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Abstract

We develop methods for performing smoothing computations in gen-

eral state-space models. The methods rely on a particle representa-

tion of the filtering distributions, and their evolution through time us-

ing sequential importance sampling and resampling ideas. In partic-

ular, novel techniques are presented for generation of sample realiza-

tions of historical state sequences. This is carried out in a forward-

filtering backward-smoothing procedure which can be viewed as the

non-linear, non-Gaussian counterpart of standard Kalman filter-based

simulation smoothers in the linear Gaussian case. Convergence in the

mean-squared error sense of the smoothed trajectories is proved, show-

ing the validity of our proposed method. The methods are tested in a

substantial application for the processing of speech signals represented

by a time-varying autoregression and parameterised in terms of time-

varying partial correlation coefficients, comparing the results of our al-

gorithm with those from a simple smoother based upon the filtered

trajectories.

Key words: Bayesian inference; non-Gaussian time series; non-linear
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1 Introduction

In this paper we develop Monte Carlo methods for smoothing in general state-
space models. To fix notation, consider the standard Markovian state-space
model (West & Harrison, 1997)

xt+1 ∼ f(xt+1|xt) State evolution density

yt+1 ∼ g(yt+1|xt+1) Observation density

where {xt} are unobserved states of the system and {yt} are observations made
over some time interval t ∈ {1, 2, ..., T}. f(.|.) and g(.|.) are pre-specified state
evolution and observation densities which may be non-Gaussian and involve
non-linearity. It is assumed throughout that the distributions required can
be represented by density functions, and that both f(.|.) and g(.|.) can be
evaluated for any valid states and observations xt and yt. xt and yt may both
in general be vectors. We assume that the process {xt} is Markov, generated
according to the above state evolution, and that the observation process {yt}
is independent conditional upon the state process {xt}. Hence an expression
for the joint distribution of states and observations can be obtained directly
by the probability chain rule

p (x1:t, y1:t) = f(x1)

(
t∏

i=2

f(xi|xi−1)

)(
t∏

i=1

g(yi|xi)

)

where f(x1) is the distribution of the initial state. Here x1:t = (x1, ..., xt)
and y1:t = (y1, ..., yt) denote collections of observations and states from time 1
through t. In proving the validity of our proposed smoothing algorithm a more
formal definition of the state space model will be required. This is presented
in Appendix A.

A primary concern in many state-space inference problems is sequential
estimation of the filtering distribution p(xt|y1:t). Updating of the filtering
density can be achieved in principle using the standard filtering recursions

p(xt+1|y1:t) =

∫
p(xt|y1:t)f(xt+1|xt)dxt

p(xt+1|y1:t+1) =
g(yt+1|xt+1)p(xt+1|y1:t)

p(yt+1|y1:t)
.

Similarly, smoothing can be performed recursively backwards in time using
the smoothing formula

p(xt|y1:T ) =

∫
p(xt+1|y1:T )

p(xt|y1:t)f(xt+1|xt)

p(xt+1|y1:t)
dxt+1.

Inference in general state-space models has been revolutionized over the
past decade by the introduction of cheap and massive computational resources,
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and the consequent development and widespread application of Monte Carlo
methods. In batch-based scenarios Markov chain Monte Carlo (MCMC) meth-
ods have been widely used, and a variety of powerful tools has been developed
and proven in application, see for example Carlin, Polson & Stoffer (1992),
Carter & Kohn (1994), Shephard (1994), Shephard & Pitt (1997), De Jong
(1997), Aguilar, Huerta, Prado & West (1999), Aguilar & West (1998) Pitt
& Shephard (1999b) and Aguilar & West (2000). However, it is not always
straightforward to construct an effective MCMC sampler in models with sig-
nificant degrees of non-linearity and non-Gaussianity. Specifically, in these
cases it can be hard to construct effective proposal distributions, either over
collections of states simultaneously or even for single states conditional upon
all others. The danger then is that the MCMC will be slowly mixing and may
never converge to the target distribution within realistic time scales.

Alternative Monte Carlo strategies based upon sequential importance sam-
pling, known generically as particle filters, have been rapidly emerging in areas
such as target tracking for radar, communications, econometrics and computer
vision (West, 1993; Gordon, Salmond & Smith, 1993; Kitagawa, 1996; Liu &
Chen, 1998; Doucet, Godsill & Andrieu, 2000; Liu & West, 2001; Pitt & Shep-
hard, 1999a; West & Harrison, 1997; Doucet, De Freitas & Gordon, 2001).
These methods allow propagation of completely general target filtering distri-
butions through time using combinations of importance sampling, resampling
and local MCMC moves. The methods have been proven for many exam-
ples including highly non-linear models that are not easily implemented using
standard MCMC.

In particle filtering methods the filtering density is approximated with an
empirical distribution formed from point masses, or particles,

p(xt|y1:t) ≈
N∑

i=1

w
(i)
t δ

x
(i)
t

(xt),
N∑

i=1

w
(i)
t = 1, w

(i)
t ≥ 0 (1)

where δ is the Dirac delta function and w
(i)
t is a weight attached to particle

x
(i)
t . Particles at time t can be updated efficiently to particles at time t + 1

using importance sampling and resampling methods.
The theory of particle filtering is now quite well developed. For example,

the empirical measure of equation (1) converges almost surely to the distribu-
tion associated to p(xt|y1:t) for all t > 0 as N → ∞ under quite mild conditions
on the state space model. Moreover, rates of convergence to zero have been
established for expectations of mean-square error of functionals with respect
to this filtering density. Hence particle filters are rigorously validated as a
means for tracking the distribution of, and estimating the value of a hidden
state over time. Some recent advances in convergence analysis can be found in
Del Moral (1998), Crisan, Del Moral & Lyons (1999), Crisan & Lyons (1999),
Crisan & Doucet (2000) and Crisan (2001).

