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Theoretical Analysis of Evolutionary Algorithms 
With an Infinite Population Size in Continuous Space 
Part I: Basic Properties of Selection and Mutation 

Xiaofeng Qi, Member, IEEE, and Francesco Palmieri, Member, IEEE 

Abstract-This paper aims at establishing fundamental theo- 
retical properties for a class of “genetic algorithms” in contin- 
uous space (GACS). The algorithms employ operators such as 
selection, crossover, and mutation in the framework of a multi- 
dimensional Euclidean space. The paper is divided into two parts. 
The first part concentrates on the basic properties associated 
with the selection and mutation operators. Recursive formulae 
for the GACS in the general infinite population case are derived 
and their validity is rigorously proven. A convergence analysis is 
presented for the classical case of a quadratic cost function. It is 
shown how the increment of the population mean is driven by its 
own diversity and follows a modified Newton’s search. Sufficient 
conditions for monotonic increase of the population mean fitness 
are derived for a more general class of fitness functions satisfying 
a Lipschitz condition. The diversification role of the crossover 
operator is analyzed in Part I1 [l]. The treatment adds much light 
to the understanding of the underlying mechanism of evolution- 
like algorithms. 

I. INTRODUCTION 
HE field of global optimization has been rapidly expand- T ing over recent decades, aiming at finding general search 

algorithms for cost functions with many local minima. The 
functions being optimized are generally defined on a metric 
space, which includes multi-dimensional Euclidean space or 
various discrete spaces. The functions can be nondifferentiable 
and/or discontinuous, and their domain may be constrained. 
Combinatorial optimization problems, defined in a discrete 
setting, and usually NP-complete, represent typical examples. 
It is now widely recognized that gradient-based nonlinear 
programming techniques would typically fail in the above 
situations, and drastically different approaches need to be 
constructed [2]-[4]. Among the many global search methods 
proposed over the last two decades, global random search 
techniques have been considered to be a viable and promising 
direction of exploration [2], [4]-[ 121. A comprehensive survey 
can be found in [4] and convergence properties for general 
stochastic search algorithms are discussed in [7] and [8]. 
Included in this class is the well-known simulated annealing 
method [13], [14] which has been intensively studied and 
has found successful application in various combinatorial 
optimization problems. 
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The focus of this work is on simulated evolution, which 
is revealing to be a very rich class of stochastic search 
methods. The genetic algorithm (GA) described in [15] and 
[16], which has become very popular lately for discrete 
optimization problems, is part of a class that encompasses 
the more general evolution strategies [ 171-[ 191, often formu- 
lated in a continuous-space framework, and also evolutionary 
programming [20], [21]. These evolutionary techniques are 
population-oriented: Successive populations of feasible solu- 
tions are generated in a stochastic manner following laws 
similar to that of natural selection. This is in contrast to 
standard programming techniques that normally follow just 
one trajectory (deterministic or stochastic), perhaps repeated 
many times until a satisfactory solution is reached. In the 
evolutionary approach, multiple stochastic solution trajectories 
proceed simultaneously, allowing various interactions among 
them toward one or more regions of the search space. These 
approaches can be justified by the fact that a population- 
oriented algorithm automatically stores in time a sampled 
replica of the profile of the function being optimized, provid- 
ing important clues for the global structure of the function. 
Applications of evolutionary computation can be found in 
[22]-[25]. 

In the canonical genetic algorithm, each member of the 
subsequent generation is selected from the current one with 
a probability proportional to its function value, or “fitness.” 
After selection, various “genetic operators,” such as recombi- 
nation (which extracts common feature shared by two “good” 
members within the population in order to explore new re- 
gions) and mutation (providing perturbations for selected 
members in the solution space to extend the dynamic range 
of selection) are used. Eventually the process is likely to 
converge to a population dominated by the global maximum 
(maxima) of the fitness function. Compared with single- 
trajectory methods, such as simulated annealing, a genetic 
algorithm is intrinsically parallel and global. Local “fitness” 
information from different members is mixed through various 
genetic operators, especially the crossover mechanisms, and 
probabilistic soft decisions are made concerning removal and 
reproduction of existing members. Furthermore, GA’s require 
only simple computations, such as additions, random number 
generations, and logical comparisons, with the only major bur- 
den being a large number of fitness function evaluations. Only 
limited knowledge of the problem is generally necessary to use 
this strategy. The simulated annealing algorithm, instead, is 
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intrinsically sequential and needs a long and carefully chosen 
“cooling” schedule. Parallelism must be explicitly added to the 
canonical approach with increased computational complexity. 

The analysis of the canonical GA’s defined in [IS] and 
1161 presents the following two major difficulties: 1) It is 
formulated after the gene recombination mechanisms, and the 
solution space is discrete in nature. Therefore it is difficult 
to efficiently apply a discrete CA as-is to a multi-dimensional 
optimization problem in a continuous multi-dimensional space, 
which is the framework frequently needed for practical opti- 
mization problems. Suitable encoding of the real space has 
to be adopted and the validity of the transformation may 
be a nontrivial issue. Many engineering problems require 
a real-space formulation and have been approached with 
random search techniques, including various continuous-space 
versions of evolutionary computation 1261-1301, when tra- 
ditional nonlinear programming techniques have proved to 
be inappropriate. Applications of variants of GA’s to the 
optimal design of artificial neural networks (including weights 
and connectivity) have also been reported in 1311-1331 and 
others. 2) A solid analysis for a canonical discrete GA is 
difficult. It is especially difficult to establish the relationship 
between the various discrete variables and the fitness function 
(meaningful solution encoding scheme). Convergence analysis 
is also difficult to conduct. Limited attempts have been made 
toward a rigorous analysis of the discrete genetic algorithm 
1341-1421, but various restrictive conditions have to be im- 
posed on the algorithm. A complete convergence analysis is 
still not available, especially for the general case involving 
the crossover operator. 

Attempts have been made to construct and analyze variants 
of genetic algorithms in continuous space. Ermakov and 
Zhigljavsky [45] 1461 were the first ones to define a class 
of population-oriented algorithms that bears direct analogy to 
the canonical discrete GA’s defined in 1151 and [16], and it 
is referred to as Algorithm E [2]. This class, however, does 
not contain any recombination operators. Successful attempts 
in solving a high-dimensional problem (m = 128) using 
Algorithm E are reported in 161, with a rigorous proof of 
convergence in distribution to a Dirac function located at 
the global optimum for infinite population size, presented in 
1461. The convergence behavior, however, to our knowledge 
has never been carefully analyzed. Related results conceming 
Algorithm E can be found in 1471 and [48]. In the discrete 
CA literature, a limited amount of qualitative results are 
available for the “real-coded genetic algorithms” 1491, 1501. 
Applications of heuristic versions of GA’s to constrained 
global optimization problems in the continuous space have 
also been reported in 1261. 

Mathematical analyses for the convergence behavior of 
continuous-space evolutionary programming can follow dif- 
ferent directions. Aside from what has been reported in the 
discrete CA literature, there are scattered results in other 
academic disciplines that are related to this subject. We briefly 
describe these results below, pointing out their limitations, 
and hoping that they may help to understand the evolutionary 
programming paradigms from a unified computational point 
of view. 

I )  Studies in physics: Problems similar to GACS have been 
attacked by physicists while studying the behavior of elec- 
trons moving in a multi-modal potential field 1.511-[54]. The 
results are intended to guide the formulation of stochastic 
optimization algorithms that combine two of the universal 
laws of nature-namely, the law of thermodynamics and that 
of natural selection. The evolution process with a mutation 
noise assumed to be very small is modeled by a partial 
differential equation in space and time, which leads to a 
Schrodinger-type eigenvalue problem. Initial and asymptotic 
behavior of the algorithm are analyzed in terms of eigenvalues 
and eigenfunctions of the Schrodinger operator associated with 
a given fitness function (potential field) [51]. The analysis 
of evolutionary programming can thus be carried out in the 
framework of stochastic differential equations. The assumption 
of infinitesimally small mutation may be a limiting factor, and 
it is not clear to us how the important recombination operator 
(crossover) could be included in this framework. Closed-form 
results, even for specific fitness functions, to our knowledge, 
are still unavailable. 

