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A new sequential importance sampling method and its application
to the two-dimensional hydrophobic–hydrophilic model

Junni L. Zhang and Jun S. Liua)

Department of Statistics, Harvard University, Cambridge, Massachusetts 02138

~Received 11 February 2002; accepted 24 May 2002!

The sequential importance sampling method and its various modifications have been developed
intensively and used effectively in diverse research areas ranging from polymer simulation to signal
processing and statistical inference. We propose a new variant of the method, sequential importance
sampling with pilot-exploration resampling~SISPER!, and demonstrate its successful application in
folding polypeptide chains described by a two-dimensional hydrophobic-hydrophilic~HP! lattice
model. We show by numerical results that SISPER outperformed several existing approaches, e.g.,
a genetic algorithm, the pruned-enriched Rosenbluth method, and the evolutionary Monte Carlo, in
finding the ground folding states of 2D square-lattice HP sequences. In a few difficult cases, the new
method can find the ground states without using any prior structural information on the chain. We
also discuss the potential applications of SISPER in more general problems. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1494415#
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I. INTRODUCTION

The protein folding problem, i.e., the prediction of th
native structure of a protein molecule from its amino a
sequence, has attracted much attention from the scien
community in the past 30 years. Despite the many ye
assaults from top scientists, the problem is still largely u
solved. Recently, scientists have turned to the much sim
hydrophobic–hydrophilic~HP! lattice model1,2 in order to
gain some insight. It has been demonstrated that the
model exhibits many important proteinlike properties. Ho
ever, the folding prediction problem is ‘‘NP-complete’’ eve
for the HP model.3 The difficulty lies in the rugged energ
landscape of the large conformation space, which is cha
terized by many local minima and an exceedingly sm
number of global optimal states. Traditional methods such
molecular dynamics and Metropolis Monte Carlo have be
widely used for predicting the native fold.4 But these meth-
ods tend to get stuck in energy traps and usually take a
time to run for a chain of reasonable size. Many new Mo
Carlo methods have therefore been proposed to improve
search for the lowest energy conformation, of which a s
nificant portion are iterative and the others are progress
The former class includes the simulated annealing,5 Monte
Carlo minimization,6 the genetic algorithm,7 and the recently
developed evolutionary Monte Carlo.8 The latter class, re-
ferred to as the chain growth methods, includes the co
directed chain growth method~CG! ~Ref. 9! and pruned-
enriched Rosenbluth method~PERM!.10 Various ways of
incorporating structural information have also been s
gested by heuristics to improve the performance of th
algorithms.8–12

Chain growth methods are variants of sequential imp
tance sampling~SIS!, also known as the Rosenbluth metho
which dates back to the 1950s.13,14 The method was firs

a!Author to whom correspondence should be addressed.
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developed to compute the partition function of a long-ch
polymer modeled as a self-avoiding walk~SAW! on a
k-dimensional lattice space. It was suggested that the s
avoiding conformation can be built up sequentially by ad
ing one monomer at a time. The simple application of t
sequential buildup, however, is not ideal in most cases w
the chain is of moderate size—the simulated SAW can ea
run into cages before it ends. Some improvement strate
have been proposed, including the lookahead strategies15,16

PERM,17 and SIS with resampling~SISR!.18 In this paper,
we propose a new SIS scheme, SIS with pilot-explorat
resampling~SISPER! and test it on the 2D HP lattice mode
A distinctive new feature of the method is that, in addition
a lookahead strategy when adding an amino acid residu
small sample of pilot paths are sent out to gather future
formation, and this pilot information is used in weighting th
partial chains for enrichment and pruning. Numerical resu
showed that this method is superior to previous method
finding the ground state of a HP chain, even for long on
without imposing any structural constraints.

Section II introduces the 2D HP model and the basic S
method for constructing chain polymers. Section III d
scribes a few strategies for improving the efficiency of S
including the lookahead strategy, the resampling meth
PERM, and our new scheme pilot-exploration resampl
~PER!. Section IV reports in detail the application of SISPE
to nine benchmark HP sequences we found in the literat
Section V probes into the ways of incorporating the seco
ary structure information in the folding simulation. Sectio
VI concludes with a brief discussion on the potential app
cation of SISPER in other problems.

