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Abstract. We consider inference for Cox processes in time where the intensity is
a parametrised function of an unobserved diffusion process. We design a particle
filter for the on-line estimation of the intensity function. The filter relies on a
time-discretisation in order to approximate the conditional density of the data
given the signal. We apply the smooth particle filter methodology of Pitt (2002)
to obtain maximum likelihood estimates of unknown parameters. We find that the
discretisation size has some moderate impact on the estimation of the state, when
parameters are assumed known, but big impact on the estimation of parameters.
Furthermore, we discover potential parameter identifiability problems. The paper
is concluded with currently investigated extensions.
Keywords. smooth particle filter, sequential Monte Carlo, diffusion process, du-
ration data

1 Introduction

Cox processes (e.g. Møller and Waagepetersen (2004)) are a very popular
modelling tool for clustered point patterns. The observed data are generated
by an inhomogeneous Poisson process with intensity function ν(·), which is
random positive function. The emphasis in on specifying computationally
convenient but flexible enough models for ν(·). Typically inference for the in-
tensity and unknown parameters is carried out by Markov chain Monte Carlo
algorithms. Such algorithms can be costly in computing time and difficult to
design efficiently to result in reasonable Monte Carlo error in the estimates.

The focus of this paper is on point processes which evolve in time for
modelling duration-type data. There is a lot of interest in such data struc-
tures, e.g. in financial econometrics for analyzing credit defaults (Schönbucher
(2003)) and the inter-arrival times (so called durations) of financial transac-
tions in a high frequency regime (Engle and Russell (1998)). In this context
we require a modelling and computational framework which can manage well
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with long time-series, as for instance one can have hundreds of durations per
day, and can be extended to model the joint evolution of several dependent
point processes. Hence we choose to model the intensity as a transformation
of a latent Markov process X with state space X , achieved by an appropriate
link function ν : X → R+. Due to the Markov assumption on X we can
express the joint evolution of observed and latent process in a continuous-
time state-space form, and resort to sequential Monte Carlo methods for the
on-line estimation of the intensity. This approach has the computational ad-
vantage of managing very well with long time series. Additionally, it leads
immediately to on-line predictions and it facilitates the use of certain model
diagnostics which can be applied to assess model assumptions. Further we
estimate unknown parameter using simulated maximum likelihood resorting
to the so-called smooth particle filter methodology of Pitt (2002).

We restrict attention to Markov processes which are solutions to stochastic
differential equations:

dXs = b(Xs)ds + σ(Xs)dBs , s ≥ 0 (1)

where B is a standard Brownian motion, b is called the drift and σ the diffu-
sion coefficient. Monte Carlo methodology for such Cox processes was recently
considered in Fearnhead et al. (2006). This framework naturally extends in
continuous-time existing latent autoregressive models for financial duration
data (Bauwens and Veredas (2004)), and it is amenable to multivariate ex-
tensions (by correlating the corresponding Brownian motions).

2 A discretised particle filter

Throughout this paper we will denote by upper case letter random variables
and by lower case their realisations. Let {yi}n

i=0 denote the observed arrivals,
where by convention we set y0 = 0. The conditional density of each arrival
given the previous and the path is

ν(xyi) exp

{
−

∫ yi

yi−1

ν(xs) ds

}
, (2)

where the second term accounts for the absence of arrivals on (yi−1, yi) and
the first for the arrival at yi. Hence, the conditional likelihood given only the
value of x at the arrival times is

p(yi | yi−1, xyi−1 , xyi) := ν(xyi)E

[
exp

{
−

∫ yi

yi−1

ν(Xs)ds

}]
, (3)

where the expectation is w.r.t. the conditional law of X given the endpoints
at times yi−1, yi, i.e. w.r.t. the diffusion bridge law.
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Our aim is to recursively calculate the filtering densities, that is the pos-
terior densities πi(xyi) := p(xyi | y0:i), where y0:i = (y0, . . . , yi), where π0

is a prior density chosen to reflect our prior belief for X0 (typically chosen
to have large support). Note that the normalising constant of this density
is p(yi | y0:i). Analytic calculation of the πi’s is typically impossible. The
standard Monte Carlo solution is to approximate πi(xyi

) by a discrete dis-
tribution whose support is a set of N particles, {x(j)

yi }N
j=1, with associated

probability weight {w(j)
i }N

j=1. Such approximation is propagated to the next
time point via Bayes’ theorem to yield

π̃i+1(xyi+1) ∝
N∑

j=1

w
(j)
i p(yi+1|yi, x

(j)
yi

, xyi+1)pyi+1−yi
(xyi+1 |x(j)

yi
), (4)

where pt(z | x) denotes the transition density of the diffusion. A particle filter
consists of the sequential application of these approximations, together with
an importance sampling mechanism for sampling from (4). To avoid explosion
of the variance, one needs to impose interaction among particles by occasion-
ally re-sampling them with probabilities proportional to their weights. This
would replicate particles with high weight and eliminate others with negli-
gible weight. We use the stratified re-sampling algorithm of Carpenter et. al
(1999). The error of the approximation induced by the particle filter is of
Monte Carlo type and in standard cases it is reduced as 1/

√
N .

Here we consider sampling from (4) by propagating each particle x
(j)
yi to

the next time point according to the system transition density, pyi+1−yi(·|x(j)
yi ),

in which case the weight of each new particle, x
(j)
yi+1 , is w

(j)
i p(yi+1|yi, x

(j)
yi , xyi+1).

This scheme works well when the conditional likelihood is not very peaked
relative to the transition density (which is the case in our problem).