2) Studies in population genetics: A large amount of litera- 
ture exists in the area of population genetics that deals with the 
asymptotic behavior of a population of chromosomes under 
various combinations of genetic pressure: selection based 
on viability (fitness), recombination, mutation, environmental 
variation, and migration between neighboring populations. 
Comprehensive coverages can be found in [55]-[591. Some of 
the studies concentrate on multi-locus populations, which are 
much similar to the binary string framework of the canonical 
GA’s. Karlin [60]-[6S] has conducted an extensive investiga- 
tion on the equilibrium behavior of multi-locus systems, given 
various epistatic structures of the fitness function 1601, [61], 
[63], [64]. We found most interesting his analysis of various 
phenotypical mating schemes, which are the counterparts of 
crossover in multi-dimensional Euclidean space [62], [65]. 
Specifically, Karlin has analyzed convergence behavior of 
so-called random selective mating and nonrandom mating 
schemes. The former describes a mating behavior that dictates 
that a similar pair of vectors (with respect to the Euclidean 
distance) gets a higher chance of recombination. Various 
versions of such models were studied in [62]. Nonrandom 
mating schemes can involve various nonrandom combination 
mechanisms (nonlinear, linear and/or convex, etc.) for pairs 
of solution vectors, with conditions provided for convergence 
of the population toward the global optimum under Gaussian 
assumptions [6S]. It seems that some of the heuristic crossover 
schemes currently adopted for the continuous space version 
of the GA’s 1261 are special cases of the nonrandom mating 
schemes proposed in [62], [6S]. Other results address the 
roles that crossover plays in the overall evolutionary process 
1661, 1671, which may help answer some of the questions 
surrounding the computational consequences of crossover in a 
genetic algorithm [681, 1691. 

3 )  Outline of this paper: The purpose of our work is to 
study evolutionary algorithms in the unified framework of 
stochastic processes in continuous space. We want to explain 
quantitatively how the simple idea of selection, mutation and 
recombination is equivalent to an efficient and robust search. 
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selection crossover mutation 
Fig. 1. A schematic illustration of the steps involved in a genetic algorithm with selection, crossover, and generalized mutation 

scheme. Various notations involved in the analysis are illustrated. 

Specifically, we analyze a general class of Genetic Algorithms 
in Continuous Space (GACS) and formulate it as a discrete- 
time stochastic process. The states lay in a multi-dimensional 
Euclidean space and we study the large sample behavior of the 
process in a rigorous fashion. It is important to point out (and 
will be shown in the paper) that 1) a large sample analysis is 
more tractable mathematically, and reveals important patterns 
of the collective behavior of the population as a whole, and 
(2) the results of GACS may help us to understand canonical 
genetic algorithms in discrete space. Furthermore, due to the 
specific structures of Euclidean space, GACS possesses many 
unique features not shared by canonical discrete GA’s. It 
should also be emphasized that this paper, being theoretical 
in nature, may help to provide meaningful guidance for the 
practical design of other evolutionary procedures. 

The approach adopted in our investigation of GACS in 
this paper has been to formulate the evolutionary process 
as a discrete-time process with states defined over a multi- 
dimensional Euclidean space. In the case of a large population, 
this formulation leads to the study of a sequence of prob- 
ability density functions characterizing the distribution of 
the entire population (i.e., the frequency of occurrence of 
various solution vectors). It needs to be pointed out that 
the large population assumption is obviously unrealistic in 
the computational framework. It is obvious that if the whole 
sample space were filled with population elements, the search 
should just choose the best individual(s). 

However, we maintain that a detailed understanding of 
the large-population case should constitute the theoretical 
substrate for meaningful use of genetic algorithm strategies. 
The study of the more realistic finite population could be 
seen as an approximation to the large-sample case. A detailed 
quantitative analysis for the finite-population case seems to 
be rather difficult, if we want to maintain a good degree of 
mathematical rigor. We have made a few attempts, that we 
will not report here, that show how by properly defining the 
various operators to ensure certain monotonicity conditions on 
the average fitness of the population, the process qualifies as 
a submartingale. 

We have divided the body of this work into two papers. 
In this first part we formulate the basic algorithm strategy 

in general terms, and restrict ourselves to the more tractable 
scenario of populations that undergo selection and mutation 
only. This particularly elucidates the role of the selection 
operator in driving the population toward the regions with 
higher fitness. In the second part that follows [l], we single 
out the crossover operator, pointing out its peculiar nature 
and proving a number of results. An attempt to form the 
global picture is also included in the second part, emphasizing 
the interaction between crossover and selection. Conclusions 
and comments follow. We have tried to maintain the paper 
in a readable format by deferring most of the proofs to the 
appendices. Some details of the derivation had to be left out 
to keep this paper within acceptable limits. They can be found 
in our two technical reports [75] and [74]. 

11. BASIC ALGORITHM FORMULATION 

We want to solve the following optimization prob- 
lem:/belowdisplayskip6pt 

a% maxg(x), (1) 

where x E .F is the real parameter vector belonging to the 
feasible region’ F, g(x) is the so-called fitness function, which 
measures the goodness of the solution x and is assumed to 
satisfy the following conditions: 

a) g(x) has only finitely many global maxima: 
b) 0 < g(x) < w,Vx E F 
c) g(x) has finitely many discontinuous points. 
In the following we list the canonical steps of the Genetic 

Algorithms (see Fig. 1) for a schematic illustration): 
S1: Start at time k = 0 with N random vectors x;, . . . , xt 
drawn from an initial probability density function f ~ ( x ) .  
S2: (Selection) Given x:, . . . , xp, select x’i, . . . , x’f, 
such that /belowdisplayskip6pt 

72”; 

2 , j  = l , . . . , N  . 
’ Generally 7 R’”. If a general mutation and/or scheme is invoked so 

that population may go beyond the feasible region, we assume .F to be Rm 
itself for technical convenience. 
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~ 3 :  (Crossover) Select two vectors from X I : ,  . . . , x’p 
independently, each with equal probabilities among the 
N members, and perform a crossover operation with 
probability p between the two vectors. Randomly discard 
either one of the resulting two vectors and keep the other. 
Independently repeat this process N times to form a new 
population x”;, . . . , x“f. 
S4: (Mutation) Perturb x”;; . . . , XI’: to form the next 
generation x;+~ ,  . . . , x:+~ according to a common condi- 
tional probability density function 

where fw,(y(x), symmetrical in y around x, is the con- 
ditional probability density function that characterizes the 
mutation operator at time k.  
S5: Check stopping criteria. If not satisfied, update the 
parameters of crossover and/or mutation according to a 
specified set of rules and repeat S2-S4. Set k c k + 1. If 
stopping criteria are satisfied, exit. 

After the initial settings of a population of randomly chosen 
solutions, a stochastic selection operator chooses with higher 
probability the solutions with large fitness values without nec- 
essarily discarding the “bad” ones. This has the consequence of 
concentrating the population in the regions with higher fitness. 
The resulting population of solutions is now processed through 
two new stochastic operators, crossover and mutation, that 
work in the direction opposite to selection. They force the 
population to increase its diversity, with the obvious purpose 
of exploring new regions where better solutions may lay. 
The crossover process performs a sort of random coordinate 
swapping, and the mutation a random scattering of solutions. 
In the framework of the discrete genetic algorithms where the 
solutions are coded as binary strings [15], [16], the crossover 
corresponds to exchanging part of the strings between the 
two chosen parents. In our continuous-space framework the 
crossover operation can be generally thought of as coordinate 
swapping. The idea (inspired by biological gene crossover) 
consists of random shuffling of coordinates between two parent 
vectors with the fundamental consequence of keeping the 
population within the feasible region while exploring new 
regions of the solution space. Various heuristic schemes for 
crossover have been proposed in the literature, particularly 
in the discrete framework. Variations of the basic idea go 
from bit-wise to coordinate-wise swapping [50], referred to 
as “discrete recombination” in [70], and combinations of 
them. It is rather difficult within a generic discrete setting to 
visualize the convergence behavior of the crossover operation, 
although various papers have pointed out the essential features 
of such operators. In Part I1 [l] we will restrict our analysis 
to a specific coordinate-wise crossover scheme. Under this 
approach, each pair of corresponding coordinates between the 
two parent vectors is allowed to swap its values independently, 
with a given probability p .  We will discuss in greater detail 
the convergence of the operation in terms of the population 
distributions. 