II. THE 2D HP MODEL AND SEQUENTIAL
IMPORTANCE SAMPLING

In the 2D HP model, a protein is abstracted as a
quence of hydrophobic~H for nonpolar! and hydrophilic~P
2 © 2002 American Institute of Physics
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for polar! residues. The sequence occupies a string of a
cent sites on a two-dimensional square lattice. Only the s
avoiding conformations are valid with a simple interacti
energy function:eHH521 andeHP5ePP50 for contacts be-
tween noncovalently bounded neighbors. The native st
ture of the sequence is defined as the conformation with
minimum energy. The 2D HP model tries to capture the p
nomenon that in the folding of a real protein, hydrophob
residues tend to form a core in the structure shielded fr
the surrounding solvent by hydrophilic residues.1,2 This
knowledge has been incorporated in some search algorit
to improve efficiency.9,11,12

A conformation for a polypeptide chain of lengthd12
can be represented by a vector of torsion anglesxd

5(x1 ,...,xd), wherext50 if turning 90° left, 1 if turning
90° right, and 2 if continuing ahead. The total energy o
conformationxd , Ud(xd), is simply the sum of all pairwise
interacting energies. For example, the total energy of
conformation in Fig. 1 is equal to236. The native structure
of the chain corresponds to the mode of the Boltzmann
tribution,

pd~xd!}exp$2Ud~xd!/t%. ~1!

In addition to finding the native structure, it is also of intere
to simulate from and to compute mathematical expectati
with respect to Eq.~1!.4 In general, for anyt that satisfies
1<t<d, we callxt5(x1 ,...,xt) a partial conformation, and
correspondingly, we define the energy functionUt(xt) and
the Boltzmann distributionp t(xt) as in Eq.~1!. We also de-
fine p t1k(xt) as the marginal distribution ofxt under the
distributionp t1k(xt1k).

Iterative Monte Carlo methods simulate from the Bol
mann distribution by making a small change to the conf
mation xd at each step so that the series of conformati
form a Markov chain with Eq.~1! as its equilibrium
distribution.19 The SIS method does not simulate from E
~1! directly, but constructsxd by adding one residue a tim
according to a series of conditional sampling distributio
Mathematically, the conformationxd follows the distribution

pd~xd!5q1~x1!q2~x2ux1!¯qd~xduxd21!,

FIG. 1. A conformation of putative ground energy236 found by SISPER
for sequence 5~the 60-mer sequence!.
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whereqt is the conditional sampling distribution ofxt given
previous partial conformationxt21 , and pd is the sampling
distribution forxd . In order to correct the bias introduced b
such constructions, the conformation is weighted by

w~xd!5pd~xd!/pd~xd!.

This is just the importance sampling, except that the sa
pling distribution is constructed sequentially. If we genera
a samplexd

(1) ,...,xd
(N) from the procedure, we can approx

mate^h&pd
, the expectation ofh( ) with respect topd , by

the weighted average of theh(xd
( j )). An appropriate design o

the conditional sampling distributionsqt( ) is the key to an
innovative and effective SIS method.19,20

The Rosenbluth method14 for estimating the total num-
ber of distinct conformations of a chain polymer is a spec
SIS withqt(xtuxt21)51/nt , wherent is the number of avail-
able sites for placingxt conditional on the firstt21 torsion
angles. Each successfully constructed chain is weighted
n13¯3nd and the unsuccessful ones weighted by 0. T
average of these weights gives rise to an unbiased estima
the total number of conformations. More informatively, w
can rewrite the conditional sampling distribution as

qt~xtuxt21!5p t~xtuxt21!,

where p t is the uniform distribution on all self-avoiding
walks with t torsion angles~corresponding to the Boltzman
distribution ofxt with a constant total energy!. One can eas-
ily extend the Rosenbluth method to simulate foldings o
2D HP sequence under the nonuniform Boltzmann distri
tion ~1!. A simple method is to let

qt~xtuxt21!5p t~xtuxt21!

