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The sequential importance sampling method and its various modifications have been developed
intensively and used effectively in diverse research areas ranging from polymer simulation to signal
processing and statistical inference. We propose a new variant of the method, sequential importance
sampling with pilot-exploration resamplin&ISPER, and demonstrate its successful application in
folding polypeptide chains described by a two-dimensional hydrophobic-hydropgHiRg lattice

model. We show by numerical results that SISPER outperformed several existing approaches, e.g.,
a genetic algorithm, the pruned-enriched Rosenbluth method, and the evolutionary Monte Carlo, in
finding the ground folding states of 2D square-lattice HP sequences. In a few difficult cases, the new
method can find the ground states without using any prior structural information on the chain. We
also discuss the potential applications of SISPER in more general problen290® American
Institute of Physics.[DOI: 10.1063/1.1494415

I. INTRODUCTION developed to compute the partition function of a long-chain
polymer modeled as a self-avoiding wallSAW) on a
k-dimensional lattice space. It was suggested that the self-

sequence, has attracted much attention from the scientift%vo'dIng conformation can be built up sequentially by add-

community in the past 30 years. Despite the many yearéng| one monomer at a time._The s_imple_ application of the
assaults from top scientists, the problem is still largely un_sequentlal buildup, however, is not ideal in most cases when

solved. Recently, scientists have turned to the much simpl € gham Is of moderat_e size—ihe smulated SAW can eas_lly
hydrophobic—hydrophilidHP) lattice modet? in order to run into cages before it ends. Some improvement strategies

gain some insight. It has been demonstrated that the ngave been proposed, including the lookahead strateyes,

17 : H 18 H
model exhibits many important proteinlike properties. How-PERM’ and SIS ng:sresahmpllngglél?)._ hm .':h's palper, .
ever, the folding prediction problem is “NP-complete” even W€ Propose a new scheme, with pilot-exploration

for the HP modef. The difficulty lies in the rugged energy res?‘mp"’?g(S'SPER and test it on the Zp HP IaFtlce ”?‘?de'-
landscape of the large conformation space, which is charaéa-‘ distinctive new feature of the ”.‘eth"d IS that, |n.add|t|.0n o
terized by many local minima and an exceedingly smal® lookahead stratggy when adding an amino acid re5|du_e, a
number of global optimal states. Traditional methods such a mall gample of P'IOJ_[ pa_ths are _sen_t out to .gather fu_ture n-
molecular dynamics and Metropolis Monte Carlo have bee ormation, _and this p|_Iot information is l.Jsed n we|ght|ng the
widely used for predicting the native fofdBut these meth- partial chains fgr enrlchmgnt and pruning. Ngmerlcal result;
ods tend to get stuck in energy traps and usually take a lon ho_Wed that this method is superior .to previous methods in
time to run for a chain of reasonable size. Many new Monte nding the ground state of a HP chain, even for long ones,

; ithout imposing any structural constraints.
Carlo methods have therefore been proposed to improve the . . :
search for the lowest energy conformation, of which a sig- Section Il introduces the 2D HP model and the basic SIS

nificant portion are iterative and the others are progressiveﬂqe.thOd for construc.tlng chaln pqumers. Septlon Il de-
The former class includes the simulated annediindpnte scribes a few strategies for improving the efficiency of SIS,

Carlo minimizatiorf the genetic algorithm,and the recently including the lookahead strategy, the resar_nplmg meth_od,
developed evolutionary Monte CaffoThe latter class, re- PERM, anq our new scheme pllot-explc_)ratl_on resampling
ferred to as the chain growth methods, includes the core(—PER' Section IVreports in detail the apphcaqon OfS.ISPER
directed chain growth methotCG) (Ref. 9 and pruned- to nine benchmarl_< HP sequences we found in the literature.
enriched Rosenbluth method®ERM).° Various ways of Section V pro_bes mtolthe_ways of mcorppratmg the secgnd-
incorporating structural information have also been Sug_ary structure information in the folding simulation. Section

gested by heuristics to improve the performance of thesé{l concludes with a brief discussion on the potential appli-
algorithms®~12 cation of SISPER in other problems.