We chose to study here the simplest selection scheme-the 
fitness proportional selection-as defined above. More so- 

phisticated schemes are also possible [82] with the intent 
of overcoming some of the drawbacks associated with the 
fitness-proportional one, such as nonuniform selection pressure 
throughout the process. However, our analysis concentrates 
on the simplest one, as it possesses the most essential feature 
associated with any selection operator, namely that of “survival 
of the fittest.’’ 

The crossover operator in S3 can take various forms, as has 
been described in the literature for canonical GA’s. In Part 
I1 of this paper [l] we choose to analyse a simple uniform 
crossover in much detail, revealing unique diversification 
properties associated with the crossover mechanism. It should 
be pointed out that our uniform crossover operation differs 
slightly from the ones proposed for canonical GA’s, in that 
only one offspring is kept in the new generation, while the 
other is discarded. However, it possesses properties common 
to most crossover operators and is chosen for ease of analysis. 

The mutation equation in S4 corresponds to an increase in 
the diversity of the population induced through a stochastic 
operation performed on each member independently. This is in 
contrast to crossover where couples of solutions are combined 
to form a member of the new population. The formulation in 
S4, in terms of a conditional density, is rather general since 
it allows member-wise operation dependent on the member 
value. The result is a generalized convolution of the distribu- 
tion of each member with the conditional density of the muta- 
tion noise. Special cases include: 1) identically independently 
distributed (IID) additive zero mean noise vectors across the 
whole population, 2) member-wise zero mean noise with a 
distribution dependent on the value of the member vector to 
which it is applied, and 3) noise with a distribution dependent 
on some global statistics of the entire population, etc. 

The free parameters of crossover and/or mutation operators 
may be adapted as well [74]; for example, when the stopping 
criteria are not satisfied. This is a rather complicated issue and 
will not be discussed in this paper. We prefer to concentrate 
here on the consequence of the basic operations on the 
behavior of the search algorithm. 

Our first approach to the mathematical description of the 
GACS will be on a simplified version that omits completely 
crossover (i.e., Step S3 in the above formulation). The simpli- 
fied version is interesting because it allows a visualization of 
how the selection process plays its role toward convergence 
against the diversity induced by the mutation process. The 
crossover operator will be treated separately in Part I1 [l]. The 
analysis concerning crossover can be combined with those of 
selection and mutation to form a general picture of the GACS. 

In the following we will derive time-recursive relationships 
for the distribution of the population under the assumption 
that the population is large. This is done by letting the 
population size N go to infinity and deriving the consequent 
limiting behavior of selection, mutation, and crossover on 
the population distribution. Clearly, as the population size 
gets large, member points tend to cover the entire solution 
space continuously; thus, the behavior of the algorithm can 
be summarized by how dense the points are in the solution 
space. Our primary goal is to show that after sufficiently long 
time, the probability density function (PDF) of the population 
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will be narrowly concentrated around the global maximum 
(maxima) of the fitness function. 

111. BASIC RECURSIVE FORMULAS 
AND CONVERGENCE RESULTS 

In the theorem that follows, bridging the gap between 
a finite population GACS and its infinite sample version 
(N + CO), provides a recursive equation governing successive 
population densities under repeated altemations of selection 
and mutation. The proof of the theorem is similar to that 
by Ermakov and Zhiglyavsky [46], but includes many more 
details and is considerably more readable. It was assumed in 
[46] that the population size can vary with time, provided 
that it asymptotically approaches infinity. E461 also allows 
bounded measurement noise on the sampled fitness values. In 
our statement of the theorem, the population size is fixed over 
time, although considered in its asymptotic behavior, and the 
observed fitness values of the member solutions are noiseless. 
We state the theorem below and defer the proof to Appendix A. 

Theorem I :  Let the algorithm be formulated accord- 
ing to ( 2 )  and (3), and let the mutation operator act on each 
of the N members of the population independently with the 
same conditional probability law fx;+llx~;(-l.) for i = 1,. . . , N, 
hereafier denoted as fwk (.I.). Assume the fitness function g(x) 
and the mutation conditional density fw, satisfy the following 
conditions: 

(A) 0 < gmzn I g(x) 5 gmar < m,vx E F, 
(B) SUP fWk(xlz) I M < 00. 

X , Z € F  

Then as N 4 00, the time history of the simplified GACS (withoul 
crossover) can be described by a sequence of random vectors 
{xk}&, xk E F, with densities: 

Similar recursions were also reported by Karlin [62], that 
studied the behavior of biological population evolution under 
various diversification operators. The results demonstrates that 
selection on a large population leads to a normalized multipli- 
cation of the current density with the fitness function. This is a 
sort of modulation of the population that emphasizes the part of 
the population with higher fitness. The mutation operator just 
results in a generalized convolution of the population density 
function with the mutation conditional density. 

An immediate consequence of the above theorem, in the 
typical case of additive mutation noise: 

Xitl = X’i + w.,, 2 = 1’2, .  . . , N ,  ( 5 )  
where w;, i = 1 ,2 ,  . . .  , N  are independent and identically 
distributed m-dimensional random vectors with zero mean and 
a common density fw, (.), is that as N -+ 00, the sequence 
of population densities { f x , } ~ o  satisfies the following recur- 
sion: 

where * denotes the m-dimensional linear convolution. 
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Fig. 2. Schematic illustration of selection and mutation steps for the GACS 
with corresponding notations. 

For notational convenience of the analysis that follows, let 
us adopt the following simplified notations: denote x’k the 
intermediate population afer  selection at time k, but before 
mutation. Also define: 

Fig. 2 depicts the corresponding schematic diagram. Now 
(6) corresponding to additive independent mutation can be 
rewritten as: 

(7) 

To emphasize the individual behavior of the two random 
operators let us divide (7) into two parts. The effect of selection 
is expressed by the formula 

where E [.] denotes the mathematical expectation operator, and 
that of additive mutation by 

(9) 
The above expressions clearly show how the evolution process 
consists of an alternation of multiplication with the fitness 
function (selection) and convolution with the mutation density 
(mutation). The former tends to “squeeze” the density of x 
around the global maximum of the fitness function, whereas 
the latter “spreads” the resulting distribution. If the latter 
effect gradually diminishes (with a decreasing noise over 
time), the population will narrowly concentrate around the 
global maximum. Two pictorial examples are shown in Fig. 
3 of a one-dimensional density that undergoes only repeated 
selection with two types of fitness functions (one unimodal and 
the other trimodal). The example shows how the population 
tends to concentrate itself on a point corresponding to the 
maximum fitness. The following theorem establishes the result 
rigorously: 

Theorem 2 (Repeated Selection Alone): Let us con- 
sider a nonnegative function g(x) defined over a bounded subset 
3 E R“ . Assume that g x possesses a unique global maximum 
at x = x’ E F with g* = g(x*). Also assume that there exists a 6 )  
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fe  

t 2  n 

Fig. 3. Evolutions of a one-dimensional density under repeated selection 
(no mutation) for a unimodal fitness function (above) and a trimodal fitness 
function (below). The global maximum of the fitness function is marked on 
the horizontal axis. 

jinite neighborhood around x* that is simply connected and that 
g(x) is continuous within this neighborhood. If the initial density 
fo  is nonzero at the optimal point x* , then the sequence 

converges to S(x - x * ) ~  as k -+ CO. 

