitarget

proposal density specific to the RCOMP as:

q(Xk|Xn
k−1,Yk) =

L∏

r=1

bn
`r,u,kp(x`r,u,k|xn

`r,u,k−1)I(x
n
`r,u,k, Č

n
`r,u,k). (43)

6.4.3 Truncated Gaussian Constrained Motion Proposal Algorithm (TCOMP)

Here, we provide the details of the TCOMP.

For each particle n, we propose each element of each partition xn
`r,u,k using a trun-

cated version of the kinematic prior p(x`r,u,k|xn
`r,u,k−1). This will be a truncated Gaussian

distribution. Therefore, for the x position coordinate of the partition,

x`r,u,k ∼ T N (µ`r,u,k, σ
2
x, xLB

`r,u,k, x
UB
`r,u,k) (44)

where σ2
x is the process noise for the x position coordinate, xLB

`r,u,k a lower bound and xUB
`r,u,k
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an upper bound. Thus, the truncated Gaussian is given by

fTN
x (x`r,u,k) =

p(x`r,u,k|xn
`r,u,k−1)

Φ(
xUB

`r,u,k−µ`r,u,k

σ2
x

)− Φ(
xLB

`r,u,k−µ`r,u,k

σ2
x

)
I(x`r,u,k) (45)

where Φ(.) is the standard normal cumulative distribution function [52] and I(x`r,u,k) an

indicator function taking values as

I(x`r,u,k) =

{
1, If xLB

`r,u,k ≤ x`r,u,k ≤ xUB
`r,u,k

0, Otherwise.

We proceed similarly for the rest of the dimensions of the state vector. We will denote the

normalization factor for position coordinate x`r,u,k and particle n as

Nn
x,`r,u,k = Φ(

xUB
`r,u,k − µ`r,u,k

σ2
x

)− Φ(
xLB

`r,u,k − µ`r,u,k

σ2
x

). (46)

and similarly for the rest of the dimensions. Therefore, the normalization factor for a

partition becomes

Nn
`r,u,k = Nn

x,`r,u,kN
n
ẋ,`r,u,kN

n
y,`r,u,kN

n
ẏ,`r,u,k, (47)

where we take into account all the normalization factors of all the state vector dimensions.

According to the above, the single target importance density for partition `r,u becomes

q(x`r,u,k|xn
`r,u,k−1, Č

n
`r,u,k, {xn

`r′,u,k, lr′,u : r′ < r}) =
p(x`r,u,k|xn

`r,u,k−1)

Nn
`r,u,k

. (48)

We furthermore need to take into account the measurements. In the truncated Gaussian

case, all the partition values are brought within the constraints. However, as we have

mentioned earlier, partitions proposed with a mean value that is far from the constraints,

will suffer from near to zero normalization factors Nn
`r,u,k. These will appear at the numerator

of the final weight equation, giving near zero weights to particles that may have other good

partitions. Therefore, an effort to remove those partitions at the proposal subroutine will

give way to partitions that are already closer to constraints if there exist any. We choose

to use:

wn
`r,u,k ∝ p(Yk|xn

`r,u,k)N
n
`r,u,k. (49)

Using (40) and (48) the multitarget proposal becomes
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q(Xk|Xn
k−1,Yk) =

L∏

r=1

bn
`r,u,kp(x`r,u,k|xn

`r,u,k−1)I(x
n
`r,u,k, Č

n
`r,u,k)

Nn
`r,u,k

. (50)

where I(xn
`r,u,k, Č

n
`r,u,k) as in (36).

6.4.4 Comparison Between RCOMP and TCOMP

Comparing the two proposed methods, we can infer that if the constraints are correct, the

TCOMP method will propose partitions with erroneous values in the time step k−1, to the

right place in time step k. The RCOMP method will have a harder time doing so even with

a large number of repetitions. This is because, the mean of the Gaussian distribution used

for the proposal of the partition is then far from the partitions true value and, thus, from

the permissible region defined constraints. To remedy this, in the case of the RCOMP, the

partition constraint likelihood function I(xn
`r,u,k

, Čn
`r,u,k) in is placed on the numerator of the

partition weighing function as described in this section. Moreover, the function I(Xn
k ,Cn

k)

in (23) inherently exists in the final weighing step. The application of these functions

eliminates the effect of partitions and particles not conforming with the rules on the joint

posterior.