Chain growth methods are variants of sequential impor-
tance samplingSIS), also known as the Rosenbluth method, Il. THE 2D HP MODEL AND SEQUENTIAL
which dates back to the 1956% The method was first IMPORTANCE SAMPLING

In the 2D HP model, a protein is abstracted as a se-
dAuthor to whom correspondence should be addressed. guence of hydrophobi@H for nonpolay and hydrophilic(P

The protein folding problem, i.e., the prediction of the
native structure of a protein molecule from its amino acid
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whereq; is the conditional sampling distribution &f given
previous partial conformatior; _,, andpy is the sampling
distribution forxy. In order to correct the bias introduced by
such constructions, the conformation is weighted by

W(Xg) = 7g(Xg)/Pa(Xq)-

This is just the importance sampling, except that the sam-

pling distribution is constructed sequentially. If we generate
FIG. 1. A conformation of putative ground energy36 found by SISPER ~ a samplex{" ... x{\) from the procedure, we can approxi-
for sequence $the 60-mer sequence mate(h) . , the expectation oh() with respect tomry, by

the weighted average of tlhréx,(j”). An appropriate design of

the conditional sampling distributiorgg() is the key to an

innovative and effective SIS methdg?°
for polap residues. The sequence occupies a string of adja- The Rosenbluth methdtifor estimating the total num-
cent sites on a two-dimensional square lattice. Only the selfoer of distinct conformations of a chain polymer is a special
avoiding conformations are valid with a simple interacting SIS Withq(x/x;-1) = 1/n;, wheren is the number of avail-
energy functione,y=— 1 andeyp= epp=0 for contacts be- able sites for placing, conditional on the first—1 torsion
tween noncovalently bounded neighbors. The native strucangles. Each successfully constructed chain is weighted by
ture of the sequence is defined as the conformation with thB1X--Xng and the unsuccessful ones weighted by 0. The
minimum energy. The 2D HP model tries to capture the pheaverage of these weights gives rise to an unbiased estimate of
nomenon that in the folding of a real protein, hydrophobicthe total number of conformations. More informatively, we
residues tend to form a core in the structure shielded frongan rewrite the conditional sampling distribution as
the surrounding solvent by hydrophilic residdesThis
knowledge has been incorporated in some search algorithms
to improve efficiency: %12

A conformation for a polypeptide chain of lengtht 2

can be represented by a vector of torsion anglgs where m is the uniform distribution on all self-avoiding
=(Xq,...,Xq), Wherex,=0 if turning 90° left, 1 if turning  walks witht torsion anglescorresponding to the Boltzmann
90° right, and 2 if continuing ahead. The total energy of adistribution ofx; with a constant total energgyOne can eas-
conformationxy, Uy(Xq), is simply the sum of all pairwise ily extend the Rosenbluth method to simulate foldings of a
interacting energies. For example, the total energy of thD HP sequence under the nonuniform Boltzmann distribu-
conformation in Fig. 1 is equal te- 36. The native structure tion (1). A simple method is to let
of the chain corresponds to the mode of the Boltzmann dis-
tribution,

O (Xe| X~ 1) = T (Xe| X~ 1),

(Xl Xe—1) = (X X~ 1)
B exp{— Ui(xy)/ 7}
S 3 exp{—Udx 1 x)/ 7}

ma(Xg) < exp{ — Ug(Xqg)/ 7} .Y

In addition to finding the native structure, it is also of interest

to simulate from and to compute mathematical expectationwhereU(x,) is the total energysum of all pairwise inter-

with respect to Eq(1).* In general, for anyt that satisfies acting energiesof the partial conformatior, .%°

1=<t=d, we callx;=(X4q,...,X;) a partial conformation, and

correspondingly, we define the energy function(x;) and

the Boltzmann distributionr,(x;) as in Eq.(1). We also de-

fine . (%) as the marginal distribution af, under the

distribution ary .  (X¢+ k) - lll. STRATEGIES FOR IMPROVING SEQUENTIAL
Iterative Monte Carlo methods simulate from the Boltz- IMPORTANCE SAMPLING

mann distribution by making a small change to the confor-a, The &step lookahead

mation x4 at each step so that the series of conformations L )
form a Markov chain with Eq.(1) as its equilibrium The self-avoiding chain constructed by the Rosenbluth

distribution!® The SIS method does not simulate from Eq_method has a serious attrition problem. Typically it cannot
(1) directly, but constructs, by adding one residue a time "IN 1ong enough. For example, on average it took rz‘rilore than
according to a series of conditional sampling distributions 100 trials to generate a chain polymer of length“48ts

