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nformation in optimization problems
shall treat conditiona) probability. We j i

- Maslov Owiammwﬂob.. Theory. Optimality
ndomness -

el go_w&

: explore some of the fascinating links that e
ptimization processes. We exhibit a common algebraic framework

] gm.mnwa« generator and the Orm.vam.nlmﬁoHﬂomowo< equation on the
he Hamiltoniant and the Bellman optimization princi

xist between stochastic

le algebra. This.correspondence princi i
Litvinov and Maslov (33]. We derive some properties of optimiza--
such as the (max,+)-version of the Doob up-down crossing lemma,
, alternative o the classical representations of optimization prob-
ads to| new developmentis in the field of their qualitative study {39]. We

in a way compatible with that jn

ce and H.uw.o_um&:#% measures, which clarify the relationships be-
n and amznmymoﬂ H_HoEmEm (19, 40]. Having in mind Monte-Carlo
U8s a particle interpretation of nonlinear filtering and optimiza-




quadratic properties. It has also been early recognized [7, 25] t n-transformations between performance ang probability measures
mum likelihood estimation is related to an optimal control problem tarify the relationships between optimization and estimation ﬁwogmmbmu
the cost functional is taken to be the likelihood density associate ped in §§7 and 8. These transformations lead to ys eful nob.n_cmmonmu :
trajectories. But this does not explain the intriguing links tha : e t y- make the links between the performance and the m.ﬂovmwmmq_ .
tween optimization and mean-value stochastic evolution, althou ‘ f 4n event obvious. One purpose of §8 is to further develop the
of estimator is quite different from the former in the general case ;
in the sequel, the explanation is to be found at a higher level of abs
Using Maslov idempotent measure/integration theory, we derive:
mization theory at the same level of generality as probability
of stochastic processes. Most of these results are taken from
but they were presented for the first time in [15). Also, prelimin,
the same lines appeared in [26]. The first section recalls the bas S lter
Maslov idempotent measure theory, which will be used in the Torthe R etween the performance and the
velopment. In §2 we introduce 2 general performance theory at the sar o ..
of generality as in probability theory. The concepts of performan
optimization variables, and independence are the bagic notior
concept of performance is the achievement of deductive Teas(

mization problems more completely. We show that there is a bijec-
ndence between Masloy performance and optimization problems,
y and Markov probabilities and filtering problems, on the other
-ptochastic interpretation of optimization problems gives strong

wgmvgﬁm the recently developed particle procedures for nonlip-

€ use of analysis and nonstationarities do not allow the applica-

mization variables means that the performance of any variable : . n&_mwmnmeNmmoﬂ schemes. This is Jjust the case in optj al nonli

. . . S z e . . Pllmal nonlinear
by the performance of the other variables. As in ﬁﬂoﬁum&ﬁrq : S ne nm optimization pr oblems, which have so far received litt]e attention
concepts are fundamental; in fact, they justify the mathermat] s L S mun..L_m analysts. The pioneering work on filtering problems appeared
of Maslov’s performance theory as a separate discipline rathe L I &mﬁ.wm in [3, 32, 51]. Solving the fundamenta] equation of nonlinear
a topic in idempotent analysis. In §3 we introduce an analo ; o 1s:an enormous task, since the equation is mumn#m:&ﬂpmﬂ&.onm& non-
spaces and Markov, Minkowski, and Holder Inequalities. Then we ¢ S ad stochastic. As pointed out by Bucy in his early papers [, 5 6]

with several convergence modes of optimization variables. Fro
concepts, some classical asymptotic theorems (e.g., the law of large particularly with the help of paralle] computing, As
and the central limit theorem) can readily be derived as in [13; they are based on 2 Dirac comb representatiog of the

important step is to introduce sequences of optimization variabl des . grmance/probability measure at stake, but the “teeth” of this comb de-

a subset of reals. This leads to a rich additional structure mﬁm.nwmbmhﬁ ; the flow of the system and its partia] observations or the reference
In §5 we provide a new way of studying optimization problems

. oth in mass and position,
performance measure, without any of the usual geometric desc tethod, which has revealed jts efficiency in RADAR and G.P.§ sig-
introduce the notion of a modal semimartingale and provide afge in i i
lation for the evolution of the optimal process. We also state that the on problems for discrete-eve
causality principle in this theory is the same as the Bellman optima) mation of some communication network or manufacturing system from
ciple. Moreover, just as in stochastic theory, the infinitesimal 1al observations or from some reference values.
the so-called Maslov processes is the Hamiltonian. We also de §9 we briefly review some basic facts about Monte Carlo principles and
timization martingale properties, such as the (max, +)-vers erthcomin, developments (see [18]). We show that these principles are a
up-down crossing lemma and Dynkin’s formula, which lead to’ ool to study the conditional mean of 5 random variable as well as
ments in the field of qualitative study of optimization process tional optimal state of ap optimization variable. The so-called parti-
briefly review some nice consequences of these results (see [13] and |18} etations of optimization and filtering problems are global methods
tails). In particular, we demonstrate an explicit advantage of estigation.| This section also contains the key resul
function over some classes of conttrols. We finally describe the [+) € ansfer the particle Pracedure for n
formance evolution of optimal regulation problems as that of fil : 10-we introduce some recursive distributions

in idempotent algebra, S S cDlorc the p Hmoﬂbgm.mnm\wuowmgmq Space, and the weights used in the

near filtering lies in numerical studies of the so-called



246 o P. Del Moral Maslov Optimization Theory 247

algorithm. Complementary to the exploration distribution, these weightsz
related to the likelihood of each exploration path among N parti
important to notice that they are time-degenerate, since individual p
divergent likelihood. As we shall see, the degeneracy of Bayesian
-eliminated by a regularization of the problem. Moreover, from'a
point of view, it is necessary to study the time asymptotic behavic
Section 11 constitutes the last step on our way to particle proced
centered around the time-uniform convergence of these approxim
to make it as self-contained as possible, we compare the sufficien
which guarantee time-uniform convergence of the particle filter'ani
mization particle estimate. .
I wish to thank the Russian Academy of Science and in particii
P. Maslov, Grigori L. Litvinov, and Vladimir E. Nazaikinskii fo
hospitality during my stay in Moscow. ’

on (Q,8) is a mapping of S into A such that u(#) = ¢ and, for
tsets A, B €S, u(AUB) = #(A4) ® p(B). It is said to be bounded
1(2) < +00. These measures fail to be continuous on the empty
€y have a nonunique extension to the o-algebra, but there is a

imal extension [13, 34]. In order o consiruct @ measure theory
s obtaining limit results, we always assume the Maslov measure
d and known on the o-algebra. Next, we consider the Lebesgue—
egral of a measurable function with respect to a Maslov measure,
roduce some notation. Let t be a Maslov measure on (9,0), and

Q, s ?mmmwmnﬂdmg E(2,0)) be the semiring of A-valued measurable
i ‘ respectively, step functions). As usual, we write

D
B o= \MN fe(w) © p(dw)
= @ dos(f7Ud)),  fego,0),

dEf.(2)

: 2]
..O?”mﬁﬁﬁ.\m.g .unm@t“em.w.nm.%u ‘x.mmmﬁbua.uvu
%mhcmbun&.

1. Maslov’s Integration Theory

In this section we introduce Maslov’s integration theory and:the
of reference [34] and embed these notions into a Lebesgue integs
We recall the one-to-one correspondence between the space of bou
measures and a space of continuous linear forms, which leads to ¢
wide convergence. The elements of idempotent analysis (analysis
with values in a general idempotent semiring) are developed in-]|
31, 34, 35, 36]. Let A%’ [—o00, +00[ be the semiring of real nuinb
with the commutative semigroup laws @ and ©, the neutral elem
1, and the exponential metric p such that

oqw _mym (@, ©)-linearity of this integral and the transport measure
e follo ;

. wing facts will prove essential to our purpose, in the sense
allow a tractable description of the topology of wide convengence
easures. Let Co(0, A) be the semiring of continuous A-valued
{ such that p(f(z), 0) < efor any £ > 0 and for any z outside

ompact set K C . Let Cs(2,A) be the semimodule of continuous
: ,wm.r ar forms on C(S, A). By M(Q, o) we denote the semiring of
ded Maglov measures #on (,0) such that the mapping f - [ ® fop
f
13]

0=-o0, a®b=sup(a,b), pla,b) = |e* — €',
I1=0, a@b=a+b, Se=a—b (b#0)

to C}(R, A), and by M(£, o) the quotient semiring of M(Q, o) by the
b

m. ‘.w__un.mm.m uivalence. Let D((}, o) be the subsemiring of M((, o) spanned
he measyres u¢, where f € LD, 0) is upper semicontinuous, defined for

By p(a,b) = sup;<c, [¢* — e*| we denote the exponential metrics
We specially indicate a notion that will be used throughout the stu
(max, +)-version of the Lebesgue spaces. By d(z,y) = logp(z,y
the logarithm of the exponential metric p. This mapping is ch
the following properties:

e . @ : .
A mup f) ¥ ["140)0 fw) 0 (L)
|

o, y) =0 <= 2=y,  d(z,y) = dly,z),

case, yor every ¢ € Cy(R2, A) we have [® 404 = SuP,ea(p(w)+ F(w)).
AAH, ) < log(exp d(z,2) G exp d(z,v)).

Hhése' measures ty are said to be absolutely continuous and f is called the

we introduce the Stieltjes—Maglov neasures and prove that the

meagure dz(A) = 1 is the (max, +)-version of the Lebesgue measure.

; Maslgv proves that M(Q,0) = D(Q,0) = C}(Q, 4). When 0 — R,

aslov

More generally, if L is a (@, ©)-semimodule, then every mappin
into A satisfying these three conditions is called a @-metric

Polish space (2,0). Let us introduce some standard notation easure y defined by #(A) = 0 if A is countable and wA4) =1,
throughout the paper. Let (S,U, N) be a semiring of sets in

.,mm countable, is not absolutely continuous, but its maximal extension
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s u* =1 € M(Q, o). Finally, to complete this section we recall th
the convolution of Maslov measures. a
Definition 1.1 Let B p2 € M(Q, 4). By u3 @ uy we denote th
element in M(Q, .4) such that p

@ @ Lo
f(z +y) © p1(dz) © pa(dy) u\ () © (111 ® pa)(dz
QxQ 2 . .. :

for any f ¢ Co(Q2, A)

This law is compatible with the weak topology and noBH,wﬁwﬂd 2SS0¢]
tive, and distributive over the addition @. :

2, Performance Theory

All notation, assumptions, and results of §1 are in force.
formance measure and optimization variable are basic notions. T
in the semiring A offers an alternative to the classical represent.
timization problems. The purpose of this section is to recall s
axioms. The intuitive background of the concept of an optimizatios
is as follows. Suppose that we are given an optimization probletn
by a measurable space (£, @), where £ is the set of all possibleco
is the sigma-algebra of controls that are possible or interesting i
work of the optimization problem. Now we are given a referenc
associated with a control event . This value depends on' w. ‘The
of measurability means that for every reference value there is
control event in the original space. For instance, there is in general
mation in ¥ (w) than in w, a fact expressed by the condition tha
Let @ = {(i,5): 1< i,5 < n}, n € N, and let the powerset
o. Then every function on Q is measurable. On the other !
is the sigma-algebra generated by the sets §) = {(3, DEEE
1 <k < 2n, then Y((i, I))=i4+jis o(Y)-measurable, but :
not. The general conditional optimization problem will be studie
(9,0) and (E, ) be two Polish spaces. A Maslov measure PeM(Qz
that P(Q) = 1 is called & performance measure and (Q,0,P) is called a3
mance space, Asin probability theory, we assign performance to’eac
in {2 and define optimization variables whose domain consists o

of (. A measurable function X from (R,0) into (E, £) is called
optimization variable, and we denote its performance measure’

upper semicontinuous density by pX. Whenever the Maslov integ
we write

Eﬁu\sekeﬁn.\w@a@ﬁx?u@%,
VAeeg E?m?ﬁevmmcn?ﬁ&

manEm

ced quotient semiring, Now we introduce the
> optimization variables by setting

cts| show that it is important to control the
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@ .
u\» P () @ dz = B(L,(x)), (14)

work, the following implications hold:
—4)<T = PFXed)=1 — op(X) € A.

performance of an event.
» we shall state the (max, +)-version of the Markov, Minkowski,

er|inequalities in §3.

1.2 Let X and ¥ be two A-valued optimization variables, We

A.and ¥ are equal P-almost everywhere (P-a.e.) if

P{{w € Q: X(w) # Y(w)}) = 0.

‘other characterizations of this equivalence relation are as follows:

Yo Pae = Vesp Plweq: (X (w), Yw)>e}=0

<> JAde€o: P - A4)=0 and
. Vwed X(w)=Y(w)

= Vdeo EdsoX)= E1,0VY).
rample, the last condition can be used to prove the uniqueness
v conditional expectation. Let L(Q,0) = £%(0, o)/P-ae. be
semiring of A-valued

) Bd(x, YY),

o, P (x ¢ L£(2,0) : dy (X, 0) =E(X) < +oo}. |

pve that X = ¥ Pac. if and only if d,(X,¥) = ¢ ang dy is
er L1(Q,0) = £YQ,5)/P-ae. For instance, let X be a rea]
ariable whose performarce law is given by

¥l

2 .
SGAM:V“, BCﬁSVHSG&AMﬁav.
. m

= mwv ?om le® —1] — 5 AMV v = suplog O,(z)

>0




and for z > 0, we have
OLz) =0 <= & —1=(a~2 — 1)

By standard numerical approximations,

nﬁ AM&, HV HFN@%HAQS
with 0 < z{a) < z'(a) and
#'(a) =(a?2'(a) = 1) (+= a 2(a)? ~1= z'(a)).