While particle filtering theory and practice is now quite well established,
smoothing aspects are less so. Existing approaches to smoothing with particle
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filters have been aimed at approximating the individual marginal smooth-
ing densities p(xt|y1:T ), either using the two-filter formula (Kitagawa, 1996)
or forward filtering-backward smoothing (Doucet et al., 2000; Hürzeler &
Künsch, 2000). In many applications these marginal distributions are of lim-
ited interest, as investigations of historical states generally focus on trajectories
and hence require consideration of collections of states together. If a single
‘best’ estimate for the smoothed trajectory is required, then ? provide a se-
quential methodology for Maximum a posteriori sequence estimation based on
dynamic programming and the Viterbi algorithm. However, a single best es-
timate is rarely appropriate in the Bayesian inference setting, especially when
distributions are multimodal, and here we aim for random generation of state
sequences.

The mew methods provide a completion of particle filtering methodology
which allows random generation of entire historical trajectories drawn from the
joint smoothing density p(x1:t|y1:t). The method relies firstly upon a forward
filtering pass which generates and stores a particle-based approximation to the
filtering density at each time step. Then a backwards ‘simulation smoothing’
pass is carried out in order to generate sampled realizations from the smoothing
density. The method can be seen as the nonlinear/non-Gaussian analogue
of the forward filtering/backwards sampling algorithms developed for linear
Gaussian models and hidden Markov models (Carter & Kohn, 1994; Frühwirth-
Schnatter, 1994; De Jong & Shephard, 1995). The proposed method is quite
distinct from the MAP estimation procedure of ? in which the forward particle
filter is simply used to generate a grid of possible state values at each time
point, with the Viterbi algorithm used to trace out the most probable state
trajectory through that grid of state values.

The organization of the paper is as follows. In Section 2 the basic parti-
cle filtering and smoothing framework is described. Section 3 introduces the
proposed simulation smoother algorithm for general state-space models. A
proof of convergence is given for the new simulation smoother method in the
appendices. The method is evaluated in Section 4 for a standard nonlinear
model and in Section 5 with an extensive application to speech data analysis.
Finally, some discussion is given in Section 6.

2 Filtering and Smoothing using Sequential

Importance Sampling

In this section we review the standard procedure for filtering and smoothing
using sequential importance sampling. In practice this is found to be highly
effective in the filtering mode, but, as will be demonstrated in our simulations,
it can give very poor results in the smoothing mode. Refer for example to
Doucet et al. (2001) and Doucet et al. (2000) for a detailed overview of these
standard methods. A more formal description of the particle filter is given in
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Appendix A, including a statement the theorem required to prove the smoother
of the next section.

Suppose we have at time t weighted particles {x(i)
1:t, w

(i)
t ; i = 1, 2, ..., N}

drawn from the smoothing density p(x1:t|y1:t). We can consider this to be an
empirical approximation for the density made up of point masses:

p(x1:t|y1:t) ≈
N∑

i=1

w
(i)
t δ

x
(i)
1:t

(x1:t),

N∑

i=1

w
(i)
t = 1, w

(i)
t ≥ 0 (2)

In order to update the smoothing density from time t to time t + 1, factorize
it as follows:

p(x1:t+1|y1:t+1) =p(x1:t|y1:t) ×
g(yt+1|xt+1)f(xt+1|xt)

p(yt+1|y1:t)

where the denominator is constant for a given dataset. In order to pro-
ceed from time t to t + 1 one selects trajectories from the approximation
(2). In the simplest case (the ‘bootstrap’ filter (Gordon et al., 1993; Kita-
gawa, 1996)) N trajectories are drawn at random with replacement from

{x(i)
1:t; i = 1, 2, ..., N} with probabilities {w(i)

t ; i = 1, 2, ..., N}. In more sophis-
ticated schemes some part-deterministic variance reduction selection scheme
is applied (Kitagawa, 1996; Liu & Chen, 1998; Doucet et al., 2000; Carpenter,
Clifford & Fearnhead, 1999) A new state is then generated randomly from an
importance distribution q(xt+1|x1:t, yt+1) and appended to the corresponding
trajectory x1:t. The importance weight is updated to

wt+1 ∝
g(yt+1|xt+1)f(xt+1|xt)

q(xt+1|x1:t, yt+1)
.

Other selection schemes aim to improve performance at future time points
by introducing a bias into the selection step. In these cases an additional
term is included into the weight expression to allow for this bias. Examples of
this include the most basic sequential imputations procedures of Liu & Chen
(1995), where selection is only rarely carried out and weights are updated
incrementally throughout the filtering pass, and the auxiliary particle filtering
approach of Pitt & Shephard (1999a) in which a bias is intentionally introduced
with the aim of boosting the number of particles in useful regions of the state
space. For further discussion of these issues see Godsill & Clapp (2001).

The smoothing methods described in this section will be referred to as the
standard trajectory-based smoothing method. Filtering is obtained as a simple
corollary of the smoothing technique by simply discarding the past trajectories
x1:t once the update has been made to t + 1. It is clear that the selection (or
‘resampling’) procedure will lead to high levels of degeneracy in smoothed
trajectories using this method. This is demonstrated in later simulations, and
motivates the development of novel smoothing methods based upon backwards
simulation in the next section.
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3 Smoothing using backwards simulation.