Mathematically, the conformatioxy follows the distribution applicqtionSItg) the HP model performed even worse.
Meirovitch*>'® proposed a lookahead method to improve the

plain SIS. A&step lookahead method uses the set of sam-
Pa(Xa) = d1(X1)d2(X2|X1) - *Aa(XalXd-1), pling distributions,
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Sk s 1 O U 51 (Xm0, Xt Xt 10 Xew 5-1)/ 7}

! ! N
DDA xr 5o EXB = Ui oo 1(Xe-1.X¢ Xer 1,0 Xew 5-1)/ 7

Oe(Xe|Xe—1) = s 5-1(Xe| Xe—1) =

In other words, we first explore all the possible continualPERM, however, can always be run in serial, whereas the
conformations of the nex® residues exhaustively. These SISR has to grow multiple partial conformations in parallel.
conformations are then grouped according to whether the

immediate next residue is added by turning left, turning

right, or continuing ahead. A conformation of the immediate~ Pilot-exploration resampling

next residue X;) is then sampled with probability propor-

tional to the total sums of probabilities in each of the three N the sequential buildup of a long chain polymer, intu-
groups. itively, we can approximate better the target distributien

and get closer to the global mode if we use more “future”
information (i.e., the possible placements of the later resi-
B. Resampling and PERM dues)'. The &-step lookahead strategy needs to examine all the
) L possible paths of lengthand, thus, can only work for small
“F(.)r long chains or low temperaturg many chains “die 5 oyr new strategy is to send out a pilot exploration “team”
out” (i.e., run into cagesbefore it can be grown to the full 4 gpy on the future information, and compare this informa-
size, even when the lookahead method is used. Among thgsn across a set of partial conformations in order to decide
successfully constructed complete chains, their importancg,e resampling probabilities.

weightsw(xg) can be very skewed, resulting in many unrep-  pormally, suppose we have constructed a set of partial
resentative samples fory. To overcome some of these dif- conformationsS;={x{"’ ,j=1,...N}. The Pilot-Exploration

ficulties, Wall and _Erpenbe&% described an enrichment pesamplingPER scheme consists of the following steps:
method, which enriches those partial conformatidns., _

making more copigsthat look promising. Grassberdéin- (1) For each partial conformatior{’ in S;, a team ofm
troduced an important modification of the enrichment “‘members” are sent out to explor& steps ahead. More
method, named the Pruning Enrichment Rosenbluth Method ~ Precisely, we build orx{" the nextA residuesm inde-
(PERM), which stochastically prunes away partial conforma- ~ pendent times by the SIS to gd(x{},... x()}),]

tions with weights lower than a threshdii~, and enriches =1,...m}. A p-step lookahead method can be applied in
those with weights greater than another threshald, the generation of these pilot paths. _

In order to improve the SIS for a class of statistical com-(2) For each generated pilot pathof conformationx{!,
puting problems, Liu and Chéh proposed a resampling compute its Boltzmann weight with-step lookahead

method(SISR), which was later applied to the simulation of b=,y (x{ ,xIY ... xDY).

the HP model. A similar but more SpeCialized teChnique Waq3) The (unnorma”zeqj resamp”ng probabmt)ap) for con-
also developed independently for nonlinear filtering in signal  formationx!" is calculated as theth power of the av-
processing? The SISR has recently attracted much attention erage Ofogj 'l=1,...m.

from the engineering communi§.in this method, by com- (4) A resampling step for the se, is performed with the
paring the intermediate importance weights of a set of partial  probanility vector proportional toalt),...,aM}.
conformations simulated in parallel, one resamples a new set

of partial conformationgwhich effectively prunes away the The standard resampling methods include the simple
ones with relatively small weights and multiply the ones withrandom sampling and residual resampfgee Sec. 2 of the
large weights More precisely, suppose we have constructedAppendix. Resampling can be conducted after evemgsi-

a set of partial conformationss,={x{",... x™}, with their ~ dues are added. After resampling, we again usedtstep
partial importance weightsw(",... w{"), respectively. lookahead method to place the next residue.