The proof is deferred to Appendix B. The conclusion is 
intuitively clear, since raising a function to a power many 
times, while maintaining a unit volume undemeath it, results in 
sharp peaks at the maximal points of the function. Note that the 
above arguments also apply to functions with multiple global 
maxima. In this case the sequence of densities for function 
values { f g ~ x , ~ ( y ) } ~ = o = o  would converge to S(y-g*), where g* 
is the common function values at the multiple global maxima. 

Similar relationships have been derived for various forms of 
the selection operator in discrete space (see [82]), where exact 
solutions are obtained for difference equations describing a 
number of interesting selection schemes. 

Note that the above theorem no longer holds in its present 
form when the population size is finite. Random sampling 
error during selection can lead a finite population of size N 
towards one of the N absorbing states, corresponding to each 
of the N initial members [41]. Theorem 2 essentially asserts 
that the population will be dominated by the member having 
the highest fitness if selection does not introduce sampling 
errors. The infinite population algorithm certainly represents 
such a case. There are other (say, deterministic) selection 
schemes on a finite population that also converge to the 

*Roughly speaking, simple connectedness implies that there is(are) no 

h ( x  - x* ) denotes Dirac’s function, located at x* , namely an infinitely 
hole(s) within the neighborhood. 

narrow peak at x* .  

member of the largest fitness value in the initial generation. 
In addition, the more important process of selection combined 
with mutation no longer has well-defined absorbing states in 
the finite population case. 

Next we study the combined effect of selection and mu- 
tation. The combination is illustrated in Fig. 4 for two one- 
dimensional examples with Gaussian additive mutation and 
two different fitness functions (one unimodal and the other 
trimodal). Note how the two operators play their opposite 
roles: selection emphasizes the regions with higher fitness, and 
mutation spreads the distribution. The competition between 
these two operators results in a final population concentrated 
in the neighborhood of the optimal point(s). Note also that Fig. 
4 remains valid even if the initial population does not include 
the global maximum, since repeated mutation will eventually 
cover that point. 

One may ask at this point the natural question: Why should 
there be mutation at all if selection alone leads to convergence 
toward the optimal point? To answer this we have to con- 
sider the large-population assumption. Essentially, we assume 
that the whole space is covered with nonzero probability by 
elements of the population. Therefore the optimal solution 
would already be contained in the sample and selection alone 
would suffice to find the optimal point(s). The global process 
of alternation between selection and mutation needs to be 
visualized in the context of a finite population where the 
mutation is responsible for allowing members to explore 
regions not previously covered, and that may correspond 
to larger fitness values. The purpose of the large sample 
assumption is to facilitate a quantitative description of the 
average behavior of the algorithm to which a finite sample 
algorithm approximates. In fact, the mutation process in the 
large sample assumption is certainly disruptive because it 
may lead to excessive spreading of the distribution without 
a guarantee of convergence. The mutation density has to be 
“narrow” enough to ensure convergence to a neighborhood of 
the optimal point. We first state the following lemma showing 
how selection alone increases the concentration of points in 
regions with current fitness above population average. 

Lemma 1 : Define the set of above-average vectors at 
time IC as 

Bk {X E : g(X) 2 E[g(xk)]}. (1 1) 

Then the probability after selection of a member of the population 
to be in the above-average set is non-decreasing over time. 
Namely, Pr{xi E B A }  2 Pr{x, E Bk},VIC 2 0. 

The proof is straightforward since 

= Pr{xk E B k } .  

The relationship holds also pointwise, since from (8), f x ;  2 
fx,, Vx E Bk. In fact, aside from the trivial case in which 
the fitness function is a constant and/or the population has 
converged to a single fitness level, points within the above- 
average set generally have fitness values strictly greater than 
the mean fitness; therefore the inequality in the above lemma 
is in general a strict one. This result, which can be considered 
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Fig. 4. Evolutions of a one-dimensional density function under selection and mutation. The additive mutation follows a Gaussian 
zero-mean distribution. The upper portion shows the case of a unimodal fitness function, and the lower portion shows a trimodal 
fitness function. “*” denotes linear convolution. The maximum of the fitness function is marked on the horizontal axis. 

to be the continuous-space analog of Holland’s Fundamen- 
tal Theorem of GA [15], shows how the selection process 
rewards population members with above-average fitness. The 
mutation process, or more generally a diversification operation 
(which will include crossover, as we will discuss later), 
has to move the population probability mass outside the 
above-average-fitness regions; or in other words, “smooth” the 
distribution. Ermakov and Zhiglyavsky [47] have proved that 
under fairly non-restrictive condition(s), f k  (x) will always 
converge to a &function concentrated on the unique maximum 
if U:, the variance of mutation noise, tends to zero. We 
have proved a similar theorem that establishes the existence 
of a sequence of mutation densities leading to monotone 
convergence of the population towards the global maximum 
(maxima). 

Consider A 
Function g(x) 2 0 ,  Vx E F, with a global maximum value 
equal to g* (at possibly many locations). Suppose that continuity 
and simple-connectedness are satisfied within the neighborhood 
of each global optimal point, and the initial probability mass 
is nonzero in at least one of such neighborhoods: then there 
exist a sequence of m-dimensional mutation densities { fw, }rz0 
with covariance matrices { U ~ I } ~ = ~ ,  such that the sequence of 
densities defined as: 

Theorem 3 (Selection and Mutation): 

yields increasing average fitness converging to the global maxi- 
mum value. Namely, E[gk+l]  2 E [ g k ]  and limk-= E [ g k ]  = g*. 

The proof can be found in Appendix C. Note that no 
assumption on the shape of the noise distribution is made 
other than that it is not impulsive (it does not contain any 
Dirac functions). The theorem basically says that selection 
coupled with mutation can find the global maximum (maxima) 
of the fitness function with a sequence of populations having 
increasing average fitness, as long as the mutation noise is 
small enough. The result may appear to be useless since it 
is obvious from the above arguments that small perturbation 
will lead to convergence if the mutation density is sufficiently 
dense. However, if we want to apply the results of the infinite 
sample analysis to the finite population algorithms we have 
to use, in general, a mutation noise as large as possible 
to guarantee sufficient coverage of the feasible region. In a 
practical finite sample case we would want to use the sequence 
of mutation densities with the largest variance among those 
that guarantee convergence. The next section addresses this 
issue. 

I v .  SUFnCIENT CONDITIONS FOR MONOTONIC INCREASE OF 
THE AVERAGE FITNESS (SELECTION AND MUTATION) 

Practical use of theoretical results generally requires (as 
for almost any optimization algorithms) more specific as- 
sumptions on the feature of the fitness function. Let us 
remember that the evolutionary algorithm aims at the solution 
of difficult problems with possibly multi-modal discontinuous 
fitness functions. This poses the difficult problem of iden- 
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tifying global features of a fitness function and their roles 
in the convergence of the corresponding search. We derive 

“spread” of the mutation. Substituting (18) into (17), we have 

(19) 

Substituting (8) in (19) and using the result to bound E[gk+l] 
from below, the monotonicity condition is satisfied if 

here sufficient conditions for a simplified GACS to have 
monotonically increasing average fitness, given that the fitness 

E[gk+l] L J%l - L J fm% x)dx. 

E[SLI - E[gkl s, S(X>F(k, X)fk(X)dX 2 E[Skl, 

F 

function under consideration satisfies a Lipschitz condition. 
This class obviously excludes the discontinuous functions for 
which the Lipschitz number would be infinity, but it represents 
at least a first step toward a self-tuning GACS that can adjust 
its own parameters (probability of mutation, population size, 
etc.) according to the statistics of the population. 