A subtle point, however, concerning the truncated Gaussian case, is that the factor

Nn
`r,u,k which is necessary to appear in the numerator of the weight equation will be nearly

zero for partitions that have taken highly erroneous values. This can easily be seen by

observing that, for an erroneous partition, the upper and lower constraints will be placed

on the tail of the kinematic distribution and that the normalization factor will be the area

under the graph bounded by the constraints. This will tend to zero as the constraints move

away from the mean. Therefore, highly erroneous partitions that have been proposed in

right places in a subsequent step, will receive near to zero weights. However, the problem

of lost tracks is still alleviated by the truncated Gaussian method, as it allows less particles

to drift away from their correct values, thus improving tracking performance.

In practice, it was found that the main drawback of the TCOMP is that it requires

upper and lower bounds as constraints in each position coordinate. If the constraints,

however, depend on more than one position coordinates of the state vector simultaneously,

the TCOMP is hard to implement. The RCOMP, however, as described above, handles this

situation easily.
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6.5 Computation of Particle Weights

For the final weighing of the complete particles, we need to take into account all the functions

used for the proposal. Here we use the index l, l = 1, . . . , L to denote the partitions since

the proposal order does not matter. The weight of the nth particle, n = 1, . . . , N , will be

wn
k ∝ wn

k−1

p(Yk|Xn
k)p(Xn

k |Xn
k−1)

q(Xn
k |Xn

k−1,Yk)
. (51)

For the RCOMP, using (43) we have

wn
k ∝ wn

k−1

p(Yk|Xn
k)p(Xn

k |Xn
k−1)∏L

l=1 bn
l,kp(xn

l,k|xn
l,k−1)

(52)

which after simplification results to

wn
k ∝ wn

k−1

p(Yk|Xn
k)I(Xn

k ,Cn
k)∏L

l=1 bn
l,k

(53)

and for the TCOMP, using (50) we have

wn
k ∝ wn

k−1

p(Yk|Xn
k)p(Xk|Xn

k−1)∏L
l=1

bn
l,kp(xl,k|xn

l,k−1)

Nn
l,k

(54)

which after simplification results to

wn
k ∝ wn

k−1

p(Yk|Xn
k)

∏L
l=1 Nn

l,k∏L
l=1 bn

l,k

. (55)

6.6 Example of Particle Construction with the COMP

Here, we provide a two target example for which we have two ways of changing the order of

proposing partitions. The example demonstrates the construction of particles for the two

subsets, each having a different order of proposing partitions. More specifically, out of the

complete set of particles, we propose the first subset, including half the particles, using the

order given by the first permutation, u = 1 (partition xn
`1,1

= xn
1 , then partition xn

`2,1
= xn

2 ),

and the second subset having the other half of the particles with the order given by the

second permutation (partition xn
`1,2

= xn
2 , then partition xn

`2,2
= xn

1 ). This occurs at each

time step k, therefore the subscript k has been omitted for simplicity.

In Table 8, in Step (i), for the proposal order given by the first permutation, u = 1, we

propose partition xn
1 for n = 1, . . . , 5. We weigh and sample from the population of partition
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Table 8: Particle Construction with the COMP

u = 1

{x1
1} {x2

1} → {x1
2} ⇒ {x2

1,x
1
2} {x3

1,x
2
2}

{x2
1} {x3

1} → {x2
2} ⇒ {x3

1,x
2
2} {x1

1,x
5
2}

sample xn
1 sample xn

2

{x3
1} −→ {x3

1} → {x3
2} ⇒ {x3

1,x
3
2} −→ {x2

1,x
1
2}

{x4
1} {x5

1} → {x4
2} ⇒ {x5

1,x
4
2} {x3

1,x
2
2}

{x5
1} {x1

1} → {x5
2} ⇒ {x1

1,x
5
2} {x1

1,x
5
2}

(i) (ii) (iii) (iv) (v)

