Advanced Monte Carlo Methods

P. Del Moral

INRIA Bordeaux

Nelder Fellow Lecture Series, March 2024

Part II - Discrete time Feynman-Kac models

Outline

Feynman-Kac measures

A variety of interpretations/targets/...

Feynman-Kac particle recipes/methodologies

Performance/Convergence analysis

Feynman-Kac measures "Updated" Feynman-Kac measures Linear evolution semigroups Nonlinear evolution semigroups Path-space meas.- Markov triangular arrays

A variety of interpretations/targets/...

Feynman-Kac particle recipes/methodologies

Performance/Convergence analysis

$$\eta_n = \Phi_n(\eta_{n-1}) := \Psi_{G_{n-1}}(\eta_{n-1})P_n$$

$$\eta_n = \Phi_n(\eta_{n-1}) := \Psi_{G_{n-1}}(\eta_{n-1})P_n$$

 $\label{eq:point_states} \begin{array}{ll} \mbox{\widehat{T}} & \mathrm{with} & \mathsf{P}_n(x_{n-1},dx_n) := \mathbb{P}(\mathsf{X}_n \in dx_n \mid \mathsf{X}_{n-1} = x_{n-1}) \end{array}$

FK solution/semigroup/formulation:

$$\eta_n(f) = \gamma_n(f)/\gamma_n(1) \quad \text{with} \quad \gamma_n(f) = \mathbb{E}\left(f(X_n)\prod_{0 \le p < n} G_p(X_p)\right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

$$\eta_n = \Phi_n(\eta_{n-1}) := \Psi_{G_{n-1}}(\eta_{n-1})P_n$$

 $\label{eq:point_states} \begin{array}{ll} \mbox{ith} & \mathsf{P}_n(x_{n-1},dx_n) := \mathbb{P}(\mathsf{X}_n \in dx_n \mid \mathsf{X}_{n-1} = x_{n-1}) \end{array}$

FK solution/semigroup/formulation:

$$\eta_n(f) = \gamma_n(f)/\gamma_n(1) \quad ext{with} \quad \gamma_n(f) = \mathbb{E}\left(f(X_n)\prod_{0\leq p< n}G_p(X_p)\right)$$

 \leftrightarrow Genetic Monte Carlo samplers (mutation, selection) $\sim (P_n, G_n)$

$$\eta_n = \Phi_n(\eta_{n-1}) := \Psi_{G_{n-1}}(\eta_{n-1})P_n$$

 $\label{eq:point_states} \begin{array}{ll} \mbox{ith} & \mathsf{P}_n(x_{n-1},dx_n) := \mathbb{P}(\mathsf{X}_n \in dx_n \mid \mathsf{X}_{n-1} = x_{n-1}) \end{array}$

FK solution/semigroup/formulation:

$$\eta_n(f) = \gamma_n(f)/\gamma_n(1) \quad \text{with} \quad \gamma_n(f) = \mathbb{E}\left(f(X_n)\prod_{0 \leq p < n} G_p(X_p)\right)$$

 \leftrightarrow Genetic Monte Carlo samplers (mutation, selection) $\sim (P_n, G_n)$

~> Path-space measures:

$$\mathbb{Q}_n(dx) := \frac{1}{\gamma_n(1)} \left\{ \prod_{0 \le p < n} G_p(x_p) \right\} \eta_0(dx_0) P_1(x_0, dx_1) \dots P_n(x_{n-1}, dx_n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bias (prop. chaos)/L_p-bounds/CLT/LDP/...

Bias (prop. chaos)/ \mathbb{L}_p -bounds/CLT/LDP/... Nice but in practice?

Bias (prop. chaos)/ \mathbb{L}_p -bounds/CLT/LDP/... Nice but in practice? Time-uniform expo. concentration [$||f|| \le 1$] ($\Rightarrow \mathbb{L}_p$ -estimates)

 \rightsquigarrow For any $x \ge 0$ and $n \ge 0$

$$\mathbb{P}\left(|\eta_n^{\mathsf{N}}(f) - \eta_n(f)| \le c \sqrt{(1+x)/N}\right) \ge 1 - e^{-x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bias (prop. chaos)/ \mathbb{L}_p -bounds/CLT/LDP/... Nice but in practice? Time-uniform expo. concentration [$||f|| \le 1$] ($\Rightarrow \mathbb{L}_p$ -estimates)

 \rightsquigarrow For any $x \ge 0$ and $n \ge 0$

$$\mathbb{P}\left(|\eta_n^{\mathsf{N}}(f)-\eta_n(f)|\leq c\,\,\sqrt{(1+x)/N}
ight)\geq 1-e^{-x}$$

and

$$\mathbb{P}\left(\sup_{0\leq p\leq n} |\eta_n^{\mathsf{N}}(f) - \eta_n(f)| \leq c \,\sqrt{((1+x)\log{(n)})/N}\right) \geq 1 - e^{-x}$$

Some refs/more refined:

(AAP2011), (FTML2011), (CRC2013) [compact/minorization conditions]

$$\widehat{\eta}_n := \Psi_{G_n}(\eta_n) \quad \iff \quad \widehat{\eta}_n(f) \propto \mathbb{E}\left(f(X_n) \prod_{0 \leq p \leq n} G_p(X_p)\right)$$

$$\widehat{\eta}_n := \Psi_{G_n}(\eta_n) \quad \iff \quad \widehat{\eta}_n(f) \propto \mathbb{E}\left(f(X_n) \prod_{0 \leq p \leq n} G_p(X_p)\right)$$

Key observation:

$$\eta_{\mathbf{n}} = \widehat{\eta}_{\mathbf{n}-1} \mathbf{P}_{\mathbf{n}} \Longrightarrow \widehat{\eta}_{\mathbf{n}}(f) = \frac{\widehat{\eta}_{\mathbf{n}-1} \mathbf{P}_{\mathbf{n}}(G_{\mathbf{n}}f)}{\widehat{\eta}_{\mathbf{n}-1} \mathbf{P}_{\mathbf{n}}(G_{\mathbf{n}})}$$

$$\widehat{\eta}_n := \Psi_{G_n}(\eta_n) \quad \iff \quad \widehat{\eta}_n(f) \propto \mathbb{E}\left(f(X_n) \prod_{0 \leq p \leq n} G_p(X_p)\right)$$

Key observation:

$$\eta_{n} = \widehat{\eta}_{n-1} \mathbf{P}_{n} \Longrightarrow \widehat{\eta}_{n}(f) = \frac{\widehat{\eta}_{n-1} \mathbf{P}_{n}(G_{n}f)}{\widehat{\eta}_{n-1} \mathbf{P}_{n}(G_{n})} = \frac{\widehat{\eta}_{n-1}(\widehat{G}_{n-1}\widehat{P}_{n}(f))}{\widehat{\eta}_{n-1}(\widehat{G}_{n-1})}$$

with

$$\widehat{G}_{n-1} = P_n(G_n)$$
 and $\widehat{P}_n(f) := \frac{P_n(G_n f)}{P_n(G_n)}$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ ・ の へ の

$$\widehat{\eta}_n := \Psi_{G_n}(\eta_n) \quad \iff \quad \widehat{\eta}_n(f) \propto \mathbb{E}\left(f(X_n) \prod_{0 \leq p \leq n} G_p(X_p)\right)$$

Key observation:

$$\eta_{n} = \widehat{\eta}_{n-1} \mathbf{P}_{n} \Longrightarrow \widehat{\eta}_{n}(f) = \frac{\widehat{\eta}_{n-1} \mathbf{P}_{n}(G_{n}f)}{\widehat{\eta}_{n-1} \mathbf{P}_{n}(G_{n})} = \frac{\widehat{\eta}_{n-1}(\widehat{G}_{n-1}\widehat{P}_{n}(f))}{\widehat{\eta}_{n-1}(\widehat{G}_{n-1})}$$

with

$$\widehat{G}_{n-1} = P_n(G_n)$$
 and $\widehat{P}_n(f) := \frac{P_n(G_n f)}{P_n(G_n)}$

~ Math/Equivalent FK model:

$$\widehat{\eta}_n = \widehat{\Phi}_n(\widehat{\eta}_{n-1}) := \Psi_{\widehat{G}_{n-1}}(\widehat{\eta}_{n-1})\widehat{P}_n$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

$$\widehat{\eta}_n := \Psi_{G_n}(\eta_n) \quad \iff \quad \widehat{\eta}_n(f) \propto \mathbb{E}\left(f(X_n) \prod_{0 \leq p \leq n} G_p(X_p)\right)$$

Key observation:

$$\eta_{n} = \widehat{\eta}_{n-1} \mathbf{P}_{n} \Longrightarrow \widehat{\eta}_{n}(f) = \frac{\widehat{\eta}_{n-1} \mathbf{P}_{n}(G_{n}f)}{\widehat{\eta}_{n-1} \mathbf{P}_{n}(G_{n})} = \frac{\widehat{\eta}_{n-1}(\widehat{G}_{n-1}\widehat{P}_{n}(f))}{\widehat{\eta}_{n-1}(\widehat{G}_{n-1})}$$

with

$$\widehat{G}_{n-1} = P_n(G_n)$$
 and $\widehat{P}_n(f) := \frac{P_n(G_n f)}{P_n(G_n)}$

→ Math/Equivalent FK model:

$$\widehat{\eta}_n = \widehat{\Phi}_n(\widehat{\eta}_{n-1}) := \Psi_{\widehat{G}_{n-1}}(\widehat{\eta}_{n-1})\widehat{P}_n$$

But \neq GA Monte Carlo/samplers (mutation, selection) $\sim (\widehat{P}_n, \widehat{G}_n)$

(cf. Example 3/Sect. 4-2 in (AAP-1998) & Sect 2-3-2 in (Sp2000)),...

Feynman-Kac semigroups - any (G_n, P_n)

Linear evolution semigroup $(p \le n)$:

$$\gamma_n = \gamma_p Q_{p,n}$$
 with $Q_{p,n}(f)(x_p) := \mathbb{E}\left(f(X_n)\prod_{p \leq q < n} G_q(X_q) \mid X_p = x_p\right)$

Feynman-Kac semigroups - any (G_n, P_n)

Linear evolution semigroup $(p \le n)$:

 $Q_{p,n} = Q_{p+1}Q_{p+2}\ldots Q_n$ with $Q_n(x_{n-1}, dx_n) = G_{n-1}(x_{n-1}) P_n(x_{n-1}, dx_n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conventions: $Q_{n,n} = I$.

Feynman-Kac semigroups - any (G_n, P_n)

Linear evolution semigroup. ($p \le n$):

$$\gamma_n = \gamma_p Q_{p,n}$$

~> Nonlinear evolution semigroup:

$$\eta_n(f) = \frac{\gamma_n(f)}{\gamma_n(1)} = \frac{\eta_p(\mathcal{G}_{p,n}\overline{\mathcal{Q}}_{p,n}(f))}{\eta_p(\mathcal{G}_{p,n})} = \Psi_{\mathcal{G}_{p,n}}(\eta_p)\overline{\mathcal{Q}}_{p,n}(f)$$

with the Markov transition

$$\overline{Q}_{p,n}(f)(x_p):=rac{Q_{p,n}(f)}{Q_{p,n}(1)} \quad ext{and} \quad G_{p,n}=Q_{p,n}(1)$$

Conventions: $\overline{Q}_{n,n} = I$ and $G_{n,n} = 1$

Path-space meas. - Markov triangular arrays

$$\mathbb{Q}_n(dx) := \frac{1}{\gamma_n(1)} \left\{ \prod_{0 \le p < n} G_p(x_p) \right\} \eta_0(dx_0) P_1(x_0, dx_1) \dots P_n(x_{n-1}, dx_n)$$

Key observation:

$$egin{aligned} \mathcal{G}_{p,n} &= \mathcal{Q}_{p,n}(1) = \mathcal{G}_p \ \mathcal{P}_{p+1}(\mathcal{G}_{p+1,n}) & \Longleftrightarrow & \mathcal{G}_p = \mathcal{G}_{p,n}/\mathcal{P}_{p+1}(\mathcal{G}_{p+1,n}) \ & \Downarrow \end{aligned}$$

Triangular array of Markov transitions ~> stability properties

$$\mathbb{Q}_n(dx) = \frac{\eta_0(dx_0) \ G_{0,n}(x_0)}{\eta_0(G_{0,n})} \ \frac{P_1(x_0, dx_1)G_{1,n}(x_1)}{P_1(G_{1,n})(x_0)} \cdots \frac{P_n(x_{n-1}, dx_n)G_{n,n}(x_n)}{P_n(G_{n,n})(x_{n-1})}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Triangular arrays/Stability FK/Positive semigroups:

→ (CRAS1999)/(IHP2021),(SP2000),...,(AAP2023), (SAA2023).