Suppose that in addition to conditions a)-.) of Section 
11, g(x) is sufficiently smooth and satisfies the Lipschitz 
condition: 

L 
(20) 

or 

1 g(x)r(k,x)fk(x)dx 5 E[gL] - E[gk]- (21) 
3 

The right side of (21) represents the increase of average fitness 
due to selection alone. From (8) we have immediately that (the 

d) 

lg(x) - g(Y)l 5 Lllx - YII,VX,Y E 3 C R”, (12) proof is given later in Section V) 

Var[glCl 
where 0 < L < 0;) is the Lipschitz number: We also 
assume the mutation noise to be zero mean and additive. 
We are looking for the “largest” mutation (the exact meaning 

E[d] - E[!?k] = ~ 

E[%] ’ 
of “largest” will be made clear below) that still guarantees therefore (21) becomes 
monotonic increase of the average fitness 

E[gk+l] 2 E[gk],vk- 
Since 

(22) 
1 

(13) g(x)F(k> x).fk(x)dx 5 vu b k ] -  

Equation (22) is a sufficient condition for monotonic increase 
of average fitness. This condition can be further simplified 
by assuming that the mutation density depends only on the 
statistics associated with the entire population, instead of 
each individual member of the population; namely, fwk ( a )  is 
independent of xi and depends only on the statistics (mean, 
variance, etc.) of the population. Consequently, the average 
radius is only a function of the time index k. The sufficient 
condition for monotonic increase of the average fitness (22) 
now becomes: 

(14) 

(15) 

= EbLl - Ls,[fA(X) J, IIY - Xllfwr, 

x (y - x)dy]dx. (17) 
Where the second line in (17) holds since sF f w k  (y - x)dy = 
1, Vx E F according to the definition of conditional probabil- 
ity densities. Let us restrict ourselves to mutation densities 
that are spherically symmetrical, with an average radius of 
mutation defined as 

(18) 

that in general can depend also on the current state xi (the 
point at which the mutation operates) and measures the average 

411x11 represents the usual Euclidean norm &%. 
5Note that the Lipschitz condition implies that -Lily - XI[ 5 g(x) - 

y(y)  2 Lily - XI!, Vx,y E 7 C Rm. Using the right-hand side of it we 
have (16). 

This expression, although it is just a sufficient condition, leads 
to the following observations: 

a) A non-smooth fitness functions (large Lipschitz number 
L) may require mutation with small radius for monotonic 
convergence. 

b) A large current average fitness requires small noise to 
guarantee monotonicity. A large average expresses the 
fact that the population has already concentrated itself 
on regions with large fitness. 

c) A large fitness variance corresponds to a population that 
is still rather spread out and can tolerate large mutation 
effects. 

d) At convergence Var[gk] + 0 the mutation can be 
reduced accordingly. 

We would like to emphasize that the condition derived is 
simply a condition for monotonic convergence of the average 
fitness value. Although Theorem 3 ensures the existence 
of a mutation sequence that guarantees monotonicity and 
convergence to the global maximum, condition (23) does 
not guarantee convergence to the global optimal point. The 
algorithm may still experience premature convergence to a 
local maximum. We have not been able to establish a sufficient 
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condition for global convergence, but have observed from our 
simulations on benchmark problems that conditions similar to 
(23) lead to satisfactory solutions in many cases. We regret not 
being able to include the results here due to space restriction. 
In this paper we focus on the above results for common classes 
of radially symmetric mutation densities. 

A .  The Generalized Gaussian Density 

The Gaussian density can be generalized as follows 
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1 > 0,u > 0. 
Its average radius is 

where r(.) denotes the Gamma function. The calculations for 
the radius are carried out in Appendix D. Popular special cases 
are as follows: 

1. For 1=1 we have the radially symmetrical exponential 
density function that from (25) has F = ma, with the 
adaptive mutation law (23) becoming 

2. For 1 =2 we have the m-dimensional Gaussian den- 
sity with zero mean and covariance matrix $1. Thus, 
condition (23) now becomes: 

Specifically, as m gets large, we can use Stirling’s 
formula to approximate the factorials involved in the 
Gamma function obtaining 

and 

It is interesting to see that in all the above cases as the 
dimensionality of the solution space grows, the mutation 
variance should become smaller in order for the sufficient 
condition of monotonicity to be satisfied. 

B .  The GaussianlGaussian Mixture 

The above result is easily extended to the case of the 
mutation density being a GaussiadGaussian mixture (in fact, 
any convex mixture of densities belonging to the class (24)): 

It is easy to verify that the condition for monotonicity (23) 
becomes: 

Similar results can be obtained if the covariance matrices 
of the two constituent densities are kept constant over time, 
while the combination coefficients, 6 and 1 - E, change with 
time. This corresponds to the case where the mutation noise is 
of “impulsive” type, with a large probability of making small 
jumps, and a small probability of making large jumps (i.e., 
1 - € ( I C )  >> € ( I C ) ,  and o1 << u2). The coefficient t can also be 
made adaptive to the state of the population. 

Finite population versions of (23) are derived in 1741 where 
all the ensemble averages are replaced by their corresponding 
sample averages over the finite population: 

where G [ g k ]  and g k  are the sample variance and sample 
mean of the fitness, averaged over the finite population at 
time k. 

v. EVOLUTION OF THE MOMENTS 
In this section we analyze numerous consequences of the 

basic recursion (7). Specifically, we analyze the evolutions 
of the first and second moments of the random vectors 
{ X k } z o  representing the population over time, as well as 
those of {g(Xk)}Eo. These quantities represent important 
statistics (mean and covariance) of the population, and con- 
vey interesting qualitative global behavior of the search. 
These recursions are derived under the general assumption 
of selection-mutation combination with the mutation density 
assumed to be symmetrical and invariant over time. 

A .  Evolution of the Mean of Fitness 

Let us look at the mean increment of the fitness function 
g(x) to be maximized, due to both selection and mutation. For 
simplicity, the arguments of the functions are dropped where 
no confusion can occur. (7) is rewritten as 

and the mean fitness at time IC + 1 is 

Since fw is symmetrical, fw(x - s) = fw(s - x); therefore 
the integration with respect to x becomes a convolution and 
we have 

where (g * fW)(k) denotes the function value of (g * fw) at 
Xk. If mutation is not present, then fw = 6, where 6 is the 
m-dimensional Dirac function and 

(35) 

Therefore, the mean increment of the fitness function due 
tos election alone at any time instant is always positive 
and proportional to the variance of the fitness, and inversely 
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proportional to its mean value. This leads to an interesting in- 
terpretation: 1) diversity within the population leads to greater 
improvement of the mean solution, and 2) improvements at 
relatively high mean fitness values are smaller. 

B.  Evolution of the Population Mean 

Since the mutation process has zero mean, it has no effect 
on the evolution of the mean of xk (Note that in a finite 
population, zero-mean mutation does affects the actual course 
taken by the algorithm. The result here should be considered 
to represent the average trajectory of a large population); 
therefore from (8): 

hence, 

The numerator is the cross-covariance between the fitness 
function and the parameter vector at time k. We can conclude 
that the mean of the population evolves in the direction of the 
space mostly determined by the components that are highly 
correlated with the fitness value. At convergence, the random 
vector representing the population and its fitness will be un- 
correlated. This is much similar to the zero-gradient condition 
for equilibrium points in conventional nonlinear programming 
techniques where no improvement occurs due to movements 
of the solution vector [43]. However the equilibrium condition 
here is a 

global one, as opposed to the local one in nonlinear pro- 
gramming. 

C .  Evolution of the Fitness Variance 

we have that 
With a derivation similar to that used for the average fitness, 

If no mutation is present, fw = 6. Hence 

(39) 

Unfortunately the above expressions do not seem to lend 
themselves to an immediate interpretation. 

D. Evolution of the Population Correlation Matrix 

We can easily verify that 

and observe that the correlation among the coordinates of 
the solution space is weighted by the fitness function during 
selection. 

VI. EVOLUTION WITH A QUADRATIC COST 
FUNCTION BEHAVES AS A NEWTON SEARCH 

In this section we analyze the large-sample behavior of the 
simplified GACS with a quadratic cost function. This classical 
case has been the foundation for analyzing the convergence 
behavior of virtually all nonlinear programming algorithms 
[43], and it is perhaps one of the few tractable cases for 
detailed analysis. Although the evolutionary approach aims at 
the solution of complicated non-convex problems, the analysis 
of this case lends important clues to the near-convergence 
behavior of the search. Due to the nature of the Darwinian 
strategy, we transform the minimization of the quadratic 
cost function into the maximization of a Gaussian fitness 
function. The analysis leads to closed-form results regarding 
the convergence speed for the population distribution and 
fitness [75]. The results parallel standard analysis carried out in 
the optimization literature for gradient-decent algorithms [43]. 

