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In this review, we describe applications of the pruned-enriched Rosenbluth method (PERM), a
sequential Monte Carlo algorithm with resampling, to various problems in polymer physics. PERM
produces samples according to any given prescribed weight distribution, by growing configurations
step by step with controlled bias, and correcting “bad” configurations by “population control”. The
latter is implemented, in contrast to other population based algorithms like e.g. genetic algorithms,
by depth-first recursion which avoids storing all members of the population at the same time in
computer memory. The problems we discuss all concern single polymers (with one exception), but
under various conditions: Homopolymers in good solvents and at the © point, semi-stiff polymers,
polymers in confining geometries, stretched polymers undergoing a forced globule-linear transition,
star polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA
melting, and finally — as the only system at low temperatures, lattice heteropolymers as simple
models for protein folding. PERM is for some of these problems the method of choice, but it can
also fail. We discuss how to recognize when a result is reliable, and we discuss also some types of

bias that can be crucial in guiding the growth into the right directions.

I. INTRODUCTION

Research in the field of polymer physics has grown vig-
orously since the 1950s [1H4]. Recent developments in
the techniques for the tools of atomic force microscopy
(AFM) [5], in fabrication of nanoscale devices and in
single-chain manipulation techniques [6-8] open possibil-
ities for a broad range of applications in physical chem-
istry, biotechnology and material science. During this
time, much effort has also been put into studying the
statistical properties of polymers by computer simula-
tions |9, [10]. Indeed, due to the richness of the ob-
served phenomena and the non-triviality of the problems
involved, polymer physics has from the very beginning
served as a playground for developing novel Monte Carlo
strategies [11H13]. These strategies depend strongly on
the problems one is interested in: Linear versus branched
polymers, dilute versus dense systems, scaling laws ver-
sus detailed material properties, classical versus quantum
mechanical problems, implicit versus explicit treatment
of solvent, etc.

In this review we shall only deal with one class
of algorithms, the pruned-enriched Rosenbluth method
(PERM) [14]. So far it has been used for classical
physics only, although closely related methods have also
been used since long ago for quantum mechanical simu-
lations [15]. Although it is not a panacea and fails miser-
ably in many problems, it still found applications to sev-
eral of the above dichotoma, and in some cases it beats
the (presently known) competitors by huge margins.

In the following we shall mostly be concerned with sin-
gle unbranched molecules moving freely in a dilute sol-
vent. Later we will also consider branched polymers and
polymers attached to surfaces. The basic characteristics
of linear polymer chains depend on the solvent condi-
tions. At high temperatures or in good solvents repulsive
interactions (the excluded volume effect) and entropic ef-

fects dominate the conformation, and the polymer chain
tends to swell to a random coil. At low temperatures or
in poor solvents, however, attractive interactions between
monomers dominate the conformation and the polymer
chain tends to collapse and form a compact dense globule.
The coil-globule transition point is called the ©-point.
Based on field theory [3], the behavior of polymer chains
in good solvents is well understood. In the thermody-
namic limit (as the chain length N — o0), the partition
function scales as

Z~u NN at T > Te (1)

where o is the critical fugacity and « is the entropic
exponent related to the topology. Below the ©-point, a
collapsed polymer can essentially be viewed as a liquid
droplet. According to the Lifshitz mean field theory |2,
4], a surface term should be included in the partition sum
as

Z ~a"bN Nl at T < To (2)

with s = (d —1)/d and b > 1.

Generally speaking, the thermodynamic limit of a
polymer system coincides with the limit when the chain
length N tends to infinity. For conventional Monte Carlo
(MC) methods such as the Metropolis algorithm, one can
only simulate moderately large systems, the maximal fea-
sible values of N depending on the temperature and on
the degree of reality of the model. Going from simple
lattice-based models at high temperatures to models with
realistic interactions and further to folded proteins with
explicitly included solvent, Ny, ,x might decrease from 10%
to < 100. If one is interested mostly in scaling laws (as
we shall be), one simulates at several values of N and
uses finite-size scaling (F'SS) to extrapolate the behavior
of the considered thermodynamic quantities to N — oo.
Rather often, either very large finite-size effects have to
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be considered or it is too difficult to reach equilibrium
states or to produce sufficiently many independent con-
figurations. For some problems (not for alll), it was a big
breakthrough when (PERM) |14, [16-18] was proposed in
1997. It is particularly efficient for temperatures near the
O collapse, where chains of length up to N = 1,000, 000
could be sampled with high statistics, and it was con-
firmed unambiguously that the © collapse is a tricritical
phenomenon with upper critical dimension d. = 3 |3].
Since then, many other applications have also been made.
Many other applications have also been made successfully
by PERM |[18], which provide in some cases a deep under-
standing on the scaling behavior of polymer chains under
different solvent conditions, geometrical confinements, on
the phase transition behavior of polymer chains adsorbed
onto a wall, on polymers stretched by a force, etc.

In the next section we give a detailed description of
the basic algorithm. This algorithm can be made sub-
stantially more efficient by a suitable bias in the growth
direction, and two biases (including ‘Markovian anticipa-
tion’) are discussed in Sect. 3. Applications are treated
in Sects. 4 (©-polymers), 5 (stretched polymers in poor
solvents), 6 (semiflexible polymers), 7 (polymers in con-
fining geometries), 8 (branched polymers with fixed tree
topologies), 9 (lattice animals), 10 (protein folding), and
11 (DNA melting). Finally the paper concludes with a
summary in Sect. 12.

II. ALGORITHM: PRUNED-ENRICHED
ROSENBLUTH METHOD (PERM)

In statistical thermodynamics, the partition function
for a canonical ensemble in thermal equilibrium is defined
by

Z(B) = Qa)=>_ exp(—BE(a)) (3)

here 8 = 1/kgT, E(«a) is the corresponding energy for
the atP configuration, Q(a)/Z is the Gibbs-Boltzmann
distribution, and Q(a) = exp(—fFE(«)) is normally
called the Boltzmann weight. If each configuration is
repeatedly and independently chosen according to a ran-
domly chosen probability p(«) (a bias), the partition sum
is rewritten as

Z= lim Z (4)

M —o0

where M is the number of trials and
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with modified weights

W(a) = Q(a)/p(a). (6)

If we use p(a) x exp(—BE(a)) {Gibbs sampling}, each
contribution to Zp; has the same weight, which is an

example of the so called ‘importance sampling’. The es-
timate for any observable A is given by

i Zact A@W(a)
Saca W)

In general, we expect that statistical fluctuations of (A4)
are minimal, at given M, if we use importance sampling
and if all trials are independent. In general this is infeasi-
ble. The Metropolis method achieves perfect importance
sampling at the cost of highly correlated trials. PERM
tries, with a completely different strategy, at a compro-
mise between importance sampling and independence.

Things are best illustrated by a linear chain of N 4 1
monomers in an implicit solvent, modeled by an inter-
acting self-avoiding walk (ISAW) of N steps on a sim-
ple (hyper-)cubic lattice of dimension d. The interac-
tions in this model are (i) the chain connectivity which
enforces that adjacent monomers sit on adjacent lattice
sites; (ii) self-avoidance that excludes configurations in
which the same lattice site is occupied by two or more
monomers; and attractive interactions (energies e < 0)
between non-bonded monomers occupying neighboring
lattice sites. Writing ¢ = exp(—0e) for the Boltzmann
factor, the partition sum is

Zn(g) =Y q" (8)

walks

<A> = lim <A>]\4 =

M —o0

(7)

M—o0

where m denotes the total number of non-bonded nearest
neighbor pairs. The solvent quality is varied by changing
the temperature T'.

In the original Rosenbluth-Rosenbluth (RR)
method [11], polymer chains are built like random
walks by adding one monomer at each step. At the
0" step, the first monomer is placed at an arbitrary
lattice site. For this “chain” of length N = 0, the
weight is trivially W, = 1. For the first step one has
2d possibilities and no interactions yet, giving Wi = 2d.
For subsequent steps one has to take self-avoidance into
account. When a monomer is added to a chain of length
N — 1, one scans the neighborhood of the chain end
to identify the free sites on which a monomer could be
added. If there are ngee > 1 free neighbors, the next
step is chosen uniformly among them, while the walk
is killed if ngee = 0 (“attrition”). After this step the
weight Wi is updated by multiplying Wx_1 by

wn = q"" [P, (9)

where p,, = 1/ngee and my, is the number of neighbors of
the new site already occupied by non-bonded monomers
(notice that m = 27]:7:0 my). Therefore, after N steps
the total weight is

N
WNszWN_l=...:wNwN_1...w0: Hwn.
n=0

(10)
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FIG. 1. Schematic drawings of building a SAW from the 0" step to the 4" step and the associated weight at each step. At the
oth step, we set the weight Wy = wo = 1, and the probability po = 1. The Rosenbluth bias is used here such that p, = 1/nfree

at each step, so the total weight W,, = Hﬁiénﬁcc.

When the chain length N becomes very large, the method
fails for two reasons: First of all, attrition implies that
only an exponentially small fraction of trials survive and
give any contribution at all. Secondly, as the weight fac-
tors w, are weakly correlated random variables, the full
weight Wiy will show huge fluctuations. Thus the surviv-
ing configurations will finally be dominated by a single
configuration, demonstrating a dramatic lack of impor-
tance sampling.

PERM [14] was invented to overcome this shortcom-
ing of the RR method. The main spirit of PERM is as
follows,

e Polymer chains are built like random walks by
adding one monomer at each step.

e A Rosenbluth-like bias is used for choosing one of
the nearest neighbor free sites for the next step of
the walk, but a wide range of probability distribu-
tions can be used depending on the specific prob-
lem at hand, which will be discussed in detail in
the following sections.

e In order to overcome attrition and to reduce the
fluctuations of W,,, one uses “population control”.
This is achieved by pruning some low-weight con-
figurations and cloning (“enriching” [12]) all those
with high weight, as the chain grows. To define
‘low’ and ‘high’ weights, one uses two thresholds
W,F and W, . If at any step n the current weight
W,, according to (I0) would be > W, , we make
k additional copies (typically k& = 1) of the cur-
rent configuration and give each copy a weight
W, = w,Wy_1/(k + 1). On the other hand, if
(@A) would give W,, < W, we call a random num-
ber r € [0,1]. If r < 1/2 we kill the configura-
tion. Otherwise, we keep it and double its weight,
W, = 2w, Wy _1. It is easy to see that pruning and
cloning leave all averages unchanged. It improves
importance sampling enormously, but it also leads
to correlated trials.