Similarly, if a < 2, then 0 < 7'(a) < 2" (a), where

m?:?Tau%E A = o) = 52 v

2—a

and for a < 2, we have

. 2a
0 M &wﬁkuﬁ‘@v M SQ&AM' D_Hv.

By the same argument, if

P

-

p(z) = |w

r—m

a

for some p > 2, then we obtain, for 1/g+1/p=1,

Qm

pa
1j.
a<p = eM&HmNuﬁ.vMsﬁ@&Aﬁ!n“ v

Proposition 1.1 Let Qr(a,p) be o real optimization eaﬁ.&ﬁn.
mance is

P
—U?.VHIWE Jor somep>2,a>0, meR.
pl a

Then img . d1(Qm(a,p),m) = 0, and for 1/g+1/p=1we _wn.e..m
AHAQE ﬁntﬁvu Ov =mQE ﬁnn\my and

pa
a<p = 0< &HAQ.SAP@V_SV < SO&Aﬁiaqﬁv.

e P-independent if for every finite subset J = {t,,..
Tollowing equivalent assertions is satisfied:

opposite of the latter conce

oms alone. We
nd optimal valu

. R e T

L=LP N

is to transfer probabilistic axioms to optimization theory. The
re concept in such a framework is given by

1.3 Let (Xi)ier be a family (not necessarily finite} of E-valued
0 variables on the same performance space (Q,0,P). We say that

Jw:wﬁH,SNHu

-an} VA € o(Xy), P(ArN- - - NAL) =P(A4) O .. O P(A4,).
s Tg) = @wuw ﬁww\mab where p7. (respectively, _PM 1<5<n)
rformance density of X ; = (Xe,... » X1, ) (respectively, Xi, €

pt of mm&mvmb&whnmu we introduce an
the Bayes formula to performance measures. The conditional

of an event A, assuming an event B such that P(B) #£ ¢, and

% P(A/B), is, by definition, the ratio

P(AnNn B) B
ditions are the axioms of M

aslov optimization theory. In the
of the theory,

all conclusions are directly or indirectly based
now examine how the notions of conditional ex-
e of a random variable are translated in such g

definition 1 Let X and v be two E-valued optimization vari-
on the same performance space (0, 0,P).

(,Y) be the o-algebra spanned by the optimization verigbles X

let o(Y) be the o-algebra spanned by Y. For every function
X,Y),IP), there exists

@ unique function in L1(S}, o(Y),P), called
Wl ezpectation of ¢ relative 1o o(Y) and denoted by E(¢/0(Y)),

oY), P) E($ 0 %) = E(E(4/o(Y)) 0 ).

XY :
surable function XY (2 /y) defined as E (z,y)

o) Fp¥(y) >0
0 otherwise i3 called the conditional performance density of
Y. A conditional optimal state of X relative to Y, denoted
is @ (not necessarily unigue) measurable Jfunction such that
ly)=1. |

1.2 Let X, Y, and Z be three
erformance space (Q,0,P),

o(X,Y),P), 4¢e HHB“&HNS%V,

Then P-a.e. we haye

E-valued optimization variables
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1 E(@O ¢ 00 9/a(Y)) = 4.0 E(p/o(Y)) & b © B(y/o(¥))
ﬁm&u = .ﬁm&\ﬁ@. bwum

2 E(p/o(Y)) = ¢ if ¢ € LI(®, o(¥)),
E(E(¢/0(X,Y))/o(Y)) = E(¢/o(Y)).

We shall always assume in the sequel that the conditional or none
optimal states are well defined and unigue.

Proposition 1.3 Let X, Y, and Z be E-valued optimization ewwn.nmmn

c:gnuassnﬁwﬁ?ﬂsgﬁnm%snn mb“qu_wﬁaammmnﬁmma: uPper semic
function. Then ..,

op(op(X/2,Y)/Y) = op(X/Y), op(#(X)/Y) = p(op(X/

For instance, let F' be a measurable function from R™ into R™ ¢
matrix, and I and V two P-independent optimization ngwmmm@:w‘
—1u'Q1y and pY(v) & —5v' R v, where Q! and R mHmu. T
n X n and m X m symmetric positive definite matrices. Let §-1

Qs.mw...HQmB&uDH muﬁncv._.quumHQNH.Tﬂmﬁwg op(X1/Xy¢)
op(Y1/Xy) = CF(X,), and .

op(X1/Xo, Y1) = F(Xo) + SC'R™Y(Y; — CF(Xy)).

¥ X and ¥ are two P-independent E-valued optimization variabl,

P (z, ¥) =p*(z) © pY (y), and the performance density of the sum
can be described by the (max, +)-convolution .

_mki\?v H\

E

® def
P (z—y) 0P’ (1) 0 dy ¥ (p* @ pY)(2).

Similarly, we claim that every (max, +)-linear and continuous operat
the class of upper semicontinuous functions that commutes with:the
Uz (defined by Us(f)(w) = fly — z) for every upper semicontinuot
f) can be represented by a (max, +)-convolution. Indeed, let A,
approximation of the Maslov-Dirac function (o(z) = Ip(z) = T'if
bo(x) = 0 otherwise). Let E be a normed space, and let hn(z) =
Then for every function f € Cy we have: o

S(f ®hy) = MA\” SOJ © haly) Omev = \mw MASQVU.OW:@ ,

_ \ F) © Uy(S(hn)) 0 dy = \ Uy(S(5)) @ &
. E Fo

=5(f) ® hn = f ® S(hn)
= S(f) =@ lim S(hy)=f® 5().

n—+o0
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. if 5(8)(z) = g(a), then S(£)(z) = sup, ¢ p(g(z —y) + f(y)). We
all the definition of the Fenchel transformation. Let S be the class of
T upper semricontinuous concave functions from R into R. The Fenchel
ormajion is the mapping F: 8y — Sy, f F(f) such that

. &
)" = \s 22) 0 f(&) © da. (1.8)

7a'be the translation on R associated with a € R. Then for every
we have

for))(=") = 2*(a) © (—F(f))(a"). (1.9)

C ty is characteristic of the Fourier transformation (Maslov [34)).
chell transformation is then equal to the Fourier transformation in

on 1.4 Let 9 €8y, and let X be an R-valued optimization vari-
, 0, P) whose optimal state op(X) € R is unique. Assume that FpX
tinuously differentiable around 0 and

@ .
y def .\ fz~2) 0 g(2) @ do = sup(f(z ~ ) + g(z)).

rER

-=|1d, and F(f & g) = F(H) © F(g);
A ) = IAH.ENXEV“ Iﬁ.ﬂ.ﬁkvhmou = op{X), and
2Y0) = ((P%)") Y (op(X)).

ying example is classical in convex analysis and will be essential

udy| of convergence modes. If ¢ ¢ Rt,meR, ag# 0,p> 2, and
/o =[1, then

iE 1 1 g
n3+m_§_“ = fo= =

q

T—m

(1.10)

a

e-Maslov Semirings

pduce an analog of Lebesgue spaces and Markov, Minkowski,

equalities. Then we deal with several modes of convergence
ization variables. Unfortunately, space limitations prevent us from
nto details (see [13, 14]). To focus on the main idea, the treatment
e technical issues aside. In the sequel, all optimization variables are
défined on the same performance space (£, 0,P). Most of the results are taken



T A 4. oL vavian

from [13], but they have been presented for the first time in [14] and.[15

As for random variables, we introduce the Kyn—Fan metric of optimizatio
variables. For every A-valued optimization variables X s Y we set .

KX,Y)={(e.n) e (R : Plwe - (X (w), Y(w)) > logy)} <lo

HX,Y) = inf{e +n: (e,n) € K(X, 1,
5(f,9) = 2inf{e : (¢,€) € K(X,Y)},

e(X,Y) = log §(X, Y),

EX,Y) = logd(X,Y).

H-HOUOmm»mOHH.mmaam.waﬂmsmuﬁ.n.mqemq. H_ombuqyap:&.ma?ﬁ
metrics over L°(Q, &) with R

mmNuu\uMmﬁNQH\anQWANUM\U ﬁﬁ”HOva

One can also introduce the L?-semirings for 0 < P < +oc.
LYQ, ). We write .‘,

dp(X,Y) = E(d(X, Y')P)"/,
LYQ,e0P)={Xe £, 0) 1 dp(X,0) < +o0},

where a? % pa. For p = +o0, we write

do(X, V) = inf{m 2 0 : P({w € Q2 d(X(w), ¥ () > ma}) -
L2, 0,P) = {X € LR, 0) : doo(X, 0) < +00}.

For every 0 < p < +o00, we state [13, 14] that

X=Y P-ae <— dy(f,9) =0.

£ L*(Q,0,P) = £7(0, 0, P)/P-a.e., then, for every 0 < p < +m.o,.
metric over L?. Keeping in mind the notation of Proposition 1.1, we obt;

dp(Qm(a, T),m) = d1{Qm AD@._.\J r), m).

Moreover, if XY € L>(£, 0,P), then dy(X,Y) is an increasing seque
that converges to deo(X,Y) as p goes to +o0. The following theor
exhaustive list of properties that lead to useful conclusions, because
the relationship between the latter $-metrics and the Maslov:

explicit. As usual, for any ¢ € A and p > 0, we have o = p,
L*(9,0,F).

Theorem 1.1.1. For every p>0and X € LP, we have

E(X?)? <inf{m >0 : Plw € : X(w) > m) = 0}.
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Oe? < E(XP).

e an increasing function from' A into A; then for any a > 0 and
have

{w €25 X(w) > a}) < E((X)) < duo(9(X), 0) & g(a).

er Inequality: For any 0 < p < g<wand 0 < n < 400 such
/la=1/n, X € 1P, and Y € LY, we hove X @Y € L™ gnd

Y < B(XP)Hr @ E(yeys.

kowski Inequality: For any 0 < P < +o0 and X,Y € L?, we
EL?, XOY €L?, and

Q Vuv:‘v = ﬁ@mnvm\w ® EO\JH\F
o} uﬂv:ﬁ <ecd AHA.N.JH? D M_wﬁ\n.vu?v,

=lag2.
revery X, Y € L', we have

(X).E(Y)) < B(d(X, Y)),
2.

&X,Y) £ cOE(d(X,Y)),

!

ntly, for every p, 0 < p < 400, LP is a semiring; in other Sowmm“
P),®,0) and (L*(Q,0,P),0, 1)

mmu.pm_mﬂozvm. In view of the results stated in Proposition 1.1, we readily
he following corollary.

.1 (All notation of Proposition 1.1 is in force.} Let XN pe o
real oplimization variables whose performance densities satisfy

1 k4

T—m

an

Nﬁﬂﬁmm.&sﬁﬁvpna& 92“:521+892Ho.m$.§“\3.
irge N and for every & > 0, we have :

Hd(X T (w),m) > e})
Eos?zéuéw <™ mm pay _wv

€ T £ p—ay

—_ O
N—-oa

2

svmse.&m Pay Lv,
r—ay

m_ommeam.ghv.
P—an




4. Convergence Modes

One problem in performance theory is the determination of the asymp
properties of optimization variables.
the underlying concepts.
we wish to study the behavior of a sequence of performance convol
PL ®pP; @ -+ ® p,,. This problem is also related to asymptotic’ stuc
the solution of some Bellman equation (see [2, 26, 44, 46, 47]). We clain
1t is natural to analyze such equations by means of an appropriate sequ
of optimization variables. :
optimization variables, and let p, be the performance law of X L ¥
the sequence defined by S, = ™7

Then

_ﬁ:H_Uw ® pa ® - @ p,-

m,oﬂwbm_“mbnm,umﬁup mH&DN c ._:M“nuH Dunréﬁmnmgmb.ubm.ﬂm»+p mbmmu..mﬁ.e
optimization variables whose performance laws are defined by - ﬂ

- XN¢
pA%1(z) = — 1|22 oR(AX) y @1>0,¢>2
q Ty
Then, using the properties of the Fenchel transform, for 1/p +H\
obtain a
P =p* 0p** @ @pt ¥ —

p*

where

L
a
1

Consequently, if

AX,, &

In this section we focus on;¢
We start from a simple problem. Sup

Indeed, let (X™), be a sequence of independén

i1 X', and let p® be its perform

Tk

7 %
= Oz, m; +1)7 !

.Ei:?o - (& +1)/»
q

z—AX;

Tk

k k
1 1
FT 2 OP(AX)) = op Aﬂ ME@,

Jim AXp <400 and 7o % lim

G < +o0,
k—4o00 :

ue A&Hmbwwu DMUOV & RVrLuN.m. O] D.mu AQ vva
T — ag

‘to Markov’s inequality,

o Xe. =
= _H?t.bkav

Next, we int

lasiuy O PDLLIIHZE010TE 1 neory
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E is weakly convergent to AX . Moreover, by virtue of Proposi-
¢=log2 and g5 =

M,DIL
.@TADM AX )@ d | 25 AT
e 1 k, =] 1 _mnl_lu.... k

qag

?.Mw:m. then we have

— 0.
k—+ oo

it is easy to calibrate the performance of

issociated with the nonconvergence. For instance, for every ¢ > ¢

—\ di(Ze AX
Q: &AN»AEWDN.BV > mvv < E — s .
E+1 £ k—+ oo

0: a@e cq: &Aw%mv,bwsv < mc < mw

— 0.
k—+oo

ts will be further developed in the end of the section. Next,

Ce Various convergence modes involving sequences of optimization

1.4 Let vaaNH be a sequence of A-valued optimization vari-
t X be an A-valued optimization variable.
m Convergence: mH.W SUP,,eq d(Xn(w), X(w)) = 0.
n—+tco
vergence (e-P):

lim P({w € Q: d(Xa(w), X(w)) > 6}) = 0.

p—-f 00
nvergence: lim do(X,,X)=0.