There are two main challenges for applying the particle filter in the family
of Cox processes we consider. First, simulating from the system transition
density can be difficult since the latter is typically intractable. Second, the
conditional likelihood involved in the weights is intractable, since it requires
analytic computation of the expectation in (3), which for most processes X
will be impossible. A solution for both of these issues, when b and σ in (1)
satisfy certain conditions was provided in Fearnhead et. al (2008). Here we
take a more basic approach and augment the observed data with additional
observations in-between arrival times. We define a parameter δ > 0, which is
the maximum distance in time between two observations and discretise time
accordingly. Hence we obtain data at times 0 = t0 < t1 < . . . < tM = yn,
which is a superset of {yi}n

i=0, and construct a data set {zm}M
m=1, where

zm = 1 if tm = yi for some i, and 0 otherwise. Then we define

P [Zm = 0 | zm−1, xtm−1 , xtm ] = exp{−ν(xtm−1)(tm − tm−1)} . (5)

In this setting the conditional likelihood depends only the previous state
xtm−1 . However, this is only one of the possible discretisations of the sys-
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tem. Hence, in the new filter between time points tm and tm+1 we propagate
the particles according to the system dynamics and multiply their existing
weights by the conditional likelihood in (5). Simulation from the transition of
the diffusion process can be achieved by the Exact Algorithm (see Fearnhead
et. al (2008)) or alternatively it can be done approximately by some discretiza-
tion scheme. For fixed N , we recover the exact particle filter approximation
at the arrival times as δ → 0. Convergence to the filtering distributions as
δ → 0 and N →∞ is a subtle matter, see Del Moral et. al (2001).

3 Parameter estimation

Let θ be a vector which contains all the unknown parameters which appear
in the functions ν, b, σ. It is easy to check that the log-likelihood for a given
θ can be estimated by

`(θ; N, δ) ≈
M∑

m=1

log


 1

N

N∑

j=1

w(j)
m


 ;

(the dependence in δ is implicitly in the model approximation). We are in-
terested in exploring features of the likelihood surface such as the maximum,
profile likelihoods, level sets etc. Hence we want a simulation scheme which
yields a continuous (if not differentiable) map θ → `(θ; N, δ), for given N and
δ. Simulation of X as a smooth transformation of θ and random variables in-
dependent of θ is generally feasible for diffusions, and particularly easy when
approximate Gaussian schemes are used for its dynamics. However, setting up
the re-sampling scheme to have similar properties is hard, since small pertur-
bations of the weights can cause big changes in the evolution of the filter and
in the likelihood. The smooth particle filter of Pitt (2002) provides a novel
solution to this problem which applies when X is a one-dimensional process.
We make use of this technology to obtain maximum likelihood estimates and
profile likelihoods.

To illustrate our results we design a small simulation experiment, when X
is an Ornstein-Uhlenbeck process with drift b(x) = −ρ(x− µ), and constant
diffusion coefficient σ, and ν(x) = ex; thus, θ = (µ, ρ, σ2). Exact simulation
from the process transition density is simple in this case. Figure 1 shows state
estimation when keeping parameters fixed at their true values. The smaller δ
stabilizes the variance of the weights (we are re-sampling at every step of the
algorithm). It is interesting that re-sampling more often (as δ gets smaller)
does not deteriorate the filter, since it is done over increasingly smaller time
horizons and there is data information at the imputed times (no arrival).
With the smooth particle filter we estimate the parameters. Our results below
correspond to the same parameter values as above but time series of 2000
arrivals (and 1000 particles). The effect of the discretisation is serious: for
δ = 20 and δ = 0.5 we estimate (−0.91, 0.44, 0.16) and (−1.03, 0.31, 0.15)
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Fig. 1. Top: Intensity exp(xs) plotted on a fine time-grid and simulated arrivals
(denoted by “+”), where µ = −1, ρ = 0.3, σ2 = 0.15, n = 455, yn = 998.2 and N =
3000. 2nd-3rd rows: difference between intensity and posterior means together with
95% symmetric confidence intervals. 4th row: Effective Sample Size approximated
by (

∑N
j=1 w

(j)
i )2/

∑N
j=1(w

(j)
i )2.

respectively. Figure 2 (top) shows the profile likelihood for σ2 under the two
different discretisation levels. We have found that identification of both ρ and
σ2 is difficult unless we have very long time series. Figure 2 plots the profile
likelihood of σ2 and γ := σ2/2ρ for two different simulated datasets. It is
clear that whereas the latter is quite well estimated the information about
the former is weak and varies a lot with the dataset. However, experiments
with datasets of 10,000 arrivals show convergence of the MLE to the true
values.

4 Extensions

The results of our paper suggest that working with integrated quantities
is desirable to avoid the bias in the parameter estimation. Hence we wish to
extend the framework of Fearnhead et. al (2008) in the direction of parameter
estimation. We wish to study the effect that approximation of the dynamics
of the SDE has on the results. The asymptotic properties of the MLE in this
class of models is also of interest. A class of model diagnostics can be applied
on the output of the particle filter. Further, it is easy to consider heavier-
tailed observation equations by addition of unstructured random effects. The
framework lends itself to modelling dependent point processes, where state
estimation should not pose any problem but parameter estimation will require
careful thought.
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Fig. 2. Top: Profile log-likelihoods for σ2 under two discretisation levels. Bottom:
Profile log-likelihoods for σ2 and γ = σ2/2ρ, for two different datasets, with δ = 0.5
in both cases.
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