u = 2

{x1
2} {x3

2} → {x1
1} ⇒ {x1

1,x
3
2} {x2

1,x
5
2}

{x2
2} {x5

2} → {x2
1} ⇒ {x2

1,x
5
2} {x3

1,x
5
2}

sample xn
2 sample xn

1

{x3
2} −→ {x5

2} → {x3
1} ⇒ {x3

1,x
5
2} −→ {x3

1,x
5
2}

{x4
2} {x4

2} → {x4
1} ⇒ {x4

1,x
4
2} {x5

1,x
1
2}

{x5
2} {x1

2} → {x5
1} ⇒ {x5

1,x
1
2} {x4

1,x
4
2}

xn
1 and result in the sampled version shown in Step (ii). At Step (iii), we propose partitions

xn
2 based on constraints provided by partitions xn

1 . This results in the augmented particles

of Step (iv). In Step (v), we weigh and sample from that population of particles, based on

the weight distribution that partition xn
2 has. Here, the weights of the particles of Step (iv)

have been obtained based on the validity of partitions xn
2 only and not the combination of

xn
1 and xn

2 . Its is also worth mentioning that if a sample of xn
1 has survived the sampling

from steps (i) to (ii), it may not survive the sampling from steps (iv) to (v) if a sample of xn
2

whose proposal was biased by the constraints of xn
1 , is not good. For example, while x5

1 has

survived the first sampling, it fails to appear among the selection of the second sampling

as the sample x4
2 (whose proposal it affected with its constraints) does not obtain a good
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weight. For the second permutation, the same steps are taken but proposing first xn
2 then

xn
1 . When we have more targets, we have more partitions for each particle and, therefore,

we can have more permutations. In this case, the procedure for obtaining all particles is an

obvious extension of the procedure outlined above, by adding more steps and permutations

as the number of partitions increases.

6.7 Algorithm Description

The detailed steps of the COMP procedure are as follows. They are also summarized in

Table 6 for the RCOMP and in Table 7 for the TCOMP.

• We use a motion model with the resulting density:

p(Xn
k |Xn

k−1) = I(Xn
k ,Cn

k)
L∏

l=1

p(xn
l,k|xn

l,k−1). (56)

• We also use a measurement model with the resulting density:

p(Yk|Xn
k). (57)

These two models are presented in Section 6.2, and are used in the evaluation of

particles in Section 6.5.

• We have L partitions indexed by l = 1, . . . , L; each partition corresponds to one of L

assumed targets.

• By finding all permutations of these partitions, we form the matrix Dk in (28), having

L! rows and L columns. Each row is a permutation of the partition indices.

• We decide on how many of the L! permutations to use (see Section 6.3). For the

following description of the algorithm we choose to use all L! permutations.

• We divide the set of N particles into L! subsets. Each subset is composed of N
L!

particles. (For convenience we use N as a multiple of L!). Therefore, the first subset

has particles with indices 1, . . . N
L! , the second subset has particles with indices N

L! +

1, . . . 2N
L! , . . . and the L!th subset particles with indices (L!−1)N

L! + 1, . . . N .
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• To propose the first subset of particles (n = 1, . . . N
L!), we use the order of the partitions

given by the first row d1,k of the permutation matrix Dk in (28). This order is `r,1 =

1, 2, . . . , L.(see Section 6.3).

– Propose realizations of the partition assigned to be proposed first in this subset

of particles. This is partition `1,1 = 1.

∗ For the each particle in this subset (n = 1 to N
L!):

· Obtain the region of constraints Čn
1,k as described in Section 6.3.

· Sample from a single target importance density corresponding to the nth

partition: xn
1,k ∼ q(x1,k|xn

1,k−1, Č
n
1,k) (Section 6.4).

· In the case of the RCOMP: if the constraints have not been met, return

to previous step; quit after a number of tries.

· Compute the weight wn
1,k as described in section 6.5.