.all.oo
vergence: (0 < p < +co) lim dp(Xn, X) = 0.
st everywhere Convergence (P-a.e.):

n-—+ oo

n——+00

a@e € ©: limsup d(Xn(w), X (w)) > mvv.n 0.

Convergence: V¢ ¢ Co(Q) Em E(4(X,)) = E(¢(X)).

n—+o0
roduce the uniform integrability of a class of functions in L.
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Ummﬂ.mﬁmoﬂ 1.5 Let H C L'(9, 0, P); then H is said to be uniformly integ
whenever for any X € H the integrals

) .
\ XoP
*.Emb"un?cuwnw ,

uniformly converge to 0 as ¢ 2 0 tends to +o0.
These classes can be characterized as follows.

Proposition 1.6 Let H c L2 (R, 0,P); then H is uniformly mﬁn.?..aﬁ
only if the Maslov ezpectations E(X), X € H, are uniformly mana&"n_
every € > 0 there exists a § > 0 such that S

@
VAeco %?cmm”v.\ XOoP<es VX cH,
A

Moreover, let G be a A-valued function. If

Hhﬂ mumfaé =400 and sup E(G(X)) < +oo,

Xen

then M is uniformly integrable. Other topological results such um..”_.“
nated convergence theorem can be found in [13, 14, 15). The following:t
gives an exhaustive list of comparisons between various convergence

Theorem 1.2 Let X and Xn be optimization variables defined -o;
performance space (Q,a, P). . 2
LFor0<p<gcx +00, the LY-convergence implies the LP-¢o
and the e-P-convergence. The e-P-convergence implies the weq,
P-a.¢.-convergence. o

2. If, for every v > 0, the sequence d( X, n,X,) n-%-naﬁem.ﬁmn_& 1]
Xn e-P-converges. _

3. Xy e-P-converges to X if and only if e(X,,X) or _TACNH:A&.AN

mu.vncﬁamﬂ.n&?e ?anemﬁch. gs.mqemﬁﬁ.ﬂﬁumawﬂiw U
iniegrable, then X, L -converges.

The reverse implications are not true (see [13, 14]). As was alread
tioned, optimization problems involving independent optimization:
are useful in the time-discrete case; the continuous case will be dealt withTate)
on. In other words, the useful case s typically a sequence X1, ... .4
mutually independent optimization variables. Then, because of the ind
dence property, the induced performance density is the convolutio
individual optimization variables. The key point to study the sum:
independent variables is the fact that the partial-sum performances

< -
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rin the sense that there exists ap > 0 and some sequences ay > (
uch that

r

1lz —mpy

ay

‘and

p
mn ay

=m Ii < + E H,IH
;2. o zimuww.oozu\n *° Q.TW..I, ’

e, the performance p¥ of the normalized sums Sy = ¥ M“..qnu Xt
ee Proposition 1.1)

u_ﬁZT?ﬂHV < @32\2m92\2#ﬁvu ZWHﬂoo&mmrm.zuSv =0.

to Markov’s inequality, for every € 2 ) we have

£ d(S(w),m) 2 ) < 2Swm),

rally, for every p > 0, Sv LP-converges to m. By a dual argument
the Fenchel transform of the latter performances, these facts may
ized as follows:

1.3 Let (X Jn..v.H be a sequence of real-valued optimization variables

), 0, P) whose optimal states are well defined. We assume they are P-

t. Assume that

L] i . 1 i ef =
o L) = lim op (5 307) X ¢

i=1 i=1

i1, FpXe S+ NC*(R), and there ezist two reals a > 0 and r > 1

revery N > 1, X g0, 1), and z € R we have - .
N

N km _ﬁ.ﬁﬁk..v:_?avvﬁ < Wmenav..\u.

i=1

for every p >0 and § > 0 we have

N
L — 1 : LP
N—=+too Nu Né+1 M.|H £ N—+oo 0. AHH@V

t us give another equivalent statement of these conditions in ferms of

densities. If

op(X) and DT (s) <L (raay,

+
u.._s

1

i




then for every i € N we obtain (Eq. (1.10))

x 1 *® —1_»x1r/2 : 1 le
Fp* ?JNIM_H a 'z*["?  with Fra=1

for every ¢ > 1 and 2* € R there exists a X(z*) € [0, 1] such that .

N N . -
1 i 1 .1 x° i *ely a1
¥ 2 1 FEF i) = 22N 2 P X))ot < L lata
i=1 i=

Proof. For every N > 1, we set

N
N def [ o o Sy def {1 i .
Py = M X % P, g = .N|<.| M X'+ B

these are the performance measures of Y.n and Sy. The owﬁwum“,.muﬁ
ables X* are P-independent:

z .
_@ZHENH @...@Ekz — .QAEZVHOH.O@N u
i=]

By virtue of the properties of the Fenchel transformation, for m.<ﬂ....u~ >
z* € R, there exists a Ai{(z*) € [0, 1] such that

FEX')(a") = —op(X) + 1 & (FpX V(N (*)a")e
Then

N . N ,.. | ;
p"(z) = AO%&@ (2) = - sup ?E D, Fe*)a)

i=1 zrER i=1

P (2) = zm ~ sup T T - %Mzu%ﬁﬁ.vv

z+ €l pa
Lo ﬁ MT@%.U.,;_:J&V vv

By virtue of the second assumption, there exist two real numbers r.
a > 0 such that _

P () < N A ~ sup ? ? - w%a@& - w%aq.@v

z* el =1

Forevery s>1, mcRand b > 0, we introduce

- Qulm,b)(@) & 2 (&~ m) — m))*.

to the involution property of the Fenchel transformation, for 1/r +
have

N

: .‘.mz < ZBmAWwMUowANJBLv = _@u AWMN,NUOHANJuQEVq

=1 t=1

. ) 1
PN = EWHHS aN2/s —

0.

V. is an immediate consequence of Corolary 1.1. Q.E.D.

ow state a result pertaining to the estimation of the optimal state via
im (of independent variables,

ty is equal to 1 at a single point op(X) € R. Let (X*h<icn, n > 1, be
ependent optimization variables that have the seme performance law as

2

.zmmma%?m.mm__ux@_v%ﬁ%@:v v mv nc. ‘ ﬁ.E

me that .?.....nanq.@ € > 0 there ezists an n > 0 such that d(z,0p(X)) < ¢

ver. d(p* (z), I) <n. In that case,

yEB_ B(d(op (X)), 0p(X)) > &) = 0,

. L 1.18

fef Arg sup %N?NJ. (1.18)
1Ci<N

ffices to notice that P(d(p®(X), p* (op(X)) >¢) < I and, by
independence of the X i

pX (X, Hv > mv =P(Vie{1,.. N} dp* (XY, 1) > £)

= NP(d(p*(X),1) >¢). QED.

cing the performance theory axioms, an important step consists
g optimization sequences indexed by a subset of reals. This
i of additional structures and therefore deeper results. ‘It wil]
pssential to our purpose in that it allows a tractable description
ion problems. We first introduce the tools to be used later. Let

blish space and I a subset of R
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m 1.7 Let X be a real oplimization variable whose performance



-if z is absolutely continuous, and 0 otherwise. Consequently, Xy, £ €

a4 arun ATASra s

5.1. Definitions

Definition 1.6 A E-valued optimization process with time space
system (Q,0,P, X = {X;}1er) defined by: .
1. An optimization basis (2, o, P). o
2. A family of E-valued optimization variables (X = {X;her) defin

(2,0,P). :
The optimization variable X; is called the state of X at time ¢, and th
t = X(w) is called the trajectory or path of w € Q. o
Remark 1.1 Let © be the class of all measurable functions from:
R", [0,7T] € R, endowed with the uniform topology. Let o be the:
Borel o-algebra. :

Assume that P is defined for every A € ¢ by the formmla

1 T
PU4) = suplp(w)sw € 4} with pw) =~ [ e dr

and let (@71 Jrefo, 71 be a sequence of positive definite matrices. : F

t € 0,7, Ui(w) dof we is an optimization variable whose density is sl

oY (u) = sup{p(w) : w € Q such that w, = u}.

Consequently, U = ASVHm_Pﬁ is an optimization process. Let X= m
be defined by :

F(Xe) + 9(X)U:, telo,T],
(the initial condition),

——
!
8

g

1 T
OR o o

an R"-valued optimization variable with continuous density

_PMT& = mcw*_vkﬁuu 1z € C([0,T],R™) such that z, = z}.

5.2. Modal semimartingales

We now introduce modal semimartingales, which are tools for the stud
general equation of the conditional optimal states with respect to. aTeg
reference as in filtering theory ([13]). We also give an example to sugge
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8 may be useful in analyzing optimization problems. Let X be
-time real-valued optimization process defined on (2, 0,P), and let
r-algebra spanned by the optimization variables Xo,...,X:. By
>0 We denote the induced increasing filtration of . We always
the optimal conditional states are well-defined and unique.

1.7 A discrete-time real-valued optimization process A is said

op(4/Xs1) < op(4y/ F) =4

(Xo, Xa1,...,X;), 7 2 0. A discrete-time real-valued optimization
i3 said to be a modal FX-martingale if

0, op(Mi/X,) = op(;/FX ) = M,.

‘the optimization processes

UO@ADN‘QH&MHY X —Xo— \m.um = LNS.N.

tion, A% is an FX-predictable optimization process and MX is
nodal FX-martingale which is null at k = 0. In [13] one can find the
1 m...umJEF which gives an analog of the general filtering equation for
lution of the conditional optimal process (see also {13]). The following
implifies the evolution of the conditional optimal states.

14 Let X and Y be the optimization semimartingales defined by

AT+ M%, Y =Y+ AY MY,

and AY denote their FXY predictable part and MX and MY
FXY _martingale paris. For every m,un_u\wsmnuggzn oplimiza-
Z, we define its FY -optional projection Z for every k > 0 by
\_.ﬂ.w»v Then

AX + MY and Y =Y, + AY + MX,

hw denote the FY -predictable processes defined for every k > 0

‘ k
A% S S op(aAF /FY),
=1

AY Y op(AAY [FE).
=1
,m_...a& MY are two modal FY -martingales.




LUt P I. el v0ra)

Remark 1.2 Let Xo,Us,...,Ur,Vq,..., Vi be a sequence of indep
real optimization variables. By X and ¥ we denote the real opti
processes defined by the equations -

AXy = f(Xi1) + g(X1-1)Un, Xp is the initial condition,
i=CX+Vi (0<I<T),

where f and g are continuous real functions and ¢ € R. In this nmmm.,

D;wmh = .‘AM~I~V + Damqnu .D.NE.W\ =AY — Q%AMT-HU.

If the space of modal FY -martingales is spanned by the m_ﬂonmmmnm..

N k
6 (v-Y onti ) E S GiATi~ CFRi))

=0 i=0

éwmnmﬁmm@vxuﬁﬂm&nﬁm&_m,ﬁrmu.ﬁrmummﬁmﬁmmﬁ M%-ﬁﬂﬁ&ﬁggﬂﬁ
such that .

AXi= f(Zio1) + CAY; — CH(Ri_y)).

