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Résumé On February 10th 2009, satellites Iridium and Cosmos collided though their confi-
guration had been reported safe. This triggered the quest for a better assessment methodology and
therefore a better collision probability estimation. As a matter of facts, rare event probability and
extreme quantile estimations arise more and more frequently in the industrial and engineering
worlds, be it for safety requirement or performance objectives. As usual Monte Carlo technique
can not cope, a new dedicated tool is needed. Using the spacecraft collision real context as a sup-
port, the Adaptive Splitting Technique is introduced and compared with Crude Monte Carlo it is
shown to outperform.

A. INTRODUCTION

The constantly growing population of active spa-
cecrafts now has to face the threat of colliding
with the debris bequeathed by their predecessors
[NAS10, Gla09] : due to their high speeds, even small
left behind bolts can seriously damage a satellite.

Collision avoidance procedures were hence desi-
gned for improved satellite safety such as described
in [Smi02]. Active spacecraft managing teams, when
a potential collision occurs, now have to decide whe-
ther to start a collision avoidance maneuver. This
extra move sure clears away the danger but also
costs extra energy, thereby shortening the satellite’s
activity timespan. A trade-off between safety and
lifetime expectation therefore has to be found.

To support the maneuver decision, a dedicated
tool is the probability of collision between the de-
bris and the satellite. A great deal of effort has been
spent on how to estimate its very low value. In his
work at the NASA [Cha08], Chan concludes through
a numerical integration after a sequence of approxi-
mations and hypothesis. To avoid those and improve
the estimation reliability, we choose the Monte Carlo
method. As Crude Monte Carlo (CMC) fails to de-
liver when faced with a rare event, we aim at es-
timating this very low collision probability via a
rare event probability estimation tool : the Adap-
tive Splitting Technique (AST) proposed by Cerou
and Guyader et alii in [CDFG09].

In this paper, we first introduce the space-
craft collision issue via the Iridium-Cosmos case :

these two satellites collided on February 10th 2009,
tough their configuration did not appear trouble-
some [Kel09]. We then try to estimate the collision
probability through Crude Monte Carlo (CMC) in
section C., in vain. Next, in section D. we present
the Adaptive Splitting Technique (AST), the spe-
cial rare event probability estimation technique we
advocate to our purpose, and show it can provide
valuable accurate information in this framework.

B. SPACECRAFT ENCOUNTER AND
NOISED STATE MEASUREMENT

On February 10, 2009, a commercial Iridium
communications satellite and a defunct Russian sa-
tellite Cosmos collided, though their configuration
was not reported dangerous [Kel09]. We will esti-
mate in this article what was the probability it hap-
pened.

In order to understand the predicament an ac-
tive spacecraft managing team can find itself in, we
will describe the geometrical issue at hand and then
the main source of randomness.

1. A basic geometry problem
Consider two satellites orbiting around the Earth

in a Galilean frame of reference with our planet as
origin and equipped with the Euclidean distance.
This three-body problem will be considered a double
two-body problem : each satellite interacts through
gravity only with the Earth and not with the other
satellite. Besides, the Earth and the satellites are



assumed to be homogeneous spheres with radii dE ,
d1 and d2. The collision distance is therefore dc =
d1 + d2. We wonder about the relative position of
the two satellites : might they collide during a given
time span I = [ts, te] ?

2. A convenient model of dynamics
To keep things simple, orbital mechanics being

not our topic, we will use Kepler mechanics. One can
use more advanced models such as SGP4 [Miu09] if
wanted. The discussed probability estimation me-
thodologies are independent of the method.

At time t, the satellites will be represented by
their states ~s1(t) and ~s2(t) i.e. their positions ~r1(t)
and ~r2(t) and their speeds ~v1(t) and ~v2(t) such that
~si = (~ri, ~vi).