∗ Normalize w1,k. Now we have a distribution of weights each corresponding

to a realization of partition `1,1 = 1. If we sample from this distribution

with replacement, it is more likely to select the samples having the biggest

weights.

∗ For each particle in this subset (n = 1 to N
L!):

· Obtain a sample j from the distribution of w1,k with replacement

· For the RCOMP: Retain x1
1,k = xj

1,k for estimation and b1
1,k = wj

1,k for

use in the particle weighing in (53).

· For the TCOMP: Retain x1
1,k = xj

1,k for estimation and N1
1,k = Nj

1,k and

b1
1,k = wj

1,k for use in the particle weighing in (55).

• The procedure is repeated with the same steps as for partition `1,1 = 1, with the dif-

ference that after obtaining a sample j from the distribution of w2,k with replacement,

we add the following steps:

– For the RCOMP: Retain {xn
1,k = xj

1,k} and {bn
1,k = wj

1,k}. This is due to the fact

that `1
2,1,k = 2 is coupled with `1

1,u,k = 1. These two should not be separated.

For more detail see Section 6.6.

– For the TCOMP: Retain {xn
1,k = xj

1,k}, {Nn
1,k = Nj

1,k} and {bn
1,k = wj

1,k} for the

same reasons as in RCOMP.
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• Repeat according to the rest of the rows of the permutation matrix until all subsets

of particles have been proposed.

• For each particle n = 1, . . . , N

– For the RCOMP perform the particle weighing step by computing: wn
k ∝ wn

k−1
p(Yk|Xn

k )I(Xn
k ,Cn

k )QL
l=1 bn

l,k

.

– For the TCOMP perform the particle weighing step by computing: wn
k ∝ wn

k−1

p(Yk|Xn
k )
QL

l=1 Nn
l,kQL

l=1 bn
l,k

.

7 Constraint Likelihood Function Independent Partition Al-
gorithm

Due to the algorithmic and computational complexity associated with the COMP algo-

rithm proposed in the previous section, we consider a simplified algorithm, the constraint

likelihood function independent partition method (CLIP), which still makes use of infor-

mation provided by constrained motion via the constraint likelihood function alone. This

method is simpler and less computationally expensive. The main motivation of considering

a simplified method is the fact that sometimes more naive proposals can reach the level of

performance of more sophisticated methods, merely by increasing the number of particles

used. In general, a simplified approach will be less computationally expensive than a more

sophisticated one, for the same number of particles. Therefore, we can consider increasing

the number of particles of a simpler method to match the execution time of the more com-

plex method and make a fair comparison of the two methods at similar levels of execution

time.

The method we propose is basically the IP method but with partition constraint like-

lihood functions used in the partition weighing function and with the particle constraint

likelihood function used in the final weighing equation. These functions are exactly the

ones used in the RCOMP method. The differences of the CLIP method to the RCOMP

method is that the CLIP does not use variability in proposing partitions and does not repro-

pose partitions to satisfy the constraints. Therefore, the computational expense is greatly

reduced in the CLIP versus both the RCOMP and TCOMP methods.

Next, we provide the equations used by the CLIP. We use the same motion model as in

the case of the COMP in (22):

p(Xn
k |Xn

k−1) = I(Xn
k ,Cn

k)
L∏

l=1

p(xn
l,k|xn

l,k−1). (58)
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where I(Xn
k ,Cn

k) as defined in (23) and Cn
k as described in Section 6.3. Moreover, it is

convenient to sample from the kinematic prior for each partition l as

xn
l,k ∼ p(xl,k|xn

l,k−1) (59)

.

Apart from sampling from the kinematic prior, we use a particle weight function. We

include measurement information by using the partition likelihood function, p(Yk|xn
l,k) and

constraint information using the partition constraint likelihood function, I(xn
l,k, Č

n
l,k), where

Čn
l,k as in (29), for l = 1, . . . , L. Therefore, the partition weight function is given by

wn
l,k ∝ p(Yk|xn

l,k)I(x
n
l,k, Č

n
l,k). (60)

After resampling from the distribution of wl,k, the weight wj
l,k received by each partition

l = 1, . . . , L becomes the bias bn
l,k for that partition, corresponding to particle n. Therefore,

bn
l,k=wj

l,k.