Then, we create a new set of partial conformations by sam-  The algorithm has eight user-set parameters, namely,
pling from &; with probability a§” ,J=1,..N, and weight N, &\, m, A, p, anda. The larger the temperature parameter
each resampled conformation mf/al’). The resampling r is, the smaller the energy barriers. Howeverrifs too
probabilities can be chosen as proportionaW, but we large, we may not be able to obtain the conformation with
show in the next section that some other choices can be morainimum energy. In all of the examples, we explored with

beneficial. 7=0.1k,1=<k=<10. The next parameteN, is the number of
A main distinction between PERM and SISR is that with conformations that are constructed in parallel except in the
PERM one has to set the values &~ and W~ a priori, resampling step. Ideally, it could be as large as possible.

which may require a few rounds of preprocessing and mayncreasingN, however, will increase memory use and com-
take a substantial effort in order to get appropriate thresholgutation time. We tested witN ranging from 5000 to 10 000
values. The SISR method, on the other hand, considers dibr all of the examples. We should also consider computa-
the partial conformations in a pool and enriches or prunes théonal efficiency in setting the value faf, since when we
partial conformations after considering their relative weightsplace a residue, for each of tine partial conformations, all
This comparative strategy appears to be easier to automatie possible paths of lengthshould be examined. The num-
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TABLE I. 2D HP test sequences.

Sequence No. Length Sequence

1 20 HPHPPHHPHPPHPHHPPHPH

2 36 PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP

3 48 PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPP
HPPHHHHH

4 50 HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHH
HPHPHPHPHH

5 60 pPPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHH
HHHHPPPPHHHHHHPHHPHP

6 64 HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPP
HHPPHHPPHPHPHHHHHHHHHHHH

7 85 HHHHPPPPHHHHHHHHHHHHPPPPPPHHHHHHHHHHHHPP
PHHHHHHHHHHHHPPPHHHHHHHHHHHHPPPHPPHHPPHH
PPHPH

8 100 pPPPPPPHPHHPPPPPHHHPHHHHHPHHPPPPHHPPHHPHH
HHHPHHHHHHHHHHPHHPHHHHHHHPPPPPPPPPPPHHHH
HHHPPHPHHHPPPPPPHPHH

9 100 pPPPHHPPHHHHPPHHHPHHPHHPHHHHPPPPPPPPHHHHH
HPPHHHHHHPPPPPPPPPHPHHPHHHHHHHHHHHPPHHHP
HHPHPPHPHHHPPPPPPHHH

@The length denotes the number of residues of the sequence.
bSequences 1-7 are taken from Ref. 8. Sequences 8 and 9 are taken from Ref. 28.

ber of such paths grows exponentially wisi3° in the worst  lookahead. The parametarindicates how much “future in-
case, since there could be three possible ways to place tiermation” we want to use in the resampling. Intuitively, the
next residue at each step larger A is, the better the resampling scheme works. For
The rest of the user-set parameters are all related to th@nger sequence, larger could be used, in order to better
PI_ER scheme. Paramt_et)ercontrols the frequency of resam- escape from local energy trap. The valuenoghould be set
pling. We explored withh =2 andx =4 for all of the ex- such that the average of Boltzmann weights franpaths is

amples. Another strate@yis to monitor the coefficient of S .
o o7 . a reasonable approximation to the average target probability
variation of the sequential importance weigfgse Eq(Al) . .
of future conformations. A rule of thumb is to setto be of

in the Appendi}. In step(3) of the PER scheme, the average )
of b@'1=1,... m gives an indication of the average target COMParable magnitude t (e.g., between\ and ). The
probability of future conformations that we will obtain if we Parameter indicates how much confidence we want to put

further carry outA steps of SIS starting fromgj) for pilot ~ ©on the “future information;” the largew is, the more confi-
exploration. At each such SIS step, if we still usestep dence we have. Generally,should be smaller than 1, since
lookahead, the resampling step will be very slow, so insteagive do not want to “overtrust” the estimated future informa-
we setp to be smaller thad (e.g.,p=1 or 2) and usep-step  tion based on a small pilot sample.

TABLE Il. Comparison of SISPER with the genetic algoriti@A), the evolutionary Monte CarlEMC), and PERM when no structural information is
considered. For GA and EMC, the reported energy values are the lowest among five independent runs, and the values in the parentheses are the numbers o
valid conformations scanned before the lowest energy values were found. For SISRPERQO were used for each sequence. The CPU times spent on
SPARC Ultra machines with 167 MHz are reported in the parenthese for PERM when available.

