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Abstract

We analyse the exponential stability properties of a class of measure-valued equa-
tions arising in nonlinear multi-target filtering problems. We also prove the uniform
convergence properties w.r.t. the time parameter of a rather general class of stochastic
filtering algorithms, including sequential Monte Carlo type models and mean field par-
ticle interpretation models. We illustrate these results in the context of the Bernoulli
and the Probability Hypothesis Density filter, yielding what seems to be the first results
of this kind in this subject.
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1 Introduction

Let (Ey)n>0 be a sequence of measurable spaces equipped with the o-fields (&,)n>0, and for
each with n > 0, denote M(E,,), M (E,) and P(E,,) the set of all finite signed measures,
the subset of positive measures and the subset of probability measures, respectively, over the
space E,. The aim of this work is to present a stochastic interacting particle interpretation
for numerical solutions of the general measure-valued dynamical systems 7, € M (E,)
defined by the following non-linear equation

'Yn(dxn) = ('Ynlen,'yn_J (dl'n) = /E r)/nfl(dl'nfl)@n,'yn_l(xnfladfn) (11)
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with initial measure g € M, (Ep), and positive and bounded integral operators @, , from
E,_ into E,, indexed by the time parameter n > 1 and the set of measures v € M, (E,).

This class of measure-valued equations arises in a natural way in the analysis of the first
moments evolution of nonlinear branching processes, as well as in signal processing and more
particularly in multiple targets tracking models. A pair of filtering models is discussed in
some details in section and in section In the context of multiple targets tracking
problems these measure-valued equations represents the first-order statistical moments of
the conditional distributions of the target occupation measures given observation random
measures obscured by clutter, detection uncertainty and data association uncertainty.

As in most of the filtering problems encountered in practice, the initial distribution of
the targets is usually unknown. It is therefore essential to check wether or not the filtering
equation ”forgets” any erroneous initial distribution. For a thorough discussion on the
stability properties of traditional nonlinear filtering problems with a detailed overview of
theoretical developments on this subject, we refer to the book [6] and to the more recent
article by M. L. Kleptsyna and A. Y. Veretennikov [15]. Besides the fact that significant
progress has been made in the recent years in the rigorous derivation of multiple target
tracking nonlinear equations (see for instance [4, 17, 27, 22]), up to our knowledge the
stability and the robustness properties of these measure-valued models have never been
addressed so far in the literature on the subject. One aim of this paper is to study one such
important property: the exponential stability properties of multiple target filtering models.
We present an original and general perturbation type technique combining the continuity
property and the stability analysis of nonlinear semigroups of the form . A more
thorough presentation of these results is provided in section dedicated to the statement
of the main results of the present article. The detailed presentation of this perturbation
technique can be found in section

On the other hand, while the integral equation appears to be simple at first glance,
numerical solutions are computationally intensive, often requiring integrations in high di-
mensional spaces. One natural way to solve the non-linear integral equation is to use
find a judicious probabilistic interpretation of the normalized distributions flow given below

M (dxn) = yn(dry) /0 (1)

To describe with some conciseness these stochastic models, it is important to observe that
the pair process (7,(1),7,) € (R4 x P(E,,)) satisfies an evolution equation of the following
form

(Vn(l)vnn) = Pn(’Yn—l(l)ann—l) (1~2)

Let the mappings I'} : Ry x P(E,) — R, and I'2 : R x P(E,) — P(E,), denote the first
and the second components of I'), respectively. By construction, we notice that the total
mass process can be computed using the recursive formula

Yar1(1l) = Vn(Gn,vn) = Un(Gn,’yn) Yn(1) with Gy, = Qn+l,'yn(1) (1.3)

Suppose that we are given an approximation (’y,]lv (1),nN ) of the pair (v,(1),n,) at some
time horizon n, where N stands for some precision parameter; that is (’nyV (1),nN ) converges
(in some sense) to (y,(1),7n), as N — oo. Then, the N-approximation of the measure 7, is
given by 7Y = 4N (1) x nV. The central idea behind any approximation model is to ensure



that the total mass process at time (n + 1) defined by
Y1 (1) = 03 (Gpy) 1 (1) (1.4)

can be "easily” computed in terms of the N-approximation measures 7Y. Assuming that the
initial mass o(1) = 7" (1) is known, the next step is to find some strategy to approximate
the quantities T2 ; (v (1), 7)) by some N-approximation measures 7l ;, and to set 7, ; =
vY.1(1) x nl.;. The local fluctuations of 1) around the measures I'Z(v2"(1),n) ;) is
defined in terms of a collection of random fields W, :

1
W= VN [y =Th(il (D), mil )] <= = T3 (i (D), i) + Vi W, (L5)

which satisfies for any » > 1 and any test function f with uniform norm || f]| < 1,
1
E(WN 1 FL) <ar (1.6)

where fﬁ 1=0 (nfgv ,0<p< n) is the o-field generated by the random measures név , 0<
p < n, while b and a, are universal constants whose values do not depend on the precision
parameter N. The stochastic analysis of the resulting particle approximation model relies
on the analysis of the propagation of the local sampling errors defined in . The main
objective is to control, at any time horizon n, the fluctuations of the random measures
(YN 1) around their limiting values (yy,7,) defined by the following random fields:

VN = VN [’yT]LV —n]  with VN .= /N [ng—nn]. (1.7)

The construction of the N-approximation measures 7.’ is far from being unique. In the
present article, we devise three different classes of stochastic particle approximation models.
These stochastic algorithms are discussed in section [l The first one is a mean field particle
interpretation of the flow of probability measures 7,, and it is presented in section The
second model is an interacting particle association model while the third one is a combination
of these two approximation algorithms. These pair of approximation models are respectively
discussed in section and in section In the context of multi-target tracking models,
the first two approximation models are closely related to the the sequential Monte Carlo
technique presented in the series of articles [23] 24] 28] 29, [30], 31], and respectively, the
Gaussian mixture Probability Hypothesis Density filter discussed in the article by B.-N. Vo,
and W.-K. Ma [25, 26], and the the Rao-Blackwellized Particle multi-target filters presented
by S. Sarkka, A. Vehtari, and J. Lampinen in |20} 2I]. These modern stochastic algorithms
are rather simple to implement and computationally tractable, and they exhibit excellent
performance.

Nevertheless, despite advances in recent years [3, (14, [24], these Monte Carlo particle
type multi-target filters remain poorly understood theoretically. One aim of this article is
to present a novel class of stochastic algorithms with a refined analysis including uniform
convergence results w.r.t. the time parameter. We also illustrate these results in the context
of multi-target tracking models, yielding what seems to be the first uniform results of this
type in this subject.

The rest of the article is organized as follows: In section we illustrate the ab-
stract measure-valued equations with two recent multi-target filters models, namely



the Bernoulli filter and the Probability Hypothesis Density filter (abbreviate PHD filter).
Section [1.2] is devoted to the statement of our main results. In section [2] we describe the
semigroups and the continuity properties of the nonlinear equation We show that this
semigroup analysis can be applied to analyse the convergence of the Bernoulli and the PHD
approximation filters. Section [3|is devoted to the stability properties of nonlinear measure-
valued processes of the form . We present a perturbation technique and a series of
functional contraction inequalities. In the next three sections, we illustrate these results in
the context of Feynman-Kac models, as well as Bernoulli and PHD models. Section []is con-
cerned with the detailed presentation and the convergence analysis of three different classes
of particle type approximation models, including mean field type particle approximations
and particle association stochastic algorithms. Finally, the appendix of the article contains
most of technical proofs in the text.

1.1 Measure-valued systems in Multi-target tracking

The measure-valued process given by is a generalisation of Feynman-Kac measures.
Its continuous time version naturally arise in the modeling and analysis of the first moments
of spatial branching process [6, [11].

Our major motivation for studying this class of measure-valued system stems from ad-
vanced signal processing, more specifically, multiple target tracking. Driven primarily in
the early 1970’s by aerospace applications such as radar, sonar, guidance, navigation, and
air traffic control, today multi-target filtering has found applications in many diverse disci-
plines, see for example the texts [1], [2] [18] and references therein. These nonlinear filtering
problems deal with jointly estimating the number and states of several interacting targets
given a sequence of partial observations corrupted by noise, false measurements as well as
miss-detection. This rapidly developing subject is, arguably, one of the most interesting con-
tact points between the theory of spatial branching processes, mean field particle systems
and advanced signal processing.

The first connections between stochastic branching processes and multi-target tracking
seem to go back to the article by S. Mori, et. al. [I9] published in 1986. However it was
Mabhler’s systematic treatment of multi-sensor multi-target filtering using random finite sets
theory [13, 12, 16, [17] that lead to the development novel multi-target filters and sparked
world wide interests. To motivate the article, we briefly outline two recent multi-target
filters that do not fit the standard Feynman-Kacs framework, but fall under the umbrella
of the measure-valued equation . The first is the Bernoulli filter for joint detection and
tracking of a single target while the second is the Probability Hypothesis Density filter.

1.1.1 Bernoulli filtering

A basic problem in target tracking is that the target of interest may not always be present
and exact knowledge of target existence/presence cannot be determined from observations
due to clutter and detection uncertainty [I8]. The Bernoulli filter is a generalisation of
the standard Bayes filter, which accommodates presence and absence of the target [27]. In
a Bernoulli model, the birth of the target at time n + 1 is modelled by a measure fi,41
on E,;1. The target enters the scene with a probability u,4+1(1) < 1 and its state is
distributed according to the normalised measure fi,41/n+1(1). At time n, a target X, has



a probability s, (X,,) of surviving to the next time and evolve to a new state according to a
given elementary Markov transition M, from E,, into E,4;. At time n+1, the target (if it
exists) generates with probability d,,41(X,,+1) an observation Y,,;1 on some auxiliary state
space, say E}: 41 with likelihood function Iy, +1(Xy41,y). This so-called Bernoulli observation
point process is superimposed with an additional and independent Poisson point process with
intensity function h, > 0 to form the occupation (or counting) measure observation process

yn+1 = Z1§i§N}LV+1 5Y;;+1-

In its original form, the Bernoulli filter jointly propagates the probability existence of the
target and the distribution of the target state [27]. Combining the probability of existence
and the state distribution into a single measure, it can be shown that the Bernoulli filter
satisfies the integral equation , with the probability of existence of the target given by
the mass 7,(1) and the distribution of the target state given by the normalised measure

M = Yn/¥n(1). The integral operator for the Bernoulli filter takes the following form

$n(Tn)gn (Tn) Mn+1(Tn, dzni1) + ('Yn(l)_l — Dpint1(dwnir)

Qn n xnadxn = 1.8
+1,y ( +1) (1 — 771(1)) _i_,yn(gn) ( )
where g, is a likelihood function given by

gn(wn) = = (1= dn(zn)) + dnl(@n)Vn (In(Tn, )/ In) (1.9)

1.1.2 PHD filtering

A more challenging problem arises when the number of targets varies randomly in time,
obscured by clutter, detection uncertainty and data association uncertainty. Suppose that
at a given time n there are N.X targets (Xqiz)lgz‘g nx each taking values in some measurable
state space E,. A target X!, at time n, survives to the next time step with probability
s, (X1) and evolves to a new state according to a given elementary Markov transition M/ 11
from E, into E,y;. In addition X can spawn new targets at the next time, usually
modelled by a spatial Poisson process with intensity measure B, 1(X?,-) on E, 1. At the
same time, an independent collection of new targets is added to the current configuration.
This additional and spontaneous branching process is often modeled by a spatial Poisson
process with a prescribed intensity measure p,41 on E,.i. Each target X! 41 generates
with probability dp41(X ;) an observation Y, ; on some auxiliary state space, say E,
with probability density function gny1(X,,1,y). In addition to this partial observation
point process we also observe an additional and independent Poisson point process with
intensity function h,,. Multi-target tracking concerns the estimation of the random measures
X1 = Zlgingf dx:, given the observation occupation measures ), = ZlgingY 6ypi.
The multi-target tracking problem is computationally intractable in general and the
Probability Hypothesis Density PHD (filter), is an approximation that propagates the first-
order statistical moment, or intensity, of the multi-target state forward in time [I7]. The

PHD filter satisfies the integral equation ([1.1)), with the integral operator given below
Qn+1,7n (7, dxn—l-l) = In,yn (xn)Mn+1(xn> drn1) + 'Yn(l)_l pns1(deni1) (1-10)
where My, 11 is a Markov kernel defined by

Sn (xn)M7/7,+1(xna dxn—i—l) + Bn+1 (!Tna dwn—i—l)

Myt (zy, depyq) = (1.11)



with the branching rate by (x,) = Byy1(1)(2y). The likelihood function gy, -, is given by
Inom = Tn X Gy, With 1y = (s 4 bn) (1.12)

and

n(Yn) + Y (dngn (-, yn))

Since its inception by Mahler [I7] in 2003, the PHD filter has attracted substantial interest
to date. The development of numerical solutions for the PHD filter [24], [26] have opened
the door to numerous novel extensions and applications. More details on the derivation of
the PHD filter using random finite sets, Poisson techniques or random measures theoretic
approaches can be found in the series of articles [4] [17, 22].

oo () = (1= o)) + (o) [ V) 5 (1.13)

1.2 Statement of the main results

To describe with some conciseness the main result of this article, we need to introduce some
notation. We let Osci(FE,), be the set of £,-measurable functions f on E,, with oscillations
osc(f) = sup, . |f(z) — f(2')] < 1. We denote by u(f) = [ w(dz) f(z) the Lebesgue
integral of f w.r.t. some measure y € M(E,), and we let || — v||tv be the total variation
distance between two probability measures v and p on E,.