[
exp$2Ut~xt!/t%

(xt8 exp$2Ut~xt21 ,xt8!/t%
,

whereUt(xt) is the total energy~sum of all pairwise inter-
acting energies! of the partial conformationxt .20

III. STRATEGIES FOR IMPROVING SEQUENTIAL
IMPORTANCE SAMPLING

A. The d-step lookahead

The self-avoiding chain constructed by the Rosenbl
method has a serious attrition problem. Typically it cann
run long enough. For example, on average it took more t
100 trials to generate a chain polymer of length 48.21 Its
application to the HP model performed even wors
Meirovitch15,16proposed a lookahead method to improve t
plain SIS. Ad-step lookahead method uses the set of sa
pling distributions,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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qt~xtuxt21!5p t1d21~xtuxt21![
(xt11 ,...,xt1d21

exp$2Ut1d21~xt21 ,xt ,xt11 ,...,xt1d21!/t%

(xt
8 (xt11 ,...,xt1d21

exp$2Ut1d21~xt21 ,xt8 ,xt11 ,...,xt1d21!/t%
.
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In other words, we first explore all the possible continu
conformations of the nextd residues exhaustively. Thes
conformations are then grouped according to whether
immediate next residue is added by turning left, turni
right, or continuing ahead. A conformation of the immedia
next residue (xt) is then sampled with probability propor
tional to the total sums of probabilities in each of the thr
groups.

B. Resampling and PERM

For long chains or low temperaturet, many chains ‘‘die
out’’ ~i.e., run into cages! before it can be grown to the ful
size, even when the lookahead method is used. Among
successfully constructed complete chains, their importa
weightsw(xd) can be very skewed, resulting in many unre
resentative samples forpd . To overcome some of these di
ficulties, Wall and Erpenbeck22 described an enrichmen
method, which enriches those partial conformations~i.e.,
making more copies! that look promising. Grassberger17 in-
troduced an important modification of the enrichme
method, named the Pruning Enrichment Rosenbluth Met
~PERM!, which stochastically prunes away partial conform
tions with weights lower than a thresholdW,, and enriches
those with weights greater than another threshold,W..

In order to improve the SIS for a class of statistical co
puting problems, Liu and Chen23 proposed a resamplin
method~SISR!, which was later applied to the simulation o
the HP model. A similar but more specialized technique w
also developed independently for nonlinear filtering in sig
processing.24 The SISR has recently attracted much attent
from the engineering community.25 In this method, by com-
paring the intermediate importance weights of a set of pa
conformations simulated in parallel, one resamples a new
of partial conformations~which effectively prunes away th
ones with relatively small weights and multiply the ones w
large weights!. More precisely, suppose we have construc
a set of partial conformations,St5$xt

(1) ,...,xt
(N)%, with their

partial importance weights,wt
(1) ,...,wt

(N) , respectively.
Then, we create a new set of partial conformations by s
pling from St with probability at

( j ) , j 51,...,N, and weight
each resampled conformation bywt

( j )/at
( j ) . The resampling

probabilities can be chosen as proportional towt
( j ) , but we

show in the next section that some other choices can be m
beneficial.

A main distinction between PERM and SISR is that w
PERM one has to set the values forW, and W. a priori,
which may require a few rounds of preprocessing and m
take a substantial effort in order to get appropriate thresh
values. The SISR method, on the other hand, consider
the partial conformations in a pool and enriches or prunes
partial conformations after considering their relative weigh
This comparative strategy appears to be easier to autom
Downloaded 02 Aug 2002 to 128.103.60.202. Redistribution subject to A
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PERM, however, can always be run in serial, whereas
SISR has to grow multiple partial conformations in parall

C. Pilot-exploration resampling

In the sequential buildup of a long chain polymer, int
itively, we can approximate better the target distributionpd

and get closer to the global mode if we use more ‘‘futur
information ~i.e., the possible placements of the later re
dues!. Thed-step lookahead strategy needs to examine all
possible paths of lengthd and, thus, can only work for sma
d. Our new strategy is to send out a pilot exploration ‘‘team
to spy on the future information, and compare this inform
tion across a set of partial conformations in order to dec
the resampling probabilities.