Whenever f is linear, g is constant, and the optimization variables I
quadratic, the optimization process G coincides with the Kalman gair
special case, this process can be calculated by solving a Riccati equat,

5.3. Maslov processes

The essence of the Bellman-Hamilton-Jacobi' theory can be introd
forward time (with initial penalty). This shows the central role pl
the concatenation semigroup of optimization transition performances.
man’s optimality principle as probability transitions in Markov syste

state that this principle may be viewed as a basic definition of optimizati
processes like Markov’s property rather than a conclusion. In other wordos

Maslov process is an optimization process that satisfies the (max,’
of Markov’s causality principle. The time inversion yields optimal contro
cesses of regulation type. The groundwork for the theory of Markov s
processes was laid in 1906 by A. A. Markov. In his investigation of co
experiments, he formulated the principle that the “future” is independ
the “past” when the “present” is known. This principle is the causalit

ciple of classical physics state carried over to stochastic dynamical syste

It specifies that the knowledge of the state of a system at a given times
sufficient to determine its state at any future time. The following conéep

the extension of the Markov causality principle in the Maslov optir
framework. R
Definition 1.8 Let (Q,0,P,X = {X:};er) be an E-valued optimiz
process. It is called a Maslov process whenever its future and its p
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it provided that its present is known. In other words, X is a Maslov
or any subdivision s; < -.. SsmEt<h <00 < th, n,m > 1,

,any ¢ € LYUE™ QT €), and any ¥ € LUYE, Q% ), we P-ae.
EERN] uuﬁu:ﬁuﬂ»v O\_bm;wmq.ub:.. J;N.?v\o.m.upvv
Lum‘uu._._ - uuuhuiunuﬂuv\Q.m.NMvv ® “_m“ﬁﬁwﬁlwﬂuuxuh‘awu ey ..N‘nav\o.ﬁluﬁuvu. ﬁ”_.u.wv

ed in [13] that the Bellman optimality equation for free evolution

1§ the same as the Chapman—Kolmogorov transition equation for
ed Maslov process.

n 1.8 Zet (2,0,P, X = { X, }ie1) be an E-valued Maslov process.
Sr<s<it, 7,8 € 1, we have

Gla) = [ o5.(14) 003, (u/2) @ dy

(the Bellman optimality equation),

def
= pX/Xn 1 <oy,

8 The optimization process X defined in Example 1.1 is a Maslov

let L be an upper semicontinuous function from R™ x R™
let Lo be an upper semicontinuous function from R” into A. For
" we assume that L(z, -) and § are performance densities. Let
(RMET1 [0, T] ¢ R, be endowed with the uniform topology, and
the induced Borel c-algebra. Let X, be an optimization variable

oH.m generally,

; U an optimization process defined on (Q,0,P). Let X = (Xt)iefo, 1) be

tion process defined by X, = F(X:,Us) (X is the initial condi-
[0,T]), where F satisfies the usual Lipschitz and boundedness
lons. Whenever X is a (C(J0, 77, R®), 7% )-valued optimization variable
e density pX is upper semicontinuous and defined by _

r) = mﬁwﬁﬁksqﬁﬁfgv\ﬁa?:v €0 : X(zo,u) = z}

sup AHDAN& + .\.am, L{z,,u,) dr[(zo,u) € ) :

i &HH‘_AH,EUHQH chx.amm absolutely continuous,
0 otherwise, ,

._mﬁu_., Masloy process by virtue of the usual argument. In the sequel, by FX
E 1
e sub-o-algebra of FX spanned by the optimization variables

1. (We say that X is a n-dimensional (F, L}-Maslov optimization
s with nespect to the filtration (FX Jo<i<T.
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Remark 1.4 (Al previous notation is in force.) Let Q be the produc
by the class of all measurable functions from [0, 7] into R?, T > 0, end.
with the uniform topology, and let ¢ be the induced Borel o-algebra
Xo we denote a real optimization variable and by U, V, two RI®Tl.yal
optimization variables defined on (Q, ¢, P) and such that, with some abusi

notation, ,

( def Wﬁ )2 w,\.ﬂ umﬂlw\ﬂ 2dr
PlZp,u,v) = 5 xp Iy 2 A U ) A vy . |
The optimization process (X,Y) defined by ¥ = A(X)+V, X = f(X)+g
(Xo is the initial condition), where f, g, and h satisfy the usual Lip
and boundedness conditions, is a two-dimensional (F, L)-Maslov optim
process with respect to the filtration Gumx‘ Jo<t<T with Lo{zg) = Iwmﬁ.,o.
and :
WQH“@_V“ (u,v)) = CAHu + 9(z)u, bhﬁv + v},
1 1
L{(a,v), (w,9) = ~ 202 = % (g — K@)

Moreover, it is .nmm% to show that ¥ is also a real Maslov Oﬁﬂnn_mummo.u.
with respect to the filtration (FY Jo<i<T. Nevertheless, X is not a
optimization process with respect to the filtration (FYi)ogi<T, in t

wwma».oﬂmaﬁdxom.mmsrémrmdo %ﬁau\@bﬁﬁﬁaﬁ\ﬁhv.ﬂrmmm fact
further developed in §6. .

5.4. Optimization martingales

This part constitutes the final step on our way to general theorems of Ma
optimization theory. It is devoted to two closely related kinds of re
one is the (max, +)-version of Doob’s inequality, and the second one
(max, +)-version of Doob’s up-down crossing lemma. Let X be a discrete
time real-valued optimization process defined on (2, 0,P), and let“%:
the o-algebra spanned by the optimization variables Xoye., Xy Wed
by FX = (FX)i>p the induced increasing filtration of ¢. For simp
here we only consider real-valued optimization processes; this can rea
generalized (the details of the generalization are left to the reader
probability theory, processes of interest are the optimization marting
Definition 1.9 Let (M;)i>¢ be an optimization process defined on: (2
and adapted to an increasing sequence of o-algebras (F7X )e>o. ‘The:p
(M;)i>0 is called an optimization FX -martingale (resp., submartingal
martingale) if :

1. Each optimization martingale M; is integrable.

2. For every 0 < s <t, E(M,/FX) = (resp., >, <)M,
By L(F¥*) we denote the (©, ®)-semimodule of optimization FX-martingal
M with E(M,) = 1. R

Emmmm

0. The

=details, the
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.5 All notation and assumptions of Example 1.4 are in force. Let

tew performance measure on (§2, F7) defined for every 0 < ¢t < T
nhula, ] .

ﬁ .n
oz, = \ %S*ﬂﬁ%aw \ (X )|
] : 0 T

X is unchanged and Y becomes a Maslov process, independent of

rformance density

3 || el dr
0

be the conditional expectation associated with the performance

reference measure Py. We can readily establish that Z is a Po-optimization

such that Eg(Z;) = 1. Let h.ﬁw‘v“m?.ﬁ be the increasing filtration
with the optimization process Y on [0,T); in [13] we state the
nalog of Kallianpur—Striebel formula:

¥t € [0,T] and ¢ € L(Q, 73, P), P-a.e. we have

v| H_Hcﬁﬁ@&.s\.ﬂw\wa
T E(I0Z/FY)

>w recall the main properties of the optimization martingales such

log of the Doob up-down crossing lemma, which ensures the exis-

> closure of the optimization supermartingale. The significance of
s will be clarified in §6.

position 1.9 Let M be an optimization FX -gubmartingale, ¢ € A, ond

n

53]
€ sup s\bﬁEanwvm.\ MrOF
{

0LiLT WESsupog <1 Mi(w)>al
< E(Mr). (1.20)

also combine Markov’s inequality with the supermartingale prop-

n 1.10 Let M be an optimization FX -supermartingale, and let
' > 0. Then .

cm? 2up, Milw) 2 gc mﬁﬁa. (1.21)

We now introduce the Doob up-down crossing lemma in our framework (for

reader is referred to [13])
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Lemma 1.1 Let M be an optimization FX_supermartingale. For every ¢ Hamilton-Jacobi operator associated with X. ﬁ.;i@mﬂﬁuw?
a<b<-oo, b# a, we have

a \*™ e/, Xi) — “.IM X;)dr .ﬂ.%n = ¢(Xo D Eu“mmoﬂwd_m.. 1.25
P21 Roen: Uudin ) za < (%) o 20, « [ oo ar/FE) = 4x) @y ). (1.25)

HX(ufg,z) & HX(¢,z,u) - HX(¢,2). For every t > s > 0, one

p—1 __
P({w € Q : Dar([a, B, w) 2 p}) < Amav o Ew@

where a . ¢ do |
L Por cvery a,be 4, b#£0, %% a—p, a1 g _ Mo/ FX) = M, + sup A \ ??f %Q;,sv
2. Um([a,b],w) (resp. Dur(la,b,w)) denotes the number of up-cross: . “€2 \Js v

(resp. down-crossings) of the paths t — M;(w) over [a,b] € A

- (i ) )

1 X &ﬁ
= .Mg.u + MMW An\u. mmﬁﬂ\uﬂﬂu mﬁnum.ﬂuv mﬂv
=M,  QED.

In view of the previous lemma, for every optimization F*-supermarti
there exists an optimization variable Moo such that

%A_..._Emﬂmubﬁgrgoov N mv Hc <mVo.
t—too

er ¢ is time dependent, we obviously obtain the same equation
erator d;. The following consequences are illustrations of the re-
in the previous section. These resultslead to new developments in
qualitative studies of optimization processes mainly because they
icit bounds of the cost function over some classes of optimiza-
n variables. For this purpose, the (max, +)-version of Dynkin’s formula is
st required to construct optimization martingales. Let ¢ be a continuously
“differentiable function and 0 < s < t. In view of the preceding theorem,
opositions 1.9 and 1.10, and Lemma 1.1, we obtain the following assertion.
I HE(#) = 0, then ¢(X,) is an optimization martingale, and this
ves a mean to calculate conditional Maslov expectations (that is,
1) = $(X.)).

words, if {2, » = {w € Q : X,(w) = z}, then

6. Applications

We are now in a position to expound most of the consequences of th
results for (F, L}-Maslov processes. We choose the shortest possible
thus leaving apart a large number of interesting properties (see [13,'1
We also introduce the Hamiltonian associated with an (F, L)-Maslo
This function is an essential tool to obtain the Kolmogorov operator’
associated Dynkin formula in such a framework. Let X be an R’
(#,L)-Maslov process defined on a given performance space ({,q,P
write, for every ¢, z,u € R™, . L

B*(€,2,u) € ¢ F(a,u) + Liz,u),  HX(E,2) ¥ sup HX(¢, 5,u)
wER

t
: (stx0+ | Lo, ur)) = 8a),
Theorem, Definition 2 Let X be q (F,L)-Maslov process defined o s

[filtered performance basis (Q,F FX ,P), FX def (FF)i>0. For eve
tinvously differentiable function ¢, there exists an optimization mart
M € L(FX) suck that for every t > 0 we have

=

m ”..m. H%(¢) > 0, then ¢(X:) is an optimization submartingale (that is,
) 2 ¢(X,)). By straightforward application of Proposition 1.9,
s every a € A,

(st + \c,ﬁ Hersun) < E(4(Xr)),

4]

¢(Xe) = 9(Xo) + .\c“ HX mun &ﬁmkﬂvv dr + M,.

™ dz

The operator

P {w € Q¢ supygicr ¢(Xi(w)) > a} and & = F(z,u); zo is the
jtion. C

def &&
X)) E ¥ (5, )

e . S e s G e i e e
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3. If HX(¢) < 0, then ¢(X;) is an optimization supermartingale (tha;
E(¢(X:)/Fa) < &AN s)). By straightforward application of Proposition;1
we have, for every z € R® and a € A, c

_mE.u \HAHJF.VA Aav
(To,u)}EQ.,»

where 4,5 = {w € Q: Xo(w) =z, supggicr $(Xe(w)) = aw
mﬁbbmn.g for every p > 1 and a < b, we have

T -1
sup .\ hmaj Qﬂu < Amn,v O] E“
(z0,u)EQ by,= SO b b

where Q; 3)» = {w € @ : Xo(w) = z, My(x){[a, 8],w) > p}.
It follows from the above that moH. every z there exists an o_.uEHEN 0
variable op(X oo /Xo) = z such that

m:
mc.w \ hmajzﬂuﬂc
ﬁﬁo_ﬂvmbwuoh 0

for every € > 0, where

= {w € Q: Xo(w) = z, limsup p(Xs(w), Xeo(w)) > ¢}

i—+o0

In other words,

op(Xe/Xo =2) ~— op(Xeo/Xo = 2z).

f—r4co

4. Whenever H* (¢) < —b, with b > 0, we obtain a ﬂam-mxwmn.#.ﬂb 10

sup ‘\oﬂhﬁejﬁﬂvm 4C)) A — cv

(zo,u)}ER,, 2 a®O \ T—tea

where 0, ; = {w € @ : Xp(w) = z, supy<rcr $(Xe(w)) = a}. In that
case, there exists some T > 0 such that

sup $(op(X:/Xo =2z)) L a.
0<t<T

P —Qoz/Xo=2z)=T and

The last statement pertains only to free evolution problems, thus ave
conditional optimization. Now we want to code the information in
ent way, namely, the one that is compatible with the way we look
conditional performance measure. Here we describe, with the aid of‘an
ample, a statement that captures the main idea, and we state the condit nal
performance evolution similar to that of filtering theory. All notat il

6 = ££(z) + 5 (€9(2))

rg, for every continuously differentiable real function ¢ we have

WaasluyY L PLLIILLERLWOLE 1 0euTy Zil

Eum optimization variables Xy, U, and V, although these can readily be

ed. It is inmediate to check that ﬁwm Hamiltonian associated with
ov process X is given by the equation

VEz eR.

1 .
= 8060) = [ 0.6(X) + 3 0.60X )X ) dr € L),

an |also combine the latter with a reference optimization process Y, so

)= 9000 - [ (0.6 + § oty

- 5 (= B )ar € LEEY),

ow examine how the notion of a conditional performance translates in
settings. With some obvious abusive notation, the performance density
Y}), where ¥; =

tion

def Y/[o, t], is given for every z € R and Y € RrI0.4 ._u.ﬁ
) =PXi=zand V0< 1 <t, Y, =y,)
.._. : 4

A — lﬁea — Houu 3 .gw dr

-3 [ - heopar,

e_
t) = \a Pi/s(Z:32/2,Ys) O 0,(2,5,) © dz

= sup
(zo,u):X; Aﬁcuﬂ.v.ﬂﬁ

Ey

aef P1,o(T, 2, 41)
1Yt/ 2, Ys
t/%,Ys) = P.(z,¥s)
1

s
mﬁﬁ Ilz &.II.\ ﬂlramn_._ﬁ
#0,8):(X,, X ) (%0,u)=(2,z) 2/, ﬁ@_ m ﬂvv

) = % Ac@m « .% @F?,Eo%v

_ muﬁ\uﬂ.d w;\N va
\E P /vs) OP.{2/ys) O dz

(the Bellman optimality equation).
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By the same line of argument as for free evolution problems, the co
tional optimization process described by the conditional performance m
sure P(-/Y) is P-a.e. a Maslov process. Such processes are called ,m@
tional Maslov processes or regulation processes. Note the presence of an initi
penalty, which makes this a maximum-likelihood type problem. For a
lation problem of control type, one has a terminal penalty, and the naft
time is reversed. In the sequel, we mainly deal with optimization of the
type, i.e., forward type. - o

The Maslov measure q(z) o Pz, y:) is given by the “unnorm
Hamilton-Jacobi equation L

da=( D)~ -1, aole) = 1 (@~ B

Therefore, the conditional performance P:(z/Y) is given by the fol
Hamilton—Jacobi equation: .