Feynman-Kac measures

A variety of interpretations/targets/... Sub-Markov models (hard/soft obstacles) Self avoiding walks Level crossing excursions Filtering problems Approximate Bayesian Computation Kalman filter/Linear Gaussian Nonlinear Kalman/McKean-Vlasov The Ensemble Kalman filter EnKF vs Particle Filter Branching processes Quasi-invariant measures Path-space meas. - h-process

Feynman-Kac particle recipes/methodologies

Performance/Convergence analysis

Some ex.: $G_n(x_n) = (h_n/h_{n-1})(x_n)$ or $e^{-(U_{n+1}-U_n)(x_n)}$,

Some ex.: $G_n(x_n) = (h_n/h_{n-1})(x_n)$ or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$,

Some ex.: $G_n(x_n) = (h_n/h_{n-1})(x_n)$ or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

 $p(y_n|x_n),$

Some ex.: $G_n(x_n) = (h_n/h_{n-1})(x_n)$ or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

 $p(y_n|x_n), 1_{A_n}(x_n),$

Some ex.: $G_n(x_n) = (h_n/h_{n-1})(x_n)$ or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

 $p(y_n|x_n), 1_{A_n}(x_n), p(y_n | \theta, (y_1, \ldots, y_{n-1})),$

Some ex.:
$$G_n(x_n) = (h_n/h_{n-1})(x_n)$$
 or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

 $p(y_n|x_n), 1_{A_n}(x_n), p(y_n \mid \theta, (y_1, \ldots, y_{n-1})), 1_{x'_n \notin \{x'_0, \ldots, x'_{n-1}\}},$

Some ex.:
$$G_n(x_n) = (h_n/h_{n-1})(x_n)$$
 or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

$$p(y_n|x_n), 1_{A_n}(x_n), p(y_n \mid \theta, (y_1, \dots, y_{n-1})), 1_{x'_n \notin \{x'_0, \dots, x'_{n-1}\}}, \frac{P_n(x_{n-1}, dx_n)}{P_n^{l_n}(x_{n-1}, dx_n)}$$

Some ex.:
$$G_n(x_n) = (h_n/h_{n-1})(x_n)$$
 or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

$$p(y_n|x_n), 1_{A_n}(x_n), p(y_n \mid \theta, (y_1, \ldots, y_{n-1})), 1_{x'_n \notin \{x'_0, \ldots, x'_{n-1}\}}, \frac{P_n(x_{n-1}, dx_n)}{P_n^{l_n}(x_{n-1}, dx_n)}$$

 $G(x, y) = \frac{\pi(dx)L(x, dy)}{\pi(dy)M(y, dx)}$ (Sp2003),

Some ex.:
$$G_n(x_n) = (h_n/h_{n-1})(x_n)$$
 or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

$$p(y_n|x_n), 1_{A_n}(x_n), p(y_n \mid \theta, (y_1, \ldots, y_{n-1})), 1_{x'_n \notin \{x'_0, \ldots, x'_{n-1}\}}, \frac{P_n(x_{n-1}, dx_n)}{P_n^{l_n}(x_{n-1}, dx_n)}$$

$$G(x, y) = \frac{\pi(dx)L(x, dy)}{\pi(dy)M(y, dx)}$$
 (Sp2003), $\frac{\pi_n(dx)L_n(x, dy)}{\pi_{n-1}(dy)M_n(y, dx)}$ (cf. JRSS-B-2006), ...,

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

Some ex.:
$$G_n(x_n) = (h_n/h_{n-1})(x_n)$$
 or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

$$p(y_n|x_n), 1_{A_n}(x_n), p(y_n \mid \theta, (y_1, \ldots, y_{n-1})), 1_{x'_n \notin \{x'_0, \ldots, x'_{n-1}\}}, \frac{P_n(x_{n-1}, dx_n)}{P_n^{\mathsf{b}}(x_{n-1}, dx_n)}$$

$$G(x,y) = \frac{\pi(dx)L(x,dy)}{\pi(dy)M(y,dx)} \text{ (Sp2003), } \frac{\pi_n(dx)L_n(x,dy)}{\pi_{n-1}(dy)M_n(y,dx)} \text{ (cf. JRSS-B-2006), } \dots,$$

 \supset Continuous time models,...

$$X_n := X'_{[t_n, t_{n+1}[}$$
 & $G_n(X_n) = \exp \int_{t_n}^{t_{n+1}} U_s(X'_s) ds$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Some ex.:
$$G_n(x_n) = (h_n/h_{n-1})(x_n)$$
 or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

$$p(y_n|x_n), 1_{A_n}(x_n), p(y_n \mid \theta, (y_1, \ldots, y_{n-1})), 1_{x'_n \notin \{x'_0, \ldots, x'_{n-1}\}}, \frac{P_n(x_{n-1}, dx_n)}{P_n^{\mathsf{b}}(x_{n-1}, dx_n)}$$

$$G(x,y) = \frac{\pi(dx)L(x,dy)}{\pi(dy)M(y,dx)} \text{ (Sp2003), } \frac{\pi_n(dx)L_n(x,dy)}{\pi_{n-1}(dy)M_n(y,dx)} \text{ (cf. JRSS-B-2006), } \dots,$$

 \supset Continuous time models,...

$$X_n := X'_{[t_n, t_{n+1}[}$$
 & $G_n(X_n) = \exp \int_{t_n}^{t_{n+1}} U_s(X'_s) ds$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

But also transition/excursion spaces: $\rightsquigarrow X_n := (X'_n, X'_{n+1}), \ldots$

\neq $G_n/P_n \rightsquigarrow \neq$ interpretations/targets

Some ex.:
$$G_n(x_n) = (h_n/h_{n-1})(x_n)$$
 or $e^{-(U_{n+1}-U_n)(x_n)}$, $e^{-U(x_n)}$, $e^{-(U(x_n)-U(x_{n-1}))}$,

$$p(y_n|x_n), 1_{A_n}(x_n), p(y_n \mid \theta, (y_1, \ldots, y_{n-1})), 1_{x'_n \notin \{x'_0, \ldots, x'_{n-1}\}}, \frac{P_n(x_{n-1}, dx_n)}{P_n^{l_n}(x_{n-1}, dx_n)}$$

$$G(x,y) = \frac{\pi(dx)L(x,dy)}{\pi(dy)M(y,dx)} \text{ (Sp2003), } \frac{\pi_n(dx)L_n(x,dy)}{\pi_{n-1}(dy)M_n(y,dx)} \text{ (cf. JRSS-B-2006), } \dots,$$

 \supset Continuous time models,...

$$X_n := X'_{[t_n, t_{n+1}[}$$
 & $G_n(X_n) = \exp \int_{t_n}^{t_{n+1}} U_s(X'_s) ds$

But also transition/excursion spaces: $\rightsquigarrow X_n := (X'_n, X'_{n+1}), \ldots$

 \oplus Change of measures/Tuning \rightsquigarrow non unique choice of P_n or G_n .

Sub-Markov models $Q_n(1)(x) := G_{n-1}(x) \in [0,1]$

 $Q_n(x,dy) = G_{n-1}(x) P_n(x,dy) \rightsquigarrow$

Sub-Markov models $Q_n(1)(x) := G_{n-1}(x) \in [0,1]$

 $Q_n(x, dy) = G_{n-1}(x) P_n(x, dy) \rightsquigarrow \text{Markov on extended state} \quad E^c = E \cup \{c\}$

Sub-Markov models $Q_n(1)(x) := G_{n-1}(x) \in [0,1]$

 $Q_n(x,dy) = G_{n-1}(x) P_n(x,dy) \rightsquigarrow \text{Markov on extended state} \quad E^c = E \cup \{\mathbf{c}\}$

Absorbed chain (extended Markov $P_n(c, c) = 1$ and f(c) = 0)

$$X_n^c \in E_n^c \xrightarrow{\text{absorption} \sim (1-G_n)} \widehat{X}_n^c \xrightarrow{\text{exploration} \sim P_n} X_{n+1}^c$$
Sub-Markov models $Q_n(1)(x) := G_{n-1}(x) \in [0,1]$

 $Q_n(x,dy) = G_{n-1}(x) P_n(x,dy) \rightsquigarrow \text{Markov on extended state} \quad E^c = E \cup \{\mathbf{c}\}$

Absorbed chain (extended Markov $P_n(c, c) = 1$ and f(c) = 0)

$$X_n^c \in E_n^c \xrightarrow{absorption \ \sim (1-G_n)} \widehat{X}_n^c \xrightarrow{exploration \ \sim P_n} X_{n+1}^c$$

Conditional probabilities

$$\mathbb{Q}_n = \operatorname{Law}((X_0^c, \ldots, X_n^c) \mid T^{\text{absorption}} \geq n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sub-Markov models $Q_n(1)(x) := G_{n-1}(x) \in [0,1]$

 $Q_n(x,dy) = G_{n-1}(x) P_n(x,dy) \rightsquigarrow \text{Markov on extended state} \quad E^c = E \cup \{\mathbf{c}\}$

Absorbed chain (extended Markov $P_n(c, c) = 1$ and f(c) = 0)

$$X_n^c \in E_n^c \xrightarrow{absorption \sim (1-G_n)} \widehat{X}_n^c \xrightarrow{exploration \sim P_n} X_{n+1}^c$$

Conditional probabilities

$$\mathbb{Q}_n = \operatorname{Law}((X_0^c, \ldots, X_n^c) \mid T^{\text{absorption}} \geq n)$$

Note ~> hard obstacles/taboo sets/...:

$$G_n = 1_{A_n} \Longrightarrow \mathbb{Q}_n = \operatorname{Law}((X_0, \dots, X_n) \mid X_p \in A_p \ , 0 \le p < n)$$

・ロト ・ 日 ・ モ ・ ト ・ 日 ・ うへつ

Sub-Markov models $Q_n(1)(x) := G_{n-1}(x) \in [0,1]$

 $Q_n(x,dy) = G_{n-1}(x) P_n(x,dy) \rightsquigarrow \text{Markov on extended state} \quad E^c = E \cup \{\mathbf{c}\}$

Absorbed chain (extended Markov $P_n(c, c) = 1$ and f(c) = 0)

$$X_n^c \in E_n^c \xrightarrow{absorption \sim (1-G_n)} \widehat{X}_n^c \xrightarrow{exploration \sim P_n} X_{n+1}^c$$

Conditional probabilities

$$\mathbb{Q}_n = \operatorname{Law}((X_0^c, \ldots, X_n^c) \mid T^{\text{absorption}} \geq n)$$

Note ~> hard obstacles/taboo sets/...:

$$G_n = 1_{A_n} \Longrightarrow \mathbb{Q}_n = \operatorname{Law}((X_0, \dots, X_n) \mid X_p \in A_p \ , 0 \le p < n)$$

Normalizing constants

$$\gamma_n(1) = \operatorname{Proba}\left(T^{\text{absorption}} \ge n\right) \stackrel{G_n = 1_{A_n}}{=} \mathbb{P}(X_p \in A_p , 0 \le p < n)$$

 $X_n = (X'_0, \dots, X'_n) \in E_n := (E' \times \dots \times E')$ & $G_n(X_n) = 1_{X'_n \notin \{X'_0, \dots, X'_{n-1}\}}$

$$X_n = (X'_0, \dots, X'_n) \in E_n := (E' \times \dots \times E')$$
 & $G_n(X_n) = 1_{X'_n \notin \{X'_0, \dots, X'_{n-1}\}}$

~~ Conditional distributions

$$\eta_n = \operatorname{Law}\left((X'_0, \dots, X'_n) \mid X'_p \neq X'_q, \ \forall 0 \leq p < q < n\right)$$

$$X_n = (X'_0, \dots, X'_n) \in E_n := (E' \times \dots \times E')$$
 & $G_n(X_n) = 1_{X'_n \notin \{X'_0, \dots, X'_{n-1}\}}$

~~ Conditional distributions

$$\eta_n = \operatorname{Law}\left(\left(X'_0, \dots, X'_n
ight) \mid X'_p \neq X'_q, \ \forall 0 \leq p < q < n
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Normalizing constants

$$\gamma_{n+1}(1) = \operatorname{Proba}\left(X'_p \neq X'_q, \ \forall 0 \leq p < q \leq n\right)$$

$$X_n = (X'_0, \dots, X'_n) \in E_n := (E' \times \dots \times E')$$
 & $G_n(X_n) = 1_{X'_n \notin \{X'_0, \dots, X'_{n-1}\}}$

~~ Conditional distributions

$$\eta_n = \operatorname{Law}\left(\left(X'_0, \dots, X'_n
ight) \mid X'_p \neq X'_q, \ \forall 0 \leq p < q < n
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Normalizing constants

$$\gamma_{n+1}(1) = \operatorname{Proba}\left(X'_p \neq X'_q, \ \forall 0 \leq p < q \leq n\right)$$

$$= \left(\frac{1}{2d}\right)^n$$
 Card (SAW length n)

$$X_n = (X'_0, \dots, X'_n) \in E_n := (E' \times \dots \times E')$$
 & $G_n(X_n) = 1_{X'_n \notin \{X'_0, \dots, X'_{n-1}\}}$

~~ Conditional distributions

$$\eta_n = \operatorname{Law}\left(\left(X'_0, \dots, X'_n
ight) \mid X'_p \neq X'_q, \ \forall 0 \leq p < q < n
ight)$$

Normalizing constants

$$\gamma_{n+1}(1) = \operatorname{Proba}\left(X'_p \neq X'_q, \ \forall 0 \leq p < q \leq n\right)$$

 $= (\frac{1}{2d})^n$ Card (SAW length $n) \simeq (c(d)/(2d))^n$, c(d)=connective ct.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

$$X_n = (X'_0, \dots, X'_n) \in E_n := (E' \times \dots \times E')$$
 & $G_n(X_n) = 1_{X'_n \notin \{X'_0, \dots, X'_{n-1}\}}$

~~ Conditional distributions

$$\eta_n = \operatorname{Law}\left(\left(X'_0, \ldots, X'_n
ight) \mid X'_p \neq X'_q, \ \forall 0 \leq p < q < n
ight)$$

Normalizing constants

$$\gamma_{n+1}(1) = \operatorname{Proba}\left(X'_p \neq X'_q, \ \forall 0 \leq p < q \leq n\right)$$

 $= (\frac{1}{2d})^n$ Card (SAW length $n) \simeq (c(d)/(2d))^n$, c(d)=connective ct.