We assume that the following pair of regularity conditions are satisfied.

(Hy) : There exists a series of compact sets I, C (0,00) such that the initial mass value
v(1) € Ip, and for any m € I, n € P(E,), we have

0—n(m) < n(Gnmy) < 04 n(m) for some pair of positive functions 0 /_ .

The main implication of condition (H;) comes from the fact that the total mass processes
Yn(1) and their N-approximation models v (1) are finite and they evolves at every time n
in a series of compact sets

I, C [m;,,m}] C (0,00)

n

with the sequence of parameters m,, /~ defined by the recursive equations m,_, =m0 ,(m,)
and m;} | = m} 6 ,(m}), with the initial conditions mg = mg = yo(1).

(Hy) : For anyn > 1, f € Osci(Ey), and any (m,n), (m',n") € (I, x P(Ey)), the one
step mappings I'y, = (I‘%L, I‘i) defined in satisfy the following Lipschitz type inequalities:

P Gmom) = TE(, )| < eln) [m— o] + / 1= 11(@)] S gy (d)  (L14)

|[D2(m, ) = To(m/ )] ()] < eln) [m—m| +/ [ = 01@)| 25 oty (F dep) (1.15)

1

n7(ml”’7l) and

for some finite constants c(n) < oo, and some collection of bounded measures 3

2 (m n’)(f’ .) on B(Ey) such that
[ 05c(0) T (@) <5 (21) and [ osel) B2 (Frde) <6 (53)

6



for some finite constant § (Z‘;) < 00,1 =1,2, whose values do dot depend on the parameters
(m,n) € (In x P(Ey,) and f € Osci(Ey).

Condition (H2) is a rather basic and weak continuity type property. It states that the one
step transformations of the flow of measures are weakly Lipschitz, in the sense that the
mass variations and the integral differences w.r.t. some test function f can be controlled by
the different initial masses and measures w.r.t. a collection of integrals of a possibly infinite
number of test functions. It is satisfied for a large class of one step transformations I';,. In
section we will verify that it is satisfied for the general class of Bernoulli and the PHD
filters discussed in section [L.T.1] and section

We are now in position to state the main results of this article. The first one is concerned
with the exponential stability properties of the semigroup I'y, ,, = (F}D " Fg’n), with0<p<n
associated with the one step transformations of the flow . A more precise description
and the complete proof of the next theorem is provided in section

Theorem 1.1 We let @;nu and <I>pnm be the semigroups associated with the one step

transformations of the flow of total masses @}L,VWI :=TL(.,v,_1) and measures @%’m%l =
I'2 (my_1,.), with a fized collection of measures v := (Vy)n>0 € [1,50 P(En) and masses
m = (Mp)n>0 € [l,>0In- When these semigroups are exponentially stable (in the sense
that they forget exponentially fast their initial conditions) and when the pair of mappings
Up_1 @}Wn_l and Mmy_1 — @Z,m are sufficiently reqular then we have the following
contraction inequalities

n—1

DL @) = T ()| VD20 () = T2, ()|, < ¢ a2

for anyp < n, u,u’ € I,, n,n € P(Ep,), and some finite constants ¢ < co and X\ > 0 whose
values do not depend on the time parameters p < n.

The second theorem is concerned with estimating the approximation error associated
with a N-approximation model satisfying condition (1.6). The first part of the theorem is
proved in section The proof of the uniform estimates is discussed in section (see for

instance lemma .

Theorem 1.2 Under the assumptions (Hy) and (Hz), the semigroup Iy, ,, satisfies the same
Lipschitz type inequalities as those stated in and for some collection of mea-
sures Ezlm and Eg}n(f, .) on B(Ey). In addition, for any N -approzimation model satisfying
condition (@) we have the estimates:

E(\VJ’N(I)\Tygarié(Z}),n) and E(\vng(f)r)}“garia(zgn) (1.16)
p=0 p=0

for any r > 1, and N > 1, with some constants a, < oo whose values only depend on r.
Furthermore, under the regularity conditions of theorem the couple of estimates stated
above are uniform w.r.t. the time horizon; that is, we have that

Vi=1,2 SupZ&

n>0



These rather abstract theorems apply to a general class of discrete generation measure-
valued equations of the form . We illustrate the application of this pair of theorems
in the analysis of the stability properties and the approximation convergence of the pair of
multiple target filters presented in this introductory section.

These results can basically be stated as follows:

e The Bernoulli filter presented in section [1.1.1| with a sufficiently mixing prediction and
almost equal survival and spontaneous births rates s,, ~ (1) is exponentially stable.

e The PHD filter presented in section [1.1.2] is exponentially stable for small clutter
intensities and sufficiently high detection probability and spontaneous birth rates.

e In both situations, the estimation error of any N-approximation model satisfying con-
dition does not accumulate over time. Furthermore, the uniform rates of conver-
gence provided in theorem allows to design stochastic algorithms with prescribed
performance index at any time horizon.

We end this section with some direct consequences of theorem [1.2
Firstly, we observe that the mean error estimates stated in the above theorem clearly
implies the almost sure convergence results

lim 7 (f) = na(f) and  lim 9 (f) = 3(f)

N—oo N—oo

for any bounded function f on E,. Furthermore, with some information on the constants
a,, these L,.-mean error bounds can be turned to exponential concentration inequalities. To
be more precise, by lemma 7.3.3 in [6], the collection of constants a, in theorem can be
chosen so that

a3t < b (2r)! 277 /r! and agiﬁ < VTN 2r 1) 277 /r (1.17)

for some b < oo, whose values do not depend on r. Arguing as in [5], the above L,-mean
error bounds we can establish the following non asymptotic Gaussian tail estimates:

2

P(\[nﬁ—nn} ()| > j%%—e) < exp (—222) with b, <b > §(%2,)

p=0

It is worth noting that the above constructions allows us to consider with further work
branching particle models in path spaces. These path space models arise in the analysis of
the historical process associated with a branching models as well as the analysis of a filter-
ing problem of the whole signal path given a series of observations. For a more thorough
discussion on these path space models, we refer the reader to [0l [7]. The last referenced
article also provides a detailed study on the long time behavior of the first moments evolu-
tion of nonlinear spatial branching processes, including time uniform estimates for particle
interpretation models. In this context, the spatial branching rates are homogeneous w.r.t.
the time parameter and the resulting model can be represented by Feynman-Kac particle
absorption model of the same form as the one discussed in section (see for instance [9]).
The limiting normalized measures associated with these particle absorption models are often
referred as quasi-invariant measures or Yaglom’s distributions. The stability properties of



these absorption models, their particle interpretations, and their connections with Feynman-
Kac-Schroedinger semigroups is rather well understood, see for instance [5, [7, 9], as well as
section 12.4 in [6], and references therein.

We end this section with some standard notation used in the paper:

We denote respectively by M(E), P(E), and B(E), the set of all finite positive measures
p on some measurable space (E,E), the convex subset of all probability measures, and
the Banach space of all bounded and measurable functions f equipped with the uniform
norm || f||. We denote by f~ and f* the infimum and the supremum of a function f.
For measurable subsets A € &, in various instances we slightly abuse notation and we
denote u(A) instead of u(14); and we set J, the Dirac measure at a € E. We recall that a
bounded and positive integral operator ) from a measurable space (F1, &) into an auxiliary
measurable space (Fs, &) is an operator f — Q(f) from B(Fs) into B(E;) such that the
functions

z = Q(f)(x) = : Q(z, dy)f(y)
2

are &1-measurable and bounded for some measures Q(z,.) € M(E3). These operators also
generate a dual operator p — pu@ from M(E) into M(E3) defined by (uQ)(f) := n(Q(f)).
A Markov kernel is a positive and bounded integral operator M with M (1) = 1. We denote
by Qpn = Qp+1@p+2 ... Qn, with p < n the semigroup associated with a given sequence of
bounded and positive integral operator @,, from some measurable spaces (E,_1,&,—1) into
(Ep,&p). For p=n, we use the convention @), , = Id, the identity operator.

We associate with a bounded positive potential function G : x € E — G(z) € [0, 00),
the Bayes-Boltzmann-Gibbs transformations

1
n(G)

provided 7(G) > 0. We recall that W (n) can be expressed in terms of a Markov transport
equation

Ve : ne M(E)— VYg(n) € P(E) with Yg(n)(dx) = G(z) n(dr)

1Sy = ¥a(n) (1.18)

for some selection type transition S, (z,dy). For instance, we can take

S ovdy) = o 0ala) + (1= ) Wigo (@) (1.19)

for any € > 0 s.t. G(z) > e. Notice that for e = 0, we have Sy (z,dy) = Y5 (n)(dy). We can
also choose
Sy, dy) := €G(x) dz(dy) + (1 — eG(x)) Va(n)(dy) (1.20)

for any € > 0 that may depend on the current measure 7, and s.t. €¢G(x) < 1. For instance,
we can choose 1/e to be the n-essential maximum of the potential function G. Finally, in
the context of Bernoulli and PHD filtering we set 7i,, 1 = pint1/pn+1(1), for any n > 0, the
normalized spontaneous birth measures.



2 Semigroup description

2.1 The Bernoulli filter semigroup

By construction, we notice that the mass process and the normalized measures are given by
the rather simple recursive formulae

Yn (1)1 (gn) Uy (1) (sn) + (1 =)

)
L= 20(1) + 30 (L (gn) T =3 (0) + 7Dl FH1 Y

(2.1)

and npt1 = an(m)Wg,s, (M) Mnt1 + (1 — on(n))bpgr, with an : v € M(ER) — an(7)
defined by

7n+1(1) = (

_ Y(gnsn)
an(y) =
V(sngn) + (1 = 7(1))pn+1(1)
By construction, if we set v = m x n then
(1—m)
1—m)+(gn

v(gn)
(1 - m) + 7(971)

Dhpa(m,n) = Wy, (1) (sn) + ( ] pint1(1)

and T2 (m,n) =Yg (1) Mpi1,, with the Markov transitions M1~ defined below

Mn—i—l,'y(x; ) = OQp (’7) Mn+1($7 ) + (1 — Qp (’7)) ﬁn-ﬁ-l (2‘2)

Next we provide an alternative interpretation of the mapping FZ 41 Firstly, observe that

Yo (D) = M (2.3)

with the integral operator
Qny1.m(f)(2) = mgn(2)sn(2) Mn 1 (f)(x) + (1 —m) pmi1(f)

This implies that T2 | (m,n) = ¥g (77)]\/4\”4_17”1, with the potential function

~

Gnom = mgnsn + (L —m) pp41(1) (2.4)
and the Markov transitions

(1 —m)pns1(1)
Mgnsn + (1 —m) pni1(1)

— mgns’l’b
M, =

MnJrl(f) +

ﬁn+1(f)

(2.5)
The condition (H1) is clearly not met for the Bernoulli filter when s, = 0 and g, 41(1) =
0, since in this situation ~, = 0 for any n > 1. Nevertheless, this condition is met with
I, C (0,1] and mé4 ,(m) = 1, as long as s, and p,41(1) are uniformly bounded from below.
It is also met for s, = 0, as long as 0 < p,+1(1) < 1 and the likelihood function given in
is uniformly bounded. The condition is also met for yu,+1(1) = 0, as long as ~y(1) > 0,
and the likelihood function given in and the function s,, are uniformly lower bounded.