Moreover, from (51), the weight of the particle n = 1, . . . , N is:

wn
k ∝ wn

k−1

p(Yk|Xn
k)p(Xn

k |Xn
k−1)

q(Xn
k |Xn

k−1,Yk)
(61)

where q(Xn
k |Xn

k−1,Yk) is the proposal density used to propose each of the particles. We

recall that each of the partitions of the particle was proposed by the kinematic prior of the

target it represents and weighted with the whole posterior and the constraint likelihood.

This weight biased its selection for placement in the particle. Therefore,

q(Xn
k |Xn

k−1,Yk) =
L∏

l=1

q(xn
l,k|xn

l,k−1,Yk) (62)

and

q(xn
l,k|xn

l,k−1,Yk) = bn
l,kp(xn

l,k|xn
l,k−1). (63)

Combining (62) and (63), the weight of each particle in (61) becomes

wn
k ∝ wn

k−1

p(Yk|Xn
k)p(Xn

k |Xn
k−1)

(
∏L

l=1 bn
l,k)(

∏L
l=1 p(xn

l,k|xn
l,k−1))

(64)

which using (58) simplifies as
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Table 9: Constraint Independent Partitions Algorithm

• For each partition l = 1, . . . , L

– For each particle n = 1, . . . , N

∗ Sample xn
l,k ∼ p(xl,k|xn

l,k−1)

∗ Compute wn
l,k ∝ p(Yk|xn

l,k)I(x
n
l,k, Č

n
l,k)

– Normalize wl,k

– Resample by choosing a partition j from the distribution of wl,k

with replacement

– Keep the bias of each sample as bn
l,k = wj

l,k

• For each particle n = 1, . . . , N

– Compute wn
k ∝ wn

k−1
p(Yk|Xn

k )I(Xn
k ,Cn

k )QL
l=1 bn

l,k

.

wn
k ∝ wn

k−1

p(Yk|Xn
k)I(Xn

k ,Cn
k)∏L

l=1 bn
l,k

. (65)

The algorithm is provided in Table 9.

8 Simulation Results

We have chosen two military applications that provide suitable conditions for assessing the

performance of the algorithms proposed in this report. One of them considers military

vehicles moving in convoy motion [15], and the other application is the common leapfrog

motion [16] that military vehicles or personnel employ to achieve various goals.

8.1 Convoy Motion

In convoy motion, military vehicles move as groups in order to execute a certain task

effectively. Convoy motion is mainly employed for reasons of safety. It is important for

the individual elements of the convoy to follow certain rules in their motion. The speed

of the convoy and the separation among the various elements are determined by specific

organization requirements. Therefore, the knowledge that a certain group of vehicles moves
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Figure 6: Five targets moving one behind the other throughout the entire motion in the scenario.
The targets move from the left hand side to the right and from bottom to top

in a convoy, can be very beneficial to the tracker.

In our convoy motion scenario, there are five military vehicles that move one behind the

other as in Figure 6. The individual vehicles move with an average speed of 90 km/h and

keep a distance of about 50 m apart. The motion consists of 81 time steps. The tracker

is assumed to know the number of targets and their approximate separation distance. The

order in which the vehicles move throughout the scenario is also assumed unchanged. The

tracker implements the kinematic rules by not allowing position estimates of adjacent targets

to be placed any closer than 40 m and further than 60 m apart. The targets use a constant

motion model with a dynamic noise covariance given by the diagonal matrix Q in (9) with

diagonal entries [20 .5 20 .5]. The measurement model described in Section 5.1.2 is used

with each of the cells of the three angle-only sensors covering an angle of pi/64 radians.