Edward's model (a.k.a. Weakly SAW/Domb-Joyce/...)

$$G_n(X_n) = \exp\left(-\frac{1}{\epsilon} \sum_{0 \le p < n} \mathbf{1}_{X'_p}(X'_n)\right)$$

Hitting A_n or B

$$T_n := \inf \{ t \ge T_{n-1} : X'_t \in (A_n \cup B) \}$$

Hitting A_n or B

$$T_n := \inf \{ t \ge T_{n-1} : X'_t \in (A_n \cup B) \}$$

Excursions

$$X_n = (X'_t)_{t \in [T_n, T_{n+1}]}$$
 & $G_n(X_n) = 1_{A_{n+1}}(X'_{T_{n+1}})$

Hitting A_n or B

$$T_n := \inf \{ t \ge T_{n-1} : X'_t \in (A_n \cup B) \}$$

Excursions

$$X_n = (X'_t)_{t \in [T_n, T_{n+1}]}$$
 & $G_n(X_n) = 1_{A_{n+1}}(X'_{T_{n+1}})$

↓

Conditional probabilities

$$\mathbb{Q}_n = \operatorname{Law}(n \ excursions \mid hits \ A_n \ before \ B)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hitting A_n or B

$$T_n := \inf \{ t \ge T_{n-1} : X'_t \in (A_n \cup B) \}$$

Excursions

$$X_n = (X'_t)_{t \in [T_n, T_{n+1}]}$$
 & $G_n(X_n) = 1_{A_{n+1}}(X'_{T_{n+1}})$

↓

Conditional probabilities

$$\mathbb{Q}_n = \operatorname{Law}(n \ excursions \mid hits \ A_n \ before \ B)$$

Normalizing constants

$$\gamma_n(1) = \mathbb{P}(X \text{ hits } A_n \text{ before } B)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Filtering: State/Osb = $Z_n = (X_n, Y_n)$ Markov

Markov transitions:

$$\mathbb{P}((X_n, Y_n) \in d(x_n, y_n) \mid Z_{n-1} = z_{n-1}) = P_n(x_{n-1}, dx_n) \underbrace{\mathcal{K}_n^Y(x_n, dy_n)}_{g_n(x_n, y_n) \ \nu_n(dy_n)}$$

Filtering: State/Osb = $Z_n = (X_n, Y_n)$ Markov

Markov transitions:

$$\mathbb{P}((X_n, Y_n) \in d(x_n, y_n) \mid Z_{n-1} = z_{n-1}) = P_n(x_{n-1}, dx_n) \underbrace{K_n^Y(x_n, dy_n)}_{g_n(x_n, y_n) \ \nu_n(dy_n)}$$

Given Y = y

$$G_n(x_n) := g_n(x_n, y_n) \Longrightarrow \eta_n = \operatorname{Law}(X_n \mid (Y_0, \ldots, Y_{n-1}) = (y_0, \ldots, y_{n-1}))$$

and

$$\mathbb{Q}_n = \operatorname{Law}((X_0, \ldots, X_n) \mid (Y_0, \ldots, Y_{n-1}) = (y_0, \ldots, y_{n-1}))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Filtering: State/Osb = $Z_n = (X_n, Y_n)$ Markov

Markov transitions:

$$\mathbb{P}((X_n, Y_n) \in d(x_n, y_n) \mid Z_{n-1} = z_{n-1}) = P_n(x_{n-1}, dx_n) \underbrace{K_n^Y(x_n, dy_n)}_{g_n(x_n, y_n) \ \nu_n(dy_n)}$$

Given Y = y

$$G_n(x_n) := g_n(x_n, y_n) \Longrightarrow \eta_n = \operatorname{Law}(X_n \mid (Y_0, \ldots, Y_{n-1}) = (y_0, \ldots, y_{n-1}))$$

and

$$\mathbb{Q}_n = \operatorname{Law}((X_0, \ldots, X_n) \mid (Y_0, \ldots, Y_{n-1}) = (y_0, \ldots, y_{n-1}))$$

BUT ALSO

$$\widehat{\eta}_n = \operatorname{Law}(X_n \mid (Y_0, \ldots, Y_n) = (y_0, \ldots, y_n)), \ldots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ABC $(Y_n \in \mathbb{R}^d) \rightsquigarrow$ Intractable likelihoods

$$\mathbb{P}(Y_n \in y_n \mid X_n = x_n) =$$

$$\underbrace{K_n^Y(x_n, dy_n)}$$

too complex/unkown

ABC $(Y_n \in \mathbb{R}^d) \rightsquigarrow$ Intractable likelihoods

$$\mathbb{P}(Y_n \in y_n \mid X_n = x_n) = \underbrace{K_n^Y(x_n, dy_n)}_{K_n}$$

too complex/unkown

One key idea: (PTRF-2001)/(Preprint Purdue-1998)]

$$\mathcal{X}_n = (X_n, Y_n) \text{ and } \mathcal{Y}_n = Y_n + \epsilon \mathcal{N}(0, I)$$

ABC $(Y_n \in \mathbb{R}^d) \rightsquigarrow$ Intractable likelihoods $\mathbb{P}(Y_n \in y_n \mid X_n = x_n) = \underbrace{K_n^Y(x_n, dy_n)}_{X_n \in Y_n}$

too complex/unkown

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One key idea: (PTRF-2001)/(Preprint Purdue-1998)]

$$\begin{split} \mathcal{X}_n &= (X_n, Y_n) \quad \text{and} \quad \mathcal{Y}_n = Y_n + \epsilon \ \mathcal{N}(0, I) \\ & \Downarrow \\ \mathbb{P}(\mathcal{Y}_n \in dz_n \mid \mathcal{X}_n = (x_n, y_n)) \propto \exp\left(-\frac{1}{2\epsilon} \|z_n - y_n\|^2\right) \ dz_n \end{split}$$

ABC $(Y_n \in \mathbb{R}^d) \rightsquigarrow$ Intractable likelihoods $\mathbb{P}(Y_n \in y_n \mid X_n = x_n) = \underbrace{\mathcal{K}_n^Y(x_n, dy_n)}$

too complex/unkown

One key idea: (PTRF-2001)/(Preprint Purdue-1998)]

$$\begin{split} \mathcal{X}_n &= (X_n, Y_n) \quad \text{and} \quad \mathcal{Y}_n = Y_n + \epsilon \ \mathcal{N}(0, I) \\ & \Downarrow \\ \mathbb{P}(\mathcal{Y}_n \in dz_n \mid \mathcal{X}_n = (x_n, y_n)) \propto \exp\left(-\frac{1}{2\epsilon} \|z_n - y_n\|^2\right) \ dz_n \end{split}$$

 $\rightsquigarrow \epsilon$ -Approximations (or using sufficient statistics $\varsigma(y_n)/\text{local neighbourhoods/uniform}$ sensor-type noise $\rightsquigarrow 1_{\mathcal{V}_{\epsilon}(y_n)}(z_n),\dots$):

$$\operatorname{Law}(X_n \mid (\mathcal{Y}_0, \ldots, \mathcal{Y}_n) = (y_0, \ldots, y_n)) \simeq_{\epsilon \to 0} \operatorname{Law}(X_n \mid (Y_0, \ldots, Y_n) = (y_0, \ldots, y_n))$$

ABC $(Y_n \in \mathbb{R}^d) \rightsquigarrow$ Intractable likelihoods $\mathbb{P}(Y_n \in y_n \mid X_n = x_n) = \underbrace{\mathcal{K}_n^Y(x_n, dy_n)}_{X_n \to Y_n}$

too complex/unkown

One key idea: (PTRF-2001)/(Preprint Purdue-1998)]

$$\begin{split} \mathcal{X}_n &= (X_n, Y_n) \quad \text{and} \quad \mathcal{Y}_n = Y_n + \epsilon \ \mathcal{N}(0, I) \\ & \Downarrow \\ \mathbb{P}(\mathcal{Y}_n \in dz_n \mid \mathcal{X}_n = (x_n, y_n)) \propto \exp\left(-\frac{1}{2\epsilon} \|z_n - y_n\|^2\right) \ dz_n \end{split}$$

 $\rightsquigarrow \epsilon$ -Approximations (or using sufficient statistics $\varsigma(y_n)/\text{local neighbourhoods/uniform}$ sensor-type noise $\rightsquigarrow 1_{\mathcal{V}_{\epsilon}(y_n)}(z_n),\dots$):

 $\operatorname{Law}(X_n \mid (\mathcal{Y}_0, \ldots, \mathcal{Y}_n) = (y_0, \ldots, y_n)) \simeq_{\epsilon \to 0} \operatorname{Law}(X_n \mid (Y_0, \ldots, Y_n) = (y_0, \ldots, y_n))$

Given the observations $y \rightsquigarrow FK$ with

$$\mathcal{X}_n = (X_n, Y_n) \quad \text{and} \quad \mathcal{G}_n(\mathcal{X}_n) = \exp\left(-\frac{1}{2\epsilon} \|y_n - Y_n\|^2\right)$$

Kalman filter/Linear-Gaussian models $X_0 \sim \mathcal{N}(m_0, r_0)$

$$X_n = AX_{n-1} + \sigma W_n$$
 and $G_n(x_n) \propto \exp\left(-\frac{1}{2\tau} (y_n - Cx_n)^2\right)$

Updating/Bayes' rule/Regression:

$$\eta_n = \mathcal{N}(m_n, r_n) \Longrightarrow \Psi_{G_n}(\eta_n) = \mathcal{N}(\widehat{m}_n, \widehat{r}_n)$$

with

$$\begin{aligned} \widehat{r}_n &= \frac{r_n}{1+\varsigma r_n} \quad \text{and} \quad \varsigma := C^2/\tau \\ \widehat{m}_n &:= m_n + \operatorname{Gain}(r_n) \ (y_n - Cm_n) \quad \text{and} \quad \operatorname{Gain}(r_n) := \frac{\varsigma r_n}{1+\varsigma r_n} \quad C^{-1} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Kalman filter/Linear-Gaussian models $X_0 \sim \mathcal{N}(m_0, r_0)$

$$X_n = AX_{n-1} + \sigma W_n$$
 and $G_n(x_n) \propto \exp\left(-rac{1}{2 au} (y_n - Cx_n)^2
ight)$

Updating/Bayes' rule/Regression:

$$\eta_n = \mathcal{N}(m_n, r_n) \Longrightarrow \Psi_{G_n}(\eta_n) = \mathcal{N}(\widehat{m}_n, \widehat{r}_n)$$

with

$$\widehat{r}_n = \frac{r_n}{1+\varsigma r_n} \text{ and } \varsigma := C^2/\tau$$

$$\widehat{m}_n := m_n + \operatorname{Gain}(r_n) (y_n - Cm_n) \text{ and } \operatorname{Gain}(r_n) := \frac{\varsigma r_n}{1+\varsigma r_n} C^{-1}$$

Prediction/Mutation/Markov transport:

 $\mathcal{N}(\widehat{m}_n, \widehat{r}_n) P_{n+1} = \mathcal{N}(m_{n+1}, r_{n+1}) \quad \text{with} \quad (m_{n+1}, r_{n+1}) := (A\widehat{m}_n, A^2 \widehat{r}_n + \sigma^2)$

Linear-Gaussian models $X_0 \sim \mathcal{N}(m_0, r_0)$

$$X_n = AX_{n-1} + \sigma W_n$$
 and $G_n(X_n) \propto \exp\left(-\frac{1}{2\tau} (y_n - CX_n)^2\right)$

Linear-Gaussian models $X_0 \sim \mathcal{N}(m_0, r_0)$

$$X_n = AX_{n-1} + \sigma W_n$$
 and $G_n(X_n) \propto \exp\left(-\frac{1}{2\tau} (y_n - CX_n)^2\right)$

Linear/Gauss flow (Kalman filter, $y_n = 0 \rightsquigarrow$ quantum harmonic osc.)

$$\eta_0 = \mathcal{N}(m_0, r_0) \Longrightarrow \forall n \ge 0 \qquad \eta_n = \mathcal{N}(m_n, r_n)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Stochastic/Nonlinear Kalman/McKean-Vlasov

 $\overline{X}_n \sim \mathcal{N}(m_n, \mathbf{r_n})$ and $\overline{V}_n \sim \mathcal{N}(0, 1)$

$$\implies \check{X}_n := \overline{X}_n + \operatorname{Gain}(\mathbf{r}_n) \left(y_n - (C\overline{X}_n + \sqrt{\tau} \ \overline{V}_n) \right) \sim \mathcal{N}(\widehat{m}_n, \widehat{r}_n)$$

Stochastic/Nonlinear Kalman/McKean-Vlasov

$$\overline{X}_n \sim \mathcal{N}(m_n, \mathbf{r_n})$$
 and $\overline{V}_n \sim \mathcal{N}(0, 1)$

$$\implies \check{X}_n := \overline{X}_n + \operatorname{Gain}(\mathbf{r}_n) \left(y_n - (C\overline{X}_n + \sqrt{\tau} \ \overline{V}_n) \right) \sim \mathcal{N}(\widehat{m}_n, \widehat{r}_n)$$

proof: mean ok and

$$\begin{split} \check{X}_n - \widehat{m}_n &= (1 - \operatorname{Gain}(r_n)C) \ (\overline{X}_n - m_n) - \operatorname{Gain}(r_n)\sqrt{\tau} \ \overline{V}_n \\ \implies \operatorname{variance} &= \underbrace{(1 - \operatorname{Gain}(r_n)C)^2}_{(\frac{1}{1 + \varsigma r_n})^2} \ r_n + \underbrace{(\operatorname{Gain}(r_n)C)^2}_{(\frac{\varsigma r_n}{1 + \varsigma r_n})^2} \ \underbrace{(\tau/C^2)}_{1/\varsigma} = \frac{r_n}{1 + \varsigma r_n} = \widehat{r}_n \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Stochastic/Nonlinear Kalman/McKean-Vlasov

$$\overline{X}_n \sim \mathcal{N}(m_n, \mathbf{r_n})$$
 and $\overline{V}_n \sim \mathcal{N}(0, 1)$

$$\implies \check{X}_n := \overline{X}_n + \operatorname{Gain}(\mathbf{r}_n) \left(y_n - (C\overline{X}_n + \sqrt{\tau} \ \overline{V}_n) \right) \sim \mathcal{N}(\widehat{m}_n, \widehat{r}_n)$$

proof: mean ok and

$$\check{X}_{n} - \widehat{m}_{n} = (1 - \operatorname{Gain}(r_{n})C) (\overline{X}_{n} - m_{n}) - \operatorname{Gain}(r_{n})\sqrt{\tau} \overline{V}_{n}$$

$$\Longrightarrow \operatorname{variance} = \underbrace{(1 - \operatorname{Gain}(r_{n})C)^{2}}_{(\frac{1}{1+\varsigma r_{n}})^{2}} r_{n} + \underbrace{(\operatorname{Gain}(r_{n})C)^{2}}_{(\frac{\varsigma r_{n}}{1+\varsigma r_{n}})^{2}} \underbrace{(\tau/C^{2})}_{1/\varsigma} = \frac{r_{n}}{1+\varsigma r_{n}} = \widehat{r}_{n}$$

Prediction/Mutation = Markov transition:

$$\check{X}_n ~\sim~ \mathcal{N}(\widehat{m}_n, \widehat{r}_n) ~~ ext{and} ~~ \overline{W}_{n+1} ~\sim~ \mathcal{N}(0, 1)$$

$$\Longrightarrow \overline{X}_{n+1} := A\check{X}_n + \sigma \ \overline{W}_{n+1} \ \sim \ \mathcal{N}(m_{n+1}, r_{n+1})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ensemble Kalman filter - Nonlinear Markov chain

$$\begin{cases} \check{X}_n = \overline{X}_n + \operatorname{Gain}(r_n) \left(Y_n - (C \overline{X} + \sqrt{\tau} \overline{V}_n) \right) \\ \overline{X}_{n+1} = A \check{X}_n + \sigma \overline{W}_{n+1}. \end{cases}$$

with $r_n :=$ conditional variance of the random state \overline{X}_n .

Ensemble Kalman filter - Nonlinear Markov chain

$$\begin{cases} \check{X}_n = \overline{X}_n + \operatorname{Gain}(r_n) \left(Y_n - (C \overline{X} + \sqrt{\tau} \overline{V}_n) \right) \\ \overline{X}_{n+1} = A \check{X}_n + \sigma \overline{W}_{n+1}. \end{cases}$$

with $r_n :=$ conditional variance of the random state \overline{X}_n .

