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MOTIVATIONS

Many complex dynamical multi-agent systems make use of
continuous-time strong Markov processes with an hybrid state space:

I one state component evolves in Rd ,
I the other state component evolves in a discrete set,
I and each component may influence the evolution of the other component.

Our motivation is to estimate the probability that the continuous
component hits a critical set.
We use a splitting technique adapted to the context of switching diffusions:
the sampling per mode algorithm introduced by Krystul in [Krystul, 2006]
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SWITCHING JUMP DIFFUSION

Strong Markov process Z = {(Xt , θt ); t ≥ 0} with value in Rd ×M with a
finite set M = {1, · · · ,M},

the continuous component is described as a d-dimensional SDE

dXt = b (Xt , θt ) dt + σ (Xt , θt ) dBt ,

and the discrete mode as a pure jump process

P (θt+∆t = j |θt = i ,Xt = x) = λij (x)∆t + o(∆t), i 6= j ,

with jump intensities depending on the continuous component.
Zt starts at t = 0 in D0 ×M with known initial probability η0

Let A ⊂ Rd be a closed critical region in which Xt could enter but with a
very small probability.
If TA denotes the hitting time of A, we would like to estimate P(TA ≤ T )
with T a deterministic or a stopping time.
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SPLITTING TECHNIQUE

Identify intermediate sets that are (sequentially) visited much more often
than the rare target set:

Let A = Dn ⊂ · · · ⊂ D1 ⊂ Rd , D0 ∩ D1 = ∅

R
n

M

D0

D2

D1

D1

D2

A

A

With B = A×M and Bk = Dk ×M, we define for k = 1, · · · ,n
Tk = inf{t ≥ 0 : Zt ∈ Bk} = inf{t ≥ 0 : Xt ∈ Dk},

which satisfy 0 = T0 ≤ T1 ≤ · · · ≤ Tn = TB.

Then

P(TA ≤ T ) = P(TB ≤ T ) =
n∏

k=1

P(Tk ≤ T |Tk−1 ≤ T ),

where conditional probabilities are not very small.
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SOME ISSUES

Splitting technique applies since a switching process is a strong Markov
process, but

this approach fails to produce a reasonable estimate, since each
resampling step tends

I to sample more particles from mode with higher probability,
I to discard the particles in the ”light” modes.

Increasing the number of particles should improve the estimate but only at
the cost of increased simulation time,
Idea: keep constant the number of particles in each visited mode at each
resampling step,
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MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

To capture the behaviour of Z between each thresholds, we consider the
random excursions Zk of Z between Tk−1 and Tk ∧ T

Zk = ((Xt , θt ), Tk−1 ≤ t ≤ Tk ∧ T ) ,

and we introduce the selection functions,
gk (Zk ) = 1{ZTk∧T∈Bk}, g j

k (Zk ) = 1{ZTk∧T∈Dk×{j}}, j ∈M,
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MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

Clearly,

1{Tk ≤ T} = gk (Zk ), and 1{Tk ≤ T , θTk = j} = g j
k (Zk ).

We can interpret the rare event probability in terms of the Feynman-Kac
measures defined by

γk (f ) = E [f (Zk )gk−1(Zk−1)] = E
[
f ((Xt , θt ), Tk−1 ≤ t ≤ Tk ∧ T )1{Tk−1≤T}

]
γ̂k (f ) = E [f (Zk )gk (Zk )] = E

[
f ((Xt , θt ), Tk−1 ≤ t ≤ Tk )1{Tk ≤ T}

]
,

and the corresponding normalized measures defined by

ηk (f ) =
γk (f )

γk (1)
= E [f ((Xt , θt ),Tk−1 ≤ t ≤ Tk ∧ T )|Tk−1 ≤ T ]

η̂k (f ) =
γ̂k (f )

γ̂k (1)
= E [f ((Xt , θt ), Tk−1 ≤ t ≤ Tk )|Tk ≤ T ] .
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MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

In particular, for f ≡ 1

γk (1) = P(Tk−1 ≤ T ), γ̂k (1) = P(Tk ≤ T ),

and for f = gk or f = g j
k , it holds

ηk (gk ) = P[Tk ≤ T |Tk−1 ≤ T ], ηk (g j
k ) = P[Tk ≤ T , θTk = j |Tk−1 ≤ T ].