Formally, suppose we have constructed a set of pa
conformationsSt5$xt

( j ) , j 51,...,N%. The Pilot-Exploration
Resampling~PER! scheme consists of the following steps

~1! For each partial conformationxt
( j ) in St , a team ofm

‘‘members’’ are sent out to exploreD steps ahead. More
precisely, we build onxt

( j ) the nextD residuesm inde-
pendent times by the SIS to get$(xt11

( j ) l ,...,xt1D
( j ) l ),l

51,...,m%. A r-step lookahead method can be applied
the generation of these pilot paths.

~2! For each generated pilot pathl of conformationxt
( j ) ,

compute its Boltzmann weight withr-step lookahead

bt
(j)l5pt1D1r21~xt

( j ) ,xt11
( j ) l ,...,xt1D

( j ) l !.

~3! The ~unnormalized! resampling probabilityat
( j ) for con-

formationxt
( j ) is calculated as theath power of the av-

erage ofbt
( j ) l ,l 51,...,m.

~4! A resampling step for the setSt is performed with the
probability vector proportional to$at

(1) ,...,at
(N)%.

The standard resampling methods include the sim
random sampling and residual resampling20 @see Sec. 2 of the
Appendix#. Resampling can be conducted after everyl resi-
dues are added. After resampling, we again use thed-step
lookahead method to place the next residue.

The algorithm has eight user-set parameters, namelt,
N, d, l, m, D, r, anda. The larger the temperature parame
t is, the smaller the energy barriers. However, ift is too
large, we may not be able to obtain the conformation w
minimum energy. In all of the examples, we explored w
t50.1k,1<k<10. The next parameter,N, is the number of
conformations that are constructed in parallel except in
resampling step. Ideally, it could be as large as possi
IncreasingN, however, will increase memory use and com
putation time. We tested withN ranging from 5 000 to 10 000
for all of the examples. We should also consider compu
tional efficiency in setting the value ford, since when we
place a residue, for each of theN partial conformations, all
the possible paths of lengthd should be examined. The num
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 02 Au
TABLE I. 2D HP test sequences.

Sequence No. Lengtha Sequenceb

1 20 HPHPPHHPHPPHPHHPPHPH
2 36 PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP
3 48 PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPP

HPPHHHHH
4 50 HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHH

HPHPHPHPHH
5 60 PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHH

HHHHPPPPHHHHHHPHHPHP
6 64 HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPP

HHPPHHPPHPHPHHHHHHHHHHHH
7 85 HHHHPPPPHHHHHHHHHHHHPPPPPPHHHHHHHHHHHHPP

PHHHHHHHHHHHHPPPHHHHHHHHHHHHPPPHPPHHPPHH
PPHPH

8 100 PPPPPPHPHHPPPPPHHHPHHHHHPHHPPPPHHPPHHPHH
HHHPHHHHHHHHHHPHHPHHHHHHHPPPPPPPPPPPHHHH
HHHPPHPHHHPPPPPPHPHH

9 100 PPPHHPPHHHHPPHHHPHHPHHPHHHHPPPPPPPPHHHHH
HPPHHHHHHPPPPPPPPPHPHHPHHHHHHHHHHHPPHHHP
HHPHPPHPHHHPPPPPPHHH

aThe length denotes the number of residues of the sequence.
bSequences 1–7 are taken from Ref. 8. Sequences 8 and 9 are taken from Ref. 28.
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ber of such paths grows exponentially withd ~3d in the worst
case, since there could be three possible ways to place
next residue at each step!.

The rest of the user-set parameters are all related to
PER scheme. Parameterl controls the frequency of resam
pling. We explored withl52 andl54 for all of the ex-
amples. Another strategy23 is to monitor the coefficient of
variation of the sequential importance weights@see Eq.~A1!
in the Appendix#. In step~3! of the PER scheme, the averag
of bt

( j ) l ,l 51,...,m gives an indication of the average targ
probability of future conformations that we will obtain if w
further carry outD steps of SIS starting fromxt

( j ) for pilot
exploration. At each such SIS step, if we still used-step
lookahead, the resampling step will be very slow, so inst
we setr to be smaller thand ~e.g.,r51 or 2! and user-step
g 2002 to 128.103.60.202. Redistribution subject to A
the

he

d

lookahead. The parameterD indicates how much ‘‘future in-
formation’’ we want to use in the resampling. Intuitively, th
larger D is, the better the resampling scheme works. F
longer sequence, largerD could be used, in order to bette
escape from local energy trap. The value ofm should be set
such that the average of Boltzmann weights fromm paths is
a reasonable approximation to the average target probab
of future conformations. A rule of thumb is to setm to be of
comparable magnitude toD ~e.g., betweenD and 2D!. The
parametera indicates how much confidence we want to p
on the ‘‘future information;’’ the largera is, the more confi-
dence we have. Generally,a should be smaller than 1, sinc
we do not want to ‘‘overtrust’’ the estimated future inform
tion based on a small pilot sample.
s
e numbers of
t on

are reco

sequenc

.