∜

EnKF with i = 1, ..., N samples:

$$\begin{cases} \widehat{\xi}_{n}^{i} = \xi_{n}^{i} + \operatorname{Gain}(r_{n}^{\mathsf{N}}) \left(y_{n} - \left(C \xi_{n}^{i} + \sqrt{\tau} \overline{V}_{n}^{i}\right)\right) \\ \xi_{n+1}^{i} = A \widehat{\xi}_{n}^{i} + \sigma \overline{W}_{n+1}^{i}. \end{cases}$$

with $r_n^{\mathbf{N}} :=$ conditional *N*-sample variance of the random states ξ_n^i .

EnKF vs Particle filters = GA = SMC = DMC = ...

EnKF vs Particle filters = $GA = SMC = DMC = \dots$

$$\left(\boldsymbol{\xi}_{n}^{i} \right)_{1 \leq i \leq N} \in \mathbb{R}^{N} \xrightarrow{\text{Selection}} \left(\widehat{\boldsymbol{\xi}}_{n}^{j} \right)_{1 \leq j \leq N} \xrightarrow{\text{Mutation}} \left(\boldsymbol{\xi}_{n+1}^{i} \right)_{1 \leq i \leq N}$$

Selection/ **Mutation**:

$$\widehat{\xi_{\mathbf{n}}^{\mathbf{j}}} \sim \sum_{1 \le i \le N} \frac{e^{-(Y_n - \zeta \xi_n^j)^2/(2\tau)}}{\sum_{1 \le j \le N} e^{-(Y_n - \zeta \xi_n^j)^2/(2\tau)}} \ \delta_{\xi_n^j} \quad \text{and set} \quad \xi_{\mathbf{n+1}}^j := A \, \widehat{\xi_{\mathbf{n}}^j} + \sigma \, W_{n+1}^j$$

EnKF vs Particle filters = $GA = SMC = DMC = \dots$

$$\left(\xi_n^i \right)_{1 \leq i \leq N} \in \mathbb{R}^N \xrightarrow{\text{Selection}} \left(\widehat{\xi}_n^j \right)_{1 \leq j \leq N} \xrightarrow{\text{Mutation}} \left(\xi_{n+1}^i \right)_{1 \leq i \leq N}$$

Selection/ Mutation:

$$\widehat{\xi_{\mathbf{n}}^{\mathbf{j}}} \sim \sum_{1 \leq i \leq N} \ \frac{e^{-(Y_n - C\xi_n^i)^2/(2\tau)}}{\sum_{1 \leq j \leq N} e^{-(Y_n - C\xi_n^j)^2/(2\tau)}} \ \delta_{\xi_n^i} \quad \text{and set} \quad \xi_{\mathbf{n+1}}^{\mathbf{j}} := A \, \widehat{\xi_{\mathbf{n}}^{\mathbf{j}}} + \sigma \, W_{n+1}^j$$

Sample means \simeq Conditional expectations:

$$\forall n \in \mathbb{N} \qquad \widehat{X}_n^{\mathrm{PF}} := \frac{1}{N} \sum_{1 \leq i \leq N} \widehat{\xi}_n^i \simeq_{N \to \infty} \widehat{X}_n$$

EnKF vs Particle filters = $GA = SMC = DMC = \dots$

Sample means \simeq Conditional expectations:

$$\forall n \in \mathbb{N} \qquad \widehat{X}_n^{\mathrm{PF}} := \frac{1}{N} \sum_{1 \leq i \leq N} \widehat{\xi}_n^i \simeq_{N \to \infty} \widehat{X}_n$$

EnKF vs Particle filters = GA = SMC = DMC = ...

Sample means \simeq Conditional expectations:

$$\forall n \in \mathbb{N} \qquad \widehat{X}_n^{\mathrm{PF}} := \frac{1}{N} \sum_{1 \leq i \leq N} \widehat{\xi}_n^i \simeq_{N \to \infty} \widehat{X}_n$$

CLT variance time-uniformly bounded for any A

(Whiteley (AAP-2013))

EnKF vs Particle filters = GA = SMC = DMC = ...

Sample means \simeq Conditional expectations:

$$\forall n \in \mathbb{N} \qquad \widehat{X}_n^{\mathrm{PF}} := \frac{1}{N} \sum_{1 \leq i \leq N} \widehat{\xi}_n^i \simeq_{N \to \infty} \widehat{X}_n$$

CLT variance time-uniformly bounded for any A

(Whiteley (AAP-2013)) BUT for any A > 1

$$\xi_0^i = x_0^i > \frac{\sigma}{A-1} \sqrt{2\log N} \Longrightarrow \lim_{n \to \infty} \mathbb{E}\left[\left| \widehat{X}_n^{\rm PF} - \widehat{X}_n \right| \right] = +\infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
EnKF vs Particle filters = GA = SMC = DMC = ...

Sample means \simeq Conditional expectations:

$$\forall n \in \mathbb{N} \qquad \widehat{X}_n^{\mathrm{PF}} := \frac{1}{N} \sum_{1 \leq i \leq N} \widehat{\xi}_n^i \simeq_{N \to \infty} \widehat{X}_n$$

CLT variance time-uniformly bounded for any A

(Whiteley (AAP-2013)) BUT for any A > 1

$$\xi_0^i = x_0^i > \frac{\sigma}{A-1} \sqrt{2\log N} \Longrightarrow \lim_{n \to \infty} \mathbb{E}\left[\left| \widehat{X}_n^{\rm PF} - \widehat{X}_n \right| \right] = +\infty$$

While time-uniform estimates even for any A > 1 for the EnKF sample means $\hat{\chi}_n^{\text{EnKF}}$ ((AAP-2023)/(Arxiv-2021))

(日) (日) (日) (日) (日) (日) (日) (日)

 \rightsquigarrow continuous time (review (MC2S-2023))

Branching processes - discrete time

- ▶ $P_n(x_{n-1}, dx_n)$ Markov $X_{n-1} \in E_{n-1} \rightsquigarrow X_n \in E_n$ (ex. historical)
- ▶ $g_n^i(x_n) \in \mathbb{N} = \text{i.i.d.}$ branching r.v., indexed by $x_n \in E_n$ and $i \ge 1$ s.t $\mathbb{E}(g_n^i(x_n)) \propto G_n(x_n)$

Branching processes - discrete time

- ► $P_n(x_{n-1}, dx_n)$ Markov $X_{n-1} \in E_{n-1} \rightsquigarrow X_n \in E_n$ (ex. historical)
- ▶ $g_n^i(x_n) \in \mathbb{N} = \text{i.i.d.}$ branching r.v., indexed by $x_n \in E_n$ and $i \ge 1$ s.t $\mathbb{E}(g_n^i(x_n)) \propto G_n(x_n)$

Branching process

$$\mathcal{X}_n := \sum_{1 \leq i \leq N_n} \delta_{\xi_n^i} \xrightarrow{\text{branch.}} \widehat{\mathcal{X}}_n := \sum_{1 \leq i \leq \widehat{N}_n} \delta_{\widehat{\xi}_n^i} \xrightarrow{\text{explore}} \mathcal{X}_{n+1} := \sum_{1 \leq i \leq N_{n+1} = \widehat{N}_n} \delta_{\xi_{n+1}^i}$$

Branching processes - discrete time

- ► $P_n(x_{n-1}, dx_n)$ Markov $X_{n-1} \in E_{n-1} \rightsquigarrow X_n \in E_n$ (ex. historical)
- ▶ $g_n^i(x_n) \in \mathbb{N} = \text{i.i.d.}$ branching r.v., indexed by $x_n \in E_n$ and $i \ge 1$ s.t $\mathbb{E}(g_n^i(x_n)) \propto G_n(x_n)$

Branching process

$$\mathcal{X}_{n} := \sum_{1 \leq i \leq N_{n}} \delta_{\xi_{n}^{i}} \xrightarrow{\text{branch.}} \widehat{\mathcal{X}}_{n} := \sum_{1 \leq i \leq \widehat{N}_{n}} \delta_{\widehat{\xi}_{n}^{i}} \xrightarrow{\text{explore}} \mathcal{X}_{n+1} := \sum_{1 \leq i \leq N_{n+1} = \widehat{N}_{n}} \delta_{\xi_{n+1}^{i}}$$

Note that

$$\widehat{\mathcal{X}}_n = \sum_{1 \leq i \leq N_n} g_n^i(\xi_n^i) \, \delta_{\xi_n^i}$$

→ First moment (a.k.a. many-to-one) = FK

$$\mathbb{E}(\mathcal{X}_n(f))/N_0 = \gamma_n(f) := \mathbb{E}\left(f(X_n) \prod_{0 \le p < n} G_p(X_p)\right)$$

(Quasi)-Invariant measures

Any positive semigroup \rightsquigarrow Time homogeneous FK (G, P)

Q(x, dy) = G(x) P(x, dy) with G := Q(1) and P(f) := Q(f)/Q(1)

(Quasi)-Invariant measures

Any positive semigroup \rightsquigarrow Time homogeneous FK (G, P)

$$Q(x, dy) = G(x) P(x, dy)$$
 with $G := Q(1)$ and $P(f) := Q(f)/Q(1)$

Hyp. stable semigroup:

$$\eta_n = \Phi(\eta_{n-1}) := \Psi_G(\eta_{n-1})P \longrightarrow_{n \to \infty} \eta_\infty = \Phi(\eta_\infty)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Case *P* is μ -reversible ($\Longrightarrow Q$ is $\Psi_{1/G}(\mu)$ -reversible)

 $\Psi_{1/G}(\mu)(f_1Q(f_2)) \propto \mu(f_1P(f_2)) = \mu(P(f_1)f_2)$

Case *P* is μ -reversible ($\Longrightarrow Q$ is $\Psi_{1/G}(\mu)$ -reversible)

 $\Psi_{1/G}(\mu)(f_1Q(f_2)) \propto \mu(f_1P(f_2)) = \mu(P(f_1)f_2)$

∜

Spectral theo. on $\mathbb{L}_2(\Psi_{1/G}(\mu))$: $\exists \lambda_i > 0 \downarrow \& h_i$ orthonormal s.t.

 $Q(h_i) = \lambda_i h_i$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

25/54

Case *P* is μ -reversible ($\Longrightarrow Q$ is $\Psi_{1/G}(\mu)$ -reversible)

$$\Psi_{1/G}(\mu)(f_1Q(f_2)) \propto \mu(f_1P(f_2)) = \mu(P(f_1)f_2)$$

∜

Spectral theo. on $\mathbb{L}_2(\Psi_{1/G}(\mu))$: $\exists \lambda_i > 0 \downarrow \& h_i$ orthonormal s.t.

 $Q(h_i) = \lambda_i h_i$

and spectral decomposition

$$Q^n(x, dy) = \sum_{i\geq 0} \lambda_i^n h_i(x) h_i(y) \Psi_{1/G}(\mu)(dy)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

 $(\lambda_0, h_0) = (\lambda, h) \rightsquigarrow$ QSD η_∞ "more explicit" formulation

 $\eta_{\infty}(f) :\propto \mu(P(h) f)$

 $(\lambda_0, h_0) = (\lambda, h) \rightsquigarrow$ QSD η_∞ "more explicit" formulation

 $\eta_{\infty}(f) :\propto \mu(P(h) \ f) \Longrightarrow \quad \eta_{\infty}(Q(f)) \propto \mu(Q(h) \ P(f))$

 $(\lambda_0, h_0) = (\lambda, h) \rightsquigarrow$ QSD η_∞ "more explicit" formulation

 $\eta_{\infty}(f) :\propto \mu(P(h) \ f) \Longrightarrow \quad \eta_{\infty}(Q(f)) \propto \mu(Q(h) \ P(f)) \propto \mu(hP(f))$

 $(\lambda_0, h_0) = (\lambda, h) \rightsquigarrow$ QSD η_∞ "more explicit" formulation

 $\eta_{\infty}(f) :\propto \mu(P(h) \ f) \Longrightarrow \quad \eta_{\infty}(Q(f)) \propto \mu(Q(h) \ P(f)) \propto \mu(hP(f)) \propto \eta_{\infty}(f)$

Also note:

$$\eta_{\infty}(G) = \frac{\mu(Q(h))}{\mu(h)}$$

 $(\lambda_0, h_0) = (\lambda, h) \rightsquigarrow \mathsf{QSD} \ \eta_\infty$ "more explicit" formulation

$$\eta_{\infty}(f) :\propto \mu(P(h) \ f) \Longrightarrow \quad \eta_{\infty}(Q(f)) \propto \mu(Q(h) \ P(f)) \propto \mu(hP(f)) \propto \eta_{\infty}(f)$$

Also note:

$$\eta_{\infty}(G) = \frac{\mu(Q(h))}{\mu(h)} = \lambda$$

 $(\lambda_0, h_0) = (\lambda, h) \rightsquigarrow \mathsf{QSD} \ \eta_\infty$ "more explicit" formulation

 $\eta_{\infty}(f) :\propto \mu(P(h) \ f) \Longrightarrow \quad \eta_{\infty}(Q(f)) \propto \mu(Q(h) \ P(f)) \propto \mu(hP(f)) \propto \eta_{\infty}(f)$

Also note:

$$\eta_{\infty}(G) = rac{\mu(Q(h))}{\mu(h)} = \lambda \Longrightarrow \Psi_G(\eta_{\infty})(f) \propto rac{\mu(Q(h) f)}{\lambda}$$

 $(\lambda_0, h_0) = (\lambda, h) \rightsquigarrow \mathsf{QSD} \ \eta_\infty$ "more explicit" formulation

 $\eta_{\infty}(f) :\propto \mu(P(h) \ f) \Longrightarrow \quad \eta_{\infty}(Q(f)) \propto \mu(Q(h) \ P(f)) \propto \mu(hP(f)) \propto \eta_{\infty}(f)$

Also note:

$$\eta_{\infty}(G) = \frac{\mu(Q(h))}{\mu(h)} = \lambda \Longrightarrow \Psi_{G}(\eta_{\infty})(f) \propto \frac{\mu(Q(h) f)}{\lambda} \propto \Psi_{h}(\mu)(f)$$

$$\mathbb{Q}_n(dx) := \frac{1}{\gamma_n(1)} \left\{ \prod_{0 \le p < n} G(x_p) \right\} \eta_0(dx_0) P(x_0, dx_1) \dots P(x_{n-1}, dx_n)$$

Key observation (including design FK with prescribed *h*):

$$Q(h) = \lambda h \iff G = \lambda h / P(h)$$

$$\mathbb{Q}_n(dx) := \frac{1}{\gamma_n(1)} \left\{ \prod_{0 \le p < n} G(x_p) \right\} \eta_0(dx_0) P(x_0, dx_1) \dots P(x_{n-1}, dx_n)$$