—~ - H -
O = (H¥p) + (h ~ R)(Yi ~he) - 2 (h - B,

Po(#) = —3 (= — )",

Here X, % op(X;/Y3), hy = &C\mﬁv. Suppose that p,(z/Y};) is a &
solution of the Hamilton-Jacobi equation (1.26) and the conditional of
state X is well defined. Then .

Xi=fi - P) 15 h(Yi - Ry), Ro=70.

Here P(t) < (82,0/(%4/Yp), fu = f(X1), and 8ok, = 8,h4(Xy).

For linear optimization processes, P is a solution of the usual Riceati
tion. From a practical point of view, this conditional optimal state
as the conditional expectation induced by a given nonlinear filtering problem
requires infinite-dimensional computations.

7. Maslov and Markov Processes

The main purpose of this section is to show that Maslov optimizat
cesses and Markov stochastic processes can be mapped into each otl
various transformations. We introduce some transformations between p
mance and probability measures which make clear the relationships be
optimization and estimation problems.

R T D O
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&wwinmz.m_ﬁm&ma Transform.

ction deals with two closely related kinds of results. One is the
ension of the formulas

b= mmm.boomuom mmm.m.mwv and a@b=elog Amw.mmv a,bcR

e first place where this study appears is Pontryagin—Andronov--Vitt [43];
further developed in {23] by Wentzell and Freidlin and Hijab [25]. It
know that the study of various limit theorems for random processes
vated by dynamical systems subject to the effect of random perturba-
ufficiently small compared with the deterministic constituents of the
n|order to study the effect of perturbations on large time intervals,
= able to estimate the probability of rare events. The so-called
eidlin transform provides a way of computing the probability of
in terms of performance measures. Roughly speaking, for some
vatiable sequence X* and some optimization variable X ranging in
ne measurable space, we have

e~0

elog P(X € A) ~ P(X ¢ 4). (1.27)
igation includes also results like the law of large numbers and the
nit theorem. The second motivation is to introduce an asymptotic
¢tween conditional Markov processes and conditional Maslov pro-
ther words, our interest is in large deviation results for conditional
nd related asymptotics of the filtering equations. The topology
5 mapping is the Prokhorov - topology of probabilities, which is
o the weak topology. More precisely, we show that the conditional
weakly converges to the conditional optimal state. The Maslov
n theory allows a very tractable description of these results. We
brief exposition and leave apart a large number of properties.
that the reader is familiar with the basic facts about nonlinear
d, in particular, with the fundamentals of the so-called change-
approach. We deal with the simplest case. First, we consider
probability basis (Q, Fr,P), T > 0, and an increasing filtration
n which two independent and real Wiener processes W and V
mwhmm ps well as an independent real-valued random variable X¢, whose
ability distribution u§ is given by

Q& = Ceexp mmo?vv dz,

ere C, if a positive normalization constant and Sp a Lipschitz concave
aslov performance density such that S, @|m o) =0 and S, (z) < 0 whenever




We choose two real functions f and g such that the following e
have a strong solution on (2, Fr, P):

mﬁuiﬁv&j\m%“.%,? Tﬁ nik@&+,\m§_.
Tﬁs = X5 ’ Yeo)=o.

quati

We set @, = ¢ ([0, T, R), Q. ¥ {ne : 5(0) =0}, and 2 = 2y

equip these spaces with the uniform topology. In the sequel, B (X) deérotes
the Borel sigma-algebra of a topological space X. The following theorem gives
a path integral representation for the conditional expectation, which is known
as the Kallianpur—Striebel formula.

Theorem 1.5 Let @ be a bounded measurable function from Qp a._a._"w..‘
P-a.e. we have

[e@z:6.y9Px @) |
\ 2% (0,v¢) PX* (d) _
Eo (p(X*)2°(X°,Y*) /FX")

Fo (2 (Ko, ¥ JFF)

B(e(x9) [7E) =

def T 1 T 2
where  elog Z¢ (8,n) = .\ bﬁm,.v&:d.lm.\ h(6:) dr
: 0 0

and Ey (-) is the expectation associated with the probability measure Py defi

— =Z(XYY).
2P /s, ( )

Using the Ité formula of integration by parts, we obtain

€ logZ® (X, Y*) = F*(X*,Y")

- [ v (&) xoawe—3 [ (v (2) cﬁvu &
with
Vi(z,y)

Il

W%E +y ?HVWE + WMIWEV — w@m?vvw"_

T
mﬂ_m ﬁmu dv = b. ﬁm.ﬁv nr — n\. ﬂ‘m ﬁm? qﬁv &,n
0
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anov’s theorem, we obtain:
[ #@ e (35 0.79) By
Qr €
. 3
‘\ exp Amma (6, M\JV Humj (dé)
Qo € ’

1(d8) is the distribution on Q7 of the diffusion

ﬂﬁnmu\u..ﬂav =

T Tnv - xmmw vav dt-++edW,  with X¢=X¢.

"¢ does not involve stochastic integration and thus is well defined for
rather than only on a set of & Wiener measure equal to one, so that

timates can be made uniform with respect to the parameter 5 over a,

tbset in . Futhermore, it continuously depends on n € {3. These
are inherited by the following measures (4 € B(Qr), B € B (R),
[0, TT): .

) — \.»nm?%_aﬂy@& o (B)(n) =2 ({8 € Qr : 6, € B}) (1),

E*(4) () oi(B)(n)
[1°(A) (1) = 55 nf(B)(n) = ;
W= stanm 0 =G @)
) be a performance space equipped with a filtration A.muﬂmﬁc.i on
real P-independent optimization processes UX and Y are defined.

fine a real optimization variable X, with performance distribution
Assume that for every (z,u,v) € R'x Qr x Qp we have

So@) = 3 Jy llell” de — 3 [ ffou||*
{(whenever the integrals exist )
0 {otherwise) .

w .
4 (z,u,v) =

r also the pair of H.mmw-sw,wﬁm& optimization processes defined by
X))+ U, X(0)=Xo and ¥ =h(X,)+UY, Y(0) = 0.
¢ the performance density on (Qr x €, B (Q7) ® B(Qg)) of the

imization variables (X,Y). For every (z,y) € Q1 x Qg we have

T T
) = Sule) =5 [ Moo Fel =3 [ e helP a

and y gre absolutely continuous, and %N_m\.?u y) = 0 otherwise. One can

%Y is upper semicontinuous over (Qr x Q) and

T
)= So(m) =3 [ e~ f (@)l

P
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PY(y) = sup p¥(z,y),
TEQ"X
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18 o sequence of functions from Qr inte R which uniformly con-
1o g function F as € — 0, then o

X, ¥ x, T - 2 . X
oYX (y/2) = RSt = —1 [T |l — h(z)|? dt i PX(z) > 0

“.
0 otherwise.

. |elog A.\h.mmmiau%mﬁavv < \L.n.@ F(z) @WEHY (1.28)
icir [ <177 @)z [(Feora. o

m,mumbunmoH.mﬁwH%voc.bmmmmﬁmuhammcwmgm?hnmob ﬁmuoﬁnbn..wnﬁo.hohﬂ
P-a.e. has ,

\ ’ ©(8) o p"* (Y/8) 0 PX(8) © db
E(p(X)/FL) = o

\ ) "X (Y/8) 0 PX(6) 0 db

Eo (¢ (X) © Z(X,Y) /F¥ )
E (Z(X,Y)/F})

Eum these theorems with the previous study, then

ery closed subset A and open subset O in Qy we have
supelog PX(A) <P¥(4),  liminf elog PX°(0) > PX (o).
LG .

=0

ery closed subset A and open subset @ in Qr x Q5 we have
1sup elog PXY°(4) < PXY(4), {(1.30)
() .

iminf elog PX5Y(0) > PXY(0), (1.31)

where Ep{.) denotes the Maslov expectation associated with the pérformar;

measure on {Q, Fr) defined by to the definition of the probability measure Amﬂ_v ©, we have

] £>0,7E8,
ng statements:

. : . very closed subset A and open subset (7 in Qr, n € Qq,
im pup clog £,y (4) <P{(4),  liminf clog B5(0) > PX(0),
+() .

€~+f .

dP T . 1 /7,
Bl =2 (XY) = .m h(X,)Y,dt - m.\o R? (X,)dt.
By the same line of argument as before, we use these formulas to Qmmumm.@

measures as follows (4 € B (Qr), B € B(R), 7 € O, and t € [0, 7]): IPr7; is the performance measure on Q0 of the optimization process

L, TNV |$mm Tcov +UX  with X, = X,.

or every 71 € {2, one can check that the sequence (F€(.40))esq satisfies
.ﬁrm condition of the theorem with

@
(@A) = [ 2(6,1) 0 PX(5) 0 (@)ou(B)n)

A

=Z({6ecQr: 6 ¢eBY)Hn); C def
H_HTNCA V — Muﬁxc mdv . ﬁwuﬁdv - Quﬁmums_v udv = _Jﬁmu,v nrT
| TR 0 ™ Sy

T/, §h 1/ oh ]
- \c m:u (02) +n:f (6 iz (6:) ~ 5 Aﬁmﬁm&v dt.

ery closed subset A and open subset @ in Qr and any n € Qp, we

..mBnm.G m_omM ‘a4 < MUT_“CQV“ lim inf mwomM (0) > MUAGVQ:

c—0

ﬁwwumou.m<muwn_0mmmmcvmmw>m5m m<mwu~o@mnmﬁgmﬁ6mbbﬁgm
, we have .

log [T (4) < [J()m), limintelog [ [ *(0) 2 [J(O)(n)-

e—0

The classical theorems on large deviations can be stated as follows,

Theorem 1.6 VA C Qr, A closed, YO C 21, O open, and Yz € R, .E_m
limsup elog PX* /%5 (4 [2) < PX/ %o (A[z),

c—0

liminf elog PX"/%5 (O j2 ) > PX/%0 (0/z) .

€—{}

Theorem 1.7 Suppose that (P€)esq s a sequence of probability measur
(07, B(Qr)) and P is a Maslov performance measure over (Qr,B(027))

: ar, for every closed subset A and every open subset O in R and any
that for every open subset O and for cvery closed subset A in Qp we ha

[0, 7], we have
limsupelog P(4) <P(4),  liminfelog PY(0) > P(O).

e~ e—0

log mi(A) < m(A)(ny), liminf elog 75(0) > my(O)(7).

e—0)
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Assume that for every n € Qp and € [0, T] there exists a uni
optimal state op(X; /n). In other words, for every v > 0

m({z €R : flz —op(Xy /m)} < 7} (1) = L,

que noﬂ&ﬁo

™ ({z €R : [l — op(Xe /m)l| > 1}) (n) < L.

Then, using the Prokhorov topolo
m&éﬁ}: as ¢ tends to 0.

gy, we find that ={(n) weakly converg

7.2. Log-Exp Transform

We briefly recall the Log-Exp transform (for details, see [13] and §8
mapping leads to useful conclusions, because it makes the relationship
the performance and the probability measure of an event explicit. T,
and d 2 1; let Dj be the class of probability measures p on RY such

def

.\ve log(p(z)") ® d= N.(p) >0,

and let I} be the class of performance measures p on R? such that

f o (22)

We use the following conventions when discrete events are

det

N.(p) > 0.

wﬂ..-ﬁ—

embedded in

blu) = X is the state path associated with the value U=
aightforward to apply the Log-

: c No(k) def \
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is a measurable function from R x R into R and H is a measurable
from R into R. From the preceding, we have

M (w,1) = () O p'Ely — H(9(w)))

@@.IMHAQc“qH_...quu;usu...q._.\‘rvu

ug. It is
Exp transform. For every v > 0 such

el '
exp mf P e e (u, Sv dudy >0,
(R R)0. %] v

ure

 def Uk, Ye

Exp, (p7%) = s enn (p2)

obability measure associated with the

filtering problem F* defined
k>0hby ’

Y): XY = F(X{_,, W), XZ =Wy, and Yo =HX)+ v,

¥, V¥ are two P-independent stochastic
Exp,(p¥) and Exp,(p").
€ 1.1 Let 7 € [0,k] and 0 < A < 1; then

‘processes with probability.

e 1 v ef - ) 1,2
continuous fashion: P (e) = -3 u? = pW(y) Exp,, (0" )(u) = IMHI e" ;s
vw
i A : 1-2X :

e (Si) -@penon. R S
W mw _ Pl =l (5o ) o el Yoa-n) 0k =

w» def i .

T — Hm T
P A@mua © ﬁuav = M oxﬁm_ﬁ;vﬁna. .ﬁ. ﬁﬁ.v NHV.\QU xﬁv
n>0 n>0 AL/ A

These spaces are in a one-to-one correspondence by the following transf
tions:

1
def €vP

lef det log p”
Nu(p)’

Exp, (p) = au

Log, (p

Let (2, F,P) be an optimization basis, and let F <! (F&)r>o be an'ine
filtration of F on which two independent real optimization processes:
V are defined ranging in R** and R™, respectively, nx,ny > 1. Let:
define the following optimization processes on (Q, F,P) for every k >'0

O(X/Y):

5 is well

N_w = .mﬂﬁtuﬂk|u_ Q_WVu ;X.‘c = qﬁ.u mwmmm.

and Yi = H(X})

Wm Lapl
'set of

”PH\Q+AHIPVH\Q&.H+AH| VQQ

T words, one may regard the regulation problem O(X/Y) as the
likelihood estimation problem associated with a filtering p
A Hrmmm facts will be further developed in §8.