We prove these assertions using the fact that

Tna1(1) =n(1) Wy, (1) (sn) + (1 = An(1)) pmia(1) (2.6)

10



with the updated mass parameters 7, (1) := nw(’ll)()l}:;’;(fﬁzln( 7 € [0,1]. If we set s, :=

1—
infg, s, and s, = supg,_ s, then we have %(15 Gw[m; ,m;"| for any n > 1, with parameters
m, = pun(1)As,_; and m; = p, (1) Vsl | (< 1). If s, and py41(1) are uniformly bounded
from below then we have m,, > 0. In addition, for the constant mapping s,, = pn+1(1), the
total mass process is constant v,41(1) = m;', | = m; 1 = pps1(1). Furthermore, in this
situation the flow of normalized measures is given by the updating-prediction transforma-

tion defined by 1,41 = \I’g<s> (M) Mé‘?l, with the likelihood function gff) and the Markov

transitions Mr(izl defined by

SngnMn+1(f) + (1 - Sn) En—i—l(f)

(s) . o (s) —
9y = Spgn + (1 —s,) and Mn+1(f)‘ Sngn + (1 — sp)

(2.7)

When pi,41(1) = 0, the flow of normalized measures is again given by a simple updating-
prediction equation

M1 = Vg5, M) Mpt1 and  yup1(1) = Wy, (70)(sn) ¥ gnn(gn)('Yn(l)) (2.8)
with the increasing mappings 6, defined below
z € [0,1] — 0,(x) := ax/[ax + (1 — x)] (2.9)

PO - - g -
In addition, if s;; > 0 then m__; > s, X ey s > 0, as long as g,, := infg, g, >

0, and (1) > 0. We prove this inequality using the fact that the mapping (a,z) €
[0,00[Xx[0, 1] + 04(x) is increasing in both coordinates. In the case where s, = 1, using the
fact that and 6, o 6, = 0,3, we prove that

Tn41(1) = Oy, (g,) (V1)) = 0117 1y (g,) (Y0(1))

Conversely, when 1(1) < 1 and 0 < pp4+1(1) < 1 and s, = 0, for any n > 0, then
we have a constant flow of normalized measures n, = [, with n > 1, and the total mass
process is such that

(1) €010 = Yur1(1) = s (1) X [1 =05 (o) (1(1))] €10, 1]
with the convention [y = ng, for n = 0. In addition, if y,4+1(1) = 1 then we have
Yot 1) (1) = 0117 (b /b2 1) (0(1)) - and Y2041(1) = Oyt sy, 1 s,y (F0(1))
for any n > 0, with the parameters b,, := fi,,(gn). We prove these formuae using the the fact

that 1 — 04(z) = 01/4(1 — z), and 6, 0 0, = 04. This again implies that m, > 0 as long as
70(1) > 0 and the likelihood function are uniformly lower bounded.

2.2 The PHD filter semigroup

By construction, if we set v = m x n then we find that

Lhy1(m,m) = v(gny) + pns1(1) and T2, (m,n) =V, (7) M1,y
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In the above display, M, 1, is the collection of Markov transitions defined below

’Y(gnr/)
Y(gny) + Hnt1(1)

Mn+177(x7 ) = 0n (7) Mn+1($, ) + (1 — Qn (7)) ﬁn-‘rl with Qn (7) =

The interpretation of the updating transformation ¥,, _(n) in terms of a Markov trans-
port equation is non unique. For instance, using this Bolzmann-Gibbs transformation
can be decomposed into two parts. The first one relates to the undetectable targets and the
second is associated with non clutter observations. An alternative description is provided
below. We consider a virtual auxiliary observation point ¢ (corresponding to undetectable
targets) and set Y, = Yy, + d.. We also denote by gy, . (.,y) the function defined below

7on(l - dn) lf y==c
gg('?@/) = dngn(-,yn) i
" @) + g w)) VT

In this notation, the updating transformation W, _(n) can be rewritten in the following
form

o (1) = Uy, (1) with g, = / Ve (dy) g(-1y)

The averaged potential function g, . allows us to measure the likelihood of signal states w.r.t.
the current observation measure )S. Using (1.18), the Bolzmann-Gibbs transformation
g, . (1) can be interpreted as non linear Markov transport equation of the following form

Vg, (n) =nSny and T*(m,n) =nKnp1y with Kpp1y = SnyMag, (2.10)

for some Markov transitions S, , from FE, into itself.

We also notice that condition (H7) holds as long as the functions s, b,, and g, (., y,) are
uniformly bounded and p, (1) > 0. It is also met when p, (1) = 0, as long as r, = (s, + by)
is uniformly lower bounded and Y, # 0 or d,, < 1.

2.3 Lipschitz regularity properties

Firstly, we mention that condition (H3) can be replaced by the following regularity condition:
(HS) : For any n > 1, f € Osci(Ey), and any (m,n),(m',n') € (I, x P(Ey)), the
integral operators Qn my satisfy the following Lipschitz type inequalities:

|@nmn(f) = Qugmry ()| < e(n) Jm —m/| +/ |7 = 7' J@)| ) (f+ dip) (2.11)

for some collection of bounded measures X, () (f, -) on B(Ey) such that

/ OSC(()D> En,(m,r])(fv d@) < d (En>
for some finite constant § (X,) < 0o, whose values do dot depend on the parameters (m,n) €
(In x P(Ey)) and f € Oscy1(Ey).
We prove (H}) = (1.14) using the decompositions
ann,mn - mln/Qn,m’n’ =mn [Qn,mn - Qn,m’n’] + [mﬁ - mlﬁl] Qn,m’n’

12



and of course [mn —m/n'] = [m — m/In+m' [n —n']. To prove (H}) = (1.15)), we let v = mn
and 7' = m/n’ and we use the decomposition

I
YQnA(1)

The Bernoulli filter (1.8) satisfies (H}), as long as the likelihood functions g, given in
(1.9) are uniformly bounded above. In this situation, (2.11]) is met with

(T2 (m,n) — o (m/, )] (f) = [VQny — ¥ Q] (f = T2, 0)(f))

|@nmn(F) = Qumry (N| < e(n) fm = + ¢ (n) |[n — 0] (gn)]

for some finite constant ¢/(n) < oo.

The PHD equation satisfies (Hj), as long as the functions hy(y) + g, with g, , =
dngn(.,y) are uniformly bounded above and below. To prove this claim, we simply use the
fact that

[|m/ —ml+ [ ) [0 = (o)

This estimate is a direct consequence of the following one

10 =3

/

gn,y( ) [7 - ’7] (g;,y)
Y) +7(9ny) hn(y) +7'(g1.)

/g\n,'y ( gn,’y / yn

Next, we provide a pivotal regularity property of the semigroup (I'p,), <p<n associated
with the one step transformations of the flow (1.2). -

Proposition 2.1 We assume that conditions (Hy) and (Hz) are satisfied. Then, for any
0<p<n, feO0sc(E,), and any (m,n),(m',n") € (I, x P(E,)), we have the following
Lipschitz type inequalities:

Chamen) = Tha(n o) < o) lm= |+ [ |l = 1)0)] Shy o ()
} [Fg,n(mv 77) - Pg,n(mlv 77/)] (f)| < cp(n) |m - m/| + / HTI - 77/](90)‘ Eg,n,(m’,n’) (f7 d@)

for some finite constants c,(n) < oo, and some collection of bounded measures !
and Y2 )(f, .) on B(E,) such that

p,n,(m/,n’

/ osc(p) E}D’n’(mm)(dg@) <6(%,,) and / osc(p) E;n’(m’n)(f, dp) <6 (szn) (2.12)

pm,(m/n')

for some finite constant & (E; ) < 00, 1 = 1,2, whose values do dot depend on the parame-
ters (m,n) € (I, x P(Ep) and f € Oscl( n)-

Proof:

To prove this proposition, we use a backward induction on the parameter 1 < p < n. For
p=(n—1), we have T, ; =T}, with i = 1,2, so that the desired result is satisfied for
p = (n—1). We further assume that the estimates hold at a given rank p < n. To prove
the estimates at rank (p — 1), we recall that

Lp1n(m,n) =Tpn (Tp(m,n)) = Vi=1,2 F;;—l,n(m7 n) = F;,n (Lp(m,n))

13



Under the induction hypothesis
Tp1m(mn) =Ty ()| < ep(n) [Ty(myn) —Tp(m/, )]
+ / |[T5m,m) = T30m )] (©)] 31, () (d0)
Using the fact that
Thmn) =Ty < clp) fm =+ [ (0= 1)] =} ()

|[Ta(m,n) = Typ(m, )] (p)| < e(p) [m—m'| +/ |7 = 71 (W)] 52 sy (0 d00)

the end of the proof is now clear. The analysis of Fp 1., follows the same line of arguments
and is omitted. This ends the proof of the proposition. |

2.4 Proof of theorem [1.2]

This section is mainly concerned with the proof of the couple of estimates (|1.16]) stated in
theorem We use the decomposition

(’Yr]y(l)anrjy) - (’Yn(l)?nn) = [FO,n (’V(])V(l)an(j)v) - 1_‘O,n (70(1)7770)]

+Z [Fp:n (’Yév(l)777év) - 11;;771,n (7;1;\11(1),77;,\7_1)}(2.13)

and the fact that

Ip—1p (’7117\11(1)’77;];\11) = (Vév(l)vrp 1,p (Vp 1(1)777117\11))
to show that
’YTJIY(I) - ’771(1) = [I%m, (’Yév(l) N) - Fl%n (70(1)7770)]
Z np) Fl ( (1 ), Fp Lp ('Vp 1(1)777117\[—1))]

Recalling that 7Y (1) = o(1), using proposition we find that

VN (1) - Zcp [ o) s
with the predictable measure E](g n D _ 21 n(mm) associated with the parameters (m,n) =
(Y (1),1}% 1p (Wlﬁl(l),nﬁl)) with 0 < p < n; and forp 0, we set E( D= = ¥0,1,(v0(1),10)"
Comblng the generalized Minkowski’s inequality with (1.6 we have
N (N)
(‘/ W (o d¢’ |7 ) <a, 5(3%,)
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for some constants a, whose values only depend on the time parameter. This implies that
1 n
T\ r
E () =mm]) <ar Y 6(35,)
p=0

The normalized occupation measures can be analyzed in the same way. This ends the proof
of the theorem [[.2 -

3 Functional contraction inequalities

3.1 Stability properties

This section is concerned with the long time behavior of nonlinear measure-valued processes
of the form . The complexity of these models depend in part on the interaction function
between the flow of masses 7, (1) and the flow of probability measures 1, = v,/7,(1). One
natural way to start the analysis of these models is to study the stability properties of the
measure-valued semigroup associated with a fixed flow of masses, and vice versa. These two
mathematical objects are defined below.

Definition 3.1 We associate with a flow of masses m = (mp)p>0 € ano I,, and probability
measures V := (Un)n>0 € [[,,50 P(En) the pair of semigroups

ol =0l o...0®} and @2 = o2 o...00% (3.1)

pnv " n,Up_—1 1,10 p,n,m n,Mn_—1 1,mo

with 0 < p < n, and the one step transformations

@,11’””71 CUE Iy — @}L%A(U) =T} (u,vn_1) € I,
oy 0 NEP(Ep1) = @ (1) =T (mno1,m) € P(Ey)

By construction, using a simple induction on the time parameter n, we find that

(mo,v0) = (Y(1),m0) and VYn>1 m,= <I>1117l,n71(mn_1) and v, = ‘Pi,mn,l(yn—l)

)
Vn >0 (mml/n) = (’Yn(l)?nn)

In the cases that are of particular interest, the semigroups @})’n,y and (I);%,n,m will have a
Feynman-Kac representation. These models are rather well understood. A brief review on
their contraction properties is provided in section [3.2] Further details can be found in the
monograph [6]. The first basic regularity property of these models which are needed is the
following weak Lipschitz type property :

(Lip(®)) For any p < n, u,v’ € I, n,n" € P(E,) and f € Osci(Ey) the following

Lipschitz inequalities

‘q)l,n,u(u) - q);,n,u(u/)‘ < a]l),n ‘u - ul‘ (32)
(@5 () = @5 ()] ()] < a, / 0= 71()| Q3. (f:dp) (3.3)
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for some finite constants a n <00, withi=1,2, and some collection of Markov transitions
Qfmn from Osci(Ey,) mto Oscl( p), with p < n, whose values only depend on the parame-
ters p,n, resp. p,n and 1.