The new method proposed here assumes that Bayesian filtering has already
been performed on the entire dataset, leading to an approximate represen-
tation of p(xt|y1:t) for each time step t ∈ {1, ..., T}, consisting of weighted

particles {x(i)
t , w

(i)
t ; i = 1, 2, ..., N}. We note that the method is indepen-

dent of the precise filtering algorithm and that any particle filtering scheme,
whether deterministic or Monte Carlo, can be used. Recall that the primary
goal here is to obtain sample realizations from the entire smoothing density
in order to exemplify and generate insight into the structure of the smoothing
distribution for collections of past states together. This can be based on the
factorization

p(x1:T |y1:T ) = p(xT |y1:T )

T−1∏

t=1

p(xt|xt+1:T , y1:T ) (3)

where, using the Markovian assumptions of the model, we can write

p(xt|xt+1:T , y1:T ) = p(xt|xt+1, y1:t) (4)

=
p(xt|y1:t)f(xt+1|xt)

p(xt+1|y1:t)

∝ p(xt|y1:t)f(xt+1|xt).

Forward filtering generates a particulate approximation to p(xt|y1:t). Since
we have from the above that p(xt|xt+1, y1:T ) ∝ p(xt|y1:t)f(xt+1|xt), we obtain
immediately the following modified particle approximation:

p(xt|xt+1, y1:T ) ≈
N∑

i=1

w
(i)
t|t+1δx

(i)
t

(xt)

with modified weights

w
(i)
t|t+1 =

w
(i)
t f(xt+1|x

(i)
t )

∑N
j=1 w

(j)
t f(xt+1|x

(j)
t )

. (5)

This revised particulate distribution can now be used to generate states suc-
cessively in the reverse-time direction, conditioning upon future states. Specif-
ically, given a random sample x̃t+1:T drawn approximately from p(xt+1:T |y1:T ),
take one step back in time and sample x̃t from p(xt|x̃t+1, y1:T ). The pair
(x̃t, x̃t+1:T ) is then approximately a random realization from p(xt:T |y1:T ). Re-
peating this process sequentially back over time produces the following general
“smoother-realization” algorithm:

Algorithm 1 - Sample realizations

• Choose x̃T = x
(i)
T with probability w

(i)
T .
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• For t = T − 1 to 1 :

– Calculate w
(i)
t|t+1 ∝ w

(i)
t f(x̃t+1|x

(i)
t ) for each i = 1, ..., N ;

– Choose x̃t = x
(i)
t with probability w

(i)
t|t+1.

• x̃1:T = (x̃1, x̃2, ..., x̃T ) is an approximate realization from p(x1:T |y1:T ).

Further independent realizations are obtained by repeating this procedure
as many times as required. The computational complexity for each realization
is O(NT ), in contrast with O(N 2T ) required for marginal smoothing proce-
dures (Kitagawa, 1996; Doucet et al., 2000; Hürzeler & Künsch, 2000), however
it should be realised that the computations in our method are then repeated
for each realization drawn.

In appendix A the convergence of the smoothed realizations is proved in
terms of mean-squared error for state estimation as the number of particles
tends to infinity.

4 Example 1: A nonlinear time series model

The new methods are first demonstrated for a standard nonlinear time series
model (Kitagawa, 1996; West, 1993; Gordon et al., 1993). This model has
been used extensively for testing of numerical filtering techniques and here we
use it to show the functionality and extended utility of the proposed smoother
compared to the other available techniques (Kitagawa, 1996; Doucet et al.,
2000; Hürzeler & Künsch, 2000).

The state-space equations are as follows:

xt =
xt−1

2
+ 25

xt−1

1 + x2
t−1

+ 8 cos(1.2t) + vt

yt =
(xt)

2

20
+ wt

where vt ∼ N (0, σ2
v) and wt ∼ N (0, σ2

w) and here σ2
v = 10 and σ2

w = 1 are con-
sidered fixed and known. The initial state distribution is x1 ∼ N (0, 10). The
representation in terms of densities f(xt|xt−1) and g(yt|xt) is straightforward.

A typical dataset simulated from this model is shown in Fig. 1. Filtering
is performed using a standard bootstrap particle filter (Gordon et al., 1993)
with N = 10, 000 particles. Filtering is applied to the same dataset as Fig. 1.
There is clear evidence for strong non-Gaussianity and multimodality in the
filtering distributions, see for example the density estimates obtained from the
particle filter output at times t = 64 and t = 3 in Fig. 2.

Smoothing is carried out using the proposed smoother, drawing 10,000
realizations from the smoothing density. A selection of the smoothed trajec-
tories drawn from p(x1:100|y1:100) is shown in Fig. 3. Again, multimodality in
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the smoothing distribution can clearly be seen, with separated clusters of tra-
jectories visible in several parts of the time series. The sampled realizations
are useful in themselves, but they can also be used to study and visualize
in more detail the characteristics of the multivariate smoothing distribution.
Note that this is a capability well beyond that of (Kitagawa, 1996; Doucet
et al., 2000; Hürzeler & Künsch, 2000) which generate only the smoothed
marginals p(xt|y1:T ). Figs. 4-7show visualizations of a selection of bivariate
marginals estimated from p(x1:100|y1:100), using 2-dimensional scatter plots and
kernel density estimates. The new smoothing method allows visualization of
multimiodality and complex interactions between states in a way which is not
possible with the existing (univariate) marginal smoothing techniques. Re-
peated independent runs of the particle filter/smoother identified essentially
identical features in the smoothing distribution, which gives us some confidence
in the accuracy of the results. Different types of interaction become important
in the smoothing density as the parameters of the model are changed. For
example, with σ2

v = 1 and σ2
w = 9, we expect the dynamics of the state to

play a more important role than in the previous simulation. This is borne out
by the computed smoothing densities from a new set of simulations; see for
example Figs. 8 and 9, in which some diagonal structure is clearly present.
Higher-dimensional smoothing marginals can be studied using 3-dimensional
visualization tools such as those available in Matlab.