Sequence No. Ground enefgy GAP EMC® PERM SISPER

1 -9 —9 (30492 -9 (9379 -9 -9

2 —-14 —14 (301 339 —14 (12 44% —14 —-14
3 -23 —22 (126 547 —23 (165 791 —23 ~23
4 —21 ~21 (592887 —21(74613 —21 —21
5 —-36 —34 (208 782 —35(203729 —36 —36
6 —42 —37(187 393 —39 (564 809 —40(4 1) —39
7 —52 —52
8 —47 —47 (1-2 day$ —48
9 —49 —48 (1-2 day$ —49

aGround energy refers to the putative lowest energy by design or that found by previous methods. The putative ground energies for sequencesdesd’ are reco
in Ref. 8. The putative ground energies for sequences 8 and 9 are recorded in Ref. 10.

bThe results of the genetic algorithm reported in Ref. 7. The GA was run with the population size 200 for 300 generations.

“The results of the evolutionary Monte Carlo reported in Ref. 8. For sequence 1, EMC was run for 5000 iterations with the population size 100. [ésr sequenc
2—-6, EMC was run for 1000 iterations with the population size 500.

The results of PERM reported in Ref. 10.

€The results obtained by SISPER. The reported results are obtainedw@t2 for sequence 4= 1.0 for sequence 6, anc=0.5 for the other sequences.
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S

FIG. 2. A conformation of putative ground energy52 found by SISPER
for sequence Tthe 85-mer sequenge

FIG. 4. A conformation of putative ground energy49 found by SISPER
IV. NUMERICAL RESULTS for sequence 9one of the 100-mer sequenges

SISPER is applied to simulate the foldings of the nine
2D HP sequences in Table I, witi=5,000, 5=5, A=2, SISPER with EMC, however, is fair since SISPER does not
m=20, A=20, p= 1, anda=0.5. We compare our method use further information in this regard. One of the gl’ound
with a genetic algorithn{GA) implemented in Ref. 7, the €nergy states for sequence 5 is displayed in Fig. 1. For se-
evolutionary Monte CarldEMC) implemented in Ref. 8, duence 7Athe 85-mer sequeniethe lowest energy found by
and PERM in Ref. 10. The number of valid conformationsthe GA (Ref. 26 was —47, far from the putative ground
scanned in GA and EMC for each sequence was listed in Regnergy value; EMC found the putative ground energy only
8. Comparing this number with the number of conformationsvhen a strong secondary structure constréamt 36 or 44
N in SISPER is not all that fair. In SISPER, each conforma-torsion angles irxy) was employed; SISPER found the pu-
tion is sequentially built up by thé-step lookahead method; tative ground energy easily without using any structural con-
whereas in GA and EMC, each conformation results from gtraint(see Fig. 2 GA and EMC have not been tested on
Markov Chain Monte Carlo step. Thus, SISPER takes moréeduences 8 and @he 100-mer sequengesut PERM has
time in constructing each valid conformation, and it takesbeen applied to them. It is reported in Ref. 10 that the lowest
more time in resampling steps. Because of resampling2nergy obtained by PERM was47 for sequence 8 and 48
SISPER needs to store all of the partial conformationsfor sequence 9 within 1-2 days of CPU time. With some
whereas in GA and EMC, one only needs to store the currerittructural constraint, PERM folded sequence 9 to a confor-
conformation for each member in the populatierg., 100 or ~ Mation with lower energy—49. For sequence 8, SISPER
500 in Ref. 8. The results are summarized in Table II. Therefound a new conformation with lower energy48 (see Fig.
was no information about time cost for EMC, so we could3)- SISPER also folded sequence 9 to a conformation with
not make such a comparison. For sequences 8 afttied energy —49 (see Fig. 4 without using any structural con-
100-mer sequencgsSISPER spent about 48 min in finding Straint.
the putative ground energy conformation, on a 600 MHz ~ The most difficult sequencéand the only difficult se-
Sony VAIO laptop with 128 MB memory. quence for SISPERis sequence @the 64-mer sequenge

The EMC failed to find the putative ground energy for Without any structural constraints, all the available methods
sequence Bthe 60-mer sequengeabove the value-36 first ~ failed to fold the sequence to the putative ground state. It is
found by PERM™ It has been arguédhat direct comparison argued in Ref. 10 that this sequence acts as a bottleneck for
of PERM with EMC is unfair, because PERM may build up PERM due to the lack of a folding center in the protein. As
its chain from any part of a sequence, and thus making use &own in Fig. 5, the putative ground-state conformation does

more information of the sequence. A direct comparison oflot show any advantage at first, but achieves the low energy
by placing the end residues symmetrically with the begin-

ning residues. This situation is especially unfavorable for
SISPER. We show in the next section, however, that SISPER
can also find the ground energy state by incorporating some
structural information.