The probability of false alarm is set to 10−2 and the SNR, denoted as λ in (11), to 20

db. The sensors are positioned as shown in Figure 6 where the motion of the five targets

is also shown. The tracker proposes particles by dividing them in 4! = 24 subsets for

reasons explained in 6.3. As the execution time of the algorithms is directly related to the

number of particles we use, we vary the number of particles, thus the execution time, and

compare the root mean square error (RMSE) performance of the IP, CLIP and RCOMP

algorithm versus the program execution time, obtained on a Pendium 4, 3 GHz, with 1 Gb

48



0 500 1000 1500 2000 2500 3000 3500 4000 4500
20

40

60

80

100

120

140

Time /s

R
M

S
E

IP       
CLIP     
RCOMP    

RMSE With 95% Confidence Interval

Figure 7: RMSE vs the time that the simulation takes to complete 81 time steps.

of memory, with all factors affecting computational time kept the same for all methods to

the best of our knowledge. This is to show that even though the use of constraint motion

information can be computationally expensive, it is worthwhile to employ it as it reaches

levels of performance unmatched by the IP.
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Figure 8: RMSE vs the time step for the entire motion of the targets.
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From Figure 7 we can see that even if we increase the number of particles for the

IP, thus making it more computationally expensive and reducing the RMSE, it can never

match the performance of the RCOMP. Therefore, we reach the conclusion that to obtain

the best performance in such a scenario, the information about kinematic constraints that

is available, has to be used. It needs, however, to be used in an effective way. The CLIP,

that is less computationally expensive than the RCOMP still fails to reach the levels of

performance of the RCOMP due to its ineffective use of the information provided. This is

true even if the number of particles used by CLIP is increased. Furthermore, in the same

graph we plot the 95% confidence intervals around the mean of each RMSE estimate. This

is an indication of the reliability of the scheme used as the confidence intervals are directly

related to the variace of the estimates. Clearly, the RCOMP is the most reliable scheme

with the lowest variance. It should be noted that a comparison between the schemes is only

meaningful at a certain execution time and beyond, where the RMSE reaches a steady state.

For small execution times, we have too few particles for any particle filtering algorithm to

perform well.

In Figure 8, the RMSE performance of the IP, CLIP and RCOMP are plotted versus

the time index corresponding to each time step in the scenario. The numbers of particles

that were taken are the ones that result in almost the same computational expense, around

4000s, for all the algorithms, in order to make the comparison fair. One observation is

that the RMSE increases as the scenario time progresses. This is due to the fact that,

in the beginning, we initialize our tracker with estimates that are close to the true ones,

thus obtaining a small estimation error. Furthermore, as the time progresses, the targets

move away from the sensors. Since we use sensor cells that each observe an angle of our

observation region, the further we move from the sensors, the more the resolution of our

observation cells decreases. Here, the COMP is found to have a lower RMSE compared to

the corresponding values of the RMSE for the CLIP and IP for the same time index. The

CLIP appears to have a slight advantage over the IP.

8.2 Leapfrog

Leapfrog is a commonly used technique in the military [16]. It consists of having groups

of personnel, vehicles or aircrafts move in a desired direction, while one or more other

groups remain stationary, providing cover to the moving group by suppressing enemy fire.

Timing and precision in the execution of this kind of motion is crucial. It provides effective
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cover against enemy fire and helps the group in motion avoid friendly fire. A tracker can

utilize information coming from this kinematic dependence of the targets and improve its

performance in difficult scenarios.

In the leapfrog scenario used in this report, we track the motion of four soldiers perform-

ing leapfrog motion in groups of two. The soldiers attempt to advance closer to enemy lines

with as much rapidity and cover as possible. Therefore, at each segment of their motion,

two soldiers remain stationary at fortified positions or objects that obstruct enemy vision

and fire, providing cover to the other two soldiers that advance forward. The advancing

soldiers run with a zigzag fashion, in order to avoid being near stationary targets in the

direction facing the enemy. They also try not to deviate too much from their mean posi-

tion to their left or right. This is necessary as friendly fire exists on their sides. It is also

important for the moving soldiers to advance forward by the same amount. The various

stages of this motion are described in Figures 10, 11,12,13 and 14. The information that

the target has in this simulation is the constant number of targets and the grouping of