Key observation (including design FK with prescribed *h*):

$$Q(h) = \lambda h \iff G = \lambda h / P(h)$$

$$\mathbb{Q}_{n}(dx) \propto \underbrace{\frac{\eta_{0}(dx_{0}) \ h(x_{0})}{\eta_{0}(h)}}_{=\eta_{0}^{h}(dx_{0})} \ (\prod_{0 \leq p < n} \underbrace{\frac{P(x_{p}, dx_{p+1})h(x_{p+1})}{P(h)(x_{p})}}_{P(h(x_{p}, dx_{p+1})}) \ \frac{1}{h(x_{n})}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathbb{Q}_n(dx) := \frac{1}{\gamma_n(1)} \left\{ \prod_{0 \le p < n} G(x_p) \right\} \eta_0(dx_0) P(x_0, dx_1) \dots P(x_{n-1}, dx_n)$$

Key observation (including design FK with prescribed *h*):

$$Q(h) = \lambda h \iff G = \lambda h / P(h)$$

$$\mathbb{Q}_n(dx) \propto \underbrace{\frac{\eta_0(dx_0) h(x_0)}{\eta_0(h)}}_{=\eta_0^h(dx_0)} (\prod_{0 \le p < n} \underbrace{\frac{P(x_p, dx_{p+1})h(x_{p+1})}{P(h)(x_p)}}_{P(h(x_p, dx_{p+1})}) \frac{1}{h(x_n)}$$

Caution: even sampling P^h the weight 1/h may be very large and $\mu(hP(h)P^h(f)) = \mu(hP(hf)) = \mu(P(h)hf)$

$$\mathbb{Q}_n(dx) := \frac{1}{\gamma_n(1)} \left\{ \prod_{0 \le p < n} G(x_p) \right\} \eta_0(dx_0) P(x_0, dx_1) \dots P(x_{n-1}, dx_n)$$

Key observation (including design FK with prescribed *h*):

$$Q(h) = \lambda h \iff G = \lambda h / P(h)$$

$$\mathbb{Q}_n(dx) \propto \underbrace{\frac{\eta_0(dx_0) h(x_0)}{\eta_0(h)}}_{=\eta_0^h(dx_0)} (\prod_{0 \le p < n} \underbrace{\frac{P(x_p, dx_{p+1})h(x_{p+1})}{P(h)(x_p)}}_{P^h(x_p, dx_{p+1})}) \frac{1}{h(x_n)}$$

Caution: even sampling P^h **the weight** 1/h **may be very large and** $\mu(hP(h)P^h(f)) = \mu(hP(hf)) = \mu(P(h)hf) \Longrightarrow \eta^h_{\infty}(f) \propto \mu(hP(h)f)$

Feynman-Kac measures

A variety of interpretations/targets/...

Feynman-Kac particle recipes/methodologies Genealogical/Ancestral trees Backward particle models Island models Many-body FK models Particle Gibbs Quenched/Annealed models (Particle) Metropolis-Hasting Conditional Linear-Gaussian models Interacting Kalman filters

Performance/Convergence analysis

Historical/Path-space FK/Genealogical/Ancestral trees

$$X_n := (X'_0, \dots, X'_n) \quad \& \quad G_n(X_n) = G'_n(X'_n)$$

$$\Downarrow$$

$$\gamma_n(f) := \mathbb{E} \left(f(X'_0, \dots, X'_n) \prod_{0 \le p < n} G'_p(X'_p) \right)$$

Historical/Path-space FK/Genealogical/Ancestral trees

$$X_n := (X'_0, \dots, X'_n) \quad \& \quad G_n(X_n) = G'_n(X'_n)$$

$$\downarrow$$

$$\gamma_n(f) := \mathbb{E} \left(f(X'_0, \dots, X'_n) \prod_{0 \le p < n} G'_p(X'_p) \right)$$

Back to *n*-th time marginals

$$f(X'_0,\ldots,X'_n)=f'(X'_n) \quad \rightharpoonup \quad \gamma_n(f)=\gamma'_n(f')$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

29/54

Historical/Path-space FK/Genealogical/Ancestral trees

$$X_n := (X'_0, \dots, X'_n) \quad \& \quad G_n(X_n) = G'_n(X'_n)$$

$$\downarrow$$

$$\gamma_n(f) := \mathbb{E} \left(f(X'_0, \dots, X'_n) \prod_{0 \le p < n} G'_p(X'_p) \right)$$

Back to *n*-th time marginals

$$f(X'_0,\ldots,X'_n)=f'(X'_n) \quad \rightharpoonup \quad \gamma_n(f)=\gamma'_n(f')$$

→ Path-valued GA (historical mutation, path-selection) $\sim (P_n, G_n)$ → Genealogical trees, ancestral lines $\xi_n^i = (\xi_{0,n}^i, \xi_{1,n}^i, \dots, \xi_{n,n}^i)$

Unnormalized particle measures

Unnormalized particle measures

→ unbiased unnormalized particle measures

$$\gamma_n^{\mathsf{N}}(f) := \eta_n^{\mathsf{N}}(f) \prod_{0 \le p < n} \eta_p^{\mathsf{N}}(G_p)$$

Design unnormalized particle measures + unbiasedness + variance

→ (MPRF-1996),..., (IHP2011),...

 \rightsquigarrow cf. books+refs: (FK2004), (FTML2012), (CRC2013)

Unbiasedness property/Random ancestral lines

$$\mathbb{E}(\gamma_n^{\sf N}(f))=\gamma_n(f)$$

with historical $X_n := (X'_0, \dots, X'_n) \rightsquigarrow \xi_n^i = (\xi_{0,n}^i, \xi_{1,n}^i, \dots, \xi_{n,n}^i)$

$$\mathbb{E}\left(f(\mathbb{X}_n)\prod_{0\leq p< n}m(\xi_p)(G_p)\right)=\gamma_n(f)$$

with a randomly chosen ancestral line

$$\mathbb{X}_n \sim m(\xi_n) = \frac{1}{N} \sum_{1 \leq i \leq N} \delta_{\left(\xi_{0,n}^i, \xi_{1,n}^i, \dots, \xi_{n,n}^i\right)}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣A⊘

 $\mathbb{Q}_n(d(x_0,...,x_n)) \propto \nu_n(dx_n)q_n(x_{n-1},x_n)...\nu_1(dx_1) q_1(x_0,x_1) \eta_0(dx_0)$

$$\mathbb{Q}_n(d(x_0,...,x_n)) \propto \nu_n(dx_n)q_n(x_{n-1},x_n)...\nu_1(dx_1) q_1(x_0,x_1) \eta_0(dx_0)$$

Key obs:

$$\eta_n(dx_n) \propto \eta_{n-1}(H_{n-1}(.,x_n)) \nu_n(dx_n)$$

$$\mathbb{Q}_n(d(x_0,...,x_n)) \propto \nu_n(dx_n)q_n(x_{n-1},x_n)...\nu_1(dx_1) q_1(x_0,x_1) \eta_0(dx_0)$$

Key obs:

$$\eta_n(dx_n) \propto \eta_{n-1}(H_{n-1}(.,x_n)) \nu_n(dx_n)$$

$$\begin{array}{c} \uparrow \\ \nu_n(dx_n) \ q_n(x_{n-1}, x_n) \ \eta_{n-1}(dx_{n-1}) \propto \ \eta_n(dx_n) \\ \underbrace{\frac{\eta_{n-1}(dx_{n-1})q_n(x_{n-1}, x_n)}{\eta_{n-1}(q_{n-1}(\cdot, x_n))}}_{:=\mathbb{K}_{n,\eta_{n-1}}(x_n, dx_{n-1})} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathbb{Q}_n(d(x_0,...,x_n)) \propto \nu_n(dx_n)q_n(x_{n-1},x_n)...\nu_1(dx_1) q_1(x_0,x_1) \eta_0(dx_0)$$

Key obs:

$$\eta_n(dx_n) \propto \eta_{n-1}(H_{n-1}(.,x_n)) \nu_n(dx_n)$$

₩

Backward FK

$$\mathbb{Q}_n(d(x_0,\ldots,x_n)) = \eta_n(dx_n) \mathbb{K}_{n,\eta_{n-1}}(x_n,dx_{n-1})\ldots\mathbb{K}_{1,\eta_0}(x_1,dx_0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathbb{Q}_n(dx) = \eta_n(dx_n) \mathbb{K}_{n,\eta_{n-1}}(x_n, dx_{n-1}) \dots \mathbb{K}_{1,\eta_0}(x_1, dx_0)$$

$$\mathbb{Q}_n(dx) = \eta_n(dx_n) \mathbb{K}_{n,\eta_{n-1}}(x_n, dx_{n-1}) \dots \mathbb{K}_{1,\eta_0}(x_1, dx_0)$$

Backward particle FK (M2AN10) = Conditional ancestral line (Arxiv(14)/IHP(16))

$$\mathbb{Q}_n^{\mathsf{N}}(dx) = \eta_n^{\mathsf{N}}(dx_n) \mathbb{K}_{n,\eta_{n-1}^{\mathsf{N}}}(x_n, dx_{n-1}) \dots \mathbb{K}_{1,\eta_0^{\mathsf{N}}}(x_1, dx_0)$$

$$\mathbb{Q}_n(dx) = \eta_n(dx_n) \mathbb{K}_{n,\eta_{n-1}}(x_n, dx_{n-1}) \dots \mathbb{K}_{1,\eta_0}(x_1, dx_0)$$

Backward particle FK (M2AN10) = Conditional ancestral line (Arxiv(14)/IHP(16))

$$\begin{aligned} \mathbb{Q}_n^{\mathsf{N}}(dx) &= \eta_n^{\mathsf{N}}(dx_n) \mathbb{K}_{n,\eta_{n-1}^{\mathsf{N}}}(x_n, dx_{n-1}) \dots \mathbb{K}_{1,\eta_0^{\mathsf{N}}}(x_1, dx_0) \\ &= \mathbb{P}\left(\mathbb{X}_n \in d(x_0, \dots, x_n) \mid \eta_{\mathsf{p}}^{\mathsf{N}}, \ \mathsf{p} \leq \mathsf{n}\right) \end{aligned}$$

$$\mathbb{Q}_n(dx) = \eta_n(dx_n) \mathbb{K}_{n,\eta_{n-1}}(x_n, dx_{n-1}) \dots \mathbb{K}_{1,\eta_0}(x_1, dx_0)$$

Backward particle FK (M2AN10) = Conditional ancestral line (Arxiv(14)/IHP(16))

$$\begin{aligned} \mathbb{Q}_n^{\mathsf{N}}(dx) &= \eta_n^{\mathsf{N}}(dx_n) \mathbb{K}_{n,\eta_{n-1}^{\mathsf{N}}}(x_n, dx_{n-1}) \dots \mathbb{K}_{1,\eta_0^{\mathsf{N}}}(x_1, dx_0) \\ &= \mathbb{P}\left(\mathbb{X}_n \in d(x_0, \dots, x_n) \mid \eta_{\mathsf{p}}^{\mathsf{N}}, \ \mathsf{p} \leq \mathsf{n}\right) \end{aligned}$$

 \rightsquigarrow Backward Markov chain on index set $\{1, \ldots, N\}$

$$\eta_n^{\mathsf{N}} \simeq \left[\frac{1}{N}, \dots, \frac{1}{N}\right], \quad \mathbb{K}_{n,\eta_{n-1}^{\mathsf{N}}} \simeq \left[\begin{array}{cccc} \mathbb{K}_{n,\eta_{n-1}^{\mathsf{N}}}(\xi_n^1, \xi_n^1) & \dots & \mathbb{K}_{n,\eta_{n-1}^{\mathsf{N}}}(\xi_n^1, \xi_n^N) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{K}_{n,\eta_{n-1}^{\mathsf{N}}}(\xi_n^N, \xi_n^1) & \dots & \mathbb{K}_{n,\eta_{n-1}^{\mathsf{N}}}(\xi_n^N, \xi_n^N) \end{array}\right], \quad f_n \simeq \left[\begin{array}{c} f(\xi_n^1) \\ \vdots \\ f(\xi_n^N) \end{array}\right]$$

Unbiasedness property/Island models/(a.k.a. *SMC*²) (FTML2011)

$$\mathbb{E}\left(f(X_n)\prod_{0\leq p< n}G_p(X_p)\right)$$
$$=\mathbb{E}\left(m(\xi_n)(f)\prod_{0\leq p< n}m(\xi_p)(G_p)\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@
$$\mathbb{E}\left(f(X_n)\prod_{0\leq p< n}G_p(X_p)\right)$$
$$=\mathbb{E}\left(m(\xi_n)(f)\prod_{0\leq p< n}m(\xi_p)(G_p)\right)=\mathbb{E}\left(\mathcal{F}(\xi_n)\prod_{0\leq p< n}\mathcal{G}_p(\xi_p)\right)$$

with

$$\mathcal{F}(\xi_n) := m(\xi_n)(f) \text{ and } \mathcal{G}_p(\xi_p) := m(\xi_p)(\mathcal{G}_p)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\mathbb{E}\left(f(X_n)\prod_{0\leq p< n}G_p(X_p)\right)$$
$$=\mathbb{E}\left(m(\xi_n)(f)\prod_{0\leq p< n}m(\xi_p)(G_p)\right)=\mathbb{E}\left(\mathcal{F}(\xi_n)\prod_{0\leq p< n}\mathcal{G}_p(\xi_p)\right)$$

with

34/54

$$\mathcal{F}(\xi_n) := m(\xi_n)(f) \text{ and } \mathcal{G}_p(\xi_p) := m(\xi_p)(\mathcal{G}_p)$$

GA = Island model:

$$\mathbb{E}\left(f(X_n)\prod_{0\leq p< n}G_p(X_p)\right)$$
$$=\mathbb{E}\left(m(\xi_n)(f)\prod_{0\leq p< n}m(\xi_p)(G_p)\right)=\mathbb{E}\left(\mathcal{F}(\xi_n)\prod_{0\leq p< n}\mathcal{G}_p(\xi_p)\right)$$

with

$$\mathcal{F}(\xi_n) := m(\xi_n)(f) \text{ and } \mathcal{G}_p(\xi_p) := m(\xi_p)(\mathcal{G}_p)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

GA = Island model:

N'-Genetic model with mutation as $\xi_{n-1} \rightsquigarrow \xi_n$

$$\mathbb{E}\left(f(X_n)\prod_{0\leq p< n}G_p(X_p)\right)$$
$$=\mathbb{E}\left(m(\xi_n)(f)\prod_{0\leq p< n}m(\xi_p)(G_p)\right)=\mathbb{E}\left(\mathcal{F}(\xi_n)\prod_{0\leq p< n}\mathcal{G}_p(\xi_p)\right)$$

with

$$\mathcal{F}(\xi_n) := m(\xi_n)(f) \text{ and } \mathcal{G}_p(\xi_p) := m(\xi_p)(\mathcal{G}_p)$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

GA = Island model:

N'-Genetic model with mutation as $\xi_{n-1} \rightsquigarrow \xi_n$

and selection/fitness/potential $\mathcal{G}_n(\xi_n)$.

$$\mathcal{Q}_n(F_n) := rac{1}{\gamma_n(1)} \mathbb{E}\left(F_n(\xi_0,\ldots,\xi_n)\prod_{0\leq p< n}\mathcal{G}_p(\xi_p)\right)$$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

$$\mathcal{Q}_n(F_n) := rac{1}{\gamma_n(1)} \mathbb{E}\left(F_n(\xi_0,\ldots,\xi_n)\prod_{0\leq p< n}\mathcal{G}_p(\xi_p)\right)$$

Important observation

 $\operatorname{Law}_{\mathcal{Q}_n}(\mathbb{X}_n) = \mathbb{Q}_n$

$$\mathcal{Q}_n(F_n) := rac{1}{\gamma_n(1)} \mathbb{E}\left(F_n(\xi_0,\ldots,\xi_n)\prod_{0\leq p< n}\mathcal{G}_p(\xi_p)\right)$$

Important observation

$$\operatorname{Law}_{\mathcal{Q}_n}(\mathbb{X}_n) = \mathbb{Q}_n$$

Easy sampling given an ancestral line (Arxiv(14)/IHP(16))

 $\operatorname{Law}_{\mathcal{Q}_n}((\xi_0,\ldots,\xi_n) \mid \mathbb{X}_n)$

= Law N particles with a given frozen path X_n

$$\mathcal{Q}_n(F_n) := rac{1}{\gamma_n(1)} \mathbb{E}\left(F_n(\xi_0,\ldots,\xi_n)\prod_{0\leq p< n}\mathcal{G}_p(\xi_p)\right)$$

Important observation

$$\operatorname{Law}_{\mathcal{Q}_n}(\mathbb{X}_n) = \mathbb{Q}_n$$

Easy sampling given an ancestral line (Arxiv(14)/IHP(16))

 $\operatorname{Law}_{\mathcal{Q}_n}((\xi_0,\ldots,\xi_n) \mid \mathbb{X}_n)$

= Law N particles with a given frozen path X_n

Same/also work with backward ancestral lines

(Particle) Gibbs sampler

Target/Joint dist.: Law_{Q_n}(X_n , X_n) with $X_n := (\xi_0, \ldots, \xi_n)$

$$\left(\begin{array}{c} \mathbb{X}_n\\ \mathcal{X}_n\end{array}\right) \xrightarrow{\operatorname{pick} \mathbb{X}'_n \text{ in } \mathcal{X}_n} \left(\begin{array}{c} \mathbb{X}'_n\\ \mathcal{X}_n\end{array}\right) \xrightarrow{\mathcal{X}'_n \text{ with frozen } \mathbb{X}'_n} \left(\begin{array}{c} \mathbb{X}'_n\\ \mathcal{X}'_n\end{array}\right)$$

(Particle) Gibbs sampler

Target/Joint dist.: Law_{Q_n}(X_n , X_n) with $X_n := (\xi_0, \ldots, \xi_n)$

$$\left(\begin{array}{c} \mathbb{X}_n\\ \mathcal{X}_n \end{array}\right) \xrightarrow{\operatorname{pick} \mathbb{X}'_n \text{ in } \mathcal{X}_n} \left(\begin{array}{c} \mathbb{X}'_n\\ \mathcal{X}_n \end{array}\right) \xrightarrow{\mathcal{X}'_n \text{ with frozen } \mathbb{X}'_n} \left(\begin{array}{c} \mathbb{X}'_n\\ \mathcal{X}'_n \end{array}\right)$$

Note $\mathbb{X}_n \rightsquigarrow \mathbb{X}'_n$ Markov with invariant measure

 $\operatorname{Law}_{\mathcal{Q}_n}(\mathbb{X}_n) = \mathbb{Q}_n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Particle) Gibbs sampler

Target/Joint dist.: Law_{Q_n}(X_n , X_n) with $X_n := (\xi_0, \ldots, \xi_n)$

$$\left(\begin{array}{c} \mathbb{X}_n\\ \mathcal{X}_n \end{array}\right) \xrightarrow{\operatorname{pick} \mathbb{X}'_n \text{ in } \mathcal{X}_n} \left(\begin{array}{c} \mathbb{X}'_n\\ \mathcal{X}_n \end{array}\right) \xrightarrow{\mathcal{X}'_n \text{ with frozen } \mathbb{X}'_n} \left(\begin{array}{c} \mathbb{X}'_n\\ \mathcal{X}'_n \end{array}\right)$$

Note $\mathbb{X}_n \rightsquigarrow \mathbb{X}'_n$ Markov with invariant measure

 $\operatorname{Law}_{\mathcal{Q}_n}(\mathbb{X}_n) = \mathbb{Q}_n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Same/also work with backward ancestral lines

$$\theta \mapsto (G_k^{[\theta]}, P_k^{[\theta]}) \rightsquigarrow \gamma_n^{[\theta]}, \eta_n^{[\theta]}, \mathbb{Q}_n^{[\theta]}$$

$$\theta \mapsto (G_k^{[\theta]}, P_k^{[\theta]}) \rightsquigarrow \gamma_n^{[\theta]}, \eta_n^{[\theta]}, \mathbb{Q}_n^{[\theta]} \quad \text{and} \quad \xi^{[\theta]} := (\xi_0^{[\theta]}, \dots, \xi_n^{[\theta]})$$

$$\theta \mapsto (G_k^{[\theta]}, P_k^{[\theta]}) \rightsquigarrow \gamma_n^{[\theta]}, \eta_n^{[\theta]}, \mathbb{Q}_n^{[\theta]} \quad \text{and} \quad \xi^{[\theta]} := (\xi_0^{[\theta]}, \dots, \xi_n^{[\theta]})$$

Note that

$$\gamma_{n+1}^{[heta]}(1) = \mathcal{Z}_n(heta) = \prod_{0 \leq p \leq n} \eta_p^{[heta]}(G_p^{[heta]})$$

$$\theta \mapsto (G_k^{[\theta]}, P_k^{[\theta]}) \rightsquigarrow \gamma_n^{[\theta]}, \eta_n^{[\theta]}, \mathbb{Q}_n^{[\theta]} \quad \text{and} \quad \xi^{[\theta]} := (\xi_0^{[\theta]}, \dots, \xi_n^{[\theta]})$$

Note that

$$\gamma_{n+1}^{[\theta]}(1) = \mathcal{Z}_n(\theta) = \prod_{0 \le p \le n} \eta_p^{[\theta]}(G_p^{[\theta]}) \stackrel{\text{unbias}}{=} \mathbb{E}\left(\prod_{0 \le p \le n} \eta_p^{[\theta],\mathsf{N}}(G_p^{[\theta]})\right)$$

Some examples:

$$\mathcal{Z}_n(\theta) = p(y_0, \ldots, y_n \mid \theta), \ \mathbb{P}(\text{critical event} \mid \theta), \ldots$$

Objective: Given a time horizon *n* sample from the annealed $\pi_n(d\theta) \propto \mathcal{Z}_n(\theta) \ \mu(d\theta)$

$$\theta \mapsto (G_k^{[\theta]}, P_k^{[\theta]}) \rightsquigarrow \gamma_n^{[\theta]}, \eta_n^{[\theta]}, \mathbb{Q}_n^{[\theta]} \quad \text{and} \quad \xi^{[\theta]} := (\xi_0^{[\theta]}, \dots, \xi_n^{[\theta]})$$

Note that

$$\gamma_{n+1}^{[\theta]}(1) = \mathcal{Z}_n(\theta) = \prod_{0 \le p \le n} \eta_p^{[\theta]}(G_p^{[\theta]}) \stackrel{\text{unbias}}{=} \mathbb{E}\left(\prod_{0 \le p \le n} \eta_p^{[\theta],\mathsf{N}}(G_p^{[\theta]})\right)$$

Some examples:

$$\mathcal{Z}_n(\theta) = p(y_0, \ldots, y_n \mid \theta), \ \mathbb{P}(\text{critical event} \mid \theta), \ldots$$

Objective: Given a time horizon *n* sample from the annealed $\pi_n(d\theta) \propto \mathcal{Z}_n(\theta) \ \mu(d\theta)$

Some examples:

 $\pi_{n+1}(d\theta) = p(\theta \mid (y_0, \ldots, y_n)), \ \mathbb{P}(\theta \mid \text{critical event}), \ldots$

Extended target: Given a time horizon *n*

Design of quenched distributions:

$$\nu = \operatorname{Law}(\theta, \xi^{[\theta]}) \rightsquigarrow \nu(d(\theta, z)) = \mu(d\theta) \ \nu(\theta \rightsquigarrow dz)$$

Extended target: Given a time horizon n

Design of quenched distributions:

$$\nu = \operatorname{Law}(\theta, \xi^{[\theta]}) \rightsquigarrow \nu(d(\theta, z)) = \mu(d\theta) \ \nu(\theta \rightsquigarrow dz)$$

with $z := (z_0, \ldots, z_n)$; as well as

$$\overline{\mathcal{Z}}_n(heta,z):=\prod_{0\leq p\leq n}h_p(heta,z) \quad ext{and} \quad h_p(heta,z):=m(z_p)(G_p^{[heta]})$$

By the unbiasedness property: sample quenched/extended distributions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

$$\overline{\pi}_n(d(\theta, z)) \propto \overline{\mathcal{Z}}_n(\theta, z) \ \nu(d(\theta, z))$$

Extended target: Given a time horizon n

Design of quenched distributions:

$$\nu = \operatorname{Law}(\theta, \xi^{[\theta]}) \rightsquigarrow \nu(d(\theta, z)) = \mu(d\theta) \ \nu(\theta \rightsquigarrow dz)$$

with $z := (z_0, \ldots, z_n)$; as well as

$$\overline{\mathcal{Z}}_n(\theta,z) := \prod_{0 \le p \le n} h_p(\theta,z) \quad \text{and} \quad h_p(\theta,z) := m(z_p)(G_p^{[\theta]})$$

By the unbiasedness property: sample quenched/extended distributions

$$\overline{\pi}_n(d(\theta, z)) \propto \overline{\mathcal{Z}}_n(\theta, z) \ \nu(d(\theta, z)) \quad \rightsquigarrow \quad \theta - \text{marginal} = \pi_n$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

(Particle) Metropolis-Hasting on extended space

$$\left(\begin{array}{c} \theta \\ z \end{array}\right) \rightsquigarrow \left(\begin{array}{c} \theta' \\ z' \end{array}\right)$$

Metropolis-Hasting with reversible local θ move: $\theta \rightsquigarrow \theta' \rightsquigarrow z'$

$$\mu(d\theta) \ K(\theta, d\theta') = \mu(d\theta') \ K(\theta', d\theta)$$

Acceptance ratio

$$\frac{\left[\overline{Z}_{n}(\theta',z')\ \mu(d\theta')\ \nu(\theta'\rightsquigarrow dz')\right]\ K(\theta',d\theta)\ \nu(\theta\rightsquigarrow dz)}{\left[\overline{Z}_{n}(\theta,z)\ \mu(d\theta)\ \nu(\theta\rightsquigarrow dz)\right]\ K(\theta,d\theta')\ \nu(\theta'\rightsquigarrow dz')} = \frac{\overline{Z}_{n}(\theta',z')}{\overline{Z}_{n}(\theta,z)}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Parameter and path $x = (x_0, \ldots, x_n)$

$$\Pi_n(d(x,\theta)) \propto \mathcal{Z}_n(\theta) \ \mu(d\theta) \ \mathbb{Q}_n^{[\theta]}(dx)$$

Examples:

 $\Pi_{n+1}(d(x,\theta)) = p((x,\theta) \mid (y_0,\ldots,y_n)), \ \mathbb{P}((x,\theta) \mid \text{critical event}),\ldots$

Gibbs sampler

ex.: particle MH or particle Gibbs with frozen ancestral lines

Ex. inverse Gamma prior (shape, scale) = (α, β)

$$\mu(d heta) \propto rac{1}{ heta^{1+lpha}} \, \, e^{-eta/ heta} \, \, {f 1}_{]0,\infty[}(heta) \, \, d heta$$

Only $X_n = b(X_{n-1}) + \sqrt{ heta}\mathcal{N}(0,1) \rightsquigarrow$ inverse Gamma

$$\implies \prod_{n} (d\theta \mid x) = p(x \mid \theta) \ \mu(d\theta)$$

$$\propto \frac{1}{\theta^{1+\alpha+n/2}} \ \exp\left(-\frac{1}{\theta} \underbrace{\left[\beta + \sum_{1 \le k \le n} (x_k - b(x_{k-1}))^2\right]}_{:=\beta_n(x)}\right] d\theta$$

Linear/Gaussian given Θ :

 $X_n^{[\theta]} = A(\Theta_n) X_{n-1}^{[\theta]} + \sigma(\Theta_n) W_n \& G_n^{[\theta]}(x) \propto \exp\left(-\frac{1}{2\tau(\Theta_n)} \left(y_n - C(\Theta_n)x\right)^2\right)$

Linear/Gaussian given Θ :

$$X_n^{[\theta]} = A(\Theta_n) X_{n-1}^{[\theta]} + \sigma(\Theta_n) W_n \& G_n^{[\theta]}(x) \propto \exp\left(-\frac{1}{2\tau(\Theta_n)} \left(\mathbf{y}_n - C(\Theta_n) x\right)^2\right)$$

 \rightsquigarrow Gaussian quenched FK $\rightsquigarrow \eta_n^{[\theta]} = \mathcal{N}(m_n^{[\theta]}, r_n^{[\theta]})$ AND

$$\mathbb{E}\left(f(X_n^{[\theta]},\Theta_n)\prod_{0\leq p< n}G_p^{[\theta]}(X_p^{[\theta]}) \mid \Theta = \theta\right) = \eta_n^{[\theta]}(f(\boldsymbol{\cdot},\theta_n))\prod_{0\leq p< n}\eta_p^{[\theta]}(G_p^{[\theta]})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Linear/Gaussian given Θ :

$$X_n^{[\theta]} = A(\Theta_n) X_{n-1}^{[\theta]} + \sigma(\Theta_n) W_n \& G_n^{[\theta]}(x) \propto \exp\left(-\frac{1}{2\tau(\Theta_n)} \left(\mathbf{y}_n - C(\Theta_n)x\right)^2\right)$$