TABLE II. Comparison of SISPER with the genetic algorithm~GA!, the evolutionary Monte Carlo~EMC!, and PERM when no structural information i
considered. For GA and EMC, the reported energy values are the lowest among five independent runs, and the values in the parentheses are th
valid conformations scanned before the lowest energy values were found. For SISPER,N55000 were used for each sequence. The CPU times spen
SPARC Ultra machines with 167 MHz are reported in the parenthese for PERM when available.

Sequence No. Ground energya GAb EMCc PERMd SISPERe

1 29 29 ~30 492! 29 ~9 374! 29 29
2 214 214 ~301 339! 214 ~12 447! 214 214
3 223 222 ~126 547! 223 ~165 791! 223 223
4 221 221 ~592 887! 221 ~74 613! 221 221
5 236 234 ~208 781! 235 ~203 729! 236 236
6 242 237 ~187 393! 239 ~564 809! 240 ~4 h! 239
7 252 252
8 247 247 ~1–2 days! 248
9 249 248 ~1–2 days! 249

aGround energy refers to the putative lowest energy by design or that found by previous methods. The putative ground energies for sequences 1–7rded
in Ref. 8. The putative ground energies for sequences 8 and 9 are recorded in Ref. 10.

bThe results of the genetic algorithm reported in Ref. 7. The GA was run with the population size 200 for 300 generations.
cThe results of the evolutionary Monte Carlo reported in Ref. 8. For sequence 1, EMC was run for 5000 iterations with the population size 100. Fores
2–6, EMC was run for 1000 iterations with the population size 500.

dThe results of PERM reported in Ref. 10.
eThe results obtained by SISPER. The reported results are obtained witht50.2 for sequence 4,t51.0 for sequence 6, andt50.5 for the other sequences
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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IV. NUMERICAL RESULTS

SISPER is applied to simulate the foldings of the ni
2D HP sequences in Table I, withN55,000, d55, l52,
m520, D520, r51, anda50.5. We compare our metho
with a genetic algorithm~GA! implemented in Ref. 7, the
evolutionary Monte Carlo~EMC! implemented in Ref. 8,
and PERM in Ref. 10. The number of valid conformatio
scanned in GA and EMC for each sequence was listed in
8. Comparing this number with the number of conformatio
N in SISPER is not all that fair. In SISPER, each conform
tion is sequentially built up by thed-step lookahead method
whereas in GA and EMC, each conformation results from
Markov Chain Monte Carlo step. Thus, SISPER takes m
time in constructing each valid conformation, and it tak
more time in resampling steps. Because of resampl
SISPER needs to store all of the partial conformatio
whereas in GA and EMC, one only needs to store the cur
conformation for each member in the population~e.g., 100 or
500 in Ref. 8!. The results are summarized in Table II. The
was no information about time cost for EMC, so we cou
not make such a comparison. For sequences 8 and 9~the
100-mer sequences!, SISPER spent about 48 min in findin
the putative ground energy conformation, on a 600 M
Sony VAIO laptop with 128 MB memory.

The EMC failed to find the putative ground energy f
sequence 5~the 60-mer sequence!, above the value236 first
found by PERM.10 It has been argued8 that direct comparison
of PERM with EMC is unfair, because PERM may build u
its chain from any part of a sequence, and thus making us
more information of the sequence. A direct comparison

FIG. 2. A conformation of putative ground energy252 found by SISPER
for sequence 7~the 85-mer sequence!.