the targets. The tracker assumes that the moving targets are not to move in front of the

stationary targets, a constraint in the x position coordinate, and that the moving targets

advance forward by approximately the same amount, a constraint in the y position coordi-

nate. More specifically, for the x position coordinate, estimates of any target are not to be

placed any closer than 4 meters to any other target’s estimate. Moreover, for the targets

of the same group, the predicted values of the y position coordinate of their state vector

should not differ by 2 meters. The motion consists of 81 time steps. A constant velocity

model with constraints is applied in this scenario having a dynamic noise dynamic noise

covariance given by the diagonal matrix Q in (9) with diagonal entries Q = [.07 .001 .4 1].

The same measurement model as in the convoy scenario is used with each of the cells of

our angle-only sensors covering an angle of pi/128 radians. The positioning of the sensors,

together with the complete motion of the targets is given in Figure 9. The tracker proposes

particles by dividing them in 24 subsets. We compare the root mean square error (RMSE)

performance of the IP, CLIP, RCOMP and TCOMP versus the program execution time for

the same reasons as in the convoy scenario. We also provide RMSE versus the time index,

for an execution time of about 3000s, corresponding to each of the 81 time steps of the

scenario.

In Figure 15 we can see that, similarly to the convoy scenario case, even if we increase

the number of particles for the IP, it can never match the performance of the RCOMP and
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Figure 9: Complete motion of the four tar-
gets in our leapfrog scenario together with
the positioning of the three angle only sen-
sors.
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Figure 10: Time steps k = 1, . . . , 9 of the
leapfrog motion. Group A moves forward
according to kinematic constraints, while
group B remains stationary and provides
cover.
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Figure 11: Time steps k = 1, . . . , 27.
Group A has reached a certain point and
the targets take cover and remain station-
ary while firing at the enemy. Group B
advances forward making use of the cover
provided by group A.
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Figure 12: Time steps k = 1, . . . , 49.
Group B has stopped moving forward and
now provides cover for group A that has
started moving forward again.
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Figure 13: Time steps k = 1, . . . , 69.
Group A has reached its final destination
and provides cover for group B, which has
started moving as soon as Group A started
providing cover.
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Figure 14: Time steps k = 1, . . . , 81.
Group B has also reached its final desti-
nation for this scenario.

52



0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

12

14

16
RMSE With 95% Confidence Interval

Time /s

R
M

S
E

IP   
CLIP 
RCOMP
TCOMP

Figure 15: RMSE vs the time that the simulation takes to complete for 81 time steps.
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Figure 16: RMSE vs the time step for the entire motion of the targets.

TCOMP. This shows the importance of incorporating kinematic dependency information

when available. CLIP still fails to reach the levels of performance of the RCOMP and

TCOMP due to its ineffective use of the information provided. As expected, RCOMP and

TCOMP have similar performances. Furthermore, the 95% confidence intervals show a

significant reduction in the variance of the estimates when using RCOMP and TCOMP.
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In Figure 16, the RMSE performance of the IP, CLIP, RCOMP and TCOMP versus the

time index corresponding to each time step in the scenario shows that while the RCOMP

and TCOMP have an almost constant RMSE throughout the scenario, the IP and CLIP

result in an increasing error as the time index progresses. This is attributed to the fact that

without the valuable motion constraint information, in the case of the IP, and due to the

ineffective use of that information, in the case of the CLIP, as the time index progresses, the

trackers loose more tracks and the lost tracks diverge more from the true target positions.

As in the convoy scenario, we are comparing the RMSE performance vs the time index

taking numbers of particles resulting in almost the same computational expense for all the

algorithms.

9 Conclusions and Extensions

9.1 Conclusions

In this report, we proposed the constrained motion proposal (COMP) algorithm that in-

corporates kinematic constraint information into a particle filter. Kinematic constraint

information comes from modeling the possible dependencies in the motion of the targets.