The semigroups <1>11) np and <1>12) n,m may or may bot be asymptotically stable depending
on whether a;,,, tends to 0, as (n —p) — oo. In section we provide a set of easily
checked regularlty conditions under which the semigroups associated with the Bernoulli
models discussed in are asymptotically stable.

The second step in the study of the stability properties of the semigroups associated

with the flow ((1.2)) is the following continuity property:
(Cont(®)) For anyn > 1, u,u’ € I,_1, n,n" € P(E,—1) and any [ € Osc1(Ey)

®L () — @ ()] < 7 / I — 7)(e)] QL (dp) (3.4)

for some finite constants Ti < oo, with i = 1,2, and some collection probability measures
Q}L , on Osci(Ep—1), whose values only depend on the parameters n, resp. n and v'.

"This elementary continuity condition allows us to enter the contraction properties of
the semigroups @} and ®2 in the stability analysis of the flow of measures .

—

IN
no

72 ju— | (3.5)

PN,V p,n,m
The resulting functional contraction inequalities will be described in terms of the following
collection of parameters.

Definition 3.2 When the couple of conditions (Lip(®)) and (Cont(®)) stated above are
satisfied, for any i =1,2 and p < n we set

i i _ 1 2 o 1 =2
Apn = Tp+1 Aptin bpn = § : pg Qg and b, = § : Gpq Qgn (3.6)
p<g<n p<q<n

The main result of this section is the following proposition.

Proposition 3.3 If conditions (Lip(®)) and (Cont(®)) are satisfied, then for any p < n,
u, v’ € I,, n,n € P(Ep) and f € Osci(Ey) we have the following Lipschitz inequalities

Chalo) = ThaCwm| < bl +cf2 [ [0 =10)] Shuuy(do)

To (@) () = Thn(u,m) ()] < ey fu—| +C§ji/ |7 = 1 1(@)| Sy (f,d)

2 .
for some probability measures anu, (dp) and Markov transitions Epnm It with the col-
lection of parameters
1,1 e, 2,2
“pn = p, + Z q,n and Cpin = Z pqaq,
p<g<n p<q<n
n—p
2.1 _ / /
Cp,n - bp,n + E E bp 1 H kaﬂ“k+1
=1 p<ri<..rm<n 1<k<l
22 — + a? b ith th ti =
Cpin = p’ Ap e reresr s Wi e convention Ti4+1 = n.
=1 p<ri<..m<n 1<k<l
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In particular, the collection of parameters 5(2;771)1.:1 b < introduced in and
are such that ¢ (Ezlm) < c},ji and 6 (Eg’n) < 012;}21.

The proof of this proposition is rather technical and it is postponed to section [5.3|in the
appendix. Now we conclude this section with a direct application of the above estimates.
The proof of the theorem stated in the introduction and the uniform estimates discussed
in theorem are a direct consequence of the following lemma.

Lemma 3.4 Suppose that 7 = Sup,,>1 i < oo, and a;’n < ¢ e P for any p < m, and
some finite parameters ¢; < oo and X\; > 0, with i = 1,2, satisfying the following condition

A1 # Ay and  cieo 2 < (1 - e_()‘l/\’\2)) (6_(/\1/\>\2) - e_(’\lv’\2))

Then, for any i,j € {1,2} we have

cih < e M) with A= (Ay AXg) —log [ 1+ cr!r? e >0
e ! 2 @_()\1/\>\2) — e—()qV)\g)

and the parameters ¢ defined below

o 62,1 — C1C27'2/ (e—(Al/\)\z) _ e—(/\l\/)\g))
Al = ¢ (1+02’17'1/(e_/\ —e_)‘l)) ch? = cert/(e7r —e™™M)

22 —

In particular, for any N -approzimation models (2 (1),nY) of the flow (v, (1),n,) satisfying
condition @, the IL,.-mean error estimates presented in are uniform w.r.t. the time
parameter

1 1
supE(‘Vn%N(l)r)T <a, /(1 —e) and supE(‘VT’]’N(f)V)T <a, /(1 —e)
n>0 n>0

with some constants a, < oo whose values only depend on r.

Proof:

Under the premise of the lemma

bpn < €T e~ M(a—(p+1) —r2(n—(a+1) 4pq b < cr? Z e~ M(@—P) g—A2(n—(g+1))
p<g<n p<g<n

with ¢ = ¢1e9 and 7 = 7172. We further assume that A\; > Ao and we set A = A1 — A2l

bpm < cre—2((n=1)—=(p+1)) Z e A=) < prere((=D=H1) /(1 — =4

p<g<n
In the same way, if Ao > A1 we have

by < cre D=4 §7 omA—(HD) < e M=) /(1 A

p<g<n
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This implies that by, < cre”MAM2)((n=1)=(+1) /(1 — ¢=A). Tn much the same way, it can
be shown that
b;)’n =< C7_2€—(>\1/\)\2)((n—1)—p)/(1 _ e—A) (3‘7)

We are now in a position to estimate the parameters c;jn Firstly, we observe that
_ !
n—p 1.2 _2(A1AN2)
cT T e

1—e A
=1 p<ri<..m<n

When A; > Ao, we find that

n— 2)\2 l
2,2 —X2(n—p) cre n—p
Cpn S C2€ (1 — A I
1=0

S

and therefore

22 n—p
22 < ¢y ¢alnp <1 ber £ A) 22 = gy NP
) — e~ )
with
A2
A=Ay —log (1 + CT_)\Qe_)\l> >0 aslongas cr < (1 — e*)"") <e*)‘2 — e*)“) .
e~ —e

When Ay > A1 we have Ay = A1 + A, we find that

n—p l
2,2 A2(n—p) Ax( )E: cre E: A(r1—p)
s —A2(N—p —A1(N—p - r1—DP
Cpn S C2 € + coe <1 P, ) e

=1 p<ri<..m<n

from which it follows that

A 62>\1 n-—p
22 < oy eMP) <1 R — €A>

. .. . 2.2 _ _ .
Using a similar line of argument as above, we have ¢, < c2 e AMn=p) with

eM
)\:)\1 —IOg <1+CT6)\1

— o2

) >0 aslongas cr < (1 — e*)“) (e*/\l — e*/\2>

We conclude that cf,j% <o e*A(”*p), with

e()\1/\)\2)
A=(A1AX) —log |1+ T i) — o= Onvia) >0

as long as c7 < (1 — e_(/\lA)‘Q)) (e_()‘l/\/\Q) - e_()‘l\//\?)). Using (3.7) we also show that

2,1 2.1 _—A(n—p) : 21 _ 2 1
cor < c“te with ¢*" =cr
pn — 67()\1/\/\2) _ 67()\1\/)\2)
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Using these estimates, we find
0217#1 < g e~ M) 421 ] Z e~ Ma=p) g=Ai(n—(g+1))
p<g<n

Since A1 > A we find that

c;:,ll < e M) 2l pt MO TR) () e AY) with AT=A — A >0

This yields

1,1 L1 _—A(n— . 1,1 211 /(.- -
cp:ngc’le’\(" P with = (1—|—C’7‘/(€>\—€/\1))

Finally, we observe that

2 =er! Z e Map) = M(n=(at)) < o7l o= AM(n=1)=p) /(1 _ =2

p<g<n

which implies that ¢y < ¢b2 e A7) with ¢12 := ¢r!/(e=* — e=M). This ends the proof
of the lemma. -

3.2 Feynman-Kac models

We let Q) pn, with 0 < p < n, be the Feynman-Kac semi-group associated with a sequence of
bounded and positive integral operator @, from some measurable spaces (F,,—1,&,—1) into
(En,&n). For any n > 1, we denote by G,_1 and M, the potential function on E,_; and
the Markov transition from F,_1 into F,, defined below
Qn(f)(z)

Gp_1(x) = 1)(xz) and M, r)=—r+—-=
We also denote by ®,,,,, 0 < p < n, the nonlinear semigroup from P(E,) into P(E,) defined
below

Vn € P(Ep), Vf € B(En) Ppn(n)(f) =nQpn(f)/nQpn(1) (3.8)

As usual we use the convention ®,,,, = Id, for p = n. It is important to observe that this
semigroup is alternatively defined by the formulae

(Gpn Pon(f))
W(Gp,n)

The next two parameters

Bpn(n)(f) = with Gpn = Qpa(l) and  Pyu(fa) = Qpal(fn)/Qpa(l)

Gpnl(z
Tpn = Sup 7]3’”( /) and [(Ppn) = sup || Ppn(xp,.) — Pon(Up, )lltv (3.9)
z,2'€Ep Gp,n(x ) Zp,YpEEp

measure respectively the relative oscillations of the potential functions G, ,, and the contrac-
tion properties of the Markov transition P, ,. Various estimates in the forthcoming sections
will be expressed in terms of these parameters. For instance and for further use in several
places in this article, we have the following Lipschitz regularity property.
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Proposition 3.5 ([8]) For any f, € Osci(Ey) we have
[ @pn(Mp) = Ppn(pp)] (fu)l < 2 1pn B(Ppn) H77p — ] ﬁgﬁz(fn)‘ (3.10)

for some function ?gfn(fn) € Osci(Ep) that doesn’t depends on the measure np,.

Our next objective is to estimate the the contraction coefficients ry,,, and B(P, ) in terms
of the mixing type properties of the semigroup

My n(xp, dxy) := Mpi1 Mpio ... My(zp, day,)

associated with the Markov operators M,,. We introduce the following regularity condition.

(MG),, There exists an integer m > 1 and a sequence (ep(M))p>0 € (0,1)N and some
finite constant r, such that for any p > 0 and any (z,2) € Ez we have

My pym(zp, -) = €p(m) Mp,erm(x;o, ) and  Gp(x) < r1p Gu(a') (3.11)

It is well known that the above condition is satisfied for any aperiodic and irreducible
Markov chains on finite spaces, as well as for regular Markov processes on compact spaces,
and for non compact spaces this condition is related to the tails of the transition distributions
on the boundaries of the state space (see for instance [6]). Under condition (M),, we have
foranyn>m>1,and p > 1,

Topbn < €p(m) T H Tp+k (3.12)
0<k<m
[n/m]-1 -
B(Pppn) < ] (1—%7;%) with ™ :=m) [[ rl  (313)
k=0 0<k<m

Notice that these estimates are also valid for any n > 0. Several contraction inequalities
can be deduced from these estimates (see for instance chapter 4 of the book [6]). To give a
flavor of these results, we further assume that (M),, is satisfied with m = 1, and we have
€ = inf,, €,(1) > 0. In this case, we can show that 1, < 1p/€ and B(Pppin) < (1 — €)™

We end this short section with a direct consequence of proposition 3.5

Corollary 3.6 Consider the Bernoulli semigroup presented in section [2.1. For constant
mappings sp = pn+1(1), the first component mapping is constant (p%H*l,l/n (u) = s, and the

second component mapping @%Hmn(n) = \I/g(s> (n)Méil induces a Feynman-Kac semigroup
with the likelihood function g,(f) and the Markov transitions Méjzl defined in . In this

situation, the condition is clearly met with azln,n =0, for anyp < n,. We further assume
that the semigroup of associated with the Markov transitions M, satisfies the mixing property
stated in the l.h.s. of for some integer m > 1 and some parameter €,(m) €]0,1]. In
this situation, the condition s also met with the collection of parameters afm given
below

[(n—p)/m]-1 (ms)
a?),n < 2 pp(m) H (1 - 6p+}€m)
k=0
pp(m) = &'(m) [[ ri(se)re(l) and €™ =ex(mry(s,)/ [ relse)®ra(1)?
p<k<p+m p<k<p+m
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with the collection of parameters ry,(sy) defined by ry(s,) = z"z’:{iigiz"; (< rp(1)).