5 Example 2: Application to Speech signals

represented by TVAR models

We now present a substantial application taken from the field of speech pro-
cessing and analysis. Speech signals are inherently time-varying in nature,
and any realistic representation should thus involve a model whose param-
eters evolve over time. One such model is the time-varying autoregression
(TVAR) (Prado, West & Krystal, 1999; Kitagawa & Gersch, 1996) in which
the coefficients of a standard autoregression are allowed to vary according to
some probability law. These models are of very wide utility and importance
in engineering, scientific and socio-economic applications, but are typically
applied subject to severe restrictions on the models for time-variation in au-
toregressive coefficients for analytic reasons. More realistic models for patterns
of variation over time in autoregressive parameters, and hence for the result-
ing “local” correlation and spectral structures, lead to intractable models and
hence the need for simulation based approximations, especially in sequential
analysis contexts.

Here we consider a non-linear parameterization of the TVAR model in
terms of partial correlations (PARCOR) coefficients (Friedlander, 1982). This
is especially relevant in acoustical contexts such as speech processing since the
PARCOR coefficients can be regarded as the parameters of a linear acousti-
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cal tube whose characteristics are time-varying. This acoustical tube model
can be regarded as an approximation to the characteristics of the vocal tract
(Proakis, Deller & Hansen, 1993). By allowing the width parameters of the
acoustical tube model, and hence the instantaneous PARCOR coefficients, to
vary over time we can allow for the physical changes which take place in the
vocal tract shape as the speaker utters different sounds. The non-linear model
implied by such a scheme is not readily estimated using standard optimal
techniques such as MCMC or approximation methods such as the extended
Kalman filter, owing to the strongly non-linear nature of the transformation
between TVAR coefficients and instantaneous PARCOR coefficients, so we see
sequential Monte Carlo filtering and smoothing as the method of choice in this
case. A related, although not identical, TVAR model has been considered in
a different application by Kitagawa & Gersch (1996).

5.1 Model specifications

A signal process {zt} is generated in the standard fashion from a Gaussian
distribution centred at the linear prediction from the previous time step

f(zt|zt−1:t−P , at, σet
) = N

(
P∑

i=1

at,izt−i, σ
2
et

)
.

Here at = (at,1, at,2, . . . , at,P )′ is the time-varying AR(P ) coefficient vector
and σ2

et
is the innovation variance at time t. Note that both the AR coefficient

vector and the innovation variance are assumed time-varying, so we will specify
evolution models for these too. As noted above, the changes in AR coefficients
over time will model changes in the vocal tract shape as the speaker makes
different utterances. Time variation in innovation variance will model changes
in the strength of the excitation signal in the glottis. The speech signal {zt} is
assumed to be partially observed in additive independent Gaussian background
noise so that the observation process {yt} is generated according to

g(yt|zt, σv) = N
(
zt, σ

2
v

)

where σ2
v is here assumed to be constant and known, corresponding to a fixed

level of background noise in the environment which has been measured during
a silent period. While some applications consider the environment to be noise-
free, we argue that in any speech setting there will always be a certain degree of
noise present which should be modelled in order to capture the true character
of the unobserved signal {zt}.

Furthermore, this framework allows us to perform noise reduction for noisy
speech signals, a task which is frequently required for applications in mobile
telephony and speech recognition, for example. Note that the extension of
our methods to the case of time-varying and correlated observation noise is
immediate.
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For our simulations, a Gaussian first order autoregression is assumed for
the log-standard deviation φet

= log(σet
), namely

f(φet
|φet−1, σ

2
φe

) = N
(
αφet−1, σ

2
φe

)

where α is a positive constant just less than unity and σ2
φe

is a fixed hyperpa-
rameter.

The model now requires specification of the time variation in TVAR co-
efficient vector at itself. This is the main interest in our application, as we
wish to find a model which is physically meaningful for the application and
easily interpretable. Possibly the simplest choice of all, and most common in
previous work (Prado et al., 1999; Kitagawa & Gersch, 1996), is a first order
Gaussian autoregression directly on the coefficients at:

f(at|at−1, σ
2
a) = N

(
βat−1, σ

2
aI
)