FIG. 3. A new conformation of lower energy 48 found by SISPER for FIG. 5. A conformation of putative ground energy42 for sequence @he
sequence 8one of the 100-mer sequenges 64-mer sequenge
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(@) {b) ing, signal processing, bioinformatics, artificial intelligence,
etc1® Key aspects in the application of SISR to these prob-
I_I_I_I_I I_I_I_I_I lems are(a) a good design of the series of sampling distri-
butions, theq,()’s, and (b) an innovative resampling
FIG. 6. Secondary structures folded by a subsequence of hydrophobic resscheme. We hope that the encouraging results reported in this

dues.(a) Alpha helix with direction 1(b) Alpha helix with direction 2. article can interest some researchers to develop more sophis-
ticated SIS methods.

V. INCORPORATING STRUCTURAL INFORMATION
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that can contain all hydrophobic monomers, and then use

lookahead strategy to place segments of residues, penalizidPPENDIX: MATHEMATICAL DEFINITIONS

hydrophobic residues outside the core and hydrophilic resiAND THE GENERAL FRAMEWORK

dues inside the core. QG found the ground energy state foJ_r_ Sequential importance sampling

sequence 6 easily. It is well-known, however, that HP se-

quences usually have ground states that are not maximally Suppose we are interested in computing the mathemati-
compact’ The ground energy conformation for sequence 5cal expectation oh(x) with respect to a target distribution
(the 60-mer sequengéas an odd-shaped core, and thus ther, i.€.,

lowest energy obtained by CG was35 instead of the puta-

tive ground energy-36. We suspect that the CG does not (h)WIJ h(x) m(x)dx.

work well for sequence 8 or 9 either. EM®Ref. 8 folded

sequence 5, 6, and 7 to their putative ground energy states gyre importance sampling method suggests us to draw a ran-
incorporating secondary structure information, which, how-dom sample S={x*,... x\)} from a trial distribution,
ever, makes its performance depend on a secondary structupéx), and then estimatgh) . by

prediction procedure. By forbidding noncovalently bonded N
HP contacts, PERMRef. 10 folded sequence 6 and 9 to o= —> whnx®),
their putative ground energy states. Wi=1
We can also incorporate easily into SISPER the secondyherew) = 7(x(1)/p(x1) andwzszle(J)_
ary structure information. In both th&step lookahead sam- Definition 1(Ref. 18: A set of weighted random samples

pling and PER, we can treat the constrained subsequence B, W)™ | is called proper with respect tar if for any

a block of residues, and add the whole block to the previou§)quare integrable function(h),

partial conformation in one step. For sequence 6, if we con-

strain residues 1-10 to the alpha helix structure with direc- (h-w)p=c(h),

tion 1, and residues 55—-64 to the alpha helix structure WithNhere c is a norma"zing constant common to all the
direction 2 as in Ref. 8see Fig. 6, SISPER can easily fold samples

the chain to the putative ground energy state. Thus, importance sampling is a procedure that creates a
ThUS, inCOprfating structural information has the poten'set of random Samp|es proper|y We|ghted with respeo{-_to

tial of imprOVing the performance of conformational SearChSupposeX can be decomposed inud).components’ i.e.x

algorithms. The extent of improvement, however, depends-(x, ... x,). We need the following concepf.

strongly on the particular sequence of interest and the par-  pefinition 2 A probabilistic dynamic system is a se-

ticular algorithm. Without any structural information, we quence of probability distributions defined on spaces with
have shown that SISPER works so far the best for the 2D Hlﬁ]creasing dimensiomsﬂ-t(xt) for t:O,l,. . ’d, where Xt

benchmark sequences. =(Xq,....X), and my= is the target distribution
In the SIS framework,m(x;) should be a reasonable
VI. CONCLUSION AND DISCUSSION approximation to the marginal distributiomy(x;). For ex-

We have shown that SISPER is a top performer amon&mple’ in the protein folding problem, we use

the few available methods for folding the HP sequences ina  m(x,) <exp{—U(x,)/7}, (A1)
two-dimensional lattice space. The extension of SISPER t%vhereu (x,) is the energy function for the partial conforma-
work with 3D HP model is straightforward. With appropriate ion x na ay P
modifications and enhancements, we expect the method to be ! . . .

) . . . The SIS is a recursive procedure for generating a set of
useful for dealing with real protein sequences. It is aIsorandom samples properly weighted with respectricat all
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