A .  The Fitness Function 

Let the optimization problem be 

(41) 
1 

x 2  
argmin - ( x  - x * ) ~ Q ( x  - x*) ,  

where6 x,x* E 3 , a n d  Q = QT > 0. 
The fitness function could be any monotonically decreasing 

function of the cost function. For mathematical convenience 
(which will be justified in the sequel) we choose the negative 
exponential 

(42) 
1 
2 

g(x) 2 exp[--(x - x * ) ~ Q ( x  - x*>]. 

Equation (42) above is a multi-dimensional Gaussian function 
(except for a positive scaling factor). As it will be seen 
later, this conversion greatly facilitates the analysis. Now the 
minimization problem is converted to the maximization of 
g(x). This conversion technique is rather standard and can be 
applied to translate any unconstrained optimization problem 
into the general GACS framework, with the proper scaling of 
the original function. 

B .  Iteration of the Population Mean and Covariance Matrix 

Let us assume that the algorithm starts with the Gaussian 
distribution fo(x) = N(po1CO) .  According to (7), all the 
densities in the sequence {fk} will be Gaussian, since g(x) 
is Gaussian, and multiplication (as in (8)), followed by con- 
volution (as in (9)), of two Gaussian functions still results in 
a Gaussian. Hence 

x(k)  - N ( p k ,  xk) 

x’(k) - ni(& Xk),Vk. (43) 

We can state the following theorem. 

mutation), if 
Theorem 4: For the GACS algorithm (selection and 

a) the fitness function to be maximized is Gaussian; 
b) the mutation process consists in addition of an m- 

dimensional Gaussian independent process with zero mean 
and covariance matrix u%I,, ; 

6 Q  > 0 indicates that Q is a positive definite matrix. 
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c) the initial distribution is Gaussian with an arbitrary mean 
po and a positive definite covariance matrix Eo; 

[hen the population distribution is Gaussian at any time instant, 
with the mean and the covariance matrix sequences satisfying the 
following recursive equations: 

(44) 
(45) 

Where c( .) denotes the quadratic cost function to be min- 
imized (see equation (41)), and the term V c ( p k )  denotes the 
gradient of the cost function evaluated at the population mean 
P k .  The proof can be found in Appendix E. The results of 
the above theorem are quite striking since they show how 
the increments for the population mean are of the Newton 
type. The Hessian of the cost function (41) is Q and it is 
easy to verify that if the eigenvalues of XkQ are large, the 
algorithm is approximately a Newton algorithm with increment 
Q-l V C ( P ~ )  .’ 

Due to the model that involves products and convolution, 
all the results presented here hold in a weak sense for rather 
arbitrary initial distribution and mutation. A weak form of 
the central limit theorem could be used to justify this claim: 
A sufficiently large number of convolutions will produce a 
near-Gaussian distribution; consequently, the iterations for the 
population mean and covariance matrix approximate those 
given for the Gaussian case. However, we have not yet been 
able to produce results that rigorously quantify this conjecture. 
In particular, the relationships derived here can be extended to 
the case of a uniform initial population; note that Theorem 4 
holds trivially if the initial population concentrates on a single 
point in the solution space. In the case of a uniform initial 
distribution, the population density distribution can be thought 
of as the superposition of infinitely many Gaussian densities 
with equal strength, each resulting from a single starting 
point in the initial distribution. Therefore, the population 
density at any time instant takes the form of an integral of 
the Gaussian density over the uniform initial distribution, 
and similar equations can be derived for the iteration of 
the population mean and covariance matrix. Obviously, (44) 
remains the same under the assumption of a uniform initial 
population, since it does not depend on the starting point of 
the population. The exact form of the other equations under 
the assumption of a uniform initial distribution is currently 
under investigation. 

We have obtained more results conceming the convergence 
behavior of the evolutionary algorithm in the quadratic case, 
that provide a full analysis of this case, including time com- 
plexity as a function of the mutation noise level and the 
eigen-structure of the quadratic form. They are contained in 
one of our technical reports [75]. We prefer not to include them 
here due to limited space. Also, a number of simulations for a 
quadratic cost function are included in the technical report, and 
show excellent agreement with the theory, even for a relatively 
small population size. 

Ck+l = g:.Im + (Q + 
~ k + i  = P L ~  - (Q + x i l ) - l V ~ ( ~ k ) .  

’Actually the form of the increments is a type of modified Newton search 
that is used when the Hessian matrix is ill-conditioned or near-singular. In 
those cases another positive definite matrix is added to the Hessian before 
inversion [43]. In the case of the genetic search the addition of this matrix is 
implicit in the algorithm. 

VII. CONCLUSION AND DISCUSSION 

This work aims at establishing a clear conceptual under- 
standing of evolutionary programming by casting it into the 
unifying framework of stochastic processes in continuous 
space. This approach should facilitate a quantitative analysis 
of the dynamic behavior of the algorithm. Our work has been 
primarily concentrated on large population behavior of the 
evolutionary algorithms in continuous space. The following 
results have been achieved: 

Algorithm Formulation: The genetic algorithm has been 
formulated in the general framework of Markov chains, 
which greatly facilitates the application of mature tech- 
niques in stochastic processes theory to the analysis of 
the algorithms. 
Evolution of the Population: Recursive formulae for 
the distribution of the population under repeated appli- 
cations of various “genetic operators” have been derived 
rigorously. The microscopic effect of each operator has 
been described quantitatively, and attempts have been 
made to combine the individual analysis showing how the 
operators interact with each other. Special attention has 
been paid to the selection-mutation combination show- 
ing how the alternation between contraction (selection) 
and spreading (mutation) of the population distribution 
drives the members of the population toward the optimal 
point(s) of the fitness landscape. The analysis also predicts 
interesting dynamic behavior of the statistic moments 
associated with the population. 
Monotonicity condition under time-varying mutation: 
A condition for monotonic convergence has been derived 
for the class of Lipschitz fitness functions. We are still 
investigating under which condition(s) the convergence 
corresponds to the global optimal point(s), although it 
is clear that the monotonicity condition derived indeed 
guarantees convergence to at least one local optimum. 
Analysis also shows that: 1) The exploration of the blind 
mutation operator should be more cautious (i.e., with 
smaller mutation noise) if the solution space has a higher 
dimension and the fitness landscape is rough. On the 
other hand, mutation jumps are more unrestricted for low- 
dimensional space with a smooth fitness function; and 
2 )  the mutation noise should be small if the process is 
approaching a good solution when the average fitness of 
the population is high and the fitness variation over the 
population is low, as would naturally be expected. 
Quadratic cost function and near convergence behav- 
ior: Convergence behavior for the classical quadratic cost 
function has been analyzed revealing important clues of 
the near-convergence behavior of the algorithms. The 
asymptotic population mean is the optimal point regard- 
less of the value of the noise power. The process of 
reaching the optimum follows modified Newton’s steps. 
For large values of the noise power, the step become 
approximately a Newton’s step and the mean reaches 
the optimum in very few iterations. The eigenvalues 
of the covariance matrix, however, get very large. It 
can be seen that a fundamental feature of evolution- 
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like algorithms is that the convergence of the mean of 
parameter vector towards the optimum is driven not only 
by the average function values of the population but 
also by the diversity of the population. On the other 
hand, a low degree of diversity is eventually required 
to achieve the required precision. Therefore, for any 
evolution-like algorithm there is always a fundamental 
trade-off between a high convergence rate of the mean and 
a low variance of the population. The reader is referred 
to our technical report [75] for more details, where a full 
account has been given for the convergence rates of the 
algorithm as well as bounds on them, all in terms of the 
eigenvalues of the Hessian of the quadratic cost function 
and the mutation variance. It should be emphasized that 
although the evolutionary algorithm is primarily targeted 
at multi-modal fitness functions, the unimodal Gaussian 
fitness function associated with the quadratic cost function 
represents a mathematically tractable case for a detailed 
analysis. This has been done to provide insights into the 
quantitative behavior of the algorithm. The quadratic case 
is also the most extensively studied case in the traditional 
nonlinear programming community [43], opening the 
way to a comparison of evolutionary programming with 
nonlinear programming. 