More elaborate schemes of this sort are possible, such as a higher order autore-
gression involving AR coefficients from further in the past, or a non-identity
covariance matrix, the latter being a key feature of such models for some au-
thors and applications, as in the work of (and references in) Prado et al. (1999)
and West & Harrison (1997). However, models of this form do not have a par-
ticularly strong physical interpretation for acoustical systems such as speech.
Moreover, an unconstrained time-varying autoregression exhibits large (‘un-
stable’) oscillations inconsistent with real speech data. Improved stability can
be achieved by ensuring that the instantaneous poles, i.e. the roots of the poly-

nomial (1−
P∑

i=1

at,iL
−i), lie strictly within the unit circle. This can be achieved

by constraining the autoregression appropriately to have zero probability in
the unstable region for the coefficients. Such a condition, however, is very
expensive to simulate using rejection sampling methods. A possible means of
achieving greater stability in the model would be to model the roots directly;
see Huerta & West (1999a) and Huerta & West (1999b) for the time-invariant
case. However, there are unresolved issues here of dealing with complex roots
which evolve into real roots and vice versa; see Prado et al. (1999). These
issues do not arise if one works in the reflection coefficient, or equivalently
partial correlation (PARCOR) coefficient domain (Friedlander, 1982). Here
the equivalent condition is that each reflection coefficient must simply be con-
strained to the interval (−1, +1). The standard Levinson recursion is used
to transform between at and the reflection coefficients ρt. Many models are
possible for the time variation of ρt, including random walks based on beta
distributions and inverse logit transformed normal, and all would be feasible
in our sequential Monte Carlo framework. We have chosen a simple truncated
normal autoregression for discussion here, namely:

Random PARCOR model

ft(ρt|ρt−1, σ
2
a) ∝

{
N (βρt−1, σ

2
aI) , max{|ρt,i|} < 1,

0 otherwise.
(6)
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where β is a coefficient just less than 1. All of the simulations in this paper
have made use of this model. As we have already hinted, the TV-PARCOR
framework is appealing not simply because of the ease of checking stability
and evaluating the transition density but also because a reflection coefficient
model has a strong physical interpretation in certain systems, notably speech
and other acoustic sounds which are generated through tube-like mechanisms.

The state space model is now fully specified. The state vector is

xt = (zt:t−P+1, ρt, φet
)′.

The hyperparameters σ2
a, α, β, σ2

φe
and σ2

v are assumed pre-specified and fixed
in all the simulations. The initial state probability is truncated Gaussian over
the ‘stable’ parameter region for the model.

5.2 Filtering and smoothing

The first step in analysing the data is to perform a complete forward sweep of
a Monte Carlo filtering algorithm to produce weighted particles {x(i)

t , w
(i)
t }N

i=1

for t = 1, 2, ...T , drawn approximately according to P (dxt|y1:t). Since our
smoothing method is quite general and not tied to any particular filtering
method we do not consider all the possibilities in detail. We have experimented
with various types of Monte Carlo filter, adapted to our specific TVAR model,
using the standard sequential importance sampling (SIS) filter (Doucet et al.,
2000; Gordon et al., 1993; Liu & Chen, 1998), the auxiliary particle filter
(APF) (Pitt & Shephard, 1999a) and schemes which incorporate local MCMC
moves to improve the filtering approximation (MacEachern, Clyde & Liu, 1999;
Gilks & Berzuini, 2000). We observe empirically a moderate improvement in
performance when the APF is used and for some challenging cases it is also
worthwhile to incorporate MCMC moves. The importance function employed
for the unobserved state is the state transition density, modified such that
the current zt is simulated exactly from its full conditional density which is
Gaussian, i.e. we use:

q(xt|xt−1, yt) = p(zt|zt−1:t−P , at, σet
, yt)f(ρt|ρt−1, σ

2
a)f(φet

|φet−1, σ
2
φe

).

A full discussion of the relative merits of the various possible filtering schemes
and importance functions applied to a related TVAR model can be found in
Godsill & Clapp (2001). Following the filtering pass, smoothing is then carried
out using the new method.

5.3 Results

A long section of noisy speech data is presented in Figure 10, see caption
for details. The time-varying characteristics of the signal are clearly evident,
with data points 1-6800 (approx.) representing the word ‘rewarded’ and 6800-
10000 the word ‘by’. A filtering and smoothing analysis is performed for the
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first 1000 data points. A white Gaussian noise signal with known standard
deviation σv = 0.02 is added to the signal. The observed noisy data are shown
in Figure 11 with known noise standard deviation σv = 0.02. The remaining
fixed hyperparameters used were σa = 0.01, α = 0.99, β = 1, σφe

= 0.001.
These were determined empirically by trial and error and by past experience
with similar audio datasets (Godsill & Rayner, 1998). The TVAR model
order was P = 4; this was chosen in accordance with the findings of Vermaak,
Andrieu, Doucet & Godsill (1999) and also gave the best results in subjective
listening tests performed on the smoothed signal estimates.

The number of particles required will depend upon the dimensionality of
the state vector, which can be quite high in a model such as this, and also
on the degree of posterior uncertainty about those parameters; again, for this
model the posterior distributions of parameters such as the TV-PARCOR
coefficients can be quite diffuse, hence requiring a large number of particles
for accurate representation. Filtering and smoothing were carried out using
a wide variety of particle numbers, ranging from N = 100 up to N = 20000.
Filtered estimates of quantities such as posterior mean parameter values were
found to become quite robust from one realization of the filter to another
provided the number of particles exceeded 1000.

The last 200 observed data points are shown in Figure 12. Filtered means
and 5/95 percentiles for the TV-PARCOR coefficients are shown in Figure 13
for the last 200 data points, by which time it is assumed that the effects of
the Gaussian initial state prior are negligible. The estimated trajectories are
quite random in nature, reflecting the uncertainty about their value without
the aid of retrospective smoothing. Similarly, Figure 14 shows the filtered
mean estimate for the signal process. While some smoothing has occurred, it
is fairly clear that the resulting estimate has followed the shape of the noisy
signal too closely as a result of filtering without any retrospective sequence
analysis.