For most problems the choice of the thresholds W,F
and W is unproblematic, and they can be chosen
simply as constant multiples of the the current es-
timate of the partition sum given by (&),

WH=0C,%2, and W, =C_Z,, (11)

were Cy and C_ are constants of order unity. A
good choice for the ratio between C; and C_ is
found to be C;/C_ ~ 10 in most cases. If ()
does not lead to good results, chances are that the
method would not work with any other choice ei-
ther. If the method works well, (I gives sam-
ples where the total number of length n configu-
rations is independent of n, i.e. attrition is com-
pletely eliminated and pruning & cloning compen-
sate each other exactly (up to statistical fluctua-
tions), for large n. For the first trials (when there
is not yet any estimate Zn), we choose normally
W,” = 0 and W,F = co (a very large number like

n

10199) which gives the original RR method.

e The copies made in the enrichments are placed on
a stack, and a depth-first implementation is used
for the chain growth: At each time one deals with
only a single configuration until a chain has either
grown to the maximum length N or has been killed
due to attrition. If the first happens or if the stack
is empty, a new trial is started. Otherwise, the
configuration on top of the stack is popped and
the simulation continues. This is most easily im-
plemented by recursive function calls. Since only
a single configuration has to be remembered dur-
ing the run, this requires much less memory than a
breadth-first implementation that uses an explicit
“population” of many configurations, as it is tradi-
tionally used e.g. in genetic algorithms.

e As we said, configurations obtained from different
clones of the same ancestor will not be uncorre-
lated. The set of all such configurations is called a
“tour”. Different tours are uncorrelated. Depend-
ing on the amount of cloning/pruning, however, the
correlations within a tour could be so strong as to
render the method obsolete. In that case the dis-
tributions P(In(W)) of logarithms of tour weights
W is very broad, so that we are basically back to
the problem of the RR method (with single tri-
als replaced by tours): Averages might be domi-
nated, in extreme cases, by a single tour. For check-
ing against this, we simply look at P(In(WW)) (see
Fig. @), and compare it with the weighted distri-
bution WP(InW). If WP(In W) has its maximum
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FIG. 2. Histograms of logarithms of tour weights P(In W)
normalized as tours per bin, and weighted histograms
W P(In W) are shown as indicated. Weights W are only fixed
up to a f-dependent multiplicative constant. The simulation
shown in panel (a) is reliable, while that in panel (b) is not.
Adapted from Ref. [19].

at a value of In W where the distribution P(In W)
is well sampled, we are on the safe side. If not,
then the results can still be correct, but we have no
guarantee for it. An illustration of these two cases
is shown in Fig. 2 [19]. Fig Rl(a) shows that the
sampling is sufficient and the statistical weight dis-
tribution is reliable, but Fig. (b) shows the oppo-
site situation where the result might be completely
wrong.

III. BIASED GROWTH

An important aspect of the method is that in general,
for high efficiency, one should choose judiciously a bias
in the growth, in order to reduce as much as possible the
fluctuations of the weight factors w,,. The optimal choice
of bias is often a result of trial and error, as there exists
no general theory for it. The two choices discussed in the
following subsections are often useful, but by no means
in all cases — and other choices may be useful in other

applications.

One aspect of PERM that often decides the success
or failure is that any bias that improves the growth at
an intermediate stage should also be helpful later, i.e. it
should not lead the growth into a dead end. One ap-
plication where this is violated dramatically is e.g. the
problem of random walkers in a medium with randomly
placed traps (the “Wiener sausage” problem, leading to
the famous Donsker-Varadhan stretched exponential sur-
vival probability [20]). In this problem walkers should, to
maximize their survival chance at very long times, stay
very close to their starting point. On the other hand,
for short times the path integral (partition sum) is dom-
inated by walkers who venture out to explore a larger
area, even if that might mean they get killed by a trap.
Since this system can be mapped onto a polymer prob-
lem, one can apply PERM to it [21]. These PERM simu-
lations gave indeed the first unambiguous numerical ver-
ification of the Donsker-Varadhan law, nevertheless they
completely failed for very long times, because both bias
and population control conspired to “mislead” the walk-
ers [21] to venture too far out.

A. Global Directional Bias

Assume you want to simulate a polymer whose one end
is held fixed at x = 0, and the other end is pulled away
by a constant force F. In Sect. [V] we shall discuss in de-
tail the case of a poor solvent where the stretching might
unfold the dense globule into which the unstretched poly-
mer would collapse. Here we just discuss qualitatively a
polymer in a good solvent, i.e. a stretched SAW.

This system could of course be simulated by an un-
biased SAW, and the stretching could be taken into ac-
count by reweighing each obtained configurations with a
Boltzmann weight o< exp(—fx - F). But this would be
extremely inefficient for large F, since weights would be
very uneven, and “correct” configurations would be very
rare and would have very high weight.

A much better strategy is to use a bias in the direction
of the next step of the walk in the direction of F. The
amount of the optimal bias cannot be determined a priori,
but depends also on the excluded volume effect which
helps to push the end further away in the direction of
the bias. We do not show any data here, but we just
mention that the simulations get easier with increasing
F, since the walk resembles more and more an ordinary
biased walk in this limit, and pruning/cloning events get
more and more rare.

B. PERM with k-step Markovian anticipation

A less trivial bias is suggested by the fact that a grow-
ing polymer will predominantly grow away from the al-
ready existing part of the chain. This could be modeled
crudely by determining the center of mass of that part,



and biasing the growth away from it. A better strategy
is to learn on the fly how a typical short existing chain
(of k£ monomers, say) would bias the further growth in
detail, and to remember at any time the previous k steps.
This is called Markovian anticipation |16, [22-24).

The crucial point of the k-step Markovian anticipation
is that the (k + 1)'" step of walk is biased by the history
of the previous k steps, i.e., the bias depends on the last
k steps. Let’s consider the general case of a walk on a
d-dimensional hypercubic lattice. At each step i, a walk
can move towards to one of the 2d directions denoted by
s$; =0, ..., 2d — 1. All possible configurations of (k + 1)
steps (i = —k, —k+1, ..., —1, and 0), which are in total
(2d)**! configurations, are labelled by

S=(s_x, ..., S_1, So) = (8, So) (12)
here s and sy denote the configurations of the previous
k steps and the (k + 1) step, Either during a separate
auxiliary run or during the first part of a long run we
build a histogram H,,(S) with (2d)**! entries. For any
S, the value of H,,(S) is the sum of all contributions to
Zn+m of configurations that had coincided with S during
the steps n — k, n —k + 1, ..., and n, summed over all
n in some suitable range excluding transients. Typical
values for 3-d SAWs might be £ = 10, m = 100, n > 300.
Then H,,(S)/Hy(S) measures how successful configura-
tions ending with S were in contributing to the partition
sum m steps later. The bias in k-step Markovian antici-
pation for the next step is thus defined by

Hm(57 So)/Ho(S, So)

P(sgls) = .
(ol S 2 Hon(s, sh)/ Hols. )

(13)

IV. ©-POLYMERS

The first application of PERM was to ©-polymers in
three dimensions [14]. As we said, the upper critical di-
mension for the © collapse is d = 3, whence we expect
ordinary random walk behavior with logarithmic correc-
tions. These corrections have been calculated to lead-
ing 23] and next-to-leading [26] orders. The experimen-
tal verification of these corrections is highly non-trivial,
because one has to use extremely diluted solutions in or-
der to avoid coagulation of different chains, and thus the
signals are very weak. Nevertheless, they have been ob-
served in small-angle neutron scattering |27)].

A. A Single ©-Polymer

It is for this problem that PERM shows the biggest
improvement over all other Monte Carlo methods. The
reason is that at the © point entropic and energetic
(Boltzmann-) effects cancel exactly in the limit N — oo.
For finite N they do not cancel exactly (this gives rise
to the logarithmic corrections), but it is still true that
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FIG. 3. The mean square end-to-end distance R% plotted
against N in a log-log scale (a) and against 1/In N in the
normal scale (b) [14]. R?*/N « 1 —37/(3631n N) is indicated
by the straight line. Adapted from Ref. [14].

the weight factors w, are very close to 1. Thus hardly
any pruning/cloning is needed, and to a first approxima-
tion the simulation reduces simply to a straightforward
simulation of random walks with small weight correc-
tions. Full PERM simulations for very long chains (the
longest chains in [14] had N = 10%) do require in average
one pruning/cloning step for every 2000 ordinary random
walk steps. Therefore, in chain length n the algorithm
effectively performs a random walk with diffusion coeffi-
cient D ~ 2000. Asymptotically for N — oo the algo-
rithm still needs O(N?) steps to create one independent
configuration of full length, but the coefficient is tiny.

Indeed, since a growing polymer with endpoint in a
locally denser region might feel an elevated Boltzmann
factor at step n, but feels the compensating entropic dis-
advantage only one step later, the optimal algorithm that
produced these results was a slight modification of the
algorithm described in the previous section, where the
population control was based on a modified weight with
incremental weight factors

/

wy, = q"" [Pny1- (14)



instead of ([@). Results are shown in Fig. Bl The-
ory [25] predicts leading logarithmic corrections to be
R% /N « 1—37/(363InN), which would be a straight
line in Fig. Bl(b) with very small negative slope. Com-
pared to that, the corrections to random walk behav-
ior seen in Fig. Blb) are much larger, although they are
clearly smaller than one would expect for, say, a power
law correction. It was indeed shown in |26] that the next-
to-leading term increases the deviation from mean field
behavior and improves thus the agreement between the-
ory and simulation, but a fully quantitative verification
remains elusive.

Far below the To, PERM becomes inefficient, and it
is instructive to see why: In strongly collapsed globules,
polymer configurations are locally similar to those in a
dense melt, and are well approximated by simple random
walks without any correlations |3]. But this implies that a
collapsed chain with N = 1000 has a configuration that is
completely different from the first 1000 monomers of, say,
a collapsed chain of 8000 monomers. The former would
form a compact globule, while the latter would form a
rather dilute structure. Thus, similar to the problem
discussed at the end of the last section, bias and pop-
ulation control during the early stages of growth would
be completely misleading as far as late stages of growth
are concerned. Otherwise said, by effectively disallowing
configurations that are initially dilute and fill the inte-
rior only during the later growth, the entropy is severely
underestimated.

B. Unmixing Transition of Semidilute Solutions of
very long Polymers

Let us now consider a semidilute solution of polymers
of common length N slightly below the Tg temperature.
The “unmixing” transition at which these polymers coag-
ulate and phase separate from the solute is, for any finite
chain length N, in the Ising universality class [28]. As
N — 00, the transition temperature T, should approach
To from below. Since the Ising model has upper criti-
cal dimension d, = 4, but the ©-point has upper critical
d. = 3, all critical exponents referring to collective prop-
erties (correlation length, specific heat) should be that
of the Ising model, while properties characterizing the
N-dependence (e.g. radii of gyration, critical concentra-
tion, Te — T..) should be mean field like with logarithmic
corrections. In particular, the monomer density at the
critical point should scale as

.~ N2 (15)

up to logarithms of N.

A long standing problem in the 1990’s was that all
experiments showed ®. ~ N™% with x. = 0.38 + 0.01
[28], which was considered as incompatible with theory —
in particular, since experimenters viewed any prediction
of logarithmic corrections with great skepticism.

PERM can be easily modified for multi-chain systems,
simply by placing the first monomer of a new chain not
near the end of the last chain, and by applying the correct
combinatorial factors that take into account the identi-
ties of different chains [29]. Such simulations are very
inefficient for short chains, since then T, < T, but they
become more and more efficient as N — co. They showed
clearly that the deviations from (&) are not due to a
different critical exponent, as was believed at this time,
but due to logarithmic corrections [29]. These are much
larger than predicted by theory [30], but this was to be
expected in view of the results for single isolated chains.