Such information exists when targets impose specific types of constraints on the motion of

other targets. Therefore, incorporating such information efficiently into the tracker, may

reduce the uncertainty in a scenario and improve tracking performance. The COMP uses

sampling methods and likelihood functions that take into account motion constraint in-

formation. It also introduces variability in partition proposal order. The latter reduces

the errors introduced by occasional incorrect information on the constraints imposed on

tracked targets. We showed, through simulation results on RMSE performance, that the

techniques used by the COMP are effective in incorporating motion constraint information

into the tracker. Moreover, that the COMP outperforms the IP, which is not able to utilize

such information. It also outperforms the CLIP which makes inefficient use of motion con-

straint information. The gains in error performance by the COMP come at the expense of

algorithmic and computational complexity that are higher than those of the IP and CLIP.

By exploring the different challenges that may arise, and by using particle filtering to

handle these challenges, we saw that the particle filter proves its ability to perform well in

difficult scenarios utilizing many different kinds of information and adapting to changing

situations.
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9.2 Extensions

For all the algorithms used to provide simulation results in this report we have assumed

that the tracker knows the number of targets in the surveillance area and that this number

is constant. The algorithms however, can be easily extended to include an uncertainty

in the number of targets being tracked, making the scenarios more realistic. This can be

accomplished by assigning probabilities of targets appearing and disappearing from the

surveillance area and using these probabilities on each particle. Thus, each particle will

have a number of partitions that correspond to a belief on the number of targets present,

and this number will be related to the number of partitions it had on the previous step.

Hopefully, the particles with the correct number of partitions will receive higher weights in

the particle weighing step. For the initialization of the filter we can assume that there is

a certain number of targets present and propose particles having anywhere from 1 to that

number of partitions according to a uniform probability. This is a successful approach for

which simulation results are provided in [7].

Another assumption used by the tracker is the knowledge as to which targets exhibit

kinematic dependency. This is usually not a realistic assumption. Even though we can

assume that we know the nature of the constraints that may be imposed on the targets,

this being attributed to the known nature or the targets (trucks, aeroplanes, etc.), we often

do not know if constraints exist in a specific scenario, and if they do, we do not know

which of the targets exhibit kinematic dependency. For example, in the convoy case, it is

possible for some elements of the convoy to separate from the group. This means that those

elements will not impose constraints to other elements in the group, as they did while still

in the convoy. Similarly, they will not be bound by the same constraints from targets that

are still in the convoy. The same issue arises when we have a variable or unknown number

of targets, where we do not know whether the newly arrived targets impose constraints

or not. These situations can be tackled by including an uncertainty as to whether the

constraints exist, and if so, to which targets they apply. If for a certain particle the belief

is that two partitions impose constraints on each other, then motion constraint information

will be incorporated in their proposal. The choice on whether to apply constraints can be

implemented as follows: For each particle, we can apply a probability that constraints exist

among a certain pair of partitions, based on whether the two partitions imposed constraints

on each other in the previous time step. For example, if the belief incorporated in a particle

in the previous time step was that constraints exist among two partitions then, at the
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current time step, these constraints are still believed to exist, with a certain probability p,

and with a probability 1− p they are not. Similarly, if in the previous time step constraints

were believed not to exist, then at the current time step, the constraints are still believed

not to exist with a probability p, and they are believed to exist with probability 1 − p.

Usually probability p, the probability that the state of affairs remains unchanged over a

certain time step, is higher than .5. Incorporating such uncertainty into the tracker, creates

many different constraint regions applied to different particles. This number of possible

regions depends on the number of targets that we have and the certainty we have on the

dependency of the motion. In cases of large uncertainty as to whether constraints exist in

a scenario, we may use an adaptive algorithm similar to the adaptive partitions algorithm

(AP) [7], switching between COMP and the IP or CP according to some measure of the

certainty as to whether constraints exist. When kinematic constraints apply, we can expect

to have significant improvements in performance, comparable to those presented in this

report. Similarly to the case when we have an unknown number of targets, the particles

that have the correct belief on the constraints applied will receive higher weights, as they

will have been proposed more correctly than the rest of the particles. The introduction

of such uncertainty may require an additional number of particles, but will relax some

unrealistic assumptions.
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