3.3 Bernoulli models

This section is concerned with the contraction properties of the semigroups <I>]1m,l, and @%mm
associated with the Bernoulli filter discussed in section [2.1] Before proceeding, we provide

a brief discussion on the oscillations of the likelihood functions g, given below

gn(xn) =(1- dn(wn)) + dn (7)) Vn (ln(xm )/ hn)

in terms of some [0, 1]-valued detection probability functions dy,, some local likelihood func-
tions [,, and some positive clutter intensity function h,,. The oscillations of these likelihood
functions strongly depend on the nature of the functions (d,, hn, ).

Assuming that h, > 0 we have

. g
(L —dy™) +dy 2% Vn(l) < gy < gn < (1 —dy™) +dyt e In(1) (3.14)
n n

with the parameters

ot _ 1t -
Ay =dy 1ty ysny T dn Ly, 1)<nn

o _ - +
dy” =dy Loy ysnt T Ly, )<nt

The semigroup contraction inequalities developed in this section will be expressed in terms
of the following parameters

+ ot +
9n S g 1

on(sg) =222 | §,(g9) =" and &,(9) = —Agl
gn Sn gn gn

For time homogeneous models (dy, hy,l,) = (d, h,l), with constant detection probability
dn(z) = d and uniformly bounded number of observations sup, V,(1) < Y1 (1) < oo we
have the following estimates

+
(1-d)<g; <gf <U—d)+d = Y7 (1)

In this situation, we have
d It
Snlg) <14+ — —— DT (1
For small clutter intensity function with A~ > 0 and [~ > 0 we also have the observation

+
free estimates Z—" < %, from which we find that the upper bound

5(g) := sup dn(g) < inf 1+L§y(1) e (3.15)
g = sin o) = 1-d h- I h- ‘
and for d < 1 .
1
5(g) = sup(g) < supd (1 —d) + die Y (1), —— (3.16)
n>0 h 1-d
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To be more precise, if we set inf,, V(1) = Y~ (1) then

= "
1< 2Y(1)" = d(g) < -d)+d 3= V" (1)
In addition, if we have d(1 — d)Y(1) < h™/I" and d < 1 then we find the the observation

free estimates

1
dy(1) I"/h” <1/(1=d) = 8'(9) < (1 =d) + T—
Conversely, we have the observation free estimates
" 1 1

7Fym+§1jy@%£ﬂ—®+d%0#ﬁ)Sl—d

We are now in position to state the main result of this section.

Theorem 3.7 If pp41(1) €]0,1[, 0 < s, < s/ < 1, and the semigroup M, ., satisfies the
condition stated in the l.h.s. of for some integer m > 1 and some positive constant
ep(m), then the condition (Lip(®)) is met with

[n/m|—1
azlm <2 6;15;(9) H (1 — ei) and afm <2 pp(m) H (1 — 619—89771)
p<k<p+n k=0

with some parameters

p— _ + _
%aﬁ{s",wﬂm,l w1 M“m}
pot1(1)" sy T 1—pnpa(1)T 1—sy,
and
pp(m) <ep(m)™ ] Gpru(s9)® and €™ > ep(m)® Sp(s9)™* [[ Oprn(sg)™

0<k<m 0<k<m

In addition condition (Cont(®)) is met with

i
er <o) 65 = s) 4 s~ paaI] - and 72 < 10) sup { Pt
Sn Mn—l—l(l)
The proof of the theorem is postponed to section [5.2] To give a flavour of these estimates
we examine time homogeneous models (dy,, hy, by, Sp, tin) = (d, h,1, s, 1), with constant de-
tection and survival probabilities d,(z) = d, s,(x) = s, and uniformly bounded number
of observations sup,, V,(1) < Y(1) < oo. In this situation, we have (ep(m),q(f)(m)) =
(e(m), ) (m)) and using the estimates ([3.15) we prove the following bounds

w(l)vs
w(l)As

Tor1 <6(g) |s—pu(1)] and 772, <& (9)

as well as

a(l),n < 26_15/(9) (1 — 52>n and ag’n < 26(m)_15(g)3m (1 _ 6(m)25(g)_5m+1) [n/m]
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with some parameter € such that

. s p(l) 1—s 1—p(1)
nt{ oy o Ty T S €S

It is also readily verified that the assumptions of lemma|3.4| are satisfied with the parameters

Th < o(g) [s— p(1) < 09 (u(1) Vv 8)/(n(1) A's))
c1 = 2 1(g) 2 = 2e(m)? (1fe(m)25(g)_5m+1)_15(g)3m

and the Lyapunov constants
1
Al = —10g (1 — 62) and AQ — log (1 _ 6(m)26<g)_5m+1)
m

We notice that € tends to 1 and 7! tends to 0, as |s — u(1)| tends to 0. Thus, there exists
some ¢ > 0 such that

A1 > A2 and 01027172 < (1 — e_)‘Q) <e_/\2 — e_)‘1>

as long as |s — pu(1)| <. We summarize this discussion with the following corollary.

Corollary 3.8 Consider the time homogeneous model discussed above. Under the assump-
tions of theorem for any N -approzimation models (7Y (1),nY) of the Bernoulli model
(v (1), 1) satisfying condition (1.6]), the L,-mean error estimates presented in are
uniform w.r.t. the time parameter

1 1
supE(‘VJ’N(l)r)T <a, ?/(1—e?) and supE(‘Vg’N(f)r)T <ap A?/(1—e?)
n>0 n>0

with the parameters (cV2,c¢*2, \) defined in lemma and some finite constants a, < oo
whose values only depend on r.

Remark 3.9 When pi,41(1) = 0 we have seen in (2.8) that

(I)7ll+l,1/n (u) = Wy, (Vn)(sn) X eun(gn)(u) and (bgl,+1,mn (1) = Yy,s, (M) Mn 1
with the collection of mappings 0,, with a € [0, 00[, defined in (@) Using the fact that

Wy, (Vn)(8n) Vn(gn)
vign)u+ (1 —w)] [v(gn)u + (1 — )]

one proves that is met with ay, ,, < [Tp<ren (s{9) /(1 A gy )?. We also notice that the
second component mapping (1)721+17mn doesn’t depends on the parameter m,,, and it induces a
Feynman-Kac semigroup of the same form as the one studied in section[3.3. Assuming that
the mizing condition stated in the Lh.s. of 1s satisfied some integer m > 1 and some
parameter e,(m) > 0, one can prove that is met with the collection of parameters afm
given below

‘q)71t+171/n (u) - (I)711+1,Vn (’U,/)‘ = [ ’u - u/’

L(n—p)/m|-1
afw <2 pp(m) H (1 — egﬁm> with  pp(m) = egl(m) H dq(59)
k=0 p<q<p+m
and the collection of parameters ez(,m) = ez(,m) = eg(m)/ [Tpcgepim 9a(s9)-
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3.4 PHD Models

2

This section is concerned with the contraction properties of the semigroups <I>p np and @5

associated with the PHD filter discussed in section [[.1.2] and in section 2.2l

The analysis of these nonlinear models is much more involved than the one of the
Bernoulli models. We simplify the analysis and we further assume that the clutter intensity
function, the detectability rate as well as the survival and the spawning rates introduced in
section are time homogeneous and constants functions, and we set

(bn (), hp (), Sp(x), () = (b, hys,7)

To simplify the presentation, we also assume that the state spaces, the Markov transitions
of the targets, the likelihood functions and the spontaneous birth measures are time ho-
mogeneous, that is we have that E, = E, EY = EY, M, = M, g,(z,y) = g(z,y) and
fin+1 = . Without further mention, we suppose that r(1 —d) < 1, u(1) > 0, » > 0, and for
any y € EY we have
0< g (y) = inf g(z,y) < g"(y) :=sup g(a,y) < o0
zeE =

Given a mapping 6 from EY into R, we set Y~ (0) := inf, Y, (0) and Y+ (0) := sup,, Y (6).

We recall from that the PDH filter is defined by the measure-valued equation
Vn+1 = Yn®@n+1,,, With the integral operator

Qn+1,'yn (T, dzni1) = 9n,yn (20) My 1 (2, dopg1) + 'Vn(l)_l pnt1(d2ni1)

and the function g, 5, defined below

9(x,y)
dyn(g(-y))

We also notice that the total mass process and the normalized distribution flow are given
by the following equations

o (0) =1L =) +rd [ Vuld) 5

7n+1(1) = (I)n+1,n,L(7n(1
= (1) /yn dy) W, (1) (M y) + (1)
M1(1) = ‘I’ZH,%(l)( )

o Yn(1) r(1 —d) n,M + /yn(dy) W, (1) (Mns Y) Yoo ) (M) M + p(1) T

with the probability measure i and weight functions w defined below

a(de) = p(dz)/p(l) and  wy(n,y) :=r (1 T h+ dunh(g(-,y))>

For null clutter parameter h = 0, we already observe that the total mass transformation
<I>71Z +1,, doesn’t depend on the flow of probability measures 7, and it is simply given by

@y i1, (1 (1) = Ya(1) 7(1 = d) + 1 V(1) + p(1)
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In this particular situation, we have

T (1) =7(1) = (r(L=d)™ (1) + Y (r(1=d)" ' (r Ve(1) + p(1))
0<k<n
Now, we easily show that the pair of conditions (3.2)) and (3.4)) are satisfied with the param-
eters al, = (r(1 —d))" P and 7! = 0. In more general situations, the total mass process is

p7n
not explicitly known. Some useful estimates are provided by the following lemma.

Lemma 3.10 We assume that the number of observations is uniformly bounded; that is, we
have that YT (1) < oo. In this situation, the total mass process v,(1) and any approzimation
model YN (1) given by the recursion (with the initial condition v} (1) = ~o(1)) take
values in a sequence of compact sets I, C [m™, m™] with

L w(l) _ g . rY (1) + p(1)
mo = —r1—d) (1 +rd )y <h+du(1)g)> and m" :=y(1) + Tori—d)
Proof:

Using the fact that v, (1) > (1) we prove that r (1 - m) < wy, (1) (Mnyy) <1

from which we conclude that

(1) 7(L—d) 47 Vyn(1) + p(1) < @y (0(1)) < (1) 7(1 —d) +7 Ya(1) + p(1)

with the random measures

dp(1) g~ (y)
yh,n dy = Vn dy
() () h+du(1) g~ (y)
For any sequence of probability measures v := (v,)n>0 € P(E)Y, and any starting mass

u € [0, 0o[ one conclude that

rY, (1) + p(1)

ry+
(Ml—wfu+1M1®§¢&Ww)§@@_@yu+iyﬁU+MU

1—7r(1-4d)

This implies that 7, (1),7N (1) € I, C [m~, m™] with

_ Yy (D) 4 (1) (1) - 9_
= 1’1_7«(1_61) T1-r(1-4d) (1+Tdy <h+du(1)g>>

The end of the proof of the lemma is now completed. |

We are now in position to state the main result of this section.

Theorem 3.11 We assume that the number of observations is uniformly bounded; that is,
we have that Y+ (1) < co. In this situation, the condition (Lip(®)) is met with the Lipschitz
constants “;,n < Hp§k<n a}'ﬂ’kﬂ, with i = 1,2, and the sequence of parameters (aﬁl7n+1)
1=1,2, defined below

n>0’

+
CL,}L7n+1 S 7'(1 — d) + 'f'dh yn <ngrn_g_]2)
+

800 [(1- &)+ d 9 (g £)] + 00 (i)

(1= d) m= +dm=Yn (for ) + (D)7

mt

o
IN

an,n—l—l
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In addition, condition (Cont(®)) is met with the sequence of parameters

X
(1= d) + hd Yo (G )
(1= d) m~ +dm~Yn (o= ) + B QO)/r

L < rdhm*t Y 99 2 <
7—n+1—T m n [h+dm—g—]2 7—nJrl—

The proof of theorem is postponed to section

Corollary 3.12 We assume that Y (g7 /g7) vV Y+ (g7 /(g7)?) < oco. Then there exists
some parameters 0 < kg < 1, k1 < 00, and kg > 0 such that for any d > ko, p(l) >
k1, and h < kg, the semigroups ®,, , and ®2 . satisfy the pair of conditions (Lip(®))
and (Cont(®)) with some (al ,, 7})i=1,2p<n, satisfying the assumptions of lemma . In
particular, for any N-approzimation models (v (1),nN) of the PHD equation (v, (1),n,)
satisfying condition @, the uniform LL.-mean error estimates presented in comllary

are satisfied.