V. STRETCHING COLLAPSED POLYMERS IN
A POOR SOLVENT

As a collapsed polymer chain of chain length N is
stretched by an external force under poor solvent con-
ditions, one observes from a collapsed globule phase to a
stretched phase, as the stretching force is increased be-
yond a critical value |31]. This phase transition is first
order in d = 3 dimensions, as is also suggested by the
analogy of the Rayleigh instability of a falling stream of
fluid, but it seems to be second order in d = 2 [31]. Here
we shall only discuss the 3-d case.

This is modeled as a biased interacting self-avoiding
random walk (BISAW) on a simple cubic lattice in three
dimensions. Assuming that a chain is stretched in the
x-direction by the stretching force F = Fé, (é;, is the
unit vector in the x-direction), an additional bias term
b* is incorporated into the partition sum given by (&),
where b = exp(faF) is the stretching factor (a is the
lattice constant) and « is the distance (in units of lattice
constants) between the two end points of the chain in the
direction of F. The partition sum is therefore

Zn(g,b)= Y ¢"b" . (16)

walks

The poor solvent condition is indicated by ¢ > go where
go = e~ </FTo ~ 1.3087(3) [14]. According to the scal-
ing law (@), in the thermodynamic limit N — oo, the
partition sum for polymers in a poor solvent scales as

—InZn(g,b=1) = fioo(¢)N 4+ 6(q)N?/? — (y =1)In N
(17)
with poo being the chemical potential per monomer in an
infinite chain, and & is related to the surface tension o.
Choosing ¢ = 1.5 which is deep in the collapsed region,
we performed simulations of BISAW with PERM. In or-
der to improve the efficiency, each step of a walk is guided
to the stretching direction with a higher probability. The
nt" step of walk (adding the (n+1)*" monomer) is toward
one of the free nearest neighbor sites of the n'" monomer
in the parallel, antiparallel, and transverse direction to

F with probability: p, : p_ :py = vb:+/1/b: 1. Thus



we have
0 if the step of the walk toward to
. the ¢ — direction is forbidden
bi = (0)
Ps oy otherwise
Zallowedj p;
(18)
The corresponding weight factor at the n*" step is then
Moy bAwi
win = qi ? (19)
bi

where m,, is the number of non-bonded nearest neighbor-
ing pairs of the (n + 1)*® monomer. Ax; =0, 1 or —1 if
the displacement (r, 11 — r,,) between the (n + 1)™ and
n*" monomers is in the direction perpendicular, parallel,
and antiparallel to F, respectively. The total weight of a
chain of length n is then

W, =[] wi, - (20)

Using (@Bl and (III), chains are cloned and pruned if their
weight is above 3Z, and below Z, /3, respectively.

Results of In Zn(q,b) + pooN plotted against N are
shown in Fig.[|a) for various values of b. For small b the
curves are close to the curve for b = 1. As b increases,
the initial (small-N) parts of these curves are straight
lines with less and less negative slopes. In this regime the
polymer is stretched. Aslong as these slopes are negative,
the straight lines will intersect the curve for b = 1 at some
finite value of N, say N.(b), i.e. for the finite system of
chain length N, (b) the corresponding effective transition
point is b. For N > N.(b), the values of In Zn (g, b)+tco N
must deviate from the straight lines { see Refs. [21] and
[31] } for the detailed explanations. Since the curve for
b = 1 becomes horizontal for N — oo, the true phase
transition occurs at that value of b for which the straight
line in Fig. @{a) is also horizontal. This can be estimated
very easily and with high precision, giving for ¢ = 1.5
our final estimate b, ~ 1.856(1).

To clarify that the transition is indeed a first-order
phase transition, one can study the histograms of z and
m since PERM gives direct estimates of the partition sum
and of the properly normalized histograms. The general
formula of the histogram is

Pyy(m,z) = > ¢ b S Gaar - (21)

walks

Reweighting histograms obtained with runs performed
nominally at ¢’ and b’ is trivially done by

Pyp(m,x) = Py y(m,x)(g/q)" (/)" . (22)

Combining results from different runs can then be either
done by selecting for each (m, ) just the run which pro-
duced the least noisy data (which was done here in most
cases), or by assuming that the statistical weights of dif-
ferent runs are proportional to the number of “tours” [14]
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FIG. 4. (a) In Zn(q,b) + poo N for d = 3,q = 1.5, and for vari-
ous values of b. The value pioc = —1.753040.0003 used in this
plot was obtained from dense limit simulations on finite lat-
tices |31]. (b) Histograms of the end point distance P(z) ver-
sus x/N for ¢ = 1.5. Biases were adjusted so that both peaks
have equal height: b = 1.4040 (N = 500), 1.4925 (N = 1000),
1.5386 (N = 1500), 1.5658 (N = 2000), 1.5855 (N = 2500).
Normalization is arbitrary. The peak at /N ~ 0 corresponds
to the collapsed phase, the other one to the stretched phase.
Adapted from Ref. [31].

which contributed to P, (m,z). Note that for conven-
tional Metropolis-type Monte Carlo algorithms, it is not
trivial to combine MC results from different temperatures
since the absolute normalization is unknown [32].

An example of histograms P(x) for fixed ¢ = 1.5 and b,
plotted against /N are shown in Fig. @{b) for N = 500,
1000, 1500, 2000, and 2500. The value of b is determined
such that the two peaks have the same height for each
N, ie., b.(N) = b is the effective transition point for
the finite system of size N. In addition the normaliza-
tion factor is chosen arbitrarily to make all peaks having
similar height for convenience. Using (22), each curve in
Fig. E(b) contributed by the properly reweighting data
from different runs for various values of b. Obviously,
with increasing N, we see that the distance between
two peaks increases and the minimum between the peaks
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FIG. 5. Rescaled mean square end-to-end distance

(R%)/(26,N?") plotted against the chain length N for semi-
flexible chains with ¢, = 1 and various values of ¢, on a log-
log scale. Here v ~ 0.588 is the Flory exponent for SAWs in
d = 3. Adapted from Ref. [36].

shrinks to zero. This gives a strong evidence for the first-
order transition. Notice that a double peak structure
with decreasing minimum alone would not be a conclu-
sive proof, as shown e.g. by the ©-point in dimensions
d > 4 [33] and by some non-standard percolation mod-
els [34).

VI. SEMIFLEXIBLE POLYMER CHAINS

Based on a Flory-like treatment [1, [35], for a chain
with n units of the Kuhn length (x, and diameter d
randomly linked together such that the contour length
L = N{, = nlg (there are (N + 1) monomers in the
chain and connected by the bond length ¢;), the effec-
tive free energy of such a semiflexible chain contains two
terms as follows,

AF ~ R?/(lx L) + vaR? [(L/0k)/R?]” . (23)

The first term is the elastic energy which is obtained
by treating the chain as a free Gaussian chain, hence
one can immediately write down the probability of the
end-to-end distance R, which agrees with the Gaussian
distribution. Therefore, the elastic energy is simply the
logarithm of this distribution. The second term is the
repulsive energy due to pairwise contacts where the sec-
ond virial coefficient vy = ¢%.d, the density of monomers
p=n/R3=LR3/lk and the volume V = R2. Minimiz-
ing AF with respect to R, one obtains the Flory-type
result for self-avoiding walks as L — oo (N — o)

Re = (va /L) YO L3/ = (Ued)Y/P(NG)Y/° . (24)

The minimum contour length L where the exclusive vol-
ume is effective, i.e. the second term in (23)) is negligible
in comparison with the first one if N < N*, and using the

scaling law of the square for the end-to-end distance of
a Gaussian chain, R? = {x L = (x{,N, the upper bound
of the chain length for describing the Gaussian chain is
obtained with

N* =03/ (0,d?) . (25)

As L < Lk, the chain shows a rod-like behavior, the lower
bound of the chain length for the Gaussian chain is given
by £ /ly. Therefore, the intermediate Gaussian behavior
should only exist for

fk/beNSN* (26)

For a linear semiflexible polymer chain (d = ¢) under
good solvent conditions, one would expect to observe
both a crossover from rigid rod-like behavior to almost
Gaussian random coils, then a crossover to self-avoiding
walks when the chain stiffness varies.

In order to verify the prediction, it requires an effi-
cient algorithm to generate sufficient samples for very
long semiflexible chains since the results should cover the
linear length scales in the three different regimes. PERM
was first applied to this in [36]. The model described
below had indeed been studied by means of PERM al-
ready in [37], where however most emphasis was put on
the question whether the collapse transition changes from
second to first order as the stiffness is increased. This was
predicted by mean field theories [38]. The simulations
in [37] supported the prediction, but were dangerously
close to the significance limit discussed in Sect. 2.

The above scaling relations for chains without self at-
traction were studied in [36]. Semiflexible polymers were
there modelled by SAWs on the simple cubic lattice, with
a bending energy €,(1 — cos6). Here 6 is the angle be-
tween the new and the previous bonds (only 6 = 0 and
6 = +7/2 are possible on a simple cubic lattice). The
partition function of the SAWs of N steps with Npeng
local bends (where 6 = +7/2) is

ZN Noowa (@) = D C(N, Npena)gp ™ (27)
config.

where ¢, = exp(fep) is the appropriate Boltzmann fac-
tor (g» = 1 for ordinary SAWSs), and C(N, Npend) is the
total number of chain configurations containing (N + 1)
monomers and Npeng local bends.

In the simulation, the walk of length n — 1 at the n®
step can be guided to either walk straight ahead in any
direction, or make an L-turn. Of course, it is only al-
lowed to walk to the free nearest neighbor sites of the
n*" monomer. The ratio of probabilities between the for-
mer case and the latter case is chosen as 1/¢,. Since
the stiffness of the chain is controlled by ¢,, we give
less probability to make an L-turn as g, becomes smaller
which corresponds to the case that the chain is stiffer.
Results of the rescaled mean square end-to-end distance
(R%)/(20,N?¥) plotted against the chain length N up to
N = 50000 for 0.005 < g, < 1.0 are shown in Fig. For



FIG. 6. Schematic drawing of a polymer chain confined be-
tween two walls located at z = 0 and z = D+ 1. For our sim-
ulations, chains are grown from the starting point (xo, yo, 20)-
Here z¢ and yo are fixed but zo = 1,2,...,D.

stiffer chains, namely for smaller values of ¢, we do see a
rod-like regime at the beginning for not very long chains
then a cross-over to a Gaussian regime, and then finally
the excluded volume effect becomes more important for
very long chains, and a horizontal plateau is developed.
For very small g3, although the maximum chain length is
up to 50000, it does still not yet reach the SAW regime.
However, this is the first time that one can give evidence
for the existence of the intermediate Gaussian coil regime
[26) by using computer simulations.

VII. POLYMERS IN CONFINING
GEOMETRIES

A. Polymers Confined between Two Parallel Hard
Walls

It is a challenge to verify the theoretical scaling pre-
dictions for single polymer chains of length N confined
between two parallel hard walls with distance D away
from each other (Fig.[f) due to the difficulty of producing
long polymer chains by MC simulations and the existence
of very large finite-size corrections. For unconstrained
SAWs, it is well know that the asymptotic scaling be-
havior is reached rather slowly with correction terms de-
creasing only as N9 [39-41]. Therefore, in addition to
SAWs, we studied also the Domb-Joyce (DJ) model [42]
with v = 0.6 (where convergence to asymptotia is much
faster |40, [41]).