In the following we discuss the results in the light of their 

Extension to discrete-space GA: The results of large 
sample analyses obtained in this paper can be extended to 
the canonical discrete-space GA with some modifications. 
The selection operator in discrete space can be studied 
in exactly the same manner as for the continuous-space 
one, since the selection operation does not depend on the 
metric norm of the space involved. The mutation operator 
can generally be formulated as a process of switching 
among different states of the solution space; therefore it 
can be characterized by a conditional probability density 
(or mass) function of a new state, given an old one. If a 
proper metric is defined over the space under considera- 
tion, then the mutation operator associated with the space 
can take a much simpler form. In the case of the Euclidean 
space studied in this report, the structure of the Euclidean 
norm permits us to define additive noise. From a formal 
point of view, there is no fundamental difference between 
a canonical discrete-space GA and its continuous-space 
counterpart. We are in the process of constructing formal 
stochastic models to extend the results of this paper to 
the discrete-space GA’s. 
Time-varying mutation: The condition for monotonic 
convergence described in Section IV suggests an adaptive 
mutation scheme, and it represents a first step toward 
a general framework for the adaptation of various pa- 
rameters (population size, probabilities of mutation, and 
crossover, etc.) of the algorithm based on certain statistics 
of the population. A more elaborate description of a set 
of adaptive mutation rules with simulation results can be 
found in [74]. The establishment of this new framework 
requires a full understanding of how various genetic 

possible extensions. 

. 

operators affect the average fitness and the fitness vari- 
ance of the population, in order to design the adaptation 
rules that ensure certain monotonicity (submartingale) 
conditions on the population average fitness. Adaptive 
CA’s can at least partially eliminate the task of choosing 
the parameters for the algorithms, which is usually carried 
out heuristically. Actually, an adaptive GA might very 
well be the only one for which global convergence in 
probability can be proved. It should be noted that as long 
as the adaptation rules do not explicitly depend on time, 
the resulting Markov chain is still a time-homogeneous 
one; thus the analysis for an adaptive GA might not be 
more difficult than the non-adaptive ones. 
Advantages and limitations of the large population 
assumption: The large sample assumption greatly facili- 
tates the understanding of the collective dynamic behavior 
of the entire population, as many asymptotic results in 
stochastic processes theory can be readily applied in this 
case. The assumption has been made in most current 
literature on genetic algorithms as well as in population 
genetics research. However the information on cross 
interaction between the members of the population is 
largely lost during the process of taking limits as the 
population size goes to infinity, since we are only looking 
at the marginal distribution of one generic member of the 
population. The large sample analysis does provide im- 
portant insights into the average behavior of the algorithm 
of which the finite sample version is an approximation, 
and ignores the actual behavior of a single run of the 
algorithm. In a finite population, random sampling errors 
at certain point during the process may lead to locally 
optimal points. It is well conceded that exact convergence 
behavior for an arbitrarily finite population will be very 
difficult to obtain, In the finite sample case, since the joint 
distribution of the entire population does not depend on 
the particular order in which the members are arranged, 
the property of stochastic exchangeability of the member 
vectors constituting the population may be exploited (see 
[71] and [72] for attempts made in population genetics). 
The analysis seems to have been just preliminary. A 
more interesting work related to GACS is concerned 
with evolution of a population with both infinite size and 
infinite number of states [73]. The treatment, however, 
concentrates on a very restrictive class of fitness functions 
arising from purely biological concerns. 
How infinite population results relate to a finite pop- 
ulation algorithm: The results of infinite population 
analysis presented in this paper are closely related to the 
case of a finite population algorithm: as the population 
size gets large, the typical behavior of a finite population 
algorithm approximates that predicted by the infinite 
sample analysis. We describe below how some of the . 
results obtained in this paper can be directly extended to 
the finite sample case. 

Results of the evolution of the population densities: 
These results are essentially all derived from Theorem 
1, and are mostly contained in Section 111. It is proved 
in Appendix A that ?he histogram for the members of 
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a finite population of size N approaches the population 
density function predicted by (4), with a difference on 
the order of 1. This essentially states that in a finite 
population of reasonably large size, the percentage of 
population members within a particular region of the 
solution space can be approximated by the probability 
mass calculated from (4) over that region. Therefore, 
the finite population results can readily predict the typ- 
ical behavior of a finite sample algorithm with a large 
population size. This applies particularly to the predic- 
tion of the mean behavior of a generic member of the 
population; e.g., the evolution of its mean position and 
correlations among its coordinates (loci), as has been 
shown in Section V. However, the joint stochastic char- 
acteristics among members of a finite population can not 
be captured by the large sample analysis in its present 
form. 
Results of adaptive mutation schemes: Results contained 

in Section IV can essentially be extended directly to 
the finite population case, with all the ensemble statis- 
tics involved in the equations replaced by their sampled 
counterparts. A complete analysis of the variable mutation 
schemes for the finite population algorithms can be found 
in [81]. 

Results of the evolution of population moments: Some 
of the results in Section V, namely, that for the population 
mean and the average fitness, have been extended to the 
finite population case with both selection and mutation 
present [75],  [81]. More general extensions, however, 
seems difficult. 

Results of the Gaussian fitness case: These results, 
contained in Section VI, have been extended to the finite 
population case in [75] and [81] with some nonessential 
approximations. It is interesting to observe that the popula- 
tion mean vector follows a path jointly determined by both 
the negative gradient at the “center of mass” of the current 
population and those at each individual member positions, 
with the step size determined by the sample covariance 
matrix of the population. 

In general, the finite population algorithm should be 
formulated and. analyzed in a somewhat different manner 
from its infinite-sample counterpart. In the finite popu- 
lation case we are concerned about whether the actual 
configuration of the population is eventually dominated 
by the global optimal points, or points close to them. 
Therefore, the process can be characterized in terms of 
the almost sure convergence and/or convergence in prob- 
ability of the sequence of populations towards a random 
population, whose members we expect to be concentrated 
around the global optimal point(s). For an infinite popu- 
lation algorithm, which is much easier to analyze, we are 
primarily interested in how the expected population would 
be dominated by global optimal points, after repeated 
use of genetic operators; therefore, the process is best 
described in terms of convergence in distribution of the 
sequence of populations. The infinite sample results can 
be related to the finite sample scenario in the following 
way: As the population size grows, the histogram over 

fl 

the member configurations will become ever closer to the 
density functions predicted by infinite-sample analysis. 

In summary, the on-going investigation of GACS estab- 
lishes some interesting properties of evolutionary optimization 
paradigms in general, and GACS in particular. The results 
shed much light on the understanding of canonical CA’s in 
the discrete domain. They also reveal many unique properties 
of GACS, due to the special structure of Euclidean space, that 
are not shared by canonical CA’s. 

APPENDICES 

Appendix A. Proof of Theorem 1 
Let the population at time k consist of N random row 

vectors xL,...,xF E 3. Let fx,.,(x) and fxi+l(x) be the 
marginal probability density functions of the ith member of the 
population after selection and mutation, respectively, at time k, 
with i = 1, . . . , N .  Refer to Fig. 1 for a schematic diagram. Let 
us define the ( N  x m)-dimensional vector XI, a [xk, . . . , xf] 
containing the entire population at time k .  Its joint probability 
density function is denoted as fx, (xl, . . . , xN). Similarly 
we denote the entire population after selection at time I C ,  
but before mutation by another N x m-dimensional vector 
X’k A [x’:, .. . , x’f], where each x’;, i = 1,. .. , N ,  is 
selected independently from the N alternatives x i ,  . . , x; 
independently with conditional probabilities: 

Therefore, the probability density function of the ith element 
of the population after selection at time k ,  conditioned on the 
whole population at time k, is: 

= 1,2,..., N,Vz,y1,...,yN E 3. 
(‘41) 

where S(.) is the m-dimensional Dirac’s function. Since the 
mutation process, described by a single conditional density 
f,;,, lxf; ( X I . )  = fw, (xlz) ,  is performed independently on 
each element of the population, we have: 

,YN) 

Substituting (Al) into (A3), we have: 
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Using total probability theorem and exchanging the order of 
summation and integration, we have 

The elements of the population are exchangable (not neces- 
sary independent) since the labeling of the elements resulting 
from selection is arbitrary and the mutation acts on each 
element independently with the same conditional probability 
law. Therefore all the coordinates of fx , (y l , . . . ,y")  can 
be permutated at will without affecting the functional value. 
The integrals involved in (A8) will be the same for all 
j = l , . . .  , N .  This yields 

xfx,(yl,.  * ' ,yN)dyl . .  . dyN (-49) 
Vi  = 1 ,2 ,  . . , N ,  where j is any of the indices { 1,2, . . . , N } .  