In our setting, the speeds evolve according to
the same well-known Ordinary Differential Equa-
tions defining the two body problem

∀t, d~vi
dt

= −a ~ri
r3
i

(1)

where a is a positive constant given by physics.
This ordinary differential equation (ode) is ana-

lytically solved in many textbooks and its solution
depends continuously and in a bijective fashion on
the given so called initial conditions : its value ~smi
at tmi , the measurement time, through Φ the ode’s
resolvant i.e. its solution map :

i ∈ {1, 2},∀t ∈ I, ~si = Φ(~smi , tmi , t) (2)

At this point, there is a natural way to clear out
the collision issue using

δ = min
t∈I
{‖~r2 − ~r1‖(t)} (3)

t ∈ I 7→ ‖~r2 − ~r1‖(t) experimental convexity, figure
1, makes δ available through numerical optimisation
and its associated test :

ξ(~sm1 , tm1 , ~sm2 , tm2 , I) =
{

1 if δ ≤ dc
0 otherwise (4)

eventually closes the deal.

Fig. 1 – Iridium-Comos distance on collision day accor-
ding to TLE.
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 Iridium−Kosmos Distance on February 10 th  2009

Things would be all that easy and deterministic,
had randomness not barged in.

3. Random measurements lead to
uncertainty

In real life, the states are not monitored around-
the-clock : they are merely measured from times to
times, by a radar. The Two Line Elements (TLE)
provided by NORAD sum up this information and
feed the models with the (~smi , tmi ) pairs. However,
TLEs are inaccurate and their inaccuracy is unk-
nown. This uncertainty is our very issue. To cope
with this and to better reflect the reality, we added
independent, identically distributed (iid) noises ~ε1
and ~ε2, with density f~ε, to the models’ inputs smi .

~E =
(
~ε1
~ε2

)
f~E(~e) = f~ε(~ε1)× f~ε(~ε2)

(5)

The collision issue can not be answered in a cut-
and-dried way anymore as it has to be rephrased in
a probabilistic fashion itself : what is the probability
of collision between the two satellites ?

Via the random counterpart of our deterministic
geometrical problem

i ∈ {1, 2},∀t ∈ I, ~Si = Φ(~smi + ~εi, t
m
i , t) = (~Ri(t), ~Vi(t))

∆ = mint∈I{‖~R2 − ~R1‖(t)}
Ξ = ξ(~sm1 + ~ε1, t

m
1 , ~s

m
2 + ~ε2, t

m
2 , I)

(6)
this question is equivalently stated as

P[{ The satellites collide during I}] = E[Ξ] (7)

We now face a plain expectation estimation pro-
blem.

C. THE CRUDE MONTE CARLO

As an explicit analytical way to calculate E[Ξ]
is unlikely to be found, one will most likely make
do with an estimation. Crude Monte Carlo (CMC)
is a very convenient and reliable way to reach it, if
the sought probability is not too low, indeed. CMC
can not handle rare event probability estimation ef-
ficiently.

1. A basic set of tools and notations
CMC’s estimators for Ξ’s expectation E[Ξ] and

variance V[Ξ] are defined respectively as µ, the em-
pirical mean and σ2, the empirical variance of n iid
tests, Ξi, i ∈ {1, · · · , n} :

µ(Ξ, n) ≡ 1
n

n∑
i=1

Ξi (8)

σ2(Ξ, n) ≡ 1
n

n∑
i=1

(Ξi − µ(Ξ, n))2 (9)

As the empirical mean of iid random variables,
µ(Ξ, n) is a random variable as well and we hope
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its variance is as small as possible with respect to
its estimated mean. To measure this, m iid µ(Ξ, n)
throws are made in order to calculate µ(Ξ, n)’s em-
pirical relative deviation (Erd) estimator ρ

ρ(µ,Ξ, n,m) ≡ σ(µ(Ξ, n),m)
1
m

∑m
i=1 µ(Ξ, n)i

(10)

as a way to measure its accuracy as the ratio of its
standard deviation over its empirical mean.

2. Why CMC can not cope with
rare events

Using the independence of the Ξi and the fact
that Ξ2 = Ξ for it is a binary 1 or 0 mapping, one
can write the following easily.

E[µ(Ξ, n)] = E[Ξ] (11)

V[µ(Ξ, n)] = E[Ξ](1− E[Ξ])
n

(12)

If the sought probability E[Ξ] is 10−4, to be ac-
curate up to a tenth of the real value i.e. to have√

V[µ(Ξ, n)]/E[Ξ] ≤ 10−1, almost 106 points are
needed !