In the DJ model, polymers are described by lattice
walks where monomers sit at sites, connected by bonds
of length one, and multiple visits to the same site are
allowed, (i.e. the polymer chain is allowed to cross itself),
but the weight is punished by a repulsive energy € > 0
for any pair of monomers occupying the same site. Each
pair contributes a Boltzmann factor v = exp(—[¢) to the
partition sum. Thus, the partition sum of a linear chain
consisting of N + 1 monomers is given by

Zn(v) = Z o™, (28)

configs.

where the sum extends over all random walk (RW) con-
figurations with N steps, 0 < v < 1, and m is the to-
tal number of monomer pairs occupying a common site,
m =), ;0x;x; (X; denotes the position of the monomer
7). For v = 1, it corresponds to the ordinary RW. For
v = 0 it is just the SAW model. In the thermodynamic
limit where N — oo, the DJ model is in the same uni-
versality class of SAW for all v < 1. There is a “magic”
value of the interaction strength v = v* = 0.6 where cor-
rections to scaling are minimal and asymptotic scaling
is reached fastest |40, 41]. In the renormalization group
language, the flow speed of the effective Hamiltonian ap-
proaching its fixed point depends on v. Moreover, it is
approached from opposite sides when v < v* and when
v > v*, with v* = 0.6.

There exist important theoretical predictions for the
monomer density profile p(z) and the end monomer den-
sity profile p.(z) near the wall given by Eisenriegler et
al. 46, 47] as follows:

p(z) ~ 2Hvs (29)
and

pena(2) ~ 2071V 08O (30)
where z is the distance from the wall and y() is the
entropic exponent for 3D SAW with one end grafted on
an impenetrable wall. One should also expect that the
density near the walls is proportional to the force per
monomer f. Indeed it was shown by Eisenriegler |46]
that

f a -1-1/
=B D v 31

V3 oo

im k22 _ g

2—0  Zl/vs

with B being a universal amplitude ratio. For ideal
chains one has B = 2, while for chains with excluded
volume in 4 — ¢ dimensions one has B & 2(1 — bi€) with
by = 0.075 [48]. In three dimensions this gives the pre-
diction B = 1.85.

In order to check the above mentioned theoretical pre-
dictions, we simulate the SAW model and the DJ model
on the simple cubic lattice with the confinement of a slab
with width D by using PERM with 6-step Markovian an-
ticipation. For estimating the monomer density profiles
p(z) we only count those monomers in the central part
of the chain, excluding 10% on either side to avoid er-
rors from the fact that ([29) should hold only far away
from the chain ends, for monomer indices n satisfying
D? < n < N — D? (we should mention that N/D? > 10
for all data sets). Results of p(z) obtained from the sim-
ulations are normalized such that Zle p(z) = 1. Since
we simulate single polymer chains between two walls at
z=0and z =D + 1, we can assume that

o)~ 5ph (5

- . _ _ 1/vs
~ s D+1) with fo(€) = A[E(1 - ©)

(32)
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FIG. 7. Results of the monomer density profiles p(z) obtained
for the DJ model. (a) Rescaled values of monomer density
(D + 1)p(2) plotted against & = z/(D + 1). The function
fo(&) = 18.74(£(1 — €))Y/*3. (b) The same data as in (a),
divided by fo(€), plotted against a modified scaling variable,
& = (2+9)/(D+1+426) with 6 = 0.04. The prefactor in ([BI)
for z=0and z = (D + 1) — oo is 0.71(3). Adapted from
Ref. [24].

where the constant A = 18.74 is determined by normal-
ization. We plot the rescaled values of the monomer den-
sity (D 4+ 1)p(z) against £ in Fig. [[{a) for the DJ model.
It looks like that the scaling law [29)) is satisfied and our
data are described by the function fy(§) quite well for
z € [0,D + 1]. But, we actually miss the important in-
formation near the two walls in such a plot. A prefactor
on the right hand side of (32) is probably not a constant.
In order to give a precise estimate of the amplitude B
@BI) we introduce here an “extrapolation length” J as
suggested in [45] so that the scaling variable £ is replaced
by

z+46

“D+1+20° (33)

&
Using the same data of p(z) but divided by
fo(&s), the best data collapse shown in Fig. [[(b)
is obtained by taking 6 = 0.04. It leads to
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lim, 0, pseo DTV 271/%p(2) /A = 0.71(3). Since the
extrapolation length § = 0.04 for the DJ model is much
smaller than ¢ = 0.15 for SAWSs {see Fig. 7 in Ref. [24]},
it gives a first indication that corrections to scaling are
indeed smaller in the DJ model. Using BI), it gives
B = 1.70 £ 0.08. This is only 2 standard deviations
away from the renormalization group expansion predic-
tion or €. = 4 — d expansion prediction B = 1.85 of
Eisenriegler [46], which we consider as good agreement.

B. Escape Transition of a Polymer Chain from a
Nanotube

The confinement or escape problem of polymer chains
in cylindrical tubes of finite length has the merit that it is
potentially very relevant to experiments and applications
such as the problem of polymer translocation through
pores in membranes and the study of DNA confined in
artificial nanochannels [6-8]. The following treatment is
based on [49-51].

Considering a polymer chain of length N with one end
grafted to the inner wall of a cylindrical nanotube with
finite length L and diameter D under good solvent condi-
tions, the chain configuration is compressed uniformly as
D decreases or N increases, but L is fixed. Beyond a cer-
tain compression force, the chain configuration changes
abruptly from a homogeneously stretched and confined
state (imprisoned state) to an inhomogeneous state (es-
caped state) where polymer chains form a flower-like con-
figuration with one stem confined in the tube and a coiled
crown outside the tube (see Fig, ). This abrupt change
implies a first order transition. Since the theory based
on the blob picture failed to predict the transition from a
homogeneous state to an inhomogeneous state, the Lan-
dau theory approach is used for describing such a first
order transition including the metastable states. In the
Landau theory approach, all configurations are subdi-
vided into subsets associated with a given value of an
appropriately chosen order parameter s that allows to
distinguish between different states or phases. The full
partition function of the system is therefore obtained by
integrating over the order parameter:

7 = exp(—F) = / dsexpl—®(s)],  (34)

where ®(s) is the free energy of a given set, and is there-
fore a function of the order parameter. Here the order
parameter s is defined by the stretching degree, i.e. the
ratio between the end-to-end distance of monomer seg-
ments which are still confined in the tube, Rimp, and
the number of monomers confined in the tube, Nimp. As
shown in Fig.[@ we see that near the transition point the
Landau free energy function has two minima, the lower
minimum is associated with the thermodynamically sta-
ble state, which corresponds to the equilibrium free en-
ergy (either Fin,, or Feg) of the system, while the other
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FIG. 8. Schematic drawings of a flexible polymer chain of length N grafted to the inner wall of a tube of length L and diameter
D at the transition point. (a) As the chain is fully confined in the tube (in an imprisoned state), it forms a sequence of
ny = ND~'/¥ blobs in a cigar-like shape, here v = v3 is the Flory exponent in d = 3. (b) As one part of the chain escapes from
the tube (in an escaped state), it forms a flower-like configuration which consists of a “stem” containing N¢, monomers and a

“crown” containing N — N, monomers.
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FIG. 9. The Landau free energy per monomer,

®(N,L,D,s)/N plotted against the order parameter s near
the transition point for the tube of length L = 1600 and di-
ameter D = 17.

minimum corresponds to the metastable state [50, |51].
At the transition point, both minima are of equal depth.

In our simulations, we describe the grafted single poly-
mer chain confined in a tube by SAWs of N steps on a
simple cubic lattice with cylindrical confinement {0 <
x < L, y*> + 22 = D?/4}, and the first monomer is at-
tached to the center of the inner wall of the tube. Taking
the advantage of PERM that the associated weight of
each generated configuration is exactly known, we intro-
duce a new strategy in order to obtain sufficient sam-
plings of the flower-like configurations in the phase space
as follows: We first apply a constant force along the tube
to pull the free end of a grafted chain outward to the
open end of the tube as long as the chain is still con-
fined in a tube, and release the chain once one part of
monomer segments of it is outside the tube. Varying
the strength of the force, we obtain flower-like configura-
tions containing stems with various stretching degree of
monomer segments which are still confined in a tube if
the length N is long enough. The contributions for the es-
caped states are therefore given by properly reweighting
these configurations to the situation where no extra force
is applied. This is done by using biased SAWs (BSAWs)

on a simple cubic lattice with finite cylindrical geome-
try confinement, similar to the model in (I6]), but we use
here ¢ = 1 to describe the good solvent condition.

With PERM, the total weight of a BSAW of N steps
(N + 1 monomers) is Wy,(N, L, D) = ITY_ w,, with w,, =
bEnt1=2n) [ for n > 1 and wo(N,L,D) = 1. p, is
chosen as in ([I8)). The estimate of the partition sum is
given by

. 1

Zy(N,L,D) = i > Wi(G) (35)
configs.€Cy

where a set of configurations is denoted by Cp. Thus,
each configuration of BSAWs with the stretching factor
by, contributes a weight W*) (N, L, D) for a BSAW of N
steps with b = 1 confined in a finite tube of length L and
diameter D:

We, (N, L, D) /b, ™" oy <L
ka(NvaD)/bév IN>L
(36)
where index k labels runs with different values of the
stretching factor b. Combining data runs with different
values of b, the final estimate of the partition sum is

)

W®(N,L,D) = {

Z(N,L,D):%Z > w®(N,L,D) (37)

k configs.€Cy,

here M is the total number of trial configurations.

The  distribution of the order parameter,
P(N,L,D,s) «x H(N,L,D,s), is obtained by accu-
mulating the histograms H(N,L,D,s) of s, where
H(N,L,D,s) is given by,

H(N,L,D,s) = &>, H®(N,L,D,s)

= % Zk Zconfigs. € Cka(k) (N7 L7 D7 S/)(Ss,s’

and the partition sum of polymer chains confined in a
finite tube can be written as

Z(N,L,D) = ZH(N,L,D, s) (38)

in accordance with [37). Thus, one can also double check
the results of the partition sum.



The Landau free energy ®(N, L, D, s) here is the ex-
cess free energy related to the polymer chains with
one end tethered to an impenetrable flat surface, i.e.
6(N,L,D,s) = —In[P(N,L,D,s)/Zi(N)] (Zi(N) ~
uN N7 =1 [52]). Results shown in Fig.@are for L = 1600,
D =17, and for N/L = 5.5, 5.7, 5.9. This shows that
the information about metastable states can also be ex-
tracted from the simulations with PERM.

VIII. PERM FOR BRANCHED POLYMERS

WITH FIXED TREE TOPOLOGIES

In this section we shall discuss two types of branched
tree-like polymers: Star polymers (where all branches
emanate from one single point) and “bottle brushes”
where side chains of common lengths are attached to a
backbone at regularly spaced points.

To be concrete, let us consider the simplest case of
a branched polymer, a star polymer where f arms are
grafted to a single branch point, and all arms have the
same length V.