Al/e + AH_. -~ \/VH\E
Toblem

Uramer Transform

del
ace transform and F is the Fenchel transform. T
robability measures to the set of upper semieont

It also converts probability convolutions into

known, the Cramer transform is defined by C

FologoL, where L
his transform maps
inuous performance

Maslov convolutions
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and the classical expectation of a random variable into the optimal-state
the induced optimization variable. More details were developed in [26, 44;

E

8. Nonlinear Filtering and Deterministic Optimization

In [13, 14, 15, 20] and §5, we state that the Bellman optimality principli
be viewed as a basic definition of optimization processes like Markov. prope
rather than a deductive conclusion. In forward time, the so-called Mas
optimization processes and Markov stochastic processes can be mappe
each other via various transforms. The Log-Exp transformis a powerful
study the stochastic interpretation of Maslov performance. A simple ex
of this mapping gives some details of how this transform provides:e:
insight into analyzing optimization problems similarly to nonlinear fil
Let T > 0. Let X be an RT+-valued optimization variable defined .o
performance space (€2, F, P) with . .

H _
P (®) = ) Pu(@a/mn1)  (Pol2o/z-1) & p(xo)),

n=0

where for every x € R the functions Px(- /z) are upper mmanmnoﬁmmﬁo&.m D
mance densities. Then one can readily check that X is a Maslov optimiz
process and its transition performances are given by pp(zn/zs—1). Fo
Maslov processes, we can formulate general conditions of integrabilit
which guarantee the existence of an associated Markov stochastic process

[ p(ean/mas))den < oo and [t (a) de < oo,

then

expp(z T
%mxxwhkﬁmuvv&a = : Pr(@n/Tn_1),

n=0
Pa(Zn/Ta-1) = Exp(@n(- /Zn-1))(zn),

7% (z) ¥ Exp(p*)(z) =

is the probability density of some R-valued Markov stochastic Huu.mm.mm.
defined on a suitable probability space (2, F, P). |
Similarly, let U be an RT-valued optimization variable defined on

T -
anm.:v = M.ﬁﬁﬂm:vzluu:av“

ne=]

5

]

2" () = Exp(pY)(u) =
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(u)n denotes the n-time value of the path solution ¢(u) of some re-

ystem 2z, = f(Zn-1,1,) with fixed initial condition z;. Then

exp(pV (u))
T exp(o¥(u)) du

T DI ()ans, u,))
m .\.mxﬁmhn&?vzlr Un)) duy, |

l

S Mapping permits us to give a direct stochastic interpretation of Maslov

nances. We develop this mapping of optimization problems into fil-
roblems. To simplify the notation, to any real-

valued optimization
and defined on a performance space

on [0, T], denoted by OxX/y)

1), we assign a real-valued nonlinear filtering problems on [0,7], de-

nw..vw..ﬂ.mmw\uuvmb&&mmbm&onmosm convenient probability space (Q,F,P)
s:

o(x/y) F(x/y)

[Xnp 6Xas, U, Xo =0, |f X2 = gxs_ 0s), x5 =
...M\....— = .m.ﬁbuﬂ.av + A\«ﬂ;

Q and V are two P-independent [U/¢ and V* are two P-independent

B

Y= H(X2)+ V3

optimization processes

stochastic processes

(Logp"™ V" = ptV) (ExpphV = pU*V*)

ind H are two measurable real fu
blems, several comments are in

p(%/y) =

nctions, When carefully examining
order. With some obvious abusive

T T
) = (Dp(un) and p(u) = ] p(us);

n=0

(1,2) =p(4) Op(v) and p(u®,v?) = p(u")p(v");

4, y) = p(y/u) O p(u) and P(u%,5°) = p(y® /u®)p(u®)

1

=]
;n\ P(y/u) Op(u) ©du  and R@Ju\w@“\:nizmv%m
amm“wc Op(x) and. p(u®/y) = awmw\wd p(u®);

fu)=p"(y— H($(w))) and p(y*/u®) = p¥"(u* — Hid(ut W)
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In this sense, the random variable V¢ and the optimization variable V.
pletely describe the Bayesian factor, which produces the conditional prob
bility or the performance measure. The following examples suggest how t
results can be useful in analyzing some optimization problems. Let H(z)
n€[0,T,0<A<1,and ¢c € R. Then

available for the nth time, and Y, is the epoch at which the final products of
he system are delivered to the outer world for the nth time. In the stochastic
case, the input sequences U could be exponentially distributed with a param-
ter which depends on the places of the event graph (nonlinear filtering). In
e deterministic case, the inputs eould be performed according to a given

1 1 L erformance function (deterministic optimization). We should note in

1. p(vn) = Imew = p"(c~H ($(w))) = —3 (c— ¢r(u))’; that some stochastic event graphs (in which holding, firing, and lag
n=0 : are random variables) and queuing systems might be modeled in the

2. p(un) = I.M. ul == p(ul) = wa. e~ 5 (=0)%, hion. Unfortunately, we do not have enough room here to carry out

1gh study on the modeling of such systems; the reader is referred to

3. Poisson processes are also realistic models for a large class of point: he book [1} for (®, ®)-linear systems
e " E] -

nommmm”wronoﬁnogﬁmHmnﬁon.mEmmmmoP nm_mv?ubmn&._m“mmawggcﬂn
departure, waiting, servicing, etc. T
Assume that U® is a Poisson counting process with nonhomogeneous

sity function J; its sample function is given for every piecewise constan
u® such that Aug € {0,1} by :

T T
p(u®) = exp A - .\ Ardr 4 ‘\ log(A.) m:nv )
0 0

T
_w?v”.\o. log(A;) du.

4. p(us) = log Aﬂw%&v O 11(un} @ log A\/ @pmw \Gv

ey » | e y | ﬂ
= P = oy ) + ? TX+Q- \cv Bl

5. Initial constraint: p(up) = I, = p(ug) = bz (uf);

6. Final constraint: p(vr) = Io(vy) = p'F(c— H (¢r(u))) =
=5 p(ug:) = do(u5). |

Clearly, these results can be generalized to the vector case. As a‘matt
fact, the differential equations introduced in Fi (X/Y) or O(X[Y) areus
constructed using the conventional addition and multiplication. We end
section by recalling that nonlincar filtering and optimization may b
in optimization and control of communication nefworks end manufac
systems. This class of systems, often referred to as discrete-event dyna;
systems contains man-made systems that involve a finite amount of resot
(machines, communications, . . . ) shared by several users. The time beh:
of such systems might be described in terms of (&, ©)-differential equatid
as a physical phenomenon (the reader is referred to (1], [8] for (®,®)-linéar
systems). In such areas, the functions ¢ and H are constructed using 1]
erations min and maz and the conventional addition and multiplication.
state variable X,, denotes the earliest epoch at which the nodes or Ew&ﬁu
become active for the nth time, U, is the epoch at which the resources bec

“Monte-Carlo Principles

tion constitutes the second step on our way to particle methods for
land optimization problems. We first briefly review some basic facts
onte-Carlo principles and show that these principles can be used to
mean of a random variable as well as the optimal state of an opti-
mization variable. The concept of probability is the achievement of deductive
easoning in which we estimate the chances of some event realization. When
he event is associated with a random error of some approximation, this mea-
e _=mamm the chances to get such a precision. In what follows, particle
rithms will be studied in that way. The independence between random
riables means that the realization of some variable is not altered by the
srealizations of the others. This concept is fundamental; in fact, it justifies the
1athematical development of probability not merely as a topic in measure
heory, hut as a separate discipline. The significance of independence arises
‘the context of repeated trials.
) Mean Estimation: Let X be a real random variable X i, and let
X _J..NH e a sequence of independent random variables with the same prob-
£ as X and defined on the same probability space (0, o, P); then for

ability 1
ery N > 1 we have

E(BY(X) ~ BOOY) = = B((X - B)Y),

here EN(X) = & 57, X%, Applying Chebyshev's inequality, for every
> 0 we|obtain
_ 1

PUEN(X) ~ B(X)| > &) < = B(X - BOXO)P).

n other words, if E((X — E(X))?) < oo, then En(X) z;_m. E(X)
—— 00
.2} Optimal State Estimation: Let X be a real optimization variable

efined on a performance space (©,0,P), let pX be its performance function,

R - W e g e
B R T I . o .
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and let op(X') be its unique optimal state. Assume that p¥ is regular m'th
following sense: for every & > 0, there exists an 1 > 0 such that :

p(™ (), I) = |exppX(z) — exp p* (op(X))| <  —>

|z — op(X)] < e. Hﬁm fil

One can also formulate general conditions of second-derivative type
guarantee this kind of regularity {13]. In the sequel, X* will stand for

.E.s.mcq;enlaﬂmaaaﬁgg@m&@%nnm AbuQUﬁV.HmeWOH every £ >
have .,

Pllopy(X) - op(X)| > ) < (1 - P(IX® — op(X)| < )",

where

N N .-
defl 3 .
oPn(X) = Arg sup p¥(2) = AP (XF) = LA ) uk_.%xvu_
TEQN i=1 i=1 :
Qn ={X',..., X"}, and (X%)i>1 is a sequence of independent H@u.@.o.uu
ables with the same probability law as X .
In other words,

le

t and y, = c'is a fixed constant
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u) is the nth value of the path controlled by u. In particular, if

, then the performance function
3llul? is clearly associated with the minimum

—zlle — d(u)}f -

energy regulation problem with reference value c.

ering problém associated with Cw& is then defined on some prob-

ace (2,0, P) by
)

Xn=d(X5 0, 07), X5 =U§, Yf=H(X)+Ve, (1.35)
and V* are two sequences of P-independent Gaussian random vari-

zero mean and unit variance. In this case, the probability density
I

) = By /u)p(u?)

T 1 s
”qm_é\wlﬁ.m 2

z
n

T
(i —H{¢n(u)))?

1 —lyg
—— e 3
V2

known, H can always be chosen as o hinear function, through o

b the
Finally, let us note that the random variable X* .

performance p*. When the probability law of X is given by Exp(p:
the condition P(}X* — op(X)| < €) > 0 is clearly satisfied for ever
We contime our investigation of particle methods for nonlinear filterin

ovﬁaﬁwﬁoﬁuvuo_&mﬁpm.Hn;mmmadmrmﬁ. mdm&«mmmc.mﬁnmﬁoﬁ. H.mm,_.ﬁrbu
and n € [0, T] we write ' .T

need not depend”

. .
__:w__w = M uZ,.

T
.gw” ﬁgcu...ugﬁvu __:__W = Mgwu
n=0 E,I.o

Using the preceding and the Bayes formula, we shall derive an L°-app

mation of the conditional expectation, as well as conditional optimal cont

starting with an example. By the same line of argument as before, let T

and let U, V be two P-independent RT-valued optimization variables defin
on a performance space (2, o, P) with p(u,v) = —3[ul} - L|of3.

Let X and ¥ be the real-valued optimization processes defined on (£,
by the dynamical systems -

P

plest &4
usive notation, if (U+)
Lgmuﬂo probability law as I7®
ﬁgdvu then for every N > 1,

ute-space basis, so that the conditions for L°

-convergences have the
rm. By the same lines of argument as b

efore, with some obvious
i>1 18 a sequence of independent random variables
and defined on the same probability
1€n<T,and e >0, one has:

itional H_Nvmnﬁwnmoa Estimate:
bn(U°)/Y5) — E(bu(U°)/Y2)] > ¢)
L B((6a(U) — BT/ X2)))

N2

(Y /UL)
oy p(Ye/UR)

0. In other words, if the right-hand side of the last inequality is

)/ V)=

i=1

$a(U%)

H.D

Y n) iy Uit budun) o [ ()oY fun) di(un)

OX/Y): Xn=¢(Xn-1,Uz),

Then, by obvious considerations,

Xo=Uy, Y,=H(X,)+V,

L

() =p(u/w) O p(w) = ~3 [l — Iy ~ H(g(u))IE,

£En(6a(U)/Yy)

Yilue) & Bl by (dun) V=t T1p(Vg ug) dplug)

= B($a(U°)/Y5).

itional Optimization Estimate: Let ¥ be a reference value for

onditional performance P(un/Yy) satisfies the following regularity
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conditions (1.33):

1) ¥e>0 Ip>0: V0O<n<T
pP(un/Ya), 1) < = |lup — op(Un/Ya)l2 < ¢,
2) Ve>0 Ip>0: VO<n<T

lun —op(Un/Ya)llz <5 =+ p(p(tin/Y,), I) < e.