FIG. 3. A new conformation of lower energy248 found by SISPER for
sequence 8~one of the 100-mer sequences!.
Downloaded 02 Aug 2002 to 128.103.60.202. Redistribution subject to A
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SISPER with EMC, however, is fair since SISPER does
use further information in this regard. One of the grou
energy states for sequence 5 is displayed in Fig. 1. For
quence 7~the 85-mer sequence!, the lowest energy found by
the GA ~Ref. 26! was 247, far from the putative ground
energy value; EMC found the putative ground energy o
when a strong secondary structure constraint~on 36 or 44
torsion angles inxd) was employed; SISPER found the p
tative ground energy easily without using any structural c
straint ~see Fig. 2!. GA and EMC have not been tested o
sequences 8 and 9~the 100-mer sequences!, but PERM has
been applied to them. It is reported in Ref. 10 that the low
energy obtained by PERM was247 for sequence 8 and248
for sequence 9 within 1-2 days of CPU time. With som
structural constraint, PERM folded sequence 9 to a con
mation with lower energy249. For sequence 8, SISPE
found a new conformation with lower energy248 ~see Fig.
3!. SISPER also folded sequence 9 to a conformation w
energy249 ~see Fig. 4! without using any structural con
straint.

The most difficult sequence~and the only difficult se-
quence for SISPER! is sequence 6~the 64-mer sequence!.
Without any structural constraints, all the available metho
failed to fold the sequence to the putative ground state. I
argued in Ref. 10 that this sequence acts as a bottlenec
PERM due to the lack of a folding center in the protein. A
shown in Fig. 5, the putative ground-state conformation d
not show any advantage at first, but achieves the low ene
by placing the end residues symmetrically with the beg
ning residues. This situation is especially unfavorable
SISPER. We show in the next section, however, that SISP
can also find the ground energy state by incorporating so
structural information.

FIG. 4. A conformation of putative ground energy249 found by SISPER
for sequence 9~one of the 100-mer sequences!.

FIG. 5. A conformation of putative ground energy242 for sequence 6~the
64-mer sequence!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V. INCORPORATING STRUCTURAL INFORMATION

Various heuristics for incorporating structural inform
tion have been suggested. For example, the Core-Dire
Chain Growth~CG! method9 introduces search biases bas
on the knowledge that proteins have hydrophobic cores
constructs first a core, which is as nearly square as poss
that can contain all hydrophobic monomers, and then
lookahead strategy to place segments of residues, penal
hydrophobic residues outside the core and hydrophilic r
dues inside the core. CG found the ground energy state
sequence 6 easily. It is well-known, however, that HP
quences usually have ground states that are not maxim
compact.27 The ground energy conformation for sequence
~the 60-mer sequence! has an odd-shaped core, and thus
lowest energy obtained by CG was235 instead of the puta
tive ground energy236. We suspect that the CG does n
work well for sequence 8 or 9 either. EMC~Ref. 8! folded
sequence 5, 6, and 7 to their putative ground energy state
incorporating secondary structure information, which, ho
ever, makes its performance depend on a secondary stru
prediction procedure. By forbidding noncovalently bond
HP contacts, PERM~Ref. 10! folded sequence 6 and 9 t
their putative ground energy states.

We can also incorporate easily into SISPER the seco
ary structure information. In both thed-step lookahead sam
pling and PER, we can treat the constrained subsequenc
a block of residues, and add the whole block to the previ
partial conformation in one step. For sequence 6, if we c
strain residues 1–10 to the alpha helix structure with dir
tion 1, and residues 55–64 to the alpha helix structure w
direction 2 as in Ref. 8~see Fig. 6!, SISPER can easily fold
the chain to the putative ground energy state.

Thus, incorporating structural information has the pote
tial of improving the performance of conformational sear
algorithms. The extent of improvement, however, depe
strongly on the particular sequence of interest and the
ticular algorithm. Without any structural information, w
have shown that SISPER works so far the best for the 2D
benchmark sequences.