As a linear chain is built by using PERM, at each step
one monomer is added to the built chain until the chain
has reached its maximum length N or it has been killed
in between. For growing a star polymer we have to be
aware that not only the interactions between monomers
in the same arm have to be considered but also the in-
teractions between monomers on different arms have to
be taken into account. If one arm is grown entirely be-
fore the next arm is started, it will lead to a completely
“wrong” direction of generating the configurations of a
star. However, it is straightforward to modify the basic
PERM algorithm such that all f arms of a star poly-
mer are grown simultaneously [43, |53]. The multi-arm
method is explained as follows:

e A star polymer is grown from its branching point
(center).

o f growth sites {xi,...xs} are considered at the
same time. A monomer is added to each arm step
by step until all arms have the same length, then
the next round of monomers is added. As all the
monomers in a star are numbered, it is similar as
growing one linear chain from the 1% monomer to
the Nt monomer (see Fig. [0). Npax = Nf +1
if the center is singly occupied or Nyax = Nf + f
if the center is f-folded occupied.

e A bias is given to guide the growth of arms into
outward direction with higher probability. The
strength of this bias is adjusted in the way that
it increases with f but decreases as the length of
arms becomes longer since there is more space in
a dilute solvent for adding the next monomer. For
example, we can choose the bias as a function of n,
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g(n), for n > 0,

[ (n+4.0)/(n+1.3),
g(n) = { (n+0.6)/(n+3.9),

outward direction
otherwise

(39)
However, the strength of this bias can be adjusted
by trial and error.

e The population control (pruning/cloning) is done
in the same way as explained in Sect. [ that at
the step n, two thresholds W,I and W, are pro-
portional to the current estimate weight Zn, e.g.,
Wit =3Z, and W, =0.5Z,.

A. Star Polymers

For single star polymers composed of f arms of length
N each in a good solvent, the partition sum and the rms
center-to-end distance scale as follows:

Zyly ~ ud NN (40)
and
Ry s~ AfN* (41)

where the critical fugacity po, and the Flory exponent
v are the same for all topologies but the entropic expo-
nent 7y depends on each topology [54]. In two dimen-
sions, s can be calculated exactly by using conformal
invariance |54], but there are no exact results for the f-
dependent power law for v¢, and also not for the swelling
factor Af. Therefore, computer simulations are needed
for a deep understanding of star polymers. Due to the
difficulty of simulating the star polymers with many arms
f and of long arm length N by both MC simulations [55-
60] and molecular dynamics [61, [62], and because of the
lack of precise estimates of the exponents given in (40)
and ({I), PERM with multi-arm growth method as ex-
plained above was developed [43]. With this algorithm,
high statistics simulations are obtained for star polymer
with arm number up to f = 80 and arm length up to
N = 4000 for small values of f.

For our simulations of single star polymers in a good
solvent, we use the Domb-Joyce model with the interac-
tion strength v* = 0.6 on the simple cubic lattice (see
Sect. [VITAl). It allows us to attach a larger number of
arms to a point-like center of stars, and thus additional
considerations of the corrections to scaling terms when
a finite size core is used are avoided. Two variants for
studying star polymers are used in our simulations. In
one variant the center is occupied by one monomer, and
in the other variant the center is occupied by f monomers
as shown in Fig. Since the partition sum is estimated
directly by PERM, the exponents «; can also be deter-
mined easily according to (0.

In Fig.[ITl we present results of v, from our simulations
and from previous studies [56, [57, 163] for comparison.
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(b)

FIG. 10. Schematic drawings of a star polymer consisting of three arms (f = 3) of length N = 3 each. The center is singly
occupied in (a) and f-folded occupied in (b). Those numbers show the order of monomers which is added into the star polymer

by using a chain growth algorithm.
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FIG. 11. Exponents v plotted against f. The full line is
just a polygon connecting the points, and the dashed line
is a fit with the large-f behavior as predicted by the cone
approximation ([@2]). Results obtained in Ref. |56, 157, 163] are
shown for comparison. In the inset, we show those results for
small f. Adapted from Ref. [43].

The theoretical prediction for the scaling law of vy for
large f by the cone approximation [59, 64] is

yp— 1~ f732 (42)

For small f, our results are in good agreement with the
previous studies. For large f the best fit with a power law
vf— 1~ —(f —1.5)% would be obtained with z ~ 1.68,
which is not too far off the theoretical prediction ([@2) but
the prediction is also not exact.

After we have obtained quite reliable estimates of fiso,
v, and vy for single star polymer in a good solvent, we
extend our study to a more complicated system where
two star polymers interact with each other [53] by using
the same model and the same algorithm. It is well under-
stood that interactions between both linear and branched
polymers are soft in the sense that they can penetrate
each other and the effective potential is a rather smooth
function of their distance. For star polymers, there are
some contradictions between results in the literatures. Is
the potential between two central monomers at large dis-
tance a Gaussian potential or has it a Yukawa tail? Since

we were able to simulate star polymers up to f = 80
arms, we expected that we would give a clear answer.
This was the main motivation to study the effective po-
tential between two star polymers [53].

Witten and Pincus [64] point out that the scaling
of the partition sum of a star with f arms and arm
length N each (0), together with the assumption that

2
Z](\?f(r)/ [ZJ(\},)J"] is a function of x = r/R, only for any

fixed f, i.e.

Z(z) r
Z3s) _ eyRy) (43)
247
implies that
V(r) = Viwp(r) = bsIn(arRy/7) (44)

where r is the distance between the two central
monomers, and

by = (2’Yj'—72f_1)/y for 1< r < Ry. (45)

According to our results shown in Fig. [[1] instead of the
scaling by ~ f3/2 a power law gives by ~ 0.27f158,
However, both ay and by should be universal and should
not depend on the specific microscopic realization.

There are two methods for estimating Z(®)(r) in our
simulations:

(a) Two independent star polymers are grown simulta-
neously, and Z(®)(r) is computed by counting their
overlaps at different distance r. Here Z()(r) and
ZM(r) are estimated in the same run, which gives
rather accurate results for the potential V(r) for
very large distances r and large N. For small dis-
tances 7, the ratio Z()(r)/ [Z(l)(rﬂ2 would be in-
distinguishable from zero.

(b) Two star polymers are grown at fixed distance r
with the mutual interactions taken into account
during the growth. This allows us to measure
Z@)(r) down to very small distances 7 and large
N. For large distances r, it gives very bad results
of the potential V(r) since it is obtained by sub-
tracting the (nearly equal) free energies obtained
in two different runs.
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obtained from (48]), with fitted parameters ay, cs, dy and 5.
Adapted from Ref. [53]

For the data analysis, we use the data either from the first
method or the second method, or use the combination
from both.

We present the effective potential V(r) between two
star polymers of f = 18 arms in Fig. [2(a). For r <
Ry, V(r) follows the prediction given in (@4)), which is
shown by the solid curve. For r > R, the MC data
can be approximated by a parabola, i.e. V(r) is roughly
Gaussian

V(r) = Vgauss(r) = cfedfrz/Rf? . (46)

Here we conjecture that ¢y and dy are universal. In or-
der to describe the effective potential V (r) for the whole
region of r, we propose that

V()= —n |77V n=ds /B 4 ereVome)] - (a7)
Tf

where 7¢ is an additional parameter for every f, and
V(r) > 0 for all r. As r — oo, V(r) = Vgauss(1)[1 +
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O(r=b#)] @G), while V(r) = Viyp(r)[1 + O(r?)] @) as
r — 0. In fig[[2(b), we plotted the rescaled radial Mayer
function,

(r/R3)*fa(r) = (r/Rg)*(a —exp[=V(r)]) ,  (48)

against the rescaled distance r/R,. Our results are in
good agreement with the simulations of |65] but do not
agree with the results in [66].

B. Bottle-brush Polymers

The so-called bottle-brush polymer consists of one long
molecule serving as a backbone on which many side
chains are densely grafted. As the grafting density o in-
creases, the persistence length of the backbone increases.
The bottle-brush polymer has the form of a rather stiff
cylindrical-like object. If the backbone is very short but
side chains are very long, it should behave like a star poly-
mer. If the backbone is very long, the structure becomes
more complicated. One would expect that those side
chains in the interior of the bottle-brush are all stretched
and show the same behavior, but those at the two ends
behave as a star. In order to understand the structure
of bottle-brush polymers and check the scaling behavior
of long side chains in comparison with theoretical predic-
tions [67], we focus here the bottle-brush polymers of a
rigid backbone and flexible side chains.

For our simulations, we use a simple coarse-grained
model. The backbone is treated as a completely rigid
rod, and side chains are described by SAWs with near-
est neighbor non-bonded attractive interactions between
the same type of monomers and repulsive interactions
between the different type of monomers. A general for-
mula for the partition function for bottle-brush polymers
consisting of one or two chemically different monomers is
therefore given by

7 = Z quA-‘rmBBqZLé;B (49)
config.

where ¢ = exp(—fe) (we assume that the attractive inter-
action eq44 = epp = €), gap = exp(—Peap) (eap is the
repulsive interaction between monomer A and monomer
B), and maa, mpp, map are the numbers of non-bonded
occupied nearest neighbor monomer pairs AA, BB and
AB, respectively. For ¢ = 1, all side chains behave
as SAWs. For ¢ < ¢g it corresponds to the good sol-
vent condition, where go = exp(—¢/kpTo) =~ 1.3087 at
the © point [14]. For ¢ > ge, it corresponds to the
poor solvent condition. As gap = 0, it corresponds
to a very strong repulsion between A and B, while for
gap = q the chemical incompatibility vanishes {recall
that [3] xap < €eap — (a4 +€pp)/2}. The grafting den-
sity o is defined by ¢ = n./N;, where n. is the number
of side chains and N, is the number of monomers in a
backbone. Here only the results of bottle-brush poly-
mers consisting of one kind of monomers under a very
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FIG. 13. (a) A schematic drawing of growing a bottle-brush polymer step by step. (b) A snapshot of the configurations of
bottle-brush polymers consisting of N, = 128 backbone monomers, N = 2000 monomers in each side chain, and the grafting
density o = 1/4 under a very good solvent condition generated by PERM.

good solvent condition are presented in order to show the
performance of the algorithm. Other applications can be
found in [67-170].

We extend the algorithm for simulating star polymers
to bottle-brush polymers. As shown in Fig. [3(a), a
bottle-brush polymer is built by adding one monomer
to each side chain at each step until all side chains have
the same number of monomers. Then we start to add the
second run of monomers, i.e, all side chains are grown si-
multaneously. The bias of growing side chains was used
by giving higher probabilities in the direction where there
are more free next neighbor sites and in the outward di-
rections perpendicular to the backbone, where the second
part of bias decreases with the length of side chains and
increases with the grafting density. A typical configu-
ration of bottle-brush polymers consisting of N, = 128
backbone monomers, N = 2000 side chain monomers,
and with grafting density ¢ = 1/4 under a good solvent
condition is shown in Fig. [3|b) where the total num-
ber of monomers is Niot = 128 + 2000 x 32 = 64128
monomers.