After some algebraic manipulations, one can prove that for every £ > 0 ther

exists an f > 0 such that

P(l|opy(Un/Ya) — op(Un/ ¥l > €)
< {1 - P(||Ua — op(Up/Ya)||2 < 9))V,

where Qy = {U3:---,UYN} and

wEQn

N
= mA &) Hﬁeﬁ_mv.

i=1

N
opN(Un/Yr) = Arg sup P(u,¥5) <« mmw _@AQ.W, Yy)
i=1

In other words, if P(|Uz = op(Un/Ya)ll2 < €) > 0 for every € > 0, then

H.a

opn(Ua/Ye) K op(Uy/Yy).
Example 1.2 Whenever p(u,v) = —3llullz — 1v]12, we can readily check

ﬁrmamemooumwmmﬂ_mmqnoummmou.pmwmmwmmmmmmou %mu\wvA+oo..Hhmmmm,mu
this case we have , o

PP(un/Yn), T) < [{lunll; — || op(Un/Ya) |2 + op(Ya — H(@(ug)))|Z
= lop(Ya — H($(op(Us/ Y )3
< llun — op(Un/Ya)ll3
+ 2lun ~ op(Un/Ya)ll2 sup(1, p(Yy)).

10. Particle Interpretations

The particle algorithms are based on a Dirac comb which depends on
flow of the system and its partial observations or reference values, both
mass and position. In order to obtain time-uniform convergence, it is n

sary to introduce convenient explorating distributions and to regularize t ]
complementary weights. The significance of these facts will be given W,p..
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forthcoming deyelopruent. For filtering problems, these explorating distribu-
-tions are clearly dictated by the Bayes principles. For optimization problems,
we consider the associated estimation problems. In other words, in that case
-we infroduce sych explorating distribution by an original method, based on
the use of the Log-Exp transform. As was shown in §8, this transform ex-
plicitly characterizes the filtering problem associated with this optimization
‘problem. The stochastic interpretation allows us to introduce, as well as for
filtering problems, an explorating distribution that depends on the reference
values. Hence, |it suffices to start from the conditional probability function
of some filtering problem F(X/ V). For convenience, we keep, as a point of
Teference, the terminology and assumptions of §8 for the descriptions of the
nonlinear filtering and optimization problems F (X/Y) and O(X /). More-
ver, in order t9 clarify the notation, the symbol (- }* will be omitted and the
andom variables V will be centered Gaussian variables with zero mean and
variance function R. All stochastic processes defined in what follows are as-
umed to be carried by some probability space. Before starting the discussion,
we give some cqnsequences of the Bayes formula in our setting:

- L p(un,Yn) = p(yn/un)p(un).

2. pluy) = E p(tm) and ﬁﬁ@w\:wu = U—wH ﬁ@ﬁx:.ﬁv.

] == ) )
23 p(Ymfum) = ﬁﬂs@.ﬂ — H(¢pm(u)))
g 1

T (- 3 O~ Hm?)

m.,_, P(tn, .ewu = z P(Ym [ )P (1)

m=0

=TI plvmfuger) 2¥m/vm) e,

B QAQS\:H;WV

=TT plym/um-s) I] w?s.\:ﬁg Yom)-
m=0_{

m=0

5. Bm/tmin) = [ pum i ) i) = [ #m ) o).

We are now in a position to describe some time-recursive explorating distribu-
ions, which will be used in forward time. Using the above, we emphasize that
hese distributions are exhibited by some natural change of probability func-
ions. The detailed assumptions under which these convergences are uniform

in time will be studied in the last section.

A priori exploration: The following change of probability is a simple
onsequence of the Bayes formula:

Plun, ¥n) = Z5(t, ¥)Po(un, ¥n) = Z2(u, y)po(n/va)po(ys),
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with - . :

Po(Yn) =Gnly),  Po(tn,¥n) = po(un) = p(un),
ﬁ.u:ﬁwo = haﬁ@.vﬁualum@vu .Qzﬁﬁu =p :Aﬁavu
Za(u,y) = 25(w,9) 22 (u,y), 20w, u)guly) = P(Yn /).

Let @.ﬁ be a generic explorating stochastic process P-independent of I/ and
with distribution P(uz), and let (U*);»; be a sequence on independent copi
of U. By the same line of m,umﬁsmﬁmm_ummou.moémowﬁmmﬁ" .

En($a(U)/Ya) 5 E($.(U)/Y),

N—+too
Dn(Un/Yn) 7 op(Un/Y),
Yz ) ;
E ﬂa U H\c._... = 3 - R ﬁ:. U 3
M) = 2 s,y )
op(Un/Ya) = AQDp(UL, Yy).
i==1

Moreover, it is obvious that P-a.e. @Aﬁzﬁnﬂv\mvhxum\hu = @ﬁ&:ﬁﬁv\u\m&@\:
where Y is the observation process of U/ defined similarly to ¥ with (U,
replaced by (U, V) and V is P-independent of {7 with the same law as
The significance of this obvious remark will be clarified later. In additi
to the exploration processes U, the weights Z3(U*,Y) and __umd.m...“ Ya) ar
related to the likelihood of U*. It is important to notice that they are tim
degenerate. For instance, if $(z,u) = u, h(z) = z, and U is a centere:
Gaussian process with zero mean and unit variance, then we have, for evi
i # 7 and q €]0,1/5], _
@Aqh.tu\mwv 2
Qﬁm@@.u H\HV v

Z,(U',Y)

22z

The degeneracy of these weights is eliminated by using a regularization of th:
problem. This regularization is clearly dictated by the form of these weigh:
To this purpose, we denote by R the space of functions a: N? — [0,1] su
that, for every m,u € N, ¢n(0) = 1 and u — am(u) and m — op(u) ;
non-increasing. We endow this space with the pointwise convergence topolog

7
v =40 =supF

n>0

and define the d-regularized weights Z3(u,y) and p*(u,y) as follows:

k(]

log Z5(u,y) = MU am(n — m)log 23 (u,y),

- m=0
n

P (tn¥2) = 3 @ — m)P(Yrmy i /1),

m=0
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m—1) = E@B\:ﬁv_ O p(tm).

(Up/Ya) we denote the conditional optimal estimate associated with
egularized performance.

, recalling the previous example if o(u) = Lio,77(u), we obtain

s U /U

mA Z2(U%,Y) v sA 2 v_qﬁs
Z2(U4,Y) \v/1—-5¢2 ’
quum\ﬂ 2
mmuﬁm. ») vum%A+8.
p*(U3, ¥a)

venience, we now state that this Q-HmmEmENm&ow corresponds to an
irization of the observation process ¥ or an a-regularization of the
ptimization problem O(X/Y). In [13], we prove that P-s.e.

bo(U)/ Ya) = B($a(0)/Va(er,m))(¥a)

_ L #n(0)75(0, Ya) do(un) s
J122(u,Y,) dp(ugy) .

.FAQZ,& is the observation process of U defined similarly to ¥ with Vv

by a Gaussian process P independent of I and with zero mean and

. function R(«, n) defined for every 0 <m < n by

- R(o,n);! = ap(n — m)R,.

n the pther hand, let (U(e,n),V{a,n)) be two P-independent optimiza-
rocesses carried by some performance space (2, o, P) whose performance
is given by

7 n
52) = () (= m)0(um) © () (s — m)p(om).
m=0 m=0
(4n,¥n) is the performance function of the optimization problem
) defined similarly to O(&X /Y) with the optimization processes (U, V)
by (U(w,n),V(an)). Finally, by the same line of argument as before,
that once the a-regularization has been performed, we have .

EX(n(U)/Y) 25 B (4,(0)/Y),

N—+toc

op(Un/Ya) o op(U,/Y,),

N—+4co

ER(9p(U)/Yy) = M zmnwm,mmw Y)

(1.38)

¢ (U,

N
opx(Un/Ya) = AP p*(UL, Ya).
i=1
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We have described an a priori exploration of the probability/performance

space. In order to obtain a time-uniform convergence in general (e.g., for
unstable systems), an important step consists in introducing recursive explo-
ration distributions, which depend on the observation process (for filtering
problems) or on the reference process (for deterministic optimization prob-
lems). Indeed, for obvious reasons, the quality of the particle estim

ates ig

greatly improved if the exploration distribution depends on the observed or

the reference process.

Conditional exploration: The following changes of probabilities are sim.
ple consequences of the Bayes formula and the preceding remarks:

P(tn; Yn) = Zo(u, y)p1 (uns Yn) = Z2(ut, 4)p1 (unfym) P1(yn),

where

Pltn) = Cu(y),  pr(un/yn) = P(tn/un_1,yn)p1 (Un—1/yn—1),
Qﬂm..c_v = Qaﬁﬁvmalu Am\vu m_a.ﬁ..qv = muq\... A@ﬁvu
Zalusw) = 23w, 0)ZE 1 (u,y), 23 (u,)ga(y) = P(Yn/Un_1).

Let Q.m. be a generic explorating stochastic process P-independent of U an.
V with ¥-conditional distribution P1(un/yx), and let t ».Y.NH be a sequen
of Y-conditionally independent copie 7
before (see Eq. (1.36)), we obtain

s of U. By the same line of argumen

En(én(U)/Ya) 25 E(4u(0)/Yp),

N—+oo

Pn(Ua/Ya) 7= op(Ua/Yy),

N 177
Bu(tn(O)/3) = 3 <o) .0

N
opp(Un/Yy) = A .m_w_zﬁ., V).

Let ¥ be the observation process of U defined by ¥, = H Tuﬁwlr m‘ﬂavv +

where X,,; = ﬁ:luﬁwv and the processes AQ , V') are P-independent of IJ-
have the same law as (U, V). Let us make several comments:
1. With some obvious abusive notation, the definition of ¥ yields

(I ftn) = ﬁ@:\m&%@ﬁ\&ﬁv, :
P(n/tin) = \Hu%:\QP@.u\mﬁu:avmﬁ?:u = ﬁ%:\qh.“@:\mzlr.wv,

: ﬁﬁm@ T/ Yn) = »d@H\ tn, @Hvﬁﬁmw\ @_m.v = ﬁ@ﬁ\ m&ﬁﬁmﬁ\ Yn)
= E($a(0)/Yn, Ya)(Ya) = E($u(U)/ Ya)(Yy).
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- 2. In the following example, the nonlinéar structure of the problem in hand
; directly exploited. I ¢(z,u) = F(z) + u, Hiz)=C-z,and U is a
-time Gaussian process with zero mean and with variance function @,

(it )

§: =0 +CRC. _ .

3. A_M..“ﬁm conditional exploration transitions may depend on several observa-
. ues. We claim that, by using a suitable state space basis, this case
reduced to the following. Let o, an Increasing sequence in N. We set

: =-1, o, = _Qslu_o.qL Dzu Uy, = Aﬁ.nivssmy.u and

1.39)
.”ﬁﬂm..ou...uﬁ.m..: - ) . m

4. (1.40) leads to similar changes of sample functions:
7> ¥7,) = Pz, vz, )p(us, [us,. ., vs, ) CE AT (1.40)

.In'that ¢ase, any exploration transition p{uz, /uz,_,,ys,) depends on [Aca] =

On — Ognl-1 observation values.

Probability space discretization. For the explicit determination of
ditional exploration transitions, we generally need another particle
mation scheme. To this end, we form a stochastic tree that represents
iori possible transitions. For everyn 2 0and M > 1, let y = C:.Nou?
e the stochastic iree defined by

L Xd = ﬁmﬁ.mﬁ... “d.“.uo..:__.:vu i € .3;. .. L_&.wwu
Xngm = {uf™ i € {1, M)} Yim € xoa,

where far cach n, (uio-in Jio.eryin i8 & sequence of independent random vari-

‘ables with the same law as U,,, and for every m = (ui® yutotn=t

; 01Uy 7 TN) € X,
we have| o(m) = (lo,...,in_;). In order to clarify the presentation, we still

‘use U t¢ denote random variables whose x-conditional distribution is given
by 370 Musmu? 8m. In other words, in this case we have

1
ﬁ?@”%ﬂ M b and

mEXn

Punfung)= Y AW 3 mm_vps?ahb.

mMEXn_1 mmk‘i_nﬂ

(1.41)

This panticle approximation scheme is a time-uniform mﬂwﬂoﬁﬁ:maou. to the
perturbation distribution in the sense that for every continuous function

R LR
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we have, if ¢ = E($(Un)),

|

with

where Y5(a,n) is the observation process of U defined in the same way as ¥

but with V replaced by a Gaussian process, P-independent of U/, with zero
mean and variance function R(a,n) defined for every 0 < m < n by

o Rledn)y' = am(n —m)R .

2 n -
1 1N 1
:;mMmev o

p=0

1 —
< 37 190m) = B2,

|~_\~|WH..J_H D bm)-3

MEXn

For the window regularization, that is, for o = 10,5, t > 0, we obtain

log Z3(u,y) = > logzk(u,y).
m=n—t -

Ip= D [t |2,

wMqu...MntMS

grorite = E($(Un)/Uso; ..., Ut, ).

Finally, once an a-regularization has been selected, we obtain L°-convergence
results similar to those stated in Egs. {1.38).

.. Sampling/Resampling Exploration. To conclude this section, we pro-
pose a strategy to accelerate the exploration of the performance/probahbility
space. | The following algorithms are an extension of the well-known sam.
pling/resampling (S/R) principles introduced in (11, 22, 49], and more recently
in [13, 24, 45, 50]. Other interesting particle schemes based on birth and death
principles have been introduced in [27] and [42]. The sampling/ resampling ap-
proach fiffers from the others in the way it stores and updates the information
that is accumulated through the resampling of the positions. The basic idea is
to iteratively build up a pure Dirac comb approximation (with out weights) of
the conditional sample functions P(tn/yn), that is, to construct discrete-time

 stochasfic processes Up =(U¢g,..., @hv such that, in a sense to be defined,

ﬁﬁﬁa\gmallu. Up)
J P(yn fun—1, ) dp(un fu ) P(tn/un_1) =

P(Unftn_1,yn) = Pyn/tin=1,b) wn) V(e
= EmMNMI.H Ah.mumMa..:: nmm_:: ﬁm@ﬁ\ﬁﬁu c) o vv“— ( Slm-v :

ﬁmﬁa\:ﬁu Yn) =

.. .~I<,. MA_W m)a... I P(un/Yn),
. . . ; s = oo
The degeneracy of these weights can be eliminated by using the same regu: !