Most of the time though, in a real context, there
is no way one can generate that many samples. Yet,
this degree of accuracy is becoming a standard, for
amounts of money at stake are huge (the Iridium sa-
tellite program is worth at least 200 M$) and safety
standards more and more demanding.

D. THE ADAPTIVE SPLITTING
TECHNIQUE

So as to estimate this unlikely collision probabi-
lity, a rare event dedicated technique is needed.

The Splitting Technique (ST) is a rare event de-
dicated technique, a good introduction to which can
be found in [LLLT09] and [LEG08]. Just as Impor-
tance Sampling, an other rare events technique, it
aims at approximating the optimal probability mea-
sure change with respect to the sought probability.
However, while the former requires a prior know-
ledge about the measure change to be designed be-
fore starting the estimation, as can seen in [Den01],
[BS99] or [Zha96], the latter builds it as it goes, ga-
thering valued information on the way.

Our transfer function δ being not much short
from a black box, in order not to perform quite in-
tractable analysis or integration, we chose a spe-
cial Monte Carlo technique that would adapt to
the information gathered on the fly : the Adap-
tive Splitting Technique (AST) as explained in
[CG07a, JMl10]for the static case and in [CG07b]
for a Markov process case.

1. An intuitive approach to AST
The basic idea here is divide and conquer : ins-

tead of estimating the very low probability directly,

the work is divided in estimating a sequence of easier
probabilities and eventually calculating the sought
value as a plain product. This is the very purpose of
this Bayesian formulation of our problem.

P[∆ ≤ dc] =
K∏
i=1

P[∆ ≤ li|∆ ≤ li−1] (13)

where l0 = ∞ ≥ l1 ≥ · · · ≥ lK = dc form a de-
creasing sequence of thresholds to be defined later.
Hopefully, we have just reformulated our hard to
estimate expectation as the product of easy to esti-
mate conditional expectations !

The Adaptive Splitting Technique (AST) is a
way of making this wish come true in an iterative
three step way. Start with a sample of iid throws of
∆ known to be under threshold li. With i = 1, this
is only performing a plain CMC simulation. Then,
and until the threshold is less than dc, do as follows :

1. Define li+1 as a well chosen empirical pi+1-
quantile of the current sample.

2. Resample uniformly among the realisations
under the new threshold.

3. Use the selected points to sample new points
conditionally to being under li+1.

When the threshold is lower than dc, conclude that

P[∆ ≤ dc] ≈
K−1∏
i=1

pi × p•K−1 (14)

where p•K−1 is the estimated probability of collision
given that the minimum relative distance is less than
lK−1.

Though biased, slightly as it uses classical linear
statistics to estimate quantiles [CVC88], AST seems
a good choice to estimate rare event probabilities.

Its three points now have to be formally detailed
so as to gain real understanding of the technique.

2. AST’s three main points detailed
The three main points of the AST are now

going to be detailed. For a complete description, one
should read [CDFG09].

Choice of the empirical quantile’s level Ac-
cording to [Lag06], all quantile levels should be
equal, say to p, in order to minimise the estimator’s
variance. Nowadays however, there is no theoretical
answer to what is the optimal value of p. A very
low p will lead to a little variance but requires many
thresholds and therefore many points [GHML10]. If
p is high, less points will be needed, but the increa-
sed interdependence of the points will inflate the
variance. 0.75 ≤ p ≤ 0.8 seems to be a good choice.
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Resampling under the threshold Once the
threshold is set, points above it are discarded. To
replenish our sample set, according to being under
the threshold, there is no perfect solution, unless we
can generate directly a iid sample set according to
the conditional law, which is unlikely. A most na-
tural way of coping is duplicating selected samples,
say choosing the points to duplicate according to
iid uniform throws. Thus, the set grows back to its
original size. However, points are independent not
identically distributed anymore (iid) but correlated
identically distributed (cid). This is an issue as it
increases the estimators variance. The last step ad-
dresses this point.

Variety to reduce variance Right after duplica-
tion, points are identically distributed according to
the conditional law but not independent as some are
copies of one another and others may share a com-
mon ancestor. We hence have a triple objective :

1. Increase variety in the set : there must be no
pair of identical points.

2. Respect the probability law : it must be kept
through the changes to be done.

3. Decrease interdependence : the correlation
between points and there ancestors must be
reduced to a minimum.

To this purpose, we will use a f~E-reversible Markov
kernel M(·, ·).