For checking the scaling law of side chains, we in-
troduce the periodic boundary condition along the di-
rection of the backbone (+z-direction) to avoid end ef-
fects associated with a finite backbone length. The
square of the average height of a bottle-brush polymer,
R}(N,0) = (R2,(N,0) + R2,(N,0)) is estimated by
taking the average of the mean square backbone-to-end
distance in the radial direction for all side chains. In
Fig. [d(a) we plot R?(N,o) divided by N? versus N
for Ny = 32, 64, and 128, for various values of grafting
densities 0. The value of v is given by the best esti-
mate for 3d SAW by PERM [43]. We see that those
curves of the same grafting density o coincide with each
other. Increasing the grafting density o, it enhances the
stretching of side chains. As ¢ — 0, we should ex-
pect a mushroom regime where no interaction between
side chains appears. As ¢ is very high, the scaling pre-

“blob picture” from star polymers to bottle-brush
polymers is R7(N, o) o ¢2(1=v)/(+v) Nav/(+v) - Thys,
we can give the cross-over scaling ansatz as follows for
N — oo,

diction obtained by extending the Daoud-Cotton [71]
_@ﬁ]

R%(N,0) = N*R%(n) (50)
with
~ 1 —0
2 _ ) n
R*(n) = { pR(1=0)/(14) 7= 00 (51)

where n = o N".

After removing those unphysical data due to the arti-
fact of using periodic boundary condition in the regime
where Rp(N,o) > Ny/2, we plot the same data of
R%(N,0)/N? but rescaled the x-axis from N to n =
o NV according to the scaling law (B0). We see the nice
data collapse in Fig. [4(b). In this log-log plot, the
straight line gives the asymptotic behaviors of the scaling
prediction (BQ) for very large . As 7 increases, we see
a cross-over from a 3D SAWs to a stretched side chain
regime but only rather weak stretching of side chains is
realized, which is different from the scaling prediction.
However, this is the first time one can see the cross-
over behavior by computer simulations. This cross-over
regime is far from reachable by experiments.

IX. PERM WITH CLUSTER GROWTH
METHOD

It is generally believed that lattice animals, lattice
trees, and subcritical percolation are good models for
studying randomly branched polymers and they are in
the same universality class. There exist several efficient
algorithms, e.g., Leath algorithm @], Swendsen-Wang
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line corresponds to the scaling prediction. Adapted from
Ref. [67].

algorithm [77], etc. for studying the growth of percola-
tion clusters near the critical point, but they all become
inefficient far below it, because the chance for growing a
large subcritical cluster by a straightforward algorithm
decreases rapidly with N. Obviously we need some sort
of cloning, and since this will probably lead also to fluc-
tuating weights, one might need some pruning.

Cloning and pruning needs first some estimate for the
weight of a cluster that is still growing. Moreover, it will
turn out that growing clusters can have, depending on
their detailed configurations, very different probabilities
to grow further. Thus, in addition to a weight we might
to need also a “fitness” that should depend on the weight
but is not entirely determined by it.

In the following discussion the algorithm is explained
by considering the relationship between the site percola-
tion and site lattice animals [78§].

In any cluster growth algorithm [76], a finished cluster
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with N sites and b boundary sites on a lattice is generated
with probability

Pyy =pN(1-p)°, (52)

if each lattice site is occupied with the probability p. By
definition of lattice animals all the clusters of same size
N carry the same weight. Since the obtained percolation
cluster is biased by the probability Py, its contribution
to the animal ensemble is corrected by a factor 1/Pny.
Taking an average over the percolation ensemble, the par-

tition sum of lattice animals consisting of IV sites is given
by

1

P—Nb> =p (1 -p)7" (53)

Zn = {

As shown in Fig. [[A now we consider a cluster with
N sites, g growth sites and b boundary sites. At each
of the growth sites the cluster can either grow further,
or it can stop growing with the probability 1 — p. Thus,
this still growing cluster gives a weight to a percolation
cluster with N sites and (b+ g) boundary sites as p™ (1 —
P9/ [pN (1 —p)?] = (1 — p)¢. Taking an average over
all clusters, we have

(1-p)? -N —b
IN ={—"—) = 1- . 54
N <pN(1_p)b+g> p o ({1=p)7) (54)
This is the same formula as given by (B3]), but note that
now we have included also those clusters which are still
growing.
Let us first point out this new variant of PERM:

e The percolation cluster growth algorithm with stor-
ing the growth sites into a queue in a first-in first-
out list (the scheme of breadth-first) is used.

e The population control is done by introducing a
fitness function

fu=Wa/(L=p)® =p~"(1=p)™""%" (55
with a parameter o to be determined empirically,
and used

fn > ci(fn)s fn <c—(fn) (56)

as criteria for cloning and pruning.

e The depth-first implementation in PERM is still
used here. Namely, at each time one deals with only
a single configuration of a cluster until a cluster has
been grown either to the end of the maximum size
N or has been killed in between, and handles the
copies by recursion.

e The optimal value of the probability p is p < pc,
and p — p. as N — o0.
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FIG. 15. A still growing cluster with N = 7 sites, b = 6 boundary sites and g = 6 growth sites on a square lattice.
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FIG. 16. Growing clusters generated in the (a) depth-first and (b) breadth-first implementations. In both cases, p = p. = 0.5927
and N = 4000. Occupied sites and growth sites are depicted by small red points and big black points, respectively. Adapted

from Ref. |78].

This algorithm was developed more or less by trial and
error, guided by the following considerations:

We first test the two common ways for growing the
percolation clusters. (a) Depth-first: growth sites are
written into a first-in last out list (a stack). (b) Breadth-
first: growth sites are written into a first-in first-out list
(a queue). In order to avoid the mix up with the depth
implementation in PERM, we use stack and queue to dis-
tinguish these two methods. Two typical 2-d clusters of
size N = 4000 and at the critical point of percolation
p = pe. = 0.5925, growing according to these two meth-
ods are shown in Fig. At first glance, one would
expect that the cluster growing by storing growth sites
in a stack might be more efficient than that the growth
sites stored in a queue, because the number of growing
sites was about 3 times larger than that for the latter
case. But the truth is, after a few generations the de-
scendents generated from the former case will die. On
the other hand, the fluctuations in the number of growth
sites are much bigger in the former case, the weights in
B4) will also fluctuate much more, and we expect much
worse behavior. This is indeed what we found numeri-
cally: Results obtained when using a stack for the growth
sites were dramatically worse than results obtained with

a queue.

Second, we check whether the efficiency is affected by
the chosen order of writing the neighbors of a growth
site into the list. Studying the percolation cluster in two
dimensions, one can use the preferences east-south-west-
north, or east-west-north-south, or a different random
sequence at every point. We found no big differences in
efficiency.

Third, it would be far from optimal to do the pop-
ulation control as explained in Sect. [l i.e. by us-
ing two thresholds W* on the current weights W, =
p (1 — p)~°. This would strongly favor clusters with
few growth sites, since they tend to have larger values
of b, for the same n, and have thus large weights. But
such clusters would die soon, and would thus contribute
little to the growth of much larger clusters. Therefore a
proper fitness function f,, is needed.

Finally, we have to decide the optimal values of p em-
pirically. It is clear that we should not use p > p., be-
cause it is subcritical percolation that is in the same uni-
versality class of lattice animal. One might expect p < p,
to be optimal because only minimal reweighting is needed
for small p. This is indeed true for small N, but not for
large N. In order to reach large N, it is more important



that clusters grown with p < p. have to be cloned exces-
sively. otherwise, they would die rapidly in view of their
few growth sites. In Fig. [T we present the errors of free
energies Iy = —In Zy for various values of p in d = 2
and d = 8. The statistical errors always eventually de-

crease as 1/ [CPU time]l/ ?_ hence we show there one stan-

dard deviation multiplied by [CPU time]l/ ? (measured in
seconds), for different values of p. Thus, we can compare
the accuracy between those runs on different computers.
For d = 2 (Fig. [M(a)), each simulation was done for
Nmax = 4000 (although we plotted some curves only up
to smaller IV, omitting data which might not have been
converged). We see clearly that small values of p are good
only for small N. As N increases, the best results were
obtained for p — p.. The same behavior was observed
also in all other dimensions, and also for animals on the
bee and fee lattices in 3 dimensions (data not shown). In
Fig.[[M(b), we see the analogous results for d = 8 and for
Nimax = 8000, showing the errors are much smaller than
those in Fig. [7(a). Indeed, the errors decreased mono-
tonically with d, being largest for d = 2. Using p slightly
smaller than p. we can obtain easily very high statistics
samples of animals with several thousand sites for dimen-
sions > 2. Another quantity which can help to check the
reliability of our data is the tour weight distribution (see
Sect. ). In Fig. I8 we show the two tour weight distri-
butions for two-dimensional animals with 4000 sites, for
p = 0.57 and for p = 0.47. We see that the simulation
with p = 0.57 is distinctly on the safe side, while that
for p = 0.47 is marginal. In the log-log plot, it is seen
that the tail of the distribution P(In W) for p = 0.57 de-
cays faster than 1/W, thus the product WP(In W) has
its maximum where the distribution is well sampled.

Error bars quoted in the following on raw data (par-
tition sums, gyration radii, and average numbers of
perimeter sites or bonds) are straightforwardly obtained
single standard deviations. Their estimate is easy since
clusters generated in different tours are independent, and
therefore errors can be obtained from the fluctuations
of the contributions of entire tours (notice that clusters
within one tour are not independent, and estimating er-
rors from their individual values would be wrong).

In addition to site animals, this algorithm can also be
applied to bond animals and lattice trees for studying
randomly branched polymers. A bond animal is a clus-
ter where bonds can be established between neighbor-
ing sites (just as in SAWSs), and connectivity is defined
via these bonds: if there is no path between any two
sites consisting entirely of established bonds, these sites
are considered as not connected, even if they are near-
est neighbors. Different configurations of bonds are con-
sidered as different clusters, and clusters with the same
number of bonds (irrespective of their number of sites)
have the same weight |79]. Weakly embeddable trees are
bond animals with tree topology, i.e. the set of weakly
embeddable trees is a subset of bond animals, each with
the same statistical weight. Strongly embeddable trees
are, in contrast, the subset of site animals with tree-like
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FIG. 19. (a) A site animal with 8 sites. (b) A site tree (“strongly embeddable tree”). (c) A bond animal which is not a tree.

(d) A bond tree (“weakly embeddable tree”).

L1

@

®)

FIG. 20. Typical site lattice animals with N = 12000 on the square lattice in d = 2 (a), with N = 16000 on the bcc lattice in

d=3 (b).

structure. All these definitions are illustrated in Fig.

A. Non-interacting Lattice Animals in the Bulk

The basic problem of lattice animals (site animals) is
how to count the number of different animals of N sites
precisely, i.e. the estimate of the corresponding partition
sum. Two animals are considered as identical if they dif-
fer just by a translation, but they considered as different
if a rotation or reflection is needed to make them coin-
cide. Two typical site animals consisting of N = 12000
sites on the square lattice in d = 2 and with N = 16000
sites on the body centered cubic (bce) lattice in d = 3
are shown in Fig.

In the thermodynamic limit as N — oo, the number of
animals (i.e. the microcanonical partition sum) should
scale as E]

Zn ~ pNNTP(1 4. N"2 ) (57)
and the gyration radius as
Ry ~ NY(a+brN~2 +-.) (58)

Here p is the growth constant (or inverse critical fugac-
ity), and is not universal, while the Flory exponent v, the
entropic exponent 6, and the correction exponent A ﬂﬁ_ﬂ]
should be universal. b, and br are non-universal ampli-
tudes, and the dots stand for higher order terms in 1/N.