Hmiwmmoumuvamoﬁm.mﬂm?m Q-Hmmimnmummémwmﬁm_wn?évm.um again define
as ..

where " is a sequence of independent processes having the same law as U2,

. T
- The symbol (-} means that the conditional sample function of the process
-depends on the observation path Yn. Before starting the discussion, we recall

that if p(a,b) is the distribution of some random variable (4, B), then, in
some sense

n

Pt ) = 3 (s = )0 e e y)

n 3

= am(n — m[Um) G p(tm 3 B bmJ : :
sMuua MY P(Ym /tm) © P(tm)) - W< D banph = plab), (1.42)
i=1

‘where (4°, B*) is a sequence of independent random variables having the same
law as (A, B).

We initialize the sampling/resampling algorithm by first introducing a se-
_quence of independent stochastic processes U} = (U, ... ; U:) having the same
-law as U/,,. By the same line of argument as before, in some serise, we have

process Y. In other words, P-a.e. we have

E*($n(U)/Ye) = E($o(0)/Va(0,n), Y,)
o ()23, V) dpiin /y)
H\.__Sm\z = = R
A IV - R AF e

N
def -1
1) |po(ue) = .?JM%& 2“8&:&“
i1

S et T TS N Y
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2)  po(us/yo) 4 —— P¥o/uo) po(uo) —  plug/yo)- (1.43)

- I p(yo/us) dpo (uo) N—to0

By @;,% we denote the random variable whose law i3 given by ?,?a /10) end .me.“

Ui e sequence of independent variables with the same law as U?. The las
remark (1.42) and the approximation (1.43) yield ‘

N .
D) paCea/un) E 53 S0 pu)o(un/uo) = pun/ o)

i=1 ~

(the first S/R update)

with T & (F0 pi)

Pl fu 1)
.\.MA..CH \.Eb&muu. ﬁ?....—l\w\ov D1 ﬁﬁw\@_ov .~<l|v|+v00 .ﬁﬁ:c \@ov
(the first Bayesian Correction). :

2) piui/y)

Now by mww = ﬁ@m_wﬁ we denote o varighle with distribution EQW\.._.\U By
the same line of argument, if @MH, ** is a sequence of independent variables wi
the same law as @M , then we obtain:

N
1) pa(uafyn) & % M mmmr.. 7. Plu2)p(ui/y1) = p(ua/yn)

i=1 N=rtoo
(the second S/R update)
with U3 (01, Uj);
u
) palunfyy) e Pl

. u
(the second Bayesian Correction).

Then by WM = (02, %w.mwuv we denote a variable with distribution ﬁn?m \ewv

ﬁoﬂneméswuu“rm h\hﬁgnm.ﬁu N.\ww %Rmﬁﬁm&ﬁnnﬁé.«.en@ﬁ follows:
Let - ..

Pru-1(¥n=1/yn—1) —  pup-i1/yn~1)

— " Ndoo

be the sampling function of the process ™1 then

n—11

N
. def 1
Hv ﬁ.amﬁm\ﬁmﬂwv = MMUMQM.L... zﬂuﬂoo ﬁmﬁauﬁnﬁﬁ\@ﬁv

i=1

= P(unfyn—1)  (the nth S/R update)

“with Op—1é & (Frol iy,
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Mu P Aﬁﬂ_\@:u def ﬁﬁﬁﬁ \ﬁ.ﬁv

B sw@a\:wv%;?w\mﬁv??w\@ﬁb

N P(unfyn) Tﬁ\m, nth-Bayesian Correction)

Y @H_ we denote the stochastic process whose sampling function is
jn). These S/R principles can be summarized as follows:
1 N malp m\w:..

—
N a priori samplings ™ N conditional resarnplings —

When we use the previous approximations, we have, in a sense to be defined,

N
| Sgn =7 P(un/yn),
L ei 1 al yrm,i
AR 2 6 (03) ;=2 B6aU)/Ya).

The analysis of this no=<mamwwnm..wmnmmmmﬁmq involves the study of all approxi-

.Bm.ﬁoj that lead to Pn(Un/yn). One open problem is to find sufficient condi-

ons for these S/R particle schemes to L°-converge uniformly in time to the

conditignal expectation. Some local proofs can be found in [13]. As usual,

hese S/R particle schemes are also applicable to deterministic optimization

“problems. Indeed, if ¥ is a reference path for which the conditional perfor-
‘mance p(un/Y,) satisfies the regularity conditions stated in (1.33), then for

every € > 0 there exists an 77 > 0 such that

P(l|op(Un/Yy) — op(Un/ Yyl > €)
< (1= PUITR — op(Un/ Y|l < )P,

opy(Un/Yy) = AQDRUM, Ya)-

5 i=1
In other words,

Ve>0 P02 - op(Un/Yy)ll2 <€) > 0

L°
= opn(Un/Ya) == op(Un/Yy).

More generally, the resampling updates may be given by some timing sequence

schedule| ¢y The recent literature ([50], [24], [11], and [13]) describes several
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different schemes for choosing At, =t — tn—1, none of which, in our opin-
ion, is completely reliable. It is our opinion that the choice of the control

parameters At, and the assignment of the schedule must require physical in: ..

sight and/or trial-and-error experiments. To clarify the presentation,
restricted the study to the case At, = 1. In fact, a suitable state-space aug

mentation allows one to reduce the more general case to the one considered:

above,

11. Convergence

The aim of this last section is to give sufficient conditions for the time-uniform
convergence of our particle schemes. Qur results indicate that once the i
tering or optimization problem satisfies some natural stochastic detectabil
ity (in reference to the linear terminology) and continuity assumptions, L

convergence is uniform in time. Let a” be an increasing sequence of regu
larizations in R which converges pointwise to 1'as r — 400 (for m.%mHD.U._b

Q_.SQVHH?,.mevuom.aﬁv.hﬁl ﬁlJﬂ..vHucunoﬁ<mamunm,€m=mmﬁrm follo
ing notation: ..

H.Qmmoumo».ﬁﬁmmmnmin mHUHowmmoanoammmmm&mmﬁommbﬁrm previo

section. o : ’
2. The index (-}*" will be replaced by (-)", and we write [[241i|2
: |

2 omep A (n — mul, . . o
3. For every function 8: N — Rt we set §* — sup,, &n. If A is a discrete-tim

stochastic process and AN ig s sequence of diserete-time stochastic wﬁoa,“m_mmmmn
then we define the LP-time uniform convergences as follows, .

_._...

Forp=0: AV "0 4 o vesp PAY — A |>e — 0.
N—too Nertoo

.».
Forp>1: AW H.l? A =
N—doo

N * N Iﬂ.
147 — 4. = B(AY — 4y o,

In the sequel, we suppose that the conditional expectation satisfies the hm..._.“.ﬁﬂ.
asymptotic condition ||¢ (U} — E(.(U)/Y)lls < 400 and, for every r > 1,
(Lo (s = m))* < to0. | ‘

Theorem 1.8 ([13]) Assume that the following conditions are satisfied: !

L. Stochastic detectability: | ¢, (U) E{¢.(U)/Y )3 < +oo.

2. Continuity: ET(¢.(U)/Y.) H..ol_w E(¢.(U)/Y.).

r—-t-oo
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Then there exists an increasing parameter sequence T{N) such that

B6.0) B3 B 0y (14

~Corollary 1.2 Let o = lio,r), and assume that the following conditions are

satisfied:

‘1. Btochastic detectability: 6. (T) — mﬁﬂﬁqv\m\u |3 < +o0.
__“N.. Asymptotic independence: -
_, o . .
B@nU)/9n—r(0), Yor,- Vo) 2 B($u(0)/Ynor, ., Ya):

Then there ezisls an increasing sequence of parameters r(N) such that the
L°-time uniform convergence (1.44) holds.

*Suppose that Y is a reference value such that the conditional performances
P (un/Yy) satisfy the following regularity conditions (1.33): .

1) ¥e>0 Inp>0: Va0 PP (un/Ys), 1) < g

_ = |lun —0op(Un/Ya)lla,r <&
2) Ye>0 I>0: VYn2>0 l[en — 0p(Us/Ya)ls,r <7

= (P (un/Yo), T) <e.

Let I/ be one of the generic exploration processes definéd in the previous
section pr one of the R /S-exploration processes.

‘Theorem 1.9 Assume that the following conditions are satisfied:

1. Stochastic detectability: for everyr > 1 and € > 0,

HUﬁ__@.._‘k - OHUq.AQ.P\M\PV__M..—. > Nv.* <L
2. Continuity: lim. P(||op™(U./Y.) - op(U./Y.)|2 > e)* = 0.

r—~>1oo

- Then there ezists an increasing sequence of parameters r(N) such that

lim| P(||opy™(U./Y.) ~ op(U. /Y.)

N l2,r(y > &)* = 0. (1.45)

For detailed proofs and for the ovﬁmmmwﬁon of the parameters r(V) for

.. each finite number of particles, see {13].

" Conclusions

. In this paper we have introduced Maslov optimization theory as a natural
normed and idempotent semiring-valued measure theory at the same level of
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generality as that of probability and stochastic process theory. This work

offers an alternative to classical geometric descriptions of optimization prob-

lems and leads to new developments in the qualitative studies of optimization
processes. From a practical point of view, this parallelism between probabil- -
ity theory and optimization theory allows us to apply the recently developed
particle methods [13, 15] to optimization problems. This paper is only con-
cerned with deterministic processes. Stochastic optimization problems can be
studied along the same lines, but the stochastic Bellman ovmnnmm@ equation
is no longer (max, +)-linear. For linear systems, the stochastic performance’
evolution may be described by the Maslov ® or the classical convolution of
measures. Let p be a real performance measure, let p be a real-valued proba.
bility density, and let ¢ be a mapping from R into A. Let Ui be a sequence’
of independent optimization variables with the same performance P, and le
Wi be a sequence of random variables with the same distribution p. Con

sider the simplest stochastic optimization problem (with W as the stochastic-
disturbance) ‘

Nw”.uplulﬁ.wlﬂ\? 0<k<T

We want to select an adapted strategy,
the performance function

sup @A
Uay..oiUyp

uarmum E{-} denotes the usual probabilistic expectation over W. Then the-
mduced performance function defined v%_“rmo@:mﬁou ,u

r-1

DU+ H(X7)/Xi) (=), Br =,

=k

still denoted by U, which optimizes
T-1

Y o) + &@iv ,

I=0

Pi(z) = sup E(
HH#.....,C.H_
satisfies the stochastic optimality equation:

b
Pr(w) = .% p(u) @ MHWIHAH —u—-W))odu

4]
[ o -0 B - W0 s

This equation can be written using the classical and
measures in a nondistributive way.
n =T — k, we obtain

(max, +)-convolutions o
Indeed, with the change of the time inde

Pn=P® [Pp_;*p) and p,=p" ® $xp”,

where for each 2 < n < T we have

P ®d*p"=p@® (" @xp" N4p, pe $+p=p ® (fxp).

e Rrmmp - R AR

" help of
. been a

" Current
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In the general case, however, there is no escape from the fact that using both
algebras makes the problem nonlinear in any of them. In that respect, {9]
simply |shifts the difficulty to the suitable choice of the Lagrange multipliers
(the equations defining these multipliers are again nonlinear). Although there
has begn a large amount of theoretical work in the field of nonlinear filtering
and dynamic optimization in the last thirty years since their inception, little

. attention has been paid to actual realization of nonlinear estimates for real

problems, which remains a challenge for the computation of global estimates.
Another contribution of this paper is to introduce some particle principles
that fully exploit the structure and the nonlinearities of the systems, and we
give conditions for the L°-time uniform convergence of these schemes in terms

of stochastic detectability and observability. This paper is also a milestone in
- showing that the original particle algorithms developed for nonlinear filtering
.- can be|used to solve optimization problems. It is our opinion that particle

principles are more likely to be used in practice than linearization or fixed grid

" schemeb. Furthermore, in practical situations, the structure and nonlinearity
- of the problem in hand should be fully exploited. The results on sufficient con-
~ ditions for the particle procedures to converge uniformly in time are natura).
- Despite many successful applications of these techniques, important questions
-remain|to be answered. We should mention that

" 1. A gap in the theory is the lack of simpler conditions implying detectability
and regularity.

2. Thd
cle mpproximations based on samnpling and resampling principles. As we
alluded to earlier, the coraplete treatment of the S /R principles is a very
compplicated and sophisticated subject. All we have attempted to do here
is t¢ introduce natural modeling and to guide the reader to some starting
points in the literature. .

3. Detectability is usually connected with the positive Hessian of some value
funetion. There remain unresolved issues in our investigations for nonlin-
ear [filtering problems.

- The main point of particle resolution relies on the sampling of a large number

of partitle paths. Progress also lies in numerical studies particularly with the
parallel computing. The field of Monte-Carlo simulations has long
rendez-vous point for practitioners, algorithm makers and theorists.
There are reasons to hope that this will continue in the future to benefit the
development of the field of nonlinear filtering and optimization problems.
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;re are a number of questions regarding the convergence of the parti-
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