M(·, ·) : Rd × Rd → R is mapping such that

∀x ∈ Rd, M(x, ·) : Rd → R is a density function.
(15)

∀x ∈ Rd, M(x, ·) stands as a x-specific random way
to propose another Rd point. This will provide adap-
ted variety associating to any available point x an
other one y chosen according to M(x, ·).

Let us now impose a constraint on M so as to
respect the probability law. M is said to be a f~E-
reversible Markov kernel if

∀(x, y) ∈ Rd × Rd, f~E(x)M(x, y) = f~E(y)M(y, x)
(16)

This equation is known to physicists as the detailed
balance equation. It means that if from a f~E set,
you use M to generate another, then

– the new set is distributed according to f~E as
well : this is the invariance property.

– statistically, no one can say which set genera-
ted the other : this is the reversibility property.

Invariance would do the trick on its own if we only
had to deal with f~E and not its associated conditio-
nals :

f~E|i =
1∆≤lif~E∫
1∆≤lif~E

(17)

To avoid looking for many f~E|i-invariant Markov
kernels, we use M ’s reversibility property in the fol-
lowing way, assuming Xi ∼ f~E|i. First, let Yi be
M(Xi, ·)’s proposal i.e. throw. Then set

ψi(Xi) =
{

Yi if ∆(Yi) ≤ li
Xi otherwise (18)

Thanks to reversibility, ψi is distributed according
to f~E|i as well. We now can grow and inflate a f~E|i-
sample set thanks to the f~E|i available points via
a f~E-reversible Markov kernel. The last remaining
issue is correlation.

At this point we have a cid sample set and we
want to decrease the correlation between points. The
iterative nature of the algorithm is such that points
have a common past, a history, a genealogy. That, at
the end of the day, translates into increased estima-
tor variance. We have no theoretically proven way to
avoid that yet. The intuition is that using functional
composition 1 i.e. ψ◦(ω)

i , leads to lower and lower va-
riance as ω increases. It was shown in [TIE94] that
under mild conditions, ω > 1 cannot increase va-
riance and might even help. One can hence iterate
ψi at will or based on a stopping time e.g. until 90%
of the points moved from their original position.

3. The AST algorithm
Let us now state the AST algorithm.

Algorithm 1 (Adaptive Splitting Technique). So
as to estimate P[∆ ≤ dc], proceed as follows.

1. Set κ = 1.
2. Generate η iid throws of ∆.
3. Calculate the empirical p-quantile lκ.
4. While lκ ≥ dc, do :

(a) Select throws under lκ and discard others.
(b) Replace discarded points resampling uni-

formly with replacement among selected
points.

(c) Apply ψ◦(ω)
κ to all the points.

(d) Increment κ by one : κ = κ+ 1.
5. Estimate p•κ−1.
6. Conclude that P[∆ ≤ dc] ≈ pκ−1 × p•κ−1

η, p, ψ and ω are fixed before hand. The number of
quantiles i.e. κ’s ultimate value, is random. The
AST estimator will be denoted

ν(dc, η, p,M, ω) (19)

and the total number of generated points is

N = η × (1 + ((κ− 1)× ω)) (20)

1. Notation convention : f◦(n+1) = f◦(n) ◦ f and f◦(0) = Id.
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E. EXPERIMENTAL RESULTS

Let us now proceed to the application, descri-
bing the noise model, the actual AST parameters,
especially the Markov kernel tuning, and comparing
the results delivered by CMC and AST. Eventually,
some insight about the AST results sensibility with
respect to its parameters will be given.

Refer to table 1 for the definition of f~ε,M(x, dy)
and the tuning parameter α.

1. Markov kernel tuning
Given a point X ∼ N (06, D

2), the Markov ker-
nel proposal is

Y ∼ αX +W√
1 + α2

where W and X are iid (21)

To choose α > 0, there is no theoretical result
yet. According to [CDFG09], one should make big
steps at the beginning and make smaller and smal-
ler steps, as the thresholds li decrease. The chosen
heuristic is setting initially α = 1 and adapt it in
the course of the algorithm :

α =
{

α× 1.1 if over 50% of accepted transitions
α/1.1 if under 50% of accepted transitions

(22)
We experimentally found out it leads to estimates
with lesser variance than fixing α.