Results of the partition sum Zxn and the mean square
end-to-end distance R%; for site lattice animals in d = 2

are shown in Fig. 21l By taking the predicted value of
@ = 1 and plotting In Zy — aN + In N against N, we
should expect a curve which becomes horizontal for large
N by adjusting values of a = In p suitably. This is indeed
seen for the central curve with error bar in the inset of
Fig.[2Tl(a), but a precise estimate of y is difficult because
of corrections to scaling. Considering the first correction
term in (57)) and (B8], the correction exponent A, and the
estimate of the growth constant p and their error bars are
all determined by the best straight line as N~ — 0 in
Fig. 21 Our estimate of a = lnpu = 1.4018155(30) with
A = 0.9(1) is in perfect agreement with the exact enu-
meration result @] The Flory exponent v is determined
by the same way and our estimate v = 0.6412(5) is also
in good agreement with the previous estimate by Monte
Carlo simulations [83).

It is trivial to generalize the algorithm PERM with
cluster growth method to lattice animals in higher di-
mensions 2 < d < 9. Using the similar method of data
analyses as shown in Fig. 2] for those results obtained
ind=3tod=7(d. =8 is the upper critical dimen-
sion of lattice animals, where large corrections have to
be taken into account). The relationship between the
entropic exponent 6 and the Flory exponent v for the
animal problem in d dimensions is predicted by using
supersymmetry [84],

0=(d-2)v+1 (59)

By plotting our data of the exponent v and (6 — 1)/(d —
2) against d in Fig. 22 we see that these two curves
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coincide with each other. It shows that the Parisi-Sourlas
prediction (B9) is verified.

B. Lattice Animals Grafted to Surfaces

For a-thermal walls (which represent only a geomet-
ric barrier, without any other interactions) the leading
behavior for N — oo does not involve any new critical
exponent [78]. This is no longer true, however, if the wall
is attractive. In that case we expect a phase transition
at a critical attractive energy beyond which the animal
gets adsorbed to the surface, similar to the adsorption
transition observed also for linear polymers [52].

As in that problem, at the transition point there are
new critical exponents. More precisely, the Flory expo-
nent v is the same as for non-grafted animals, but the
entropic exponent 6 is changed [78]. Since this exponent
could not be measured by any previous simulation algo-
rithm and since there exits no field-theoretic predictions

20

-
0.65 & —
(0-1)/(d-2) s

0.55

0.45

critical exponents

0.35

0.25

dimension d
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d. Adapted from Ref. |78].

for it, there exist no literature values to compare to our
measurements. This is different for a second new expo-
nent specific for the transition point, the cross-over expo-
nent ¢. If ¢ is the Boltzmann factor for the monomer-wall
interaction and q. is its critical value, then the scaling
ansatz for the partition sum of a grafted animal near the
adsorption transition is

Z3(q) ~ w@ NN (g - q)N?).  (60)

The most interesting prediction for ¢ was that is supe-
runiversal, i.e. its value is independent of the dimension
and ¢ = 1/2 for all dimensions [85]. While this was veri-
fied by the simulations for d = 3,4 and 5, it was slightly
violated (by 5 standard deviations) in d = 2 |7§]. Ob-
viously further investigations would be needed to settle
this problem.

C. Conformal Invariance and Animals Grafted to
Wedges

The critical exponents for animals in d = 2 dimensions
can be calculated exactly, as for many other critical phe-
nomena in d = 2 dimensions. But while this is due to
conformal invariance in these other cases, 2-d animals are
not conformally invariant [86].

For conformally invariant problems of cluster growth,
the entropic critical exponents of clusters grafted to the
tips of wedges and cones (wedges with identified edges)
can be calculated exactly for any wedge angle, by map-
ping the wedge onto the half plane. Due to lack of confor-
mal invariance, this is no longer true for 2-d lattice ani-
mals. In [87], the exponents 0(«a) were measured carefully
not only for wedges and cones with angles up to a = 27.
By grafting them to branch points of Riemann sheets,
angles up to 107 were studied. Results are shown in Fig.
23l The simulations were made with the hope that some-
one might produce a fit to these data that could suggest
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FIG. 23. Entropic critical exponents («a) for 2-d lattice ani-
mals grafted to the tips of wedges resp. cones with angles a.
Adapted from Ref. [87].

an alternative to conformal invariance. So far this hope
has not materialized, in contrast to what happened 111
years ago to some obscure black body radiation data [8§].

D. Collapsing Lattice Animals and Lattice Trees in
d=2

A coil-globule transition similar to that for linear poly-
mers is also expected to occur for randomly branched
polymers as the solvent quality becomes worse, but the
situation is much more complicated. To describe the pos-
sible collapse transitions for self-interacting lattice an-
imals, we need two different types of interactions be-
tween nearest-neighbor monomer-monomer pairs: (cova-
lent) bonds that are needed for the connectedness of the
cluster but that can also form loops when present in ex-
cess, and weak interactions between non-bonded pairs
(“contacts”). Associated to these are two different con-
trol parameters |89]. The partition sum is therefore writ-
ten as follows [90]

Zn(y,m) =Y Cnpey® N Tir* (61)
bk

where Cnpi is just the number of configurations (up to
translations and rotations) of connected clusters with
N sites, b bonds, and k contacts. y and 7 are fugac-
ities for monomer-monomer bonds and for non-bonded
monomer-monomer contacts, respectively. As for un-
branched polymers, there is no need to introduce a sep-
arate monomer-solvent interaction, since the number s
of monomer-solvent contacts is not independent, but is
given by

NN =2b+2k+s, (62)

where N is the lattice coordination number (N = 2d
on a simple hypercubic lattice in d = 2 dimensions).
A schematic drawing of an interacting lattice animal is
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shown in Fig. This model includes the following spe-
cial cases:

e Unweighted animals: y =7 =1

e Bond percolation: y = p/(1—p)? and 7 = 1/(1—p)
where 0 < p < 1. The critical percolation point is
aty=2and r=2asp=p.=1/2.

e Collapsing trees: y = 0 where b= N — 1.

e ‘Strongly embeddable’ animals with 7 = 0, which
have no contacts (k = 0) This model was first stud-
ied by Derrida and Herrmann by transfer matrix
methods [91].

The transition points are determined by the scaling
laws of the partition sum:

Zn(y.m=7e) ~ ply) VN (63)
and the gyration radius
Ry ~ N¥ (64)

where p(y) should depend continuously on y, but 6
should take discrete values depending on the respective
universality. v is the Flory exponent. A phase diagram
for interacting animals in d = 2 is shown in Fig.
Lattice animals are in the extended phase below the full
line, but they are in the collapsed phase above the full
line. The bond percolation is described by the dashed
curve. The percolation critical point at y = 2 and 7 = 2
divides the transition line into two different universality
classes. On the left-hand side, the collapse transitions
are dominated by non-bonded contacts. In this region
PERM simulations are very easy and yield very precise
values for the transition curve (which seems to be ex-
actly horizontal) and for the critical exponents. These
results have been fully confirmed by field theoretic meth-
ods [92]. For the Derrida-Herrmann model at the far
right end of the transition curve, PERM simulations are
least efficient, and they could not improve on the results
of |91]. Tt is not entirely clear whether there exists a
further (multi-)critical point between this end point and
the percolation point. Such a point, together with an
additional phase separation line emanating from it, was
suggested by earlier exact enumeration studies (cited in
[90]). PERM simulations also weakly suggested such an
addition phase separation line, indicated by the short
dashed-dotted line in Fig. 25l but these simulations were
not easy and interpreting their results was not unam-
biguous. Indeed, a completely different scenario for the
behavior along the transition line between the percola-
tion and Derrida-Herrmann points is suggested in [92].

X. PROTEIN FOLDING

In this section we shall only describe applications of a
variant of PERM [93,194] to simple lattice models, where
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® site -— bond

— monomer—monomer contac
— monomer-solvent contact

AN=2b + 2k +s

FIG. 24. A schematic drawing of an interacting lattice animals which contain a cluster with b = 11 bonds and N = 12 sites,
and k = 2 non-bonded monomer-monomer contacts, and s = 22. It leads to 4N = 2b + 2k + s.
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.« | contact-driven C
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FIG. 25. Phase diagram for interacting animals in d = 2. The full curve separates an extended phase (below) from a collapsed
phase (above). At y = 0 the clusters are trees (minimal number of bonds), while at 7 = 0 they have no contacts but only
bonds. The dashed line corresponds to bond percolation, with the critical point being at y = 7 = 2. The short dashed-dotted
line is a rough estimate for a possible transition between a contact-rich and a bond-rich collapsed phase. The critical exponents
v and 6 are also shown for different universality classes. Adapted from Ref. [9(].

it seems one of the most efficient algorithms for finding
low energy states. PERM was also applied to continuum
models ﬂ%] and was there more efficient than previous
Monte Carlo algorithms @], but has been rendered later
obsolete in this application [97].

A. New Version of PERM (nPERM)

The main improvement of nPERM is that we no longer
make identical clones as implemented in old PERM, in
order to avoid the loss of diversity which limited the suc-
cess of old PERM.

When we have a configuration of polymer chains with
n — 1 monomers, we first estimate a predicted weight
Wwprred for the next step (the n'" step), and we count

the number kgeo of free sites where the n'® monomer can
be placed. If W};md > W,f and kfee > 1, we make k
(2 < k < Kkfree) clones with the request that & different
sites are chosen for the n'® step. Therefore, k configu-
rations with n monomers are forced to be different. If
wpred < W a random number 7 is chosen uniformly
in [0,1]. If r < 1/2, the chain is discarded, otherwise
it is kept and its weight is doubled. We tried several
strategies for selecting k& which all gave similar results.
Typically, we used k = min {kfmc, [W}l’md W } }

It is still important to keep the right weight of each con-
figuration with n monomers. When selecting a k-tuple
A= {a,..., o} of mutually different continuations «;
with probability pa, the corresponding weights W, 41,
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an Oék: ree .
Wi, = —tdoaTlee iy 9 k. (65)
k( flx;ee)pA
Here, the importance
qotj = exp(_ﬁEn,aj) (66)

of choice o is the Boltzmann-Gibbs factor associated
with the energy E), o, of the n*™ placed monomer in the
potential created by all previous monomers. The other
terms arise from correcting bias and normalization.

Two strategies for the choice of k continuations among
kiree are described as follows:

(i) New PERM with simple sampling (nPERMss):
k different free sites are chosen randomly and uni-
formly. The predicted weight is given by,

Wﬁmd - anlkfrcc ) (67)

and the corresponding weight for each continuation
o is
Wn,aj = Wn—-14q; kfrcc/k (68)

since there are (kf;:e) different ways to select a k-
tuple with equal probability, the probability p4 is

therefore
k: ree _1
pa = < fk ) : (69)

Here the tuples related by permutations are con-
sidered as identical.