 \rightsquigarrow Gaussian quenched FK $\rightsquigarrow \eta_n^{[\theta]} = \mathcal{N}(m_n^{[\theta]}, r_n^{[\theta]})$ AND

$$\mathbb{E}\left(f(X_n^{[\theta]},\Theta_n)\prod_{0\leq p< n}G_p^{[\theta]}(X_p^{[\theta]}) \mid \Theta = \theta\right) = \eta_n^{[\theta]}(f(\boldsymbol{\cdot},\theta_n))\prod_{0\leq p< n}\eta_p^{[\theta]}(G_p^{[\theta]})$$

Key Obs.:

$$\eta_n^{[\theta]}(f(.,\theta_n)) = \mathcal{F}_n(\theta_n, m_n^{[\theta]}, r_n^{[\theta]})$$

$$\eta_p^{[\theta]}(G_p^{[\theta]}) \propto \mathcal{G}_p(\theta_p, m_p^{[\theta]}, r_p^{[\theta]}) := \exp\left(-\frac{(y_p - C(\Theta_p)m_p^{[\theta]})^2}{2(\tau(\Theta_p) + C(\Theta_p)^2r_p^{[\theta]})}\right)$$

Markov chain:

$$\mathcal{X}_n := (\Theta_n, m_n^{[\Theta]}, r_n^{[\Theta]})$$

Annealed FK

$$\mathbb{E}\left(f(X_n^{[\Theta]},\Theta_n)\prod_{0\leq p< n}G_p^{[\Theta]}(X_p^{[\Theta]})\right)=\mathbb{E}\left(\mathcal{F}_n(\mathcal{X}_n)\prod_{0\leq p< n}\mathcal{G}_p(\mathcal{X}_p)\right)$$

Markov chain:

$$\mathcal{X}_n := (\Theta_n, m_n^{[\Theta]}, r_n^{[\Theta]})$$

Annealed FK

$$\mathbb{E}\left(f(X_n^{[\Theta]},\Theta_n)\prod_{0\leq p< n}G_p^{[\Theta]}(X_p^{[\Theta]})\right)=\mathbb{E}\left(\mathcal{F}_n(\mathcal{X}_n)\prod_{0\leq p< n}\mathcal{G}_p(\mathcal{X}_p)\right)$$

 \iff Genetic Monte Carlo samplers (mutation, selection) $\sim (\mathcal{X}_n, \mathcal{G}_n)$

= Interacting Kalman filters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Markov chain:

$$\mathcal{X}_n := (\Theta_n, m_n^{[\Theta]}, r_n^{[\Theta]})$$

Annealed FK

$$\mathbb{E}\left(f(X_n^{[\Theta]},\Theta_n)\prod_{0\leq p< n}G_p^{[\Theta]}(X_p^{[\Theta]})\right)=\mathbb{E}\left(\mathcal{F}_n(\mathcal{X}_n)\prod_{0\leq p< n}\mathcal{G}_p(\mathcal{X}_p)\right)$$

 \longleftrightarrow Genetic Monte Carlo samplers (mutation, selection) $\sim (\mathcal{X}_n, \mathcal{G}_n)$

= Interacting Kalman filters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Same ideas as islands \rightsquigarrow **Interacting particle filters**

Some application domains

Signal processing/Bayesian inference/machine learning/Physics/Risk-rare events/Maths-bio/...

⊃ Filtering/smoothing, first moment spatial branching, tube conditioning, self-avoiding RW, "quasi"-invariant, rare events, level splitting, interacting MCMC, ground states, leading eigen-triple Schrödinger semigroups, ...

Real world examples (discrete time):

$$\begin{aligned} G'_n(x'_n) &= p(y_n | x'_n) & G'_n = 1_{A_n} & G_n(x'_0, \dots, x'_n) = 1_{x'_n \notin \{x'_0, \dots, x'_{n-1}\}} \\ G_n &= e^{-(\beta_{n+1} - \beta_n)V} & \& P_n = e^{-\beta_n V} - \text{shaker} & \dots \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Feynman-Kac measures

A variety of interpretations/targets/...

Feynman-Kac particle recipes/methodologies

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Performance/Convergence analysis Stochastic perturbation theory Variational techniques V-norm contraction Stability positive semigroups

Sample mean
$$m_t := \frac{1}{N} \sum_{1 \le i \le N} X_t^i$$
 with **iid** copies X_t^i of X_t

Sample mean
$$m_t := \frac{1}{N} \sum_{1 \le i \le N} X_t^i$$
 with **iid** copies X_t^i of X_t

~> stochastic perturbation formulation

$$\mathsf{m}_{\mathsf{t}} := \mathbb{E}(\mathsf{X}_{\mathsf{t}}) + rac{1}{\sqrt{N}} \mathbb{V}_{t}^{N}$$

Sample mean
$$m_t := \frac{1}{N} \sum_{1 \le i \le N} X_t^i$$
 with **iid** copies X_t^i of X_t

~> stochastic perturbation formulation

$$\mathsf{m}_\mathsf{t} := \mathbb{E}(\mathsf{X}_\mathsf{t}) + rac{1}{\sqrt{N}} \mathbb{V}^N_t$$

with bias-variance perturbation control

$$\mathbb{E}(\mathbb{V}_t^N) = 0 \quad \& \quad \mathbb{E}((\mathbb{V}_t^N)^2) = \mathbb{E}((X_t - \mathbb{E}(X_t))^2)$$

◆□ > ◆□ > ◆ □ > ● □ > ●

Sample mean
$$m_t := \frac{1}{N} \sum_{1 \le i \le N} X_t^i$$
 with **iid** copies X_t^i of X_t

~> stochastic perturbation formulation

$$\mathsf{m}_\mathsf{t} := \mathbb{E}(\mathsf{X}_\mathsf{t}) + rac{1}{\sqrt{N}} \, \mathbb{V}^N_t$$

with bias-variance perturbation control

$$\mathbb{E}(\mathbb{V}_t^N) = 0 \quad \& \quad \mathbb{E}((\mathbb{V}_t^N)^2) = \mathbb{E}((X_t - \mathbb{E}(X_t))^2)$$

Key Observation:

$$X_t ext{ stable } \implies \sup_{t \geq 0} \mathbb{E}((m_t - \mathbb{E}(X_t))^2) \leq c/N$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Sample mean
$$m_t := \frac{1}{N} \sum_{1 \le i \le N} X_t^i$$
 with **iid** copies X_t^i of X_t

~> stochastic perturbation formulation

$$\mathsf{m}_{\mathsf{t}} := \mathbb{E}(\mathsf{X}_{\mathsf{t}}) + rac{1}{\sqrt{N}} \mathbb{V}_{t}^{N}$$

with bias-variance perturbation control

$$\mathbb{E}(\mathbb{V}_t^N) = 0 \quad \& \quad \mathbb{E}((\mathbb{V}_t^N)^2) = \mathbb{E}((X_t - \mathbb{E}(X_t))^2)$$

Key Observation:

$$X_t ext{ stable } \implies \sup_{t \ge 0} \mathbb{E}((m_t - \mathbb{E}(X_t))^2) \le c/N$$

$$\lim_{t\to\infty}\mathbb{E}((X_t-\mathbb{E}(X_t))^2)=\infty \Longrightarrow \ \sup_{t\ge 0}\mathbb{E}((m_t-\mathbb{E}(X_t))^2)=\infty$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへぐ

Stochastic perturbation analysis

"Intuitive picture" \rightsquigarrow any nonlinear-type sg = evolution sg. $s \le t$:

 $\mathcal{X}_t = \mathbf{\Phi}_t(\mathcal{X}_{t-1})$
"Intuitive picture" \rightsquigarrow any nonlinear-type sg = evolution sg. $s \le t$:

$$\mathcal{X}_t = \Phi_t(\mathcal{X}_{t-1}) = \Phi_{s,t}(\mathcal{X}_s)$$

"Intuitive picture" \rightsquigarrow any nonlinear-type sg = evolution sg. $s \le t$:

$$\mathcal{X}_t = \Phi_t(\mathcal{X}_{t-1}) = \Phi_{s,t}(\mathcal{X}_s) \Longleftrightarrow \Phi_{s,t} := \Phi_t \circ \ldots \circ \Phi_{s+1}$$

"Intuitive picture" \rightsquigarrow any nonlinear-type sg = evolution sg. $s \le t$:

$$\mathcal{X}_t = \Phi_t(\mathcal{X}_{t-1}) = \Phi_{s,t}(\mathcal{X}_s) \Longleftrightarrow \Phi_{s,t} := \Phi_t \circ \ldots \circ \Phi_{s+1}$$

Perturbation evolution sg :

$$\mathcal{X}_t^{\epsilon} = \Phi_t^{\epsilon}(\mathcal{X}_{t-1}^{\epsilon})$$

"Intuitive picture" \rightsquigarrow any nonlinear-type sg = evolution sg. $s \le t$:

$$\mathcal{X}_t = \Phi_t(\mathcal{X}_{t-1}) = \Phi_{s,t}(\mathcal{X}_s) \Longleftrightarrow \Phi_{s,t} := \Phi_t \circ \ldots \circ \Phi_{s+1}$$

Perturbation evolution sg :

$$\mathcal{X}_t^{\epsilon} = \Phi_t^{\epsilon}(\mathcal{X}_{t-1}^{\epsilon}) := \Phi_t(\mathcal{X}_{t-1}^{\epsilon}) + \epsilon \, \mathbb{V}_t^{\epsilon}$$

"Intuitive picture" \rightsquigarrow any nonlinear-type sg = evolution sg. $s \le t$:

$$\mathcal{X}_t = \Phi_t(\mathcal{X}_{t-1}) = \Phi_{s,t}(\mathcal{X}_s) \Longleftrightarrow \Phi_{s,t} := \Phi_t \circ \ldots \circ \Phi_{s+1}$$

Perturbation evolution sg :

$$\mathcal{X}^\epsilon_t = \Phi^\epsilon_t(\mathcal{X}^\epsilon_{t-1}) := \Phi_t(\mathcal{X}^\epsilon_{t-1}) + \epsilon \; \mathbb{V}^\epsilon_t$$

Stoch. Alekseev-Gröbner type telescoping formula

$$\mathcal{X}_t^{\epsilon} - \mathcal{X}_t = \sum_{s=0}^t \left[\Phi_{s,t} (\mathcal{X}_s^{\epsilon}) - \Phi_{s,t} (\Phi_s (\mathcal{X}_{s-1}^{\epsilon})) \right]$$

Stoch. Alekseev-Gröbner type telescoping formula

$$\begin{aligned} \mathcal{X}_{t}^{\epsilon} - \mathcal{X}_{t} &= \sum_{s=0}^{t} \left[\Phi_{s,t} (\mathcal{X}_{s}^{\epsilon}) - \Phi_{s,t} (\Phi_{s} (\mathcal{X}_{s-1}^{\epsilon})) \right] \\ &= \sum_{s=0}^{t} \left[\Phi_{s,t} \left(\Phi_{s} (\mathcal{X}_{s-1}^{\epsilon}) + \epsilon \, \mathbb{V}_{s}^{\epsilon} \right) - \Phi_{s,t} \left(\Phi_{s} (\mathcal{X}_{s-1}^{\epsilon}) \right) \right] \end{aligned}$$

Stoch. Alekseev-Gröbner type telescoping formula

$$\begin{aligned} \mathcal{X}_{t}^{\epsilon} - \mathcal{X}_{t} &= \sum_{s=0}^{t} \left[\Phi_{s,t}(\mathcal{X}_{s}^{\epsilon}) - \Phi_{s,t}(\Phi_{s}(\mathcal{X}_{s-1}^{\epsilon})) \right] \\ &= \sum_{s=0}^{t} \left[\Phi_{s,t}\left(\Phi_{s}(\mathcal{X}_{s-1}^{\epsilon}) + \epsilon \ \mathbb{V}_{s}^{\epsilon} \right) - \Phi_{s,t}\left(\Phi_{s}(\mathcal{X}_{s-1}^{\epsilon}) \right) \right] \\ &= \text{First or second order expansions} = \text{CLT or BIAS} \end{aligned}$$

Origins/Bias/CLT/Stability/Time-uniform propagation of chaos/...

+Guionnet (LSP No. 03-1998), (CRAS-99)/(IHP-00), +Miclo [Sem.Prob-00], time-uniform exponential concentration (AAP-11)(FTML-11), strong large deviations, books+refs ...

→ stability analysis of linear/nonlinear semigroups.

Caution: CLT variance uniformly bounded w.r.t. time BUT GA blows up for "unstable" mutations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Variational techniques $X_n(x)$ stoch. flow

First variational (matrix-valued) equation

$$\nabla X_n(x) = \nabla X_{n-1}(x) \ \nabla \mathcal{F}_n(X_{n-1}(x))$$

Hyp: $\mathbb{E}(\nabla \mathcal{F}_{n}(\mathbf{y}) \nabla \mathcal{F}_{n}(\mathbf{y})') \leq (1 - \delta_{n}) \mathbf{I}$

$$\implies \nabla X_n(x) \nabla X_n(x)' \leq (1 - \delta_n) \ \nabla X_{n-1}(x) \ \nabla X_{n-1}(x)' \leq \prod_{1 \leq p \leq n} (1 - \delta_p) \ I$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stab. Markov sg. with V-norms ($V \ge 1/2$)

 $\|f\|_V = \|f/V\| \longrightarrow \mathcal{B}_V(E) \text{ and } \|\|\mu - \eta\|\|_V = |\mu - \eta|(V) \longrightarrow \mathcal{P}_V(E)$

Stab. Markov sg. with V-norms ($V \ge 1/2$)

$$\|f\|_V = \|f/V\| \quad \rightsquigarrow \mathcal{B}_V(E) \quad ext{and} \quad \|\|\mu - \eta\|\|_V = |\mu - \eta|(V) \quad \rightsquigarrow \mathcal{P}_V(E)$$

V-Dobrushin contraction coef.:

$$\beta_{V}(P_{n,n+m}) := \sup_{(\mu,\eta)\in\mathcal{P}_{V}(E)} \frac{\|(\mu-\eta)P_{n,n+m}\|_{V}}{\|\mu-\eta\|_{V}} \le 1 - \delta_{m}$$

Stab. Markov sg. with V-norms ($V \ge 1/2$)

$$\|f\|_V = \|f/V\| \quad \rightsquigarrow \mathcal{B}_V(E) \quad ext{and} \quad \|\|\mu - \eta\|\|_V = |\mu - \eta|(V) \quad \rightsquigarrow \mathcal{P}_V(E)$$

V-Dobrushin contraction coef.:

$$\beta_{V}(P_{n,n+m}) := \sup_{(\mu,\eta)\in\mathcal{P}_{V}(E)} \frac{\|(\mu-\eta)P_{n,n+m}\|_{V}}{\|\mu-\eta\|_{V}} \le 1 - \delta_{m}$$

↓

V-contraction:

$$\|\|(\mu - \eta)P_{n,n+\rho m}\|\|_{V} \le (1 - \delta_{m})^{\rho} \|\|\mu - \eta\|\|_{V}$$

Time homogeneous $(P_{k,k+n} = P^n)$: $\exists !\eta_{\infty} = \eta_{\infty}P \in \mathcal{P}_{V}(E)$ and b > 0 s.t.

$$\left\|\left\|\mu \mathbf{P}^{n}-\eta_{\infty}\right\|\right\|_{V} \leq c \ e^{-bn} \left\|\left\|\mu-\eta_{\infty}\right\|\right\|_{V}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

50/54

V-norm contractions tech.