2. Comparison between CMC and
AST

Using parameters in table 1, the results 2 in table
2 presented in figures 2 and 3 were obtained.

Fig. 2 – CMC results in table 1 framework. The esti-
mation cost was 300000 simulations exactly. Mean esti-
mate is on the left and Empirical relative deviation on
the right.
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Fig. 3 – AST results in table 1 framework. The esti-
mation cost was 309060(1 ± 2%) simulations. Mean es-
timate is on the left and Empirical relative deviation on
the right.
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They show that AST estimated more accurately
than CMC as its estimators has a way lesser relative
variance as it was divided by 5, and for a very similar
cost as it consumed on average the same amount of
points.

3. AST sensitivity
To test AST’s sensitivity to its parameters, we

did a few changes with respect to the original proto-
col. Only these changes are detailed. All the results
are summed up in table 3.

Experiments (1, 2) and (4, 5) When ω is dou-
bled, twice as much points are used, as expected,
and relative spread decreases a bit, as hoped. The
same change in the estimated probability occurred
in both pair. This suggests that ω has important
impact on the estimate.

Experiments (1, 4), (2, 5) and (3, 6) When η is
doubled, twice as much points are used, as expected
and relative spread ratios are around

√
2. This is

quite similar to the CMC case and suggests a 1/√η
convergence rate.

Experiments (1, 3), (4, 6) When p is reduced by
a third, which means in our case that the number
of points discarded when setting the next quantile
is doubled and twice as less quantiles is needed, the
point consumption is cut by half, the estimated pro-
bability is divided by five and relative spread in-
creases. Intuitively, there is trade off between points
and accuracy to be found.

F. CONCLUSION

We introduced the Adaptive Splitting Technique
(AST), a rare event probability estimation tech-
nique, and compared it with Crude Monte Carlo
in a satellite collision context. The new technique
provides estimates with lesser relative variance and
consumes less points than the usual Monte-Carlo
method : relative variance was reduced by half.

Though AST still needs some theoretical de-
velopments to help tuning its parameters and gi-
ving some theoretical results, it is already appli-
cable when dealing with Gaussian based random-
ness. AST can already help with a fairly wide class
of industrial or engineering issues when estimating
rare event probabilities. Besides it can estimate ex-
treme quantiles as well in an as easy fashion. It fur-
thermore requires no hypothesis with respect to the
transfer function to be ran : it can operate with and
adapt to any black box mapping. This new tool is a
valuable Monte Carlo asset. We will hopefully deve-
lop these theoretical aspects in our future works.

2. Erd stands for Empirical relative deviation i.e. empirical standard deviation over mean ratio as explained at 10.
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G. TABLES

Tab. 1 – Parameters
TLEs January 13th 2009
D = 102Diag(4, 4, 10, 4, 4, 7)
f~ε ∼ N (06, D

2)
M(x, dy) ∼ N ( αx√

1+α2 ,
1

1+α2D
2)

dc = 100 n = 3 · 105 m = 100
η = 1250 p = 0.75 ω = 5

Tab. 2 – AST-CMC comparison
Mean estimate Erd Mean simulation number Erd

CMC 1.1 · 10−6 1.7258 300000 0
AST 4.78 · 10−7 0.3232 309060 0.0232

Tab. 3 – AST sensitivity test results. In all cases, 100 iid estimations were done with dc = 100.
Experiment 1 2 3 4 5 6

η 1250 1250 1250 2500 2500 2500
p 0.75 0.75 0.50 0.75 0.75 0.50
ω 5 10 5 5 10 5

µ(N)/105 3.10 5.96 1.40 6.21 11.85 2.77
ρ(N)× 102 2.32 2.24 2.86 1.65 1.6153 2.01
µ(ν)× 107 4.78 7.88 0.91 4.35 7.95 0.90
ρ(ν)× 10 3.32 3.07 3.81 2.24 2.03 2.96
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