Proof:
There is no loss of generality to assume that (1 —d) < 1/2 < d and pu(1) > 1 > h. Recalling
that m~ > pu(1), one readily proves that

mt ), 1 R ) =
i T (U YT S22 0

If we set 6(g) :==pV YT (g—f) VANAS (%), then we find the rather crude estimates

2h 2h + B(M)
/7 < (L= @) 2 8g) and /e < |00 - )+ 2EEED (g
as well as
2h 1 2h
Tt /7 < Ty 00) and iy /< oy [(1 — Ay 5(9)]
from which we find that
Lo 20 [ 2h )
rrt < 21—+ 2 o00)| ot (317)

Thus, there exists some 0 < kg < 1 and some k1 < oo so that for any d > k¢ and any
p(1) > k1 we have

2
Uy <7 [(1 —d)+ M(l)Q] i(g) i=e M <1
ai,nﬂ < r [(1 —d) + 11(31) } 5(g) :=e ™ <1 with 0<Xy <)\

Finally, using (3.17) we find some xo > 0 such that for any h < kg, we have that 7172 <
(1 — e‘AQ) (e_)‘2 — e"\l). The end of the proof is now a direct consequence of lemma
This ends the proof of the corollary. |

26



4 Stochastic particle approximations

4.1 Mean field interacting particle systems
4.1.1 Description of the models

The mean field type interacting particle system associated with the equation ([1.2]) relies on
the fact that the one step mappings F% 41 can be rewritten in the following form

Pzerl(’Vn(l)ﬂ]n) =MnKnt1y, with 7, = Yn(1) X N (4.1)

for some collection of Markov kernels K, 1, indexed by the time parameter n and the set
of measures v € M (E,). We mention that the choice of the Markov transitions K, . is not
unique. In the literature on mean field particle models, K, , are called a choice of McKean
transitions. Some McKean interpretation models of the Bernoulli and the PHD filter models

(1.8]) and (1.10) are discussed in section (see for instance (2.10))) and in section (see
for instance

These models provide a natural interpretation of the distribution laws 7, as the laws
of a non linear Markov chain X,, whose elementary transitions X,, ~ Ynﬂ depends on
the distribution 7, = Law(X,), as well as on the current mass process 7,(1). In contrast
to traditional McKean model, the dependency on the mass process induce a dependency
of all the flow of measures 7,, for 0 < p < n. For a thorough description of these discrete
generation and non linear McKean type models, we refer the reader to [6].

In further developments of the article, we always assume that the mappings

(m, Tn, (mz)lﬁiSN) — Kn+1,m2;}1:1 8 (xny An-i—l) and Gn+1,m2§v:1 5. (1371)

are pointwise known, and of course measurable w.r.t. the corresponding product sigma
fields, for any n > 0, N > 1, A,+1 € Ey41, and any x,, € F,. In this situation, the mean
field particle interpretation of this nonlinear measure-valued model is an E.Y-valued Markov

chain EV(LN) = < ,(LN’Z'))1<'<N, with elementary transitions defined as
<i<

WD) = AW 0 (Gopy) (42)
N

P edn | FM) = T Kperop (€9, da’) (4.3)
=1

with the pair of occupation measures ('y,]LV , nflv ) defined below
N
= DS and de) = 1) i)
]:

In the above displayed formula, F stands for the o-field generated by the random sequence
(51,(,N))0§p§n, and dr = dz! x ... x do¥ stands for an infinitesimal neighborhood of a point

z=(2',...,2N) € EY. The initial system f((]N) consists of IV independent and identically
distributed random variables with common law 79. As usual, to simplify the presentation,
when there is no possible confusion we suppress the parameter IV, so that we write &, and

¢! instead of @SN) and 5,(LN’i).
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4.1.2 Convergence analysis

The rationale behind the mean field particle model described in is that 7}, ; is the em-
pirical measure associated with /N independent variables with distributions K, F1N (ffw d:):),
so as long as 7Y is a good approximation of 7, then 7’ "1 should be a good approximation
of ,+1. Roughly speaking, this induction argument shows that 72 tends to 7,, as the
population size N tends to infinity.

These stochastic particle algorithms can be thought of in various ways: From the physical
view point, they can be seen as microscopic particle interpretations of physical nonlinear
measure-valued equations. From the pure mathematical point of view, they can also be
interpreted as natural stochastic linearizations of nonlinear evolution semigroups. From the
probabilistic point of view, they can be interpreted as a interacting recycling acceptance-
rejection sampling techniques. In this case, they can be seen as a sequential and interacting
importance sampling technique.

By construction, the local fluctuation random fields (W,Y),>o defined in ([1.5) can be
rewritten as follows nY = i 1K \lﬁ W, Using Khintchine’s inequality, we can
check that ((1.6)) is met for any r> 1 and any f, € Oscy(E,), with the collection of universal
constants a, deﬁned as in (1.17) by taking b = 1.

4.2 Interacting particle association systems
4.2.1 Description of the models

We let (A,)n>0 be a sequence of finite sets equipped with some finite positive measures
(Un)n>0. We further assume that the initial distribution 7 and the integral operators
Qn+1,y, in (1.1) have the following form

Yo = /Vo(da) n(()a) and  Qn+t1y, = /z/n+1(da) Qn-‘rl,’}%
(a)

In the above display 1o~ stands for a collection of measures on Ep, indexed by the parameter

a € Ap, and Qn 19 is a collection of integral operators indexed by the parameter a € A, 1.
In this situation, we observe that

Y0(1) =w(1) and no = /Ao(da) s with Ao (da) == vo(da)/vo(1)

We also assume that the following property is met

G =Q, (1) xGY and QW) (£)/Q\) (1) := M (f) (4.4)
(a) (a

for some function G,,” on E,, and some Markov transitions M ) from E, into E, 41 whose
values do not depend on the measures . For clarity of presentatlon, sometimes we write

\Ifgli instead of \IJGS{”‘

Definition 4.1 We consider the collection of probability measures 775?") € P(E,), indexed

by sequences of parameters a, = (ao, . ..,an) € Ay = (Ao X ... X Ay), and defined by the
following equations

plan) = (@%‘l") 0...0 @gal)) (n(()ao)> (4.5)
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with the mappings O P(En-1) — P(E,) indexed by a € A,, and defined by

n n

o (n) =0 (n) M

We illustrate these abstract conditions in the context of the multiple target tracking equation
presented in . In this situation, it is convenient to add a pair of virtual observation
states ¢, ¢’ to E}lf . Using this notation, the above conditions are satisfied with the finite sets
Ap+1 and their counting measures v, defined below

Api1 ={Y, 1 <i < NYYU{e,d}  Ung1 =Vn+0c+ 00 € M(Apy1)

Using (1.10)) and (1.12]), we check that (4.4) is met with the couple of potential functions
and Markov transitions defined by

(rndngn( 7yn)7 Mn+1) for Un ¢ {C7 C/}
(G M) = 8 (ra(1 = dn), Myja)  for yn=c
1aﬁn+1) for Yn = C/

() (Tp,.) = G%ygi(:cn) M(y")(a:n, .) with the potential

In this case, we observe that Q7 it

function GS{T;BL defined below

[P (Yn) + Vn(dngn(-,yn»]il for yn & {c,c'}
G%K‘/BL/G%/”) = 1 for y,=c (4.6)

fn+1(1) /(1) for yn=d

Under our assumptions, using ((1.2), we have the following result.

Proposition 4.2 The solution the equation has the following formn, = [ Ay,(da) 777(1‘1),
with a total mass process yn(1) and the association measures An € P(Ajgy)) defined by the
following recursive equations

Yat1(1) = (1) nn(Gn,vn) and  Ani1 = Qi1 (7a(1), An)

With the mapping
Dy - (maA) € (]O7OO[XP(“4[O,TL])) = QnJrl(ma A) € P(A[O,n-i-l})

defined by the following formula

(a) (b)
s (o, 4) (0, 0) o Ald) (a0 (6 ) (@7)

Proof:
The proof of the above assertion is simply based on the fact that

N1 X /yn+1(db) an@rl% = /An(da) Vn+1(db) nfla)QE”Lbll,’yn

= / An(da) vii1(db) ni® (Gg)%) pad
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This clearly implies that

r, <ma/z4(da) ?772‘1_)1)) = /Qn (m, A) (d(a, b)) nle?

This ends the proof of the proposition. |

By construction, we notice that for any discrete measure A € P(Aj,,—1]), and any
collection of measures 1(® € P(E,_1), with a € Ajo,n—1) we have the formula

I (m / A(da) n“”)) = / Q (m, 4) (d(a,5) o (5®))

4.2.2 Particle approximation models

To get some feasible solution, we further assume that n,(la) (G%Ii)%) are explicitly known for

any sequence of parameters (a,b) € (A[O,n] X An—i—l)- This rather strong condition is satisfied
for the multiple target tracking model discussed above as long as the quantities

ngao,yo,...,yn_l)(Tndngn<',yn)) n£a0yy07..~7yn—l) (rn(1 —dy)) ngao,yo,...,yn—l)(dngn(" Yn))

are explicitly known. This condition is clearly met for linear gaussian target evolution and
observation sensors as long as the survival and detection probabilities s, and d,, are state in-
dependent, and spontaneous birth 1, and spawned targets branching rates b,, are Gaussian
mixtures. In this situation, the collection of measures n,(lao’yo""’y"’l) are gaussian distribu-
tions and the equation coincides with the traditional updating-prediction transitions
of the discrete generation Kalman-Bucy filter.

We let Aév = % Zf\il 5% , be the empirical measure associated with N independent
and identically distributed random variables (a);<;<y with common distribution Ag. By
construction, we have

b
VN

with some local sampling random fields satisfying (1.6). We further assume that ~o(1) is
known and we set 1Y = 0(1) 5.

n = / AY (da) 5§ = o + WY

(1) =2 W 1 (Gonp) and ' i= [ 4¥(da) 0"

with the occupation measure AY = %Ef\; 10 i associated with N conditionally inde-
pendent and identically distributed random variables aj := (af;,af ;) with common law

Q1 (79'(1), AYY). By construction, we also have

1
Wit =T1 (' (1), m0") + —= W7"

ny = /Ql (407 (1), AY) (da) 0" + N0y

b
VN
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with some local sampling random fields satisfying (1.6]). Iterating this procedure, we define
by induction a sequence of N-particle approximation measures

W) =) Gy ) and = [ 4 (da)

with the occupation measure AY = % Zf\il 0,: associated with NV conditionally independent

and identically distributed random variables a! := (aan, a’im, ...,al,) with common law
Qn (v21(1), AY_}). Arguing as above, we find that
a 1
= /Qn (1 (1, A7) (da) i)+ —= Wi = T3 (3l (1)) + —= WY

VN

with some local sampling random fields satisfying ([1.6)).

b
VN

4.2.3 Convergence analysis

The main objective of this section is to show that N-particle occupation measures A
converge in a sense to be given, as N tends to oo, to the association probability measures
A,. To this end we observe that the one step mapping 2,11 introduced in can be
rewritten in the following form

o AQn—i—l,mA(F)

Qo (m, A) (F) = 20—y

with the collection of integral operators Qy11,m4 from Ay, into Ajg 1 defined below

. a) (a®) ®) ._ ~®
OQn11,8(a,d(d',b)) := da(da’) vyps1(db) @) <Qn,B) where G, = Gn,f B(da) nt®

with B = mA. In the above display d(a’,b) = da’ x db stands for an infinitesimal neigh-
borhood of the point (a’,b) € Ajg 1), With a = (ag,...,a;,) € Ap, and b € Ay,1q, and
a=(ag,...,an) € .A[Q,n]. It is important to point out that

B, = ’Yn(l) X A, = Bn+1 = BnQn+1,Bn

Notice that the flow of measures (B)),>0 satisfies the same type of equation as in (1.1)),
with the a total mass evolution of the same form as (1.3)):

Bnt1(1) = Bu(1) Ap (Gnog,) with Gpma i= / Vn+1(db) gfffinA
Notice that
Q1 (F) = Quirr(P)] (@) = [vna(ar) [nfe) (1) ~ k()] Flat)

If we set B =mA and B’ = m/A’ then condition (H}) is met as long as

i (07%) = n (90)

< e(n) |m —m| + / 14— ()] 2, (dy)
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for some collection of bounded measures Eilb,)B, on B(A,) such that [ osc(p) Eibjg, <

1) (E%b)» for some finite constant § (E,(qb)) < 00, whose values do dot depend on the parame-

ters (m, A) € (InxP(Ay)). Under the assumptions 1' we have 97(33 (x) = a,(lb)(B) el (x),
(b)

for some collection of parameters s, (B) satisfying

oy (B) — o) (B')

n

< c(n) Jm — | + / 14— 4)(p)] 50 (dp)

This condition is clearly satisfied for the PHD model discussed in (4.6)), as long as the
functions Ay (yn) + dngn(., yn) are uniformly bounded from above and below.