VI. CONCLUSION AND DISCUSSION

We have shown that SISPER is a top performer am
the few available methods for folding the HP sequences
two-dimensional lattice space. The extension of SISPER
work with 3D HP model is straightforward. With appropria
modifications and enhancements, we expect the method
useful for dealing with real protein sequences. It is a
worthwhile to note that the general SISR framework as o
lined in the Appendix and the pilot exploration resampli
idea can be applied more broadly to many other optimiza
and integration problems, such as those in statistical com

FIG. 6. Secondary structures folded by a subsequence of hydrophobic
dues.~a! Alpha helix with direction 1.~b! Alpha helix with direction 2.
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ing, signal processing, bioinformatics, artificial intelligenc
etc.19 Key aspects in the application of SISR to these pro
lems are~a! a good design of the series of sampling dist
butions, the qt( )’s, and ~b! an innovative resampling
scheme. We hope that the encouraging results reported in
article can interest some researchers to develop more so
ticated SIS methods.
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APPENDIX: MATHEMATICAL DEFINITIONS
AND THE GENERAL FRAMEWORK

1. Sequential importance sampling

Suppose we are interested in computing the mathem
cal expectation ofh(x) with respect to a target distributio
p, i.e.,

^h&p5E h~x!p~x!dx.

The importance sampling method suggests us to draw a
dom sampleS5$x(1),...,x(N)% from a trial distribution,
p(x), and then estimatêh&p by

û5
1

W (
j 51

N

w( j )h~x( j )!,

wherew( j )5p(x( j ))/p(x( j )) andW5( j 51
N w( j ).

Definition 1~Ref. 18!: A set of weighted random sample
$(x( j ),w( j )% j 51

m is called proper with respect top if for any
square integrable function h(•),

^h•w&p5c^h&p ,

where c is a normalizing constant common to all t
samples.

Thus, importance sampling is a procedure that create
set of random samples properly weighted with respect top.
Supposex can be decomposed intod-components, i.e.,x
5(x1 ,...,xd). We need the following concept.18

Definition 2: A probabilistic dynamic system is a se
quence of probability distributions defined on spaces w
increasing dimensions: p t(xt) for t50,1,...,d, where xt

5(x1 ,...,xt), and pd[p is the target distribution.
In the SIS framework,p t(xt) should be a reasonabl

approximation to the marginal distributionpd(xt). For ex-
ample, in the protein folding problem, we use

p t~xt!}exp$2Ut~xt!/t%, ~A1!

whereUt(xt) is the energy function for the partial conforma
tion xt .

The SIS is a recursive procedure for generating a se
random samples properly weighted with respect top t at all
stepst:

~1! At stage t, generatext from qt(xtuxt21), and let xt

5(xt21 ,xt);

si-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~2! Compute incremental weight,

ut5
pt~xt!

p t21~xt21!qt~xtuxt21!

and let weight wt5wt21ut . Thus xt’s are properly
weighted bywt’s with respect top t .

2. Re-examining the d-step lookahead and resampling

In the d-step lookahead, we samplext according to
qt(xtuxt21)5p t1d21(xtuxt21). This step needs one to ma
ginalize xt11 ,...,xt1d21 in the distributionp t1d21 , which
may not be feasible for larged in many problems. Indeed, i
we could let d5d2t11 at each step in the lookahea
method, the SIS would have produced a conformationxd that
follows the target distributionp exactly.

Suppose at stept, we have a collection of partia
samplesSt5$xt

( j ) , j 51,...,N%, which are properly weighted
by Wt5$wt

( j ) , j 51,...,N% with respect top t . Given any~un-
normalized! resampling probability vector At

5$at
(1) ,...,at

(N)%, we can conduct resampling and get a se
N* samples that are~approximately! properly weighted with
respect top t . The simple random sampling just drawsN*
i.i.d. samples fromSt with the probability vectorAt . The
residual resampling20 with probability vectorAt proceeds as
follows:

~1! Retainkj5@N* at
( j )# copies ofxt

( j ) , j 51,...,N. Let Nr

5N* 2k12¯2kN .
~2! ObtainNr iid draws fromSt with probabilities propor-

tional to N* at
( j )2kj , j 51,...,N.

~3! For a newly obtained samplext
(* j ) , its new weight is

wt
(* j )5wt

( l )/at
( l ) , if xt

(* j ) is a resample ofxt
( l ) in St .

~4! Return the new set of samplesSt* 5$xt
(* j ) , j 51,...,N* %

with weightsWt* 5$wt
(* j )), j 51,...,N* %.

PER uses future information to assign the resampling pr
ability vectorAt .
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