(ii) New PERM with importance sampling (nPERMis):
k different free sites are chosen according to the
modified Boltzmann weight G,,; defined by

Gy = (ks +1/2)exp(—BEna;)  (70)
where kt(roé]c) is the number of free neighbors when
the n'" monomer is placed at aj, and Ej, q, is its
energy gain. The idea of replacing qo,; by Go; is
that we anticipate continuations with fewer free
neighbors which will contribute less on the long
run than continuations with more free neighbors.
This is similar to “Markovian anticipation” within
the framework of old PERM, described in section
Sect. [II Bl where the bias for placing a monomer
at the next step different from the short-sighted op-
timal importance sampling was found to be prefer-
able. The predicted weight is now

Kree

W}z)md = Wn—l Z Cjaj . (71)
j=1
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Using the requirement that the variance of the
weights W,, is minimal, the proper choice of the
probability pa to select a tuple A = {«;,...,ap} is
found to be

EQ‘GAdaj
Pa= = =12, kpee . (72)
ZA/ ZQ;GA/ QQ;

If go; had not been replaced by §,,, the variance
of W, for fixed W,,_1 would be zero. For k =1, it
corresponds to the standard importance sampling,
ie. pa=pa, = (jaj/Zfiie Ga;- The weight at the
nt™™ step is thus Wha; = Wn-1Ga,; /Pa;- For k> 1,
Wh,a, is given by (G3)).

A noteworthy feature of both nPERMss and nPERMis
is that they cross over to complete enumeration when W,
and W tend to zero. In this limit, all possible branches
are followed and none is pruned as long as its weight
is not strictly zero. In contrast to this, with the use of
the original PERM as explained in Sect. [T} exponentially
many copies of the same configuration would be made.
It suggests that one can be more lenient in choosing W,
and W, when applying nPERM.

B. HP Model

For testing the efficiency of the new PERM, we ap-
plied it to the HP model [98] since this model is well
simulated for bench-marking. In this model, a protein is
simplified by replacing amino acids by only two types of
monomers, H (hydrophobic) and P (polar) monomers.
Therefore a protein (a polymer) of length n is modeled
as a self-avoiding chain of n steps on a regular (square
or simple cubic) lattice with repulsive or attractive inter-
actions between neighboring non-bonded monomers such

that egg = —1, egp = epp = 0. The partition sum is
Zn=>q" (73)
walks

where ¢ = exp(—fepy) and m is the total number of
non-bonded H — H pairs.

In our simulations, we chose the two thresholds W,,— =
0 and W,F < o0, i.e. we neither pruned nor branched, for
the first configuration hitting length n. For the follow-
ing configurations we used W, = CZ,,/Zy(cn/co)? and
W,” = 0.2W,F. Here, ¢, is the total number of config-
urations of length n already created during the run, Zn
is the partition sum estimated from these configurations,
and C' is some positive number < 1. The idea of incorpo-
rating the term (¢, /co)? is that we can reduce the upper
threshold W,} in order to make more cloning in possible
branches as a lower energy state is hit but only few con-
figurations of length n have been obtained. The following
results were all obtained with C' = 1, though substantial
speed-ups (up to a factor 2) could be obtained by choos-
ing C much smaller, typically as small as 10715 to 10724,



TABLE I. Performances for the 3-d binary (HP)- sequences
of 48-mers from [100], presented by the CPU time (minutes)
per independent ground state hit. The ground state energy
is denoted by Fmin. Results obtained by using PERM [102],
nPERMss and nPERMis |93, 94] are carried out on a 167
MHz Sun Ultra I workstation. Results quoted from Ref. |99]
obtained by CG are multiplied by 10 for the comparison.

sequence nr. —Fnin PERM nPERMss nPERMis CG

1 32 6.9 0.66 0.63 0.94
2 34 40.5 4.79 3.89 3.50
3 34 100.2 3.94 1.99 6.20
4 33 284.0 19.51 13.45 2.90
5 32 4.7 6.88 5.08 1.20
6 32 59.2 9.48 6.60 46.00
7 32 144.7 7.65 5.37 6.40
8 31 26.6 2.92 2.17 3.80
9 34 1420.0 378.64 41.41 -
10 33 18.3 0.89 0.47 0.11

The latter is easily understandable: with such small C,
the algorithm performs essentially exact enumeration for
short chains, giving thus maximal diversity, and becomes
stochastic only later when following all possible configu-
rations would become unfeasible.

For presenting the efficiency of nPERMss and nPER-
Mis, we applied them to find the ground state of the HP
model with blind search. Special comparison is made
with the core-directed growth method (CG) of Beutler and
Dill [99]. This is the only method we found to be still
competitive with nPERM but it works only for the HP
model and relies heavily on heuristics. Two examples are
shown here.

(a) Ten sequences of 48-mers in d = 3 from Ref. [100]
are tested. In Table [ we list the required CPU time
(measured in minutes) per independent ground state hit
on a 167 MHz Sun ULTRA I workstation. As with the
original PERM |[14], we could also reach lowest energy
states by using nPERM, but the required CPU time is
within one order of magnitude shorter than that needed
for PERM. For all ten sequences we use the same tem-
perature, exp(1/T) = 18, although we could have op-
timized CPU times by using different temperatures for
each chain. Results obtained in Ref. [93,194] are carried
out on a SPARC 1 machine which is slower by a factor
~ 10 than the Sun workstation. Therefore, in Table [II
we multiplied their results by 10 for comparison. We see
that nPERM gave comparable speeds as CG. But, one
has to note that the lowest energy of the sequence No.9
was not hit by CG [99].

(b) There exists one HP sequence of 64-mers intro-
duced in Ref. |101)}, for which it is particularly difficult
to find its ground state energy Eni, = —42 by any chain
growth algorithm. One of the ground state configuration
is shown in Fig. 26a). Its degeneracies of Ey,i, = —42
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differ in the detailed folding of the tails in the interior.
As one uses a chain growth algorithm, it seems very un-
natural that the chain has to grow first along an arc
(Fig. 26)(b), only until much later that the structure
of the chain will be stabilized. It shows the difficulty
of folding this HP sequence into its ground state. With
nPERM, the ground state was reached with blind search.
The average CPU time per ground state hit was about
30h on the DEC21264, which seems to be roughly com-
parable to the CPU time needed in Refs. [103, [104], but
slower than Ref. |99] where CG was used. In a previ-
ous application of (old) PERM [102], the configuration
wirh Enin = —42 was found only by means of some spe-
cial tricks (non-blind search) together with the original
PERM.

XI. DNA MELTING

At physiological temperatures, DNA forms the famous
double helix. When the temperature is elevated, a point
T, is reached where the covalent bonds along the back-
bone are still strong enough to keep the two strands in-
tact, but the hydrogen bonds between the strands no
longer can keep them together. The ensuing separation
at temperatures > T, is known as DNA denaturation or
DNA melting.

Since the strengths of the hydrogen bonds between
pairs A-T and C-G are different, also the melting tem-
peratures T,, are different for homogeneous DNA, with
Tm(A—T) < T,,(C — G). For natural DNA, the effec-
tive melting temperature depends on the A/C compo-
sition, and precise measurements of melting curves for
short pieces of DNA can give detailed information about
the base composition. This has been used for a long time
as one of the easiest and fastest methods to obtain genetic
information, and modern developments have made high
resolution DNA melting one of the most simple, cheap
and fast techniques for genotyping, sequence matching,
and mutation scanning [106].

The sharpness of the transition in case of long homo-
geneous DNA has suggested since long ago that DNA
melting is a first order phase transition [105]. But the
earliest models [107] by Poland and Scheraga could only
give rise to a second order transition, which was seen as
a severe problem. These models of course lacked many
aspects of the real DNA melting problem, such as the
helical structure of DNA. This was done in view of the
universality of second order phase transitions, and later
models that did include the helix structure indeed did
not do better.

On the other hand, it was already speculated early on
that the excluded volume effect — that was neglected in
[107] — could be responsible for the change into a first
order transition. The first model that treated the ex-
cluded volume effect correctly was published by Coluzzi
et al. |108] and simulated by means of PERM. The model
treated each DNA strand as a SAW on the simple cubic
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(b)

FIG. 26. (a) One of the ground state configurations for a N = 64 chain in 2D from [101]. Other states with the same energy
differ in the detailed folding of the tails in the interior, but have identical outer shapes. (b) When about 3/4 of the chain is
grown, one has to pass through a very unstable configuration which is stabilized only later, when the hydrophobic core is filled.

Adapted from Ref. (93, 194]

lattice. But the two strands were mutually self avoiding
only to the extent that bases that were not supposed to
be bound by hydrogen bonds were not allowed to occupy
the same lattice site. Base pairs that were bound in the
native (non-molten) configuration were not only allowed
to occupy the same site, but would also gain an energy e if
they did, mimicking thereby the binding between the two
strands. In addition, variants were studied where either
the excluded volume effect within each strand and/or be-
tween the strands was neglected.

The results were as expected: While all variants
that did not incorporate the full excluded volume effect
showed second order transitions, the version with full ex-
cluded volume interactions showed a first order transi-
tion. Later studies, both by simulations (using PERM
and other methods) and by analytic arguments confirmed
these results (see [109] for references).

XII. SUMMARY

In this review we have concentrated on applications
of PERM to problems in polymer physics. But PERM
can also be applied to other problems where it is impor-
tant not only to find rare events, but also to estimate
the probabilities with which they occur. This includes
various reaction-diffusion problems such as the long time
tails in the Donsker-Varadhan problem (see Sect. 3) and
in the annihilation reaction A + A — 0 [110], but also to
more exotic problems like that of multiple spanning clus-
ters in percolation |1§]. These are all problems where
theory makes clear predictions that were very hard to
verify numerically with other algorithms. But there are
also some other applications of PERM to polymer prob-
lems that we have not discussed here, such as polymers
grafted to porous [111] and non-porous [52] membranes,
adsorption of copolymers to surfaces |112], scaling cor-
rections for SAWs on Manhattan lattices [113], and 2-d
ISAWSs with orientation dependent interactions [114].

PERM belongs to a class of Monte Carlo algorithms

called sometimes “sequential algorithms with resam-
pling” [115]. In contrast to most other algorithms in
this class, it is implemented depth-first which leads to
very compact codes and minimal memory requirements.
In principle, it can be applied to any problem where in-
stances are built sequentially by repeating small steps.
Its main ideas are that these steps can be biased in order
to shear the evolution towards the wanted (in general
rare but highly weighted) configurations. If this is not
deemed successful, the further evolution can be pruned,
while very successful trials can be cloned, with each clone
evolving further independently. Notice that pruning and
cloning are done on partially constructed configurations,
with the hope that configurations that are successful at
an early stage will also continue to be successful later.
When this is true, efficiency can be spectacular (such as
for © polymers, Sect. 4). But when it is not true, the
method simply fails. Examples of the latter were also
discussed in Sects. 3, 4 and 11.

In most applications, the criterion for success is simply
the weight of the configuration, based on a combination
of Boltzmann, entropic, and bias compensating factors.
But in some cases — illustrated in Sect. 9 for lattice an-
imals — the weight itself would be a very poor “fitness”
indicator. For lattice animals, a much better fitness func-
tion was found empirically.

In addition to the versions of PERM that we have dis-
cussed in this review, there exist also “flat” [116] and
“multicanonical” |117] versions of it. Their main advan-
tage is that data over a wide range of energies can be
obtained in one single run, while ordinary PERM would
need several runs, each covering the energy range that
dominates at one particular temperature. This is cer-
tainly an attractive feature, but it is not as important
as in Markov Chain Monte Carlo algorithms. While it
is there highly non-trivial to combine results obtained at
different temperatures [32], this is much easier for PERM
where the algorithm provides very precise estimates of
the partition sum.
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