By comparison, smoothing computations were then performed, using either
our proposed backward sampling algorithm from Section 3 or the standard
filtered trajectory approach outlined in Section 2. Figure 15 shows 10 real-
izations from the smoothing density using our proposed smoother. Figure 16
shows four separate realizations plotted on top of the observed noisy data and
Figure 17 shows the mean of 10 realizations plotted with the observed data.
These results show that good diversity is achieved by the backward sampling
smoother and that (visually) much improved sequences are generated when
compared with the filtered mean estimates of Figure 14.

Realizations from the smoothing density for the TV-PARCOR coefficients
are given in Figure 18. A plausible degree of uncertainty is indicated by this
result, and this may be compared with results obtained using the standard
trajectory-based smoother. In order to highlight the differences between our
proposed method and the standard method we smooth retrospectively back
to t = 600. Once again, graphs of 10 realizations from the smoothing density
are presented, this time comparing our proposed method and the standard
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method, see Figures 19 and 20. It is clear that the standard method degener-
ates to a single trajectory quite rapidly, while our proposed method achieves
a plausible degree of variability between sampled realizations right back to
t = 600. This is typical of the results we have observed over many different
sections of the data. The proposed method is always observed to improve on
the standard method when equal numbers of particles are used for the filtering
pass. Of course, our method can also degrade if the number of filtered particles
is too small to contain plausible smoothed trajectories. An example of this
can be seen in Figure 21, where it is clear from inspection that the trajectories
generated are too tightly clustered around a particular ‘modal’ trajectory, and
hence a misleading inference about posterior uncertainty could be obtained.
Nevertheless, the result is still visually improved compared with the standard
method for the same number of particles, Figure 22.

Finally a filtering/smoothing pass was carried out on an entire sentence of
speech, lasting some 2.5 seconds. Results can then be auditioned by listening
to the simulated signal trajectories. An example of this can be found on the
website http://www-sigproc.eng.cam.ac.uk/~sjg/TV-PARCOR where noisy
speech and extracted speech can be compared. The results are satisfactory,
eliminating some of the high-frequency frame-based artefacts (’musical noise’)
observed with standard speech enhancement algorithms, although the TVAR
model causes some sibilance during unvoiced consonant sounds such as ‘ss’.

6 Discussion

Recent years have seen a huge surge of interest in particle filtering, motivated
by practical problems of sequential analysis in dynamic models in many areas
of engineering, the natural sciences and socio-economics (Doucet et al., 2001).
Our work here is not specific to any one algorithm, and takes the established
notion of sequentially updated particulate representations of posterior distri-
butions in state space models as the starting point for smoothing. In speech
processing as in other applications, it is often critically important to “look
back over time” for several or many time steps in order to assess and evaluate
how new data revises the view of the recent past. Hence smoothing algorithms
are key, and our work here develops effective approaches that apply whatever
filtering method is adopted.

We have developed and presented fairly simple and efficient methods for
generation of sample realizations of joint smoothing densities in a general
model context. Smoothing has not been stressed by earlier authors in the se-
quential simulation literature, and where it has been studied approaches have
been limited to approximating the time-specific marginal smoothing distri-
butions for individual states. We reiterate that this narrow focus is limiting
and potentially misleading in many applications. Investigations of patterns of
changes in historical states should focus on the joint trajectories of past states
and hence necessarily involve consideration of joint smoothing densities, not
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simply the collection of marginals. Generating sample realizations is the most
efficient, effective and intuitive approach to studying complicated, multivari-
ate joint distributions, hence our focus on sampling algorithms for smoothing.
This concept parallels that in forecasting, where studies of “sampled futures”
is a key and critical exercise in any serious modelling-for-forecasting activity.

There are current research challenges in many aspects of the sequential sim-
ulation arena, including real needs for improved particle filtering algorithms,
and reconciliation of the several variants of sequential importance sampling,
resampling, and auxiliary particle methods. The current paper ignores issues
of learning on fixed model parameters in addition to time-varying states, a
broader problem also ignored by most other authors in the field, but critical in
many applications such as the challenging multifactor models of Pitt & Shep-
hard (1999b) and Aguilar & West (2000). In our current work with TVAR
models we are developing analyses for both parameters and states using the
auxiliary particle plus methods of Liu & West (2001). It should be noted that
the smoothing methods developed and illustrated here apply directly in this
context also, so providing a comprehensive smoothing algorithm.
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A Proof of convergence for backwards simu-

lation smoother

We will specify a more formal measure-theoretic framework as in Crisan (2001)
and Crisan & Doucet (2000) for proof of convergence. Let (Ω, F, P ) be a
probability space on which two vector real-valued stochastic processes X =
{Xt, t ∈

� ∗} and Y = {Yt, t ∈
� ∗} are defined; let nx and ny be the dimen-

sions of the state space of X and Y , respectively. The process X is unobserved
whereas the process Y is observed.

Let X be a Markov process with respect to the filtration
Ft

�
σ (Xs, Ys, s ∈ {1, . . . , t}), having initial distribution X1 ∼ f (dx1) and

transition kernel

f (dxt| xt−1)
�

P (Xt ∈ dxt|Xt−1 = xt−1) . (7)

We assume that the observations are statistically independent given the signal
and satisfy

g (dyt| xt)
�

P (Yt ∈ dyt|Xt = xt) . (8)

For the sake of simplicity, we assume that f (dxt| xt−1) and g (dyt| xt) ad-
mit densities with respect to the Lebesgue measure; that is f (dxt|xt−1) =
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f (xt| xt−1) dxt and g (dyt|xt) = g (yt|xt) dyt, corresponding to the densities
f() and g() in the main text.