For instance, for b = y,, & {c, ¢’} we have ol (B) = [hn(b) + [ B(da) n,(f)(dngn(., b)) -
In this case, we can check that

o (B) — al)/(B')

< em)|[B-Be)| with () =) (dugn(-,b))

In the same way, we show that the condition (H7) is also met for the PHD model. This, by
construction of AY we find that

1
AN =, (VN (1), AN )+ — wY
n (771 1( ) n 1) \/N n

with some local sampling random fields satisfying ([1.6)).

4.3 Mixed particle association models

We consider the association mapping
Quyr : (m, A,m) € (]0,00[x Al X P(Ep)0m1) = Qi1 (m, A,m) € P(Ajg )

defined for any (m, A) € (]0,00[x Ay ,)) and any 7 : a € Supp(A4) — n\® € P(E,) by

Qi1 (m, A,m) (d(a,0)) ox A(da) vora(db) 5@ (G0 )

By construction, for any A € P(Ajg,,—1]), and a € Supp(A) — 7@ € P(E,_,), we have

12 (. [ At 1)) = [, (m40) @) o (4

We also mention that the updating-prediction transformation defined in (4.5|)

oW (n) =Wl () M@ =K@ with K@) =8, M© (4.8)

(
n,n n,m n—1,n""n

In the above displayed formula S,(Za% stands for some updating Markov transition from F, 1

n—

into itself satisfying the compatibility condition 7787(;1)1777 = \IJ(C? ) ().
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We let AY = ~ ZZ 1 a , be the empirical measure associated with N independent and

identically distributed random variables (36)1§i§ ~ with common distribution Ag. For any
a € Ay, we let

770. /AO (da) (aN) and nOaN N,Zédg]

with the empirical measure n(()a’Nl) associated with N’ random variables §([Ja] = ( [[)a’j }

(a)

with common law 7. We further assume that (1) is known and set

)13‘31\7'

'yév =(1) r]év and V{V(l) = V(I)V(l) U(J)V(Go,»yé")

It is readily checked that the fluctuation random fields given below
a,N’ a,N’ a
W) = VIV (776 )—né)>

satisfies ([1.6)), with N = N’, for any given a € Aj. Using the fact that

[ A @) af = [ A ) )+ [ A () e

we conclude that név =10+ LN W(fv , with some local sampling random fields Wév satisfying

the same estimates as in li by replacing 1/v/N by the sum (1 /V'N +1/V/N' )
Using (4.8)), for any a; = (ag, a1) we find that

(I)gal) (n(()aO,N’)> _ n(()ao,N/)]C(al)

!
nm(()ao»N )

We let AY = ]{] ZN i be the occupation measure associated with N conditionally inde-
pendent and 1dent1(:ally dlstrlbuted random variables al := (ao 1 al 1) with common law

Ql( (1), Ag 777(() Nl))

In the above displayed formula n(()"N/) stands for the mapping ag € Ay — n(()ao’N/) € P(Ey).

We consider a sequence of conditionally independent random variables &; lao.ard] it
distribution IC( Ea ) ( éa(“]], .), with 1 < j < N/, and we set

N/
a0 7N’ 1 a,N’
ng( 0,a1),N") _ N’z_; (5§£(a0,a1),j] and 7 = /Ajlv(da) 77% :

Arguing as before, for any given a; := (ag, a1) € Supp(AY'), the sequence of random fields

WfalN() — \/N (ng(ao,al),N’) . (I)gal) (n[()ao,N’)>)
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satisfies ([1.6), with N = N’. Thus, we conclude that
1

VN
with some local sampling random fields WlN satisfying the same estimates as in (1.6)) by

replacing 1/v/N by the sum (1 /VN+1/vVN /). Tterating this procedure, we define by
induction a sequence of N-particle approximation measures

n = T @),m)) + wiY

W) =) Gy ) and Y = [ A (da) o)

with the occupation measure AY = % ZZ]L 0,: associated with NV conditionally independent

and identically distributed random variables a! := (aan, ain, cees Oy
0, (’yflvfl(l),Agfl,n(;’]f )>. Arguing as above, we find that

n

) with common law

1
VN
with some local sampling random fields satisfying the same estimates as in ((1.6)) by replacing

1/V'N by the sum (1/\/N +1/v N’). As before, the N-particle occupation measures A
converge as N tends to co to the association probability measures A,,.

Y = [ o (W), A ) at) o) (27) =T (40,0 ) 4 o WY

5 Appendix
5.1 Proof of corollary

For constant mappings s, = pin+1(1), the mappings ®1 +1,, and P2 +1,m,, are given by

Ol (u) =8, and O3, () =V ()M

gt

with the likelihood function gff) and the Markov transitions Mfﬁgl defined in || Firstly,

we observe that 7,(s,) = sup, yep, gT(LS) (z)/ g,(f)(x’ ). We also notice that the second compo-
nent mapping @% +1,m,, does not depends on the parameter m,, and it induces a Feynman-
Kac semigroup of the same form as the one discussed in section [3.2

Under the premise of the proposition, the semigroup of associated with the Markov
transitions M, satisfies the mixing property stated in the L.h.s. of for some integer
m > 1 and some parameter €,(m) €]0, 1]. In this situation, we also have that

with some positive parameter

Sngr—t + (1 - Sn)
Sngn + (1 - Sn)

e](f)(m)Zep(m)/ H ri(se)re(l)  and  rp(sy) =
p<k<p+m

(< (1))
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D)< M(S) (x,.) and

To prove this claim, firstly we observe that M (s) pp+m

pp+m(

[T re(so) b <adl), @, )/dMS) @) < T )
p<k<p+m p<k<p+m

with the semigroup Mlgi)f associated with the Markov transition

Sk

M(S)
(= kg, + (1 — sk)

p,p+1

) =opy1 Mppi(@,.) + (1 — pgr) Bgyy with  apy o=

Using the geometric representation

ME (@, )= J] o | Mpw(z, )+ D> A—a) | [[ | mMin

p<k<n p<k<n k<l<n

it can be verified that

M (@) = ep(m) ME (2 ) 2 eqm) | ] oi/oi | ME)im(as )
p<k<p+m

from which we conclude that

M) (@) = D (m) MO (@) with ¢ (m) > em)/ [ rilsi)ra(1)

p<k<p+m

We end the proof of the proposition combing the proposition with the couple of estimates
presented in (3.12) and (3.13]). This ends the proof of the corollary. [

5.2 Proof of theorem

The formulae presented in (2.6 can be rewritten in terms of matrix operations as follows

Wy, (M) (8n) 1 — Vg, (7n)(sn) ]
1 1)

['7n+1(1) , 1= '7n+1(1)] = [/’}7"(1) 1 _fy\”(l)] [ Mn-‘rl( ) 1-— un_H(

and

Fn(1) , 1 —An(1)] = [Yn(1) , 1=, (1)] {Un(ogn) (”
| 3]

[’Yn(l) , 1 _’Yn(l)] [ nn(ogn) (f

With a slight abuse of notation, we set

o~

~ ~ 1
o= bu1) 1= 3(0)] Tai= Fu1) s 1=3,0] and 1= | ||
We also denote by M, 11, and D, ,, the stochastic and the diagonal matrices defined by

._ Vo, (Mn)(sn) 1 — Wy, (1a)(5n) o Mn(gn) O
Mn—f—l,nn B gﬂn-ﬁ-l(l) 1 _gun—‘rl(l) and Dn,nn T |: 0 1 ] (51)
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In this notation, the above recursion can be rewritten in a more compact form

Q2 1911 Dn,nn 'ﬁn Qn+1,nn

Int = O M d ¥, = Ins1 =
n+1 n n+ln, Al " ﬁnDn,Unl et ﬁngn-‘rlﬂ]nl

with the product of matrices Qy41.4, = DPn .y, Mnt1,,-

[U, 1- U] Qp,n,l/
[u, 1 —u] Qppp(l)

Vu € I,(C [0,1]) (@) 0 (1), 1 =@ (w)] =

p7n71j p7n7V
with the matrix semigroup

Qp,n,z/ = Qp+1,up Qp+2,up+1 ce Qn,v,kl

These semigroups are again of the same form as the Feynman-Kac models discussed in
section with a two point state space. When p,,11(1) €]0,1[ and 0 < s;, < s} < 1, we
have for any n > 0 and any 1,4, j € {1,2}

n+1.u, (1)(2
M”‘H’Vn(ivj)zen Mn+1,un(’i/,j) and sup Q‘H’—"()(Z)

< d,(g
i,i'€{1,2} Qi 1,0, (1)(4) (9)

The first assertion is a direct consequence of the proposition |3.5|with the couple of estimates

presented in (3.12)) and (3.13)).
Using (2.3), we find that P2 +1,m, induces a Feynman-Kac models of the same form as
the one discussed in section More precisely, we have that

(I)gz—s-l,mn (n) = \P@ (n)MnJrl,mn

n,mn,

with the potential functions G, and the Markov transitions M\nJern defined in 1)
and (2.5). Notice that

G
sup A”Jnn (.’B) S 5n(89)
z,x'€by, Gmmn (1'/

and for any = € F,, and any n > 0

—

5n(59>_1 M71_+1,mn (z,.) < Mp11,m, (z,.) < dn(sg) Mn_—l—l,mn (z,.)

with the Markov transitions ]\7; +1.m,, defined as ]\7; +1,m,, Py replacing the functions (sn, gn)
by their lower bounds (s, , g, ). To prove this claim, we use the fact that for any positive
function f we have

dMnJrl,mn (f) _ Mnpgy S, + (1 —mp)pns1(1) % MupGnSnMpi1(f) + (1 — mn)ﬂn+1(1)ﬁn+1(f)

dﬁn_—i-l,mn (f)  Mngnsn + (L= mn)pni1(1) Mngn Sn + (1 —mp)pn+1(1) By (f)

and the two series of inequalities

Mg Sp + (1 — M) ping1(1)
Mpgnsn + (1 —mp)pn+1(1)

Sn(sg)™! < <1

and
mngnSnMnJrl(f) + (1 - mn):UJnJrl(l)ﬁnJrl(f)

Mngn Sn + (1 - mn)ﬂn+1(1)ﬁn+1(f)

1<

< 0n(sg)
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With a slight abuse of notation, we write Mpn, and respectlvely the semigroup

P
associated with the Markov transitions Mn+17mn, and resp. M. nt1m,- Using the same
argument as in the proof of corollary [3.6] it follows that

My () 2 €(m) My (2,

from which we conclude that

My pim(2,.) > &(m) Mypim(a',.) with G(m) > ey(m) [ Spsn(sg)”
0<k<m

using proposition with the couple of estimates presented in (3.12)) and (3.13]), we check
that (3.3)) is satisfied with

[n/m|—1
afw <2 pp(m) H (1 - 67(3+3€m>
k=0
and some parameters
(m) =% H Op+k(59)~ t> Ep(m)Q 51)(59)_4 H Sp+k(89)”
0<k<m 0<k<m
and
pp(m) :=ey(m) H Sp+k(59) < ep(m H Sp-+( sg)°
0<k<m 0<k<m