Define two new random variables: 

l N  
v: E C d x : )  ('410) 

1=1 

&(X) kg(xi)fW,(xIxi),j E {1,2, . . . ,N} . ( A l l )  
Note that since xjk is a random vector, &(x) is a random 
variable, even though f w , ( . I . )  is a fixed density function. We 
now have: 

where E[.] is the expectation over the density 
fx, (y', . . . , yN). The law of large numbers for symmetrically 
dependent random variables [83] implies that 

lim q," = q k ,  as. (A 13) N-CC 

where q k  is itself a random variable with mean: 

E[vLI = E[dx;)I = g(Y)fx; ( Y ) ~ Y , V ~ ,  and j .  

(-414) 
s, 

Furthermore, rlk is independent of for any finite N .  In 
particular, q-k is independent of q: = g ( x j k ) ,  for any j. This 
implies that q k  is independent of <k(x). 

Now define 

('415) 

We want to prove that limN" Ak(N,x) = 0,Vk = 

{ d R '  
+ esssw lrlk N -rlkIPr Irl: - q k l  2 L} 6418) 

and the central limit theorem for symmetrically distributed 
random variables [84], it follows that 

(A 19) 
1 

- TkI] = o(-). fi 
Therefore, 

JF fx . ,  (Y)S(Y)fWr, (XlYPY 
lim fx.,+l(x) = 

"03 SF fq. (Y)dY)dY 
1 

= 1, ... 3 N .  ( A m  
This implies that for a relatively large population, the statistical 
behavior of the entire population over time can be summarized 
by a sequence of probability measures over time, which 
consists of the marginal probability density functions of a 
single member of the population at successive time steps. In 
other words, the time history of the entire population can be 
represented by a discrete time stochastic process { X k } r = o  with 
F being the state space. The associated sequence of densities 
is: 

Q.E.D. 

Appendix B.  Proof of Theorem 2 

that 
Given (10) through direct substitution, it is easy to verify 

Given the uniqueness of the global maximum x* , the continu- 
ity and simple connectedness of g(x) within its neighborhood, 
we can always find an e > 0, and a simply connected 
neighborhood of x* defined as Bx*((t) ki {x E F : g(x) 2 
g*--E}, such that for all x E 3\Bx* ( e )  we have g(x) 5 g * - ~ .  
See Fig. B1 for an example in a one-dimensional space. We 
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We have already proved that 

Pr{Xh E Bk} > pr{xk E Bk}, (C1) 

therefore we can always find a time-dependent constant KI, > 
1, such that 

Pr{X; E Bk} = Kk PT{Xk E Bk}. 
Because f’(x) > f(x),Vx E Bk, we can always choose a 
sufficiently small distance Ek > 0 and construct a set Bk c Bk 
with its boundary parallel to that of Bk and inside Bk by an 
equal amount Ek (see Fig. Cl),  such that 

Pr{x; E BL} > Pr{xk E Bk}. 
Thus we can define, for each k > 0, a constant K; > 1 and 

Fig. B1. Illustration of notations involved in the proof of Theorem 2. have 

Pr{xk E B(E} = KL Pr{xk E Bk}. (C2) 
want to prove that 

where B,*(c) &? 3\B,p(~). This would guarantee that all 
the mass of the distribution is asymptotically contained in an 
arbitrarily small neighborhood around the global optimal point, 
and would guarantee the convergence of {fk}& to S(x-x*). 

For a sufficiently small E in a simply connected neighbor- 
hood of x* we have that 

Jm gk (4 fo (x)dx 

gk(x)fo(x)dx 

Now consider mutation 

fk+l(X) = LfL(Y)fw.(X-Y)dY, 

therefore, 
r r  

But 
F 

Since fo(x*) > 0, we have 

or 

and (B2) follows. Q.E.D. 

Appendix C .  Proof of Theorem 3 

notations involved in this proof): 
Construct the set of above-average vectors (see Fig. C1 for 

Bk A {x E 3 : g(x)  2 E[dXk)l}. 

Therefore if (C5) is true for every I C ,  then the probability 
mass contained in the set of above-average points will strictly 
increase as time goes on. This implies 

E[g(Xk+l)l > Eb(Xk)l> 
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k 9 ( X I g(X) * E[g(Xd 1 ) 

Fig. C1. One- and two-dimensional views of the effect of selection on the 
population density. 

Q.E.D. 

Appendix D. Evaluation of the Mean Radius of 
a Class of Generalized Gaussian Distributions 

symmetrical density function f(x) is defined as follows: 
The average radius F of any m-dimensional spherically 

A Lm IIxllf(x)dx. (D1) 

Let us consider a special class of spherically symmetrical 
density functions known as generalized Gaussian densities 
[S6].8 

-1 

K(1) A [ L m e x p  ( - y ) ' d x ]  . 

Let us define a consant C, such that the "volume" of a 
m-dimensional ball of radius r can be expressed as Cmrm. 
Then 

*This definition is slightly different from Kassam's in [86] since in 
Kassam's definition the standard deviation is held a constant. In this case 
the parameter 0 does not necessarily represent the standard deviation. 

where I?(.) is the standard Gamma function. Therefore 

and 
1  

f(')(x) = [umCmyr(y)]-'exp (-y) . (D3) 

F defined by (Dl)  is 

Going through calculations similar to those leading to (D2) 
we have: 

Substituting (D5) into (D4) the average radius is 

Appendix E .  Proof of Theorem 4 

we derive here the iteration formulae for p k  and c k .  First 
let us look at the effects of selection. From (42) and (43) the 
product of g(x) and d ( X )  has an exponent 

1 1 
--(X 2 - X*)TQ(X - X*) - s ( X  - / L ~ ) ~ X ; ' ( X  - pk) 

1 
= --xT(Q 2 + Ei l )x  + (Qx* + E i l p k ) T ~  

1 
(El)  - - ( x * ~ Q x *  2 + p r E i ' p k ) .  

In (El) only the first two terms involve x and are: 
1 

1 

.[x - (Q + Xi')-'(Qx* + X i l p k ) ]  
1 

- -XT(Q 2 + XC,')X + (QX* t xL1/.Lk)TX 

- - -T[X - (Q + Eil)-'(Qx* + Eilpk)lT(Q + EL1) 

+ ~ ( Q x *  + E,'plc)T(Q + XL')-'(QX* + XL'pk) .  

(E2) 
Now, only the first term in (E2) contains x with the second 

term being a constant. After substituting (E2) into (El) and 
normalizing as in (8), the terms in (El)  not containing x dis- 
appear. Hence the resulting normalized product g(x)fk(x)/K 
is Gaussian with mean p i  and covariance matrix given 
as follows: 

(E3) (E;)-' = Q + Xi', 
p i  = (& + Xi')-'[QX* + Xi'/.hk]. (E4) 

The effects of the mutation is much simpler: 

Ek+l= EL + ZiIm,  (E5) 

Pk+l = P i .  (E6) 

and 

since fw is zero mean. 

finally have 
Combining equations for both selection and mutation, we 

(E7) Xk+i = E t I m  + (Q + EL1)-', 
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