The following standard shorthands will be used. If µ is a measure, ϕ is a
function and K is a Markov kernel,

(µ, ϕ)
�
∫

ϕdµ

µK (A)
�
∫

µ (dx) K (A| x)

Kϕ (x)
�
∫

K (dz|x) ϕ (z) .

We will also use the following notation:

πt|t−1(dxt)
�

P (dxt|Y1:t−1 = y1:t−1)

and

πt|t(dxt)
�

P (dxt|Y1:t = y1:t) (the‘filtering’measure)

The general particle filtering method described in section 2 seeks succes-
sively to approximate these two measures using randomly propagated empirical
measures.

More generally, the following shorthand is used for smoothing distributions:

πt1:t2|t3(dxt1 :t2)
�

P (dxt1:t2 |Y1:t3=y1:t3)

The weighted approximation to the filtering measure is defined as

πN
t|t (dxt)

�
N∑

i=1

w
(i)
t δ

x
(i)
t

(dxt) . (9)

while the unweighted measure following resampling (selection) is:

π′
t|t

N
(dxt)

� 1

N

N∑

i=1

δ
x′

(i)
t

(dxt) . (10)

Similarly, N smoothed realizations generated using Algorithm 1 can be
used to form an unweighted approximation to the joint smoothing density:

πN
t:T |1:T (dxt:T )

� 1

N

N∑

i=1

δ
x
(i)
t:T

(dxt:T ) . (11)

We will prove in Theorem 2 the convergence of this approximating measure to
the true smoothing measure πt:T |1:T for any t ∈ {1, 2, ..., T}.
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Define a (joint) measure ρt (dxt−1:t)
�

π t−1|t−1 (dxt−1) q (dxt| yt, xt−1), cho-
sen such that it is absolutely continuous with respect to π t−1:t|t−1 (dxt−1:t) and
such that ht is the following (strictly positive) Radon Nykodym derivative:

ht (yt, xt−1, xt) ∝
π t−1:t|t−1 (dxt−1:t)

ρt (dxt−1:t)
.

We now state sufficient conditions for convergence of the particle filter. Let
B ( � n) be the space of bounded, Borel measurable functions on � n and denote
for any ϕ ∈ B ( � n)

‖ϕ‖
�

sup
x∈ � n

ϕ (x) .

Assume from now on that the observation process is fixed to a given obser-
vation record Y1:T = y1:T . All subsequent convergence results will be presented
on this basis.

Consider the following assumption:

Assumption 1 πt−1:t|t is absolutely continuous with respect to ρt. More-
over, g (yt| xt)ht (yt, xt−1, xt) is positive and bounded in argument (xt−1, xt) ∈
( � nx )2.

The following theorem for the particle filter is then a direct consequence
of Crisan (2001) and Crisan & Doucet (2000).

Theorem 1 (Crisan & Doucet (2000)) Under Assumption 1, for all t > 0,
there exists c t|t independent of N such that for any φ ∈ B ( � nx )

E
[((

πN
t|t, φ

)
−
(
π t|t, φ

))2]
≤ c t|t

‖φ‖2

N
.

where the expectation is over all realizations of the random particle method.

Now define

f (x)
�

‖f (x| ·)‖

and consider the following assumption.

Assumption 2 For any t ∈ (1, . . . , T ), one has

(
π t|T ,

(
f

π t|t−1

)2
)

< ∞.

We can now state the main theorem concerning convergence of the proposed
simulation smoothing algorithm:
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Theorem 2 Under Assumptions 1 and 2, for all t ∈ (1, . . . , T ), there exists
c t|T independent of N such that for any φ ∈ B

(
� nxT

)

E
[((

πN
1:T |T , φ

)
−
(
π1:T |T , φ

))2]
≤ c1|T

‖φ‖2

N

where c1|T can be computed using the backward recursion

c t|T =


(c t+1|T

)1/2
+ 2

(
c t|t

)1/2

(
π t+1|T ,

(
f

π t+1|t

)2
)1/2




2

. (12)

and c t|t is given by Theorem 1.

Proof. We prove here that for any φt ∈ B
(

� nx (T−t+1)
)
, there exists c t|T

independent of N such that

E
[((

πN
t:T |T , φt

)
−
(
π t:T |T , φt

))2]
≤ c t|T

‖φt‖
2

N

The proof proceeds by induction. Theorem 1 ensures that the result is true
for t = T . Now, rewrite

(
π t:T |T , φt

)
as follows:

(
π t:T |T , φt

)
=

(
π t+1:T |T ,

(
π t|t, φtf

)

π t|tf

)
.

Then decompose the error term
(
πN

t:T |T , φt

)
−
(
π t:T |T , φt

)
as

(
πN

t:T |T , φt

)
−
(
π t:T |T , φt

)
(13)

=


(πN

t+1:T |T − π t+1:T |T

)
,

(
πN

t|t, φtf
)

πN
t|tf




+


π t+1:T |T ,

(
πN

t|t, φtf
)(

π t|t − πN
t|t, f

)

(
πN

t|t, f
)

π t+1|t




+



π t+1:T |T ,

(
πN

t|t − π t|t, φtf
)

π t+1|t



 .
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Then one has by Minkowski’s inequality

E
[(

πN
t:T |T , φt

)
−
(
π t:T |T , φt

)]1/2

≤ E





(πN

t+1:T |T − π t+1:T |T

)
,

(
πN

t|t, φtf
)

πN
t|tf




2



1/2

+ E






π t+1:T |T ,

(
πN

t|t, φtf
)(

π t|t − πN
t|t, f

)