(+Penev [CRC-Chapman & Hall(2016)], +Horton-Jasra Arxiv(21)/AAP(22),+Arnaudon-Ouhabaz SAA(23))

$$\beta_{V}(P_{n,n+m}) \leq 1 - \delta_{m} \Leftarrow \begin{cases} P_{n,n+\tau}(V) \stackrel{(1)}{\leq} \epsilon_{\tau} V + c_{\tau} \\ \sup_{V(x) \vee V(y) \leq r} \|(\delta_{x} - \delta_{y})P_{n,n+\tau}\|_{tv} \stackrel{(2)}{\leq} 1 - \epsilon_{\tau}(r) \end{cases}$$

V-norm contractions tech.

(+Penev [CRC-Chapman & Hall(2016)], +Horton-Jasra Arxiv(21)/AAP(22),+Arnaudon-Ouhabaz SAA(23))

$$\beta_{V}(P_{n,n+m}) \leq 1 - \delta_{m} \Leftarrow \begin{cases} P_{n,n+\tau}(V) \stackrel{(1)}{\leq} \epsilon_{\tau} V + c_{\tau} \\ \sup_{V(x) \vee V(y) \leq r} \|(\delta_{x} - \delta_{y})P_{n,n+\tau}\|_{tv} \stackrel{(2)}{\leq} 1 - \epsilon_{\tau}(r) \end{cases}$$

But also

$$(2)' = \left\{ \begin{array}{c} P_{n,n+\tau}(x,dy) \ge q_{n,n+\tau}(x,y) \ \nu_{n,\tau}(dy) \\ \inf_{V(x) \lor V(y) \le r} q_{n,n+\tau}(x,y) \ge \iota_r(\tau) > 0 \end{array} \right\} \Longrightarrow (2)$$

Note:

V **bounded** ⇒ Dobrushin coef. := $\beta(P_{p,n})$ and (2)'=Doeblin min cond. \rightsquigarrow +Guionnet (LSP No. 03-1998), (CRAS-99)/(IHP-00), +Miclo [Sem.Prob-00]

(1) $\exists V \in \mathcal{B}_{\infty}(E) =$ unif.> 0, loc. bound, compact sub-level sets in E

 $\rightsquigarrow 1/V \in \mathcal{B}_0(E) := \mathsf{null} \text{ a infinity}.$

(1) $\exists V \in \mathcal{B}_{\infty}(E) =$ unif.> 0, loc. bound, compact sub-level sets in E

 $\rightsquigarrow 1/V \in \mathcal{B}_0(E) := \mathsf{null} \text{ a infinity}.$

 $Q_{s,s+ au}(V)/V \leq \Theta_{ au} \in \mathcal{B}_0(E)$

52/54

(1) $\exists V \in \mathcal{B}_{\infty}(E) = \text{unif.} > 0$, loc. bound, compact sub-level sets in $E \\ \rightsquigarrow 1/V \in \mathcal{B}_0(E) := \text{null a infinity.}$

$$Q_{s,s+ au}(V)/V \leq \Theta_{ au} \in \mathcal{B}_0(E)$$

(2) On compact sub-level sets:

$$0 < \iota_r^-(\tau) \leq \inf_{V(x) \lor V(y) \leq r} q_{s,s+\tau}(x,y) \leq \sup_{V(x) \lor V(y) \leq r} q_{t,t+\tau}(x,y) \leq \iota_r(\tau) < \infty$$

(1) $\exists V \in \mathcal{B}_{\infty}(E) = \text{unif.} > 0$, loc. bound, compact sub-level sets in E $\rightsquigarrow 1/V \in \mathcal{B}_0(E) := \text{null a infinity.}$

$$Q_{s,s+ au}(V)/V \leq \Theta_{ au} \in \mathcal{B}_0(E)$$

(2) On compact sub-level sets:

$$0 < \iota_r^-(\tau) \le \inf_{V(x) \lor V(y) \le r} q_{s,s+\tau}(x,y) \le \sup_{V(x) \lor V(y) \le r} q_{t,t+\tau}(x,y) \le \iota_r(\tau) < \infty$$

$$\downarrow$$
Examples:

$$E = \mathbb{R} \implies V(x) = 1 + x^2, e^{|x|}, \ldots \in \mathcal{B}_{\infty}(E)$$

(1) $\exists V \in \mathcal{B}_{\infty}(E) = \text{unif.} > 0$, loc. bound, compact sub-level sets in E $\rightsquigarrow 1/V \in \mathcal{B}_0(E) := \text{null a infinity.}$

$$Q_{s,s+ au}(V)/V \leq \Theta_{ au} \in \mathcal{B}_0(E)$$

(2) On compact sub-level sets:

$$0 < \iota_r^-(\tau) \leq \inf_{V(x) \lor V(y) \leq r} q_{s,s+\tau}(x,y) \leq \sup_{V(x) \lor V(y) \leq r} q_{t,t+\tau}(x,y) \leq \iota_r(\tau) < \infty$$

Examples:

$$E = \mathbb{R} \implies V(x) = 1 + x^2, e^{|x|}, \ldots \in \mathcal{B}_{\infty}(E)$$

 $E =]0, 1] \implies V(x) = 1/x \in \mathcal{B}_{\infty}(E)$

(1) $\exists V \in \mathcal{B}_{\infty}(E) = \text{unif.} > 0$, loc. bound, compact sub-level sets in E $\rightsquigarrow 1/V \in \mathcal{B}_0(E) := \text{null a infinity.}$

$$Q_{s,s+ au}(V)/V \leq \Theta_{ au} \in \mathcal{B}_0(E)$$

(2) On compact sub-level sets:

$$0 < \iota_r^-(\tau) \leq \inf_{V(x) \lor V(y) \leq r} q_{s,s+\tau}(x,y) \leq \sup_{V(x) \lor V(y) \leq r} q_{t,t+\tau}(x,y) \leq \iota_r(\tau) < \infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Examples:

$$E = \mathbb{R} \implies V(x) = 1 + x^2, e^{|x|}, \dots \in \mathcal{B}_{\infty}(E)$$

$$E =]0, 1] \implies V(x) = 1/x \in \mathcal{B}_{\infty}(E)$$

$$E =]0, 1[\implies 1/x \notin \mathcal{B}_{\infty}(E)$$

(1) $\exists V \in \mathcal{B}_{\infty}(E) = \text{unif.} > 0$, loc. bound, compact sub-level sets in E $\rightsquigarrow 1/V \in \mathcal{B}_0(E) := \text{null a infinity.}$

$$Q_{s,s+ au}(V)/V \leq \Theta_{ au} \in \mathcal{B}_0(E)$$

(2) On compact sub-level sets:

$$0 < \iota_r^-(\tau) \leq \inf_{V(x) \lor V(y) \leq r} q_{s,s+\tau}(x,y) \leq \sup_{V(x) \lor V(y) \leq r} q_{t,t+\tau}(x,y) \leq \iota_r(\tau) < \infty$$

Examples:

$$E = \mathbb{R} \implies V(x) = 1 + x^2, e^{|x|}, \dots \in \mathcal{B}_{\infty}(E)$$

$$E =]0, 1] \implies V(x) = 1/x \in \mathcal{B}_{\infty}(E)$$

$$E =]0, 1[\implies 1/x \notin \mathcal{B}_{\infty}(E) \text{ but } V(x) = 1/(1-x) + 1/x \in \mathcal{B}_{\infty}(E)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theo [+Horton-Jasra Arxiv (21), AAP (23)]

(1) & (2) $\implies \|\Phi_{s,t}(\mu) - \Phi_{s,t}(\eta)\|_V \le c(\eta,\mu) \ e^{-b(t-s)} \ \|\mu - \eta\|_V$

Theo [+Horton-Jasra Arxiv (21), AAP (23)]

(1) & (2) $\implies \|\Phi_{s,t}(\mu) - \Phi_{s,t}(\eta)\|_{V} \le c(\eta,\mu) \ e^{-b(t-s)} \ \|\mu - \eta\|_{V}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

→ Extended version of :
 Whiteley AAP-13,

Theo [+Horton-Jasra Arxiv (21), AAP (23)]

(1) & (2)
$$\implies \|\Phi_{s,t}(\mu) - \Phi_{s,t}(\eta)\|_V \le c(\eta,\mu) \ e^{-b(t-s)} \ \|\mu - \eta\|_V$$

→ *Extended version of* :

Whiteley AAP-13, itself based on Douc-Moulines-Ritov EJP-09,

Theo [+Horton-Jasra Arxiv (21), AAP (23)]

(1) & (2) $\implies \|\Phi_{s,t}(\mu) - \Phi_{s,t}(\eta)\|_{V} \le c(\eta,\mu) e^{-b(t-s)} \|\mu - \eta\|_{V}$

→ Extended version of :

Whiteley AAP-13, itself based on Douc-Moulines-Ritov EJP-09, itself based on Kleptsyna-Veretennikov PTRF-08,...

Theo [+Horton-Jasra Arxiv (21), AAP (23)]

(1) & (2) $\implies \|\Phi_{s,t}(\mu) - \Phi_{s,t}(\eta)\|_{V} \le c(\eta,\mu) e^{-b(t-s)} \|\mu - \eta\|_{V}$

→ Extended version of :

Whiteley AAP-13, itself based on Douc-Moulines-Ritov EJP-09, itself based on Kleptsyna-Veretennikov PTRF-08,...

to Neumann/Dirichlet boundaries/continuous time models, no use of coupling techniques, but not valid for random sg (filtering)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theo [+Horton-Jasra Arxiv (21), AAP (23)]

(1) & (2)
$$\implies \|\Phi_{s,t}(\mu) - \Phi_{s,t}(\eta)\|_V \le c(\eta,\mu) \ e^{-b(t-s)} \ \|\mu - \eta\|_V$$

→ Extended version of :

Whiteley AAP-13, itself based on Douc-Moulines-Ritov EJP-09, itself based on Kleptsyna-Veretennikov PTRF-08,...

to Neumann/Dirichlet boundaries/continuous time models, no use of coupling techniques, but not valid for random sg (filtering)

Particle estimates for this class of models?

$$T_{s,t}^{\mu,H}(f) := \frac{Q_{s,t}(H)}{\eta_s Q_{s,t}(1)} \eta_t(f)$$

$$T_{s,t}^{\mu,H}(f) := \frac{Q_{s,t}(H)}{\eta_s Q_{s,t}(1)} \eta_t(f)$$
$$\Longrightarrow \sup_{\|f\|_V \leq 1} \left\| \frac{Q_{s,t}(f)}{\eta_s Q_{s,t}(1)} - T_{s,t}^{\mu,H}(f) \right\|_V \leq c_H(\mu) e^{-b(t-s)}$$

$$T_{s,t}^{\mu,H}(f) := \frac{Q_{s,t}(H)}{\eta_s Q_{s,t}(1)} \eta_t(f)$$
$$\Longrightarrow \sup_{\|f\|_V \le 1} \left\| \frac{Q_{s,t}(f)}{\eta_s Q_{s,t}(1)} - T_{s,t}^{\mu,H}(f) \right\|_V \le c_H(\mu) e^{-b(t-s)}$$

H = 1 and $E = \mathbb{R}^n$ (no Dirichlet but random sg) $\subset \mathbb{N}$. Witheley [AAP-13]

$$T_{s,t}^{\mu,H}(f) := \frac{Q_{s,t}(H)}{\eta_s Q_{s,t}(1)} \eta_t(f)$$

$$\implies \sup_{\|f\|_V \le 1} \left\| \frac{Q_{s,t}(f)}{\eta_s Q_{s,t}(1)} - T_{s,t}^{\mu,H}(f) \right\|_V \le c_H(\mu) e^{-b(t-s)}$$

H = 1 and $E = \mathbb{R}^n$ (no Dirichlet but random sg) $\subset \mathbb{N}$. Witheley [AAP-13]

Time homogenous: \exists leading-triple $(\rho, h, \eta_{\infty})/"$ QSD" /...

$$\eta_{\infty} = \Phi_{s,t}(\eta_{\infty})$$
 and $Q_{s,t}(h) = e^{\rho(t-s)}h$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

$$T_{s,t}^{\mu,H}(f) := \frac{Q_{s,t}(H)}{\eta_s Q_{s,t}(1)} \eta_t(f)$$

$$\implies \sup_{\|f\|_V \le 1} \left\| \frac{Q_{s,t}(f)}{\eta_s Q_{s,t}(1)} - T_{s,t}^{\mu,H}(f) \right\|_V \le c_H(\mu) e^{-b(t-s)}$$

H = 1 and $E = \mathbb{R}^n$ (no Dirichlet but random sg) $\subset \mathbb{N}$. Witheley [AAP-13]

Time homogenous: \exists leading-triple $(\rho, h, \eta_{\infty})/"$ QSD" /...

$$\eta_{\infty} = \Phi_{s,t}(\eta_{\infty})$$
 and $Q_{s,t}(h) = e^{\rho(t-s)}h$

and for H = h and $\mu = \eta_{\infty}$ the above yields

$$\sup_{\|f\|_{V}\leq 1} \left\| e^{-\rho(t-s)} Q_{s,t}(f) - \frac{h}{\eta_{\infty}(h)} \eta_{\infty}(f) \right\|_{V} \leq c e^{-b(t-s)}$$

(日) (日) (日) (日) (日) (日) (日) (日)