This ends the proof of the first assertion of the theorem. Next, we discuss condition
(Cont(®)). We observe that

V(gnsn) + (1 — u)ﬂn+1(1)
u v(gn) + (1 —u)

u
(I)n—i—l V( ) =
After some manipulations
(I)7lz+1,u(u) - (I)qlz-i—l,u’(u)

= i) [, (v) — Wy, (V)] (s0)

i et [Ze () () = s (D] v — /] (90)

Recalling that the mapping 0,(z) = ax/(ax + (1 — x)) in increasing on [0, 1] and using the
fact that

_l’_
U, (V) = USp, = Uy (1) — U, (V) = 22 (v —V)Sp,

with the Markov transition

S (da’) = 925 5 (dt) 1 (1 - gfi(x)) Wy, (V') (da)

s



we prove .
Wy, () (50) = g () (50)| < 22 (= 1) Sy (s0)] (5.2)

and for any u € I, = [m,,,m;]

—_ midgt gk () |
N m;tg;t-:(ln—mx) gg (V V)Sn,z/(sn)

Lo 1-my, _
s e s — (D] 1l =] (9a/95)]

n

This implies that

+,t
< mngn -+

n _ST:)

+
+gi(3

1
.
e mib g + (L —md) gn
m.t g, (1-m,)
mi gt + (1 —mt) mugn + (1 —my) lsn = pnea an
+
g _
< g% (s = sp) + llsn — png1 (V][]
n

Using ([2.3) we also find that

mn(sngnMn+1(f)) + (1 - m) :unJrl(f)

2 _
1m(M(f) = mn(spgn) + (1 — m)pny1(1)

It is also readily check that

,U/n+1(1> n(gnsn) [\I/gn&l (n)Mn—H - ﬁn—&-l] (f) (m - ml)

2 &2 _
[Britm () = S (] () = G ) s (D] (omgn) + (L — )i ()

from which we conclude that

+ +
2 Hn+1 Sn9n / Hn+1 Sn

The1 SSUP S ——, < d,(9 sup{ —, }
(. {Sn gn Mn-‘rl(l)} n( ) Sn Mn+1(1)

This ends the proof of the theorem. |

5.3 Proof of proposition |3.3
The proof of proposition [3.3]is based on the following technical lemma.

Lemma 5.1 We assume that the reqularity conditions (Lip(®)) and (Cont(®)) are satisfied.
In this situation, for any p < n, u,u’ € I, n,n’ € P(E,) and f € Osci(Ey) and any flow of
masses and probability measures m = (myp)n>0 € [[,,50In and v := (Vn)n>0 € [[,,50 P(En)
we have the following estimates - -

‘(I)l,n,y’(u,) - (I);l),n,u(u)’ < azll,n ‘u - u,‘ + Z E;,n / qu - V(/]](SOM Qé+l,V& (dSO)

p<g<n
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& e ) = VD] <@ [ |l = 110 By (i) + 3 @, g =

p<g<n

with the collection of parameters @, ,,, i = 1,2, defined in @)

Proof:
We use the decomposition

(le),n,y’( ) q’;nu( ) = Z [(I);,ny(q)lqy’( /)) q)é lnu(q)lq 11/( ,))]

p<q<n

and the fact that

(I)q lny(q)zl)q 11/( /)) = (I);nu(q)q lqy[qﬁl)q 11/( ,)])
(I)é,n V((I)Illqv( /)) = (I)énl/(q); L,q,V [q)z%,qflﬂ/’( /)])
as well as
‘(I);}J,n,u(u/) (I);,n,y(u)‘ < a’;tlv,n ’u - u,‘
and
‘q)l,ny q)pqy’( ))_q);—l,n,u(q)[l),q—l,y’(ul))‘ < ; 1,n / H’/q 1_V ‘ Q (d(p)
to show that
00 (0) = @ 0)] S ab =+ Y b [ e - v 06| 94 (d0)

p<g<n

The proof of the second assertion follows the same line of arguments. This ends the proof
of the lemma. -

Now we come to the proof of proposition [3.3]

Proof of proposition

We fix a parameter p > 0, and we let (mn)n>p, (Mp)n>p € [1,,5, In and (vn)n>p, and
(Un)nzp € [1,5, P(En) be defined by the following recursive formulae

Vg >p my = @;7 (m;_l) and v, = <I>2m 1(V[/1_1)

Vg >p <I>;l,q 1(mq_l) and v, = <I>q Mg 1(Vq 1)
with the initial condition (Vp, v,) = (n,n') and (myp, my) = (u,u'), for ¢ = p.
By construction, we have (v},v,) = (‘qum( "), @2, m(n )) as well as (mf,my) =

1 1 . . )
(CI>p g (W) @y (u )) In this case, using lemma |5.1| it follows that
[T ') = T3 (ma )] ()]

<a, / =)@ QR (frdo) + S @, T4 (o) — T ()|

p<g<n
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and

|Dpn (1) = T ()|

_ —1
< azlw Im — m’| + Z a;,n / ’[Fiq(m',n’) - F?),q(m’ T})](QO)‘ Qp,qﬂrﬂ,n’(d@)

p<g<n

with the probability measure ﬁzl, Q . Combining these two estimates,

— 0l
7f1»m/ﬂ7, - q+1,1—‘%7q(m’,n’)

we arrive at the following inequality

|[T5,(m ) = T3 (m. )] ()]

< a?),n / |[77 - 77/](90)| Qz,n,n’(fu dQO) + Z azl),q ag,n m— m/

p<g<n

_ _ —=1
+ Z a11",q ag,n / HF?D,T (m/a 77/) - F;?J,r(ma 77)] (90)} Qp,r,m/,n’ (dgp)

p<r<g<n

This implies that

‘ [Fin(m’, 77,) - F]%,n(ma 77)] (f)]

< bga,n ’m - m/‘ + azza,n/ H77 - 77/](@)‘ Q;%,n,n’(.ﬂ d‘P)

=1

+ Z le ;T / ’ [Fg,rl (m/’ 77/) - F?),rl (m7 77)] (90) ‘ Qp,rl,m’,n’ (d(p)

p<ri<n

Our next objective is to show that

L5 (') = T3 . (m. )] (£)]

Sa%ﬁm—mﬂ+%m/\M—n%@\%ﬁwﬁdw

=1
+ Z H bT'lﬂ"l+1 / HFz,rl (mlv 77/) - F;%,rl (mv 77)]((/7)‘ Qp,m,m/,n/(d@)

p<r1<re<...<rp<n 1<i<k

with the convention 7,41 = n, for any k < (n— p), some Markov transitions @z,n,m’n’(f’ dep)
and the parameters

k—1
k _ / !
PSS D DEED DR T || e

=1 p<ri<..rm<n 1<k<l

k-1
k 2 2 . .
Bpn = Gpnt g E ap H bry sy > With the convention 7,41 = n.
=1 p<ri<..m<n 1<k<l
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We proceed by induction on the parameter k. Firstly, we observe that the result is satisfied
for k = 1 with (a},,n, ﬂ;’n) (¥ ) and O] = Q2 We further assume that

p,ns p n .’ p,n,n'
the result is satisfied at rank k. In this situation, using the fact that

|3, (m/ ) = T2, (m,n)] ()]

<b;9r1 im — m,|+apr1/ ‘[77_77 ‘ Qpnn(sp’dgol)

=1
+ Z b7“0,7“1 / |[F12) ro( /7 77/) - P}%,ro (m7 77)] (90)‘ Qp,ro,m’,n’(d(p)

p<ro<ri
we conclude that

| [F1277n(m/7 n')— F;%,n(ma 77)} (f)]

<y fm— |+ 055 [ |l —1(0)] O5TL,, (5. d)

2 '/ 2 ol
+ Z bT’OJ’l bT’lJ’z lewn / Hrp ro( ) Pp ro( 77)](90)‘ Qp,ro,m’,n’(d(p)
p<ro<ri<re<..<rp<n
: k+1 k
with abtl = of + > B briry <o brpn
p<ri<re<..<rp<n

k+1 k 2
B no= P n Z p,ry brirs oo b

p<ri<ro<..<rp<n
and the Markov transition
k k k k
gt @pffmn (f.de) = By, Ok, . (f dp)
—1
+ Z a12177"1 b’“lﬂ“2 bm,'ﬂ (Qp,m,m U’Qp r1 7]) (d(P)

P<ri<ro<..<rg<n

We end the proof of the proposition using the fact that

Ty () =Ty (mm)| < lah,+ > cna,| Im—m|
p<g<n
=1
+ Z aq n Cp, q/ Hn — 1] (‘P/)‘ [Qp,qym’,n’gp,q,n/] (d¢")
p<g<n
This proof of the proposition is now completed. |
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5.4 Proof of theorem [3.11]

For any n € P(E) and any u,u’ € I,,, we have

[@h1.(w) = @hyy ()] < \U—U|[ —d)”dhy"(mdf:—g—)]?ﬂ

This implies that condition (3.2)) is satisfied with

_l’_
R A (e )

In the same way, for any 1,7 € P(F) and any u € I,,, we have

(I)7ll+177 (u) = rdhu fy”(dy) [h+dw7(g(-7y))ﬁh+dun’(g(-7y))] (=1 (9(.,))

(I)}L—i-l,n (U) -
This shows with 7 +1 < rdhm* Y, (h-l—gc-l’_m;_g;_P)’ and the probability measures

9" (y ) 9 (y)
Dy (i) /Jin ) h+d 9~ (y)]? g+<Z§L’?—<y> (de)

Now, we come to the analysis of the mappings

B2,1.0(n) o< (1 — dyu M + / Vuldy) wa(n,y) .0y ()M + (1)

I

with the weight functions

__rdun(g(-y) _ h
wu(nvy) "~ h + dun(g(-,y)) =T <1 B h+ dun(g(,y))>

Notice that
- rdm‘g‘(y) + rdm*g* (y)
=" < < =
To have a more synthetic formula, we extend the observation state space with two auxiliary

points cq, co and we set
yycl — yn + 601 + 602

we extend the likelihood and the weight functions by setting g(x,c1) = g(z,c2) = 1, and
r(1 —du <wh(c) :=r(1—dm*

w (1) =

wu(naCQ) = w

r(1—dym™ <wy(n,c1) =
Te2) = w™(e2) = p(1)

In this notation, we find that

B nuln) [ ildy) wal.9) Uy (),
with the collection of Markov transitions M, defined below

Yy & {ca} My=M and M, =7
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Notice that the normalizing constants V¢ (w. (7, .)) satisfy the following lower bounds
Vilwa(n,.)) = Vilw™)=r(1—d) m™+ Y (w”) + u(1)

We analyze the Lipschitz properties of the mappings <I>$L o using the following decom-
position
2 2
510 () = 51 u (1) = Angru(nn’) + ALy u (1)

with the signed measures

Bniralnf) = [ Vi) 5ot () (M = Wy ()0
and
An+1 (1 77) y‘f(wun/yc dy) [wu(n y) — wu(n ?J)} (\Pg(-,y)(”/)My_(1)121+1,u(77l))

Arguing as in the proof of theorem |3.7] W given in the appendix (see for instance ([5.2))), one
checks that

|An+1,u(na T/)(f”

+
vaty (T = am* | =) M) + [ Yuldy) w* () EG | —n')(Sh21(£))
for some collection of Markov transitions Sg/ from E into itself. It is also readily checked
that
hrdm™ 1
n(dy) - 1) (g(.,
(1= Groess [ 9uln) Gz [0 = 1) alo))
This clearly implies that condition (3.3)) is satisfied with
1 wtgt gt — g
a2 + +
U M) |r(1—d)m +yn< >]+hrdm yn())
= Jelw) (ﬁ( ) [ 4= g (h+m~dg~)?

We analyze the continuity properties of the mappings u +— ®2 +1,4(n) using the following
decomposition

|An+1 u\Th 77

O 1) = Py (0)

= Sty S Vildy) [wa(n9) — wu (19)) (Po )My — 024, ()

This implies that

(224000 = 82,10 0] (D] < 35y [0 = )+ hrd D (graigye) | Ju =

This shows that condition (3.5)) is satisfied with

Tas1 < yn(lw_) [r(l —d)+hrd Y, <(h+clg;‘g‘)2ﬂ

This ends the proof of the theorem. (]
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