(
πN

t|t, f
)

π t+1|t




2



1/2

+ E






π t+1:T |T ,

(
πN

t|t − π t|t, φtf
)

π t+1|t




2



1/2

. (14)

Consider now the three terms on the right hand side.
First term. For any xt+1:T , one has

∥∥∥∥∥∥

(
πN

t|t, φtf
)

πN
t|tf

∥∥∥∥∥∥
≤ ‖φt‖ ,

thus we obtain using the induction hypothesis

E






(πN
t+1:T |T − π t+1:T |T

)
,

(
πN

t|t, φtf
)

πN
t|tf




2

 ≤ c t+1|T

‖φt‖
2

N
. (15)

Second term. For any xt+1:T , one has

∣∣∣∣∣∣

(
πN

t|t, φtf
)(

π t|t − πN
t|t, φtf

)

(
πN

t|t, f
)

π t+1|t

∣∣∣∣∣∣
≤

∣∣∣
(
π t|t − πN

t|t, f
)∣∣∣

π t+1|t

‖φt‖ ,

thus

E





π t+1:T |T ,

(
πN

t|t, φtf
)(

π t|t − πN
t|t, f

)

(
πN

t|t, f
)

π t+1|t




2



≤ E






π t+1:T |T ,

∣∣∣
(
π t|t − πN

t|t, f
)∣∣∣

π t+1|t




2

 ‖φt‖

2

=
(
π t+1:T |T , π−2

t+1|tE
((

π t|t − πN
t|t, f

)2))
‖φt‖

2 (Jensen’s inequality)
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By Theorem 1 and Assumption 2,

E
((

π t|t − πN
t|t, f

)2)
≤ c t|t

f
2

N

and hence

E





π t+1:T |T ,

(
πN

t|t, φtf
)(

π t|t − πN
t|t, f

)

(
πN

t|t, f
)

π t+1|t




2

 ≤

c t|t

N

(
π t+1|T ,

f
2

π2
t+1|t

)
‖φt‖

2
.

(16)

Third term. One has

E





π t+1:T |T ,

(
πN

t|t − π t|t, φtf
)

π t+1|t




2



≤ E





π t+1:T |T ,

(
πN

t|t − π t|t, φtf
)2

π2
t+1|t





 (Jensen)

=
(
π t+1:T |T , π−2

t+1|tE
((

πN
t|t − π t|t, φtf

)2))

and, by Theorem 1 and Assumption 2, one obtains

E
((

πN
t|t − π t|t, φtf

)2)
≤

c t|t

N
f

2
‖φt‖

2
,

so that

E





π t+1:T |T ,

(
πN

t|t − π t|t, φtf
)

π t+1|t




2

 ≤

c t|t

N

(
π t+1|T ,

f
2

π2
t+1|t

)
‖φt‖ . (17)

The result follows by combining Eq. (13), (15), (16) and (17).
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Figure 1: Simulated data from nonlinear time series model. Top: hidden state
sequence xt; bottom: observed data sequence yt.
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Figure 2: Filtering density estimates from the particle filter output.
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Figure 3: Smoothed trajectories drawn from p(x1:100|y1:100).
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Figure 4: Kernel density estimate for p(x3:4|y1:100)
.
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Figure 5: Scatter plot of points drawn from p(x3:4|y1:100).
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Figure 6: Kernel density estimate for p(x27:28|y1:100).
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Figure 7: Scatter plot of points drawn from p(x27:28|y1:100).
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Figure 8: Kernel density estimate for p(x50:51|y1:100), using σ2
v = 1 and σ2

w = 9.
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Figure 9: Scatter plot of points drawn from p(x50:51|y1:100).
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Figure 10: Speech data. 0.62s of a US male speaker saying the words ‘...re-
warded by...’. Sample rate 16kHz, resolution 16-bit, from the TIMIT speech
database
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Figure 11: Noisy speech data - 1st 1000 data points
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Figure 12: Noisy speech, t=801,...,1000
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Figure 13: Posterior mean and 5/95 percentiles for filtered TV-PARCOR co-
efficient estimates

34



800 820 840 860 880 900 920 940 960 980 1000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t

z t

Figure 14: Filtered speech - estimated posterior mean (solid), noisy data (dot-
ted)
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Figure 15: 10 realizations from the smoothed signal process
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Figure 16: 4 realizations from the smoothing density for the signal process
(noisy data shown dotted in each case)
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Figure 17: Average of 10 realizations from the smoothing density (noisy data
shown dotted)

38



850 900 950 1000
−1

−0.5

0

0.5

1

t

ρ t,1

850 900 950 1000
−1

−0.5

0

0.5

1

t

ρ t,2

850 900 950 1000
−1

−0.5

0

0.5

1

t

ρ t,3

850 900 950 1000
−1

−0.5

0

0.5

1

t

ρ t,4

Figure 18: 10 realizations from the smoothing density for the TV-PARCOR
coefficients.
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Figure 19: 10 realizations from the smoothing density for the TV-PARCOR
coefficients - proposed simulation smoothing method (N = 2000)
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Figure 20: 10 realizations from the smoothing density for the TV-PARCOR
coefficients - standard trajectory-based method (N = 2000)
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Figure 21: 10 realizations from the smoothing density for the TV-PARCOR
coefficients - proposed simulation smoothing method (N = 500)
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Figure 22: 10 realizations from the smoothing density for the TV-PARCOR
coefficients - standard trajectory-based method (N = 500)
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