We have the key formulas

γk (f ) = ηk (f )
k−1∏
p=0

ηp(gp) and γ̂k (f ) = η̂k (f )
k∏

p=0

ηp(gp).

Then, we recover

P(Tn ≤ T ) =
n∏

p=0

ηp(gp),
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In order to keep trace of the discrete mode, we construct for any j ∈M

γ j
k (f ) = E
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]
,

η̂j
k (f ) =

γ̂ j
k (f )

γ̂ j
k (1)

= E [f (Zt , Tk−1 ≤ t ≤ Tk )|Tk ≤ T , θTk = j] .

We have the decompositions

η̂k =
∑
j∈M

ωj
k η̂

j
k , ηk+1 =

∑
j∈M

ωj
kη

j
k+1,

where
ωj

k = η̂k (g j
k ) = P(θTk = j |Tk ≤ T ).
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DYNAMICAL EVOLUTION

Using the Markov property of Z (with Markov kernelMk ), we obtain

γk (f ) = γk−1(gk−1Mk f ) and γ j
k = γk−1(g j

k−1Mk f ).

and the nonlinear measure-valued transformations

η̂k (f ) =
ηk (fgk )

ηk (gk )
:= Ψk (ηk )(f ), η̂j

k (f ) =
ηk (fg j

k )

ηk (g j
k )

:= Ψj
k (ηk )(f ).

so, the following two separate selection/mutation transitions

ηk
selection−−−−−→ η̂k := Ψk (ηk )

mutation−−−−−→ ηk+1 = η̂kMk+1.
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PARTICLE METHODS

Particle methods are a kind of stochastic linearisation technique for
solving nonlinear equation in measure space.

Using two sequences of N particles ξ = (ξ1, · · · , ξN) and ξ̂ = (ξ̂1, · · · , ξ̂N),
we approximate the two step transitions

ηk
selection−−−−−→ η̂k := Ψk (ηk )

mutation−−−−−→ ηk+1 = η̂kMk+1,

by

ηN
k :=

1
N

N∑
i=1

δξi
k

selection−−−−−→ η̂N
k :=

1
N

N∑
i=1

δξ̂i
k

mutation−−−−−→ ηk+1 =
1
N

N∑
i=1

δξi
k+1
.
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SAMPLING PER MODE ALGORITHM

The main idea of Sampling per mode algorithm consists in maintaining a
fixed number of particles in each mode, at each resampling step.

So, instead of starting the algorithm with N particles randomly distributed,
we draw in each mode j , a fixed number N j particles and at each
resampling step, the same number of particles is sampled for each visited
mode.
Obviously, the total number of particles can change at each time some
mode is not visited, or empty mode is visited afresh.

Let N̂k and Nk denote the total numbers of particles ξ̂k and ξk , and ωj,N
k

the weights associated with the modes, we have the evolution scheme

(Nk , (ω
j,N
k−1)j∈Jk−1 , ξk )→ (N̂k , (ω

j
k )j∈Jk , ξ̂k )→ (Nk+1, (ω

j,N
k )j∈Jk , ξk+1)

where Jk denotes the set of non empty modes at step k
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INITIALIZATION

In each mode j , we sample N j particles ξκ0 = ξ̂κ0 = (0, (Xκ
0 , j)) ∼ ηj

0.

R
n

M

D0

D2

D1

D1

D2

A

A

Let ωj
0 = P(θ0 = j), then ηN

0 and η̂N
0 are given by

ηN
0 =

∑
j∈M ω

j
0η

j,N
0 , η̂N

0 =
∑

j∈M ω
j
0η̂

j,N
0 ,

with
ηj,N

0 = 1
N j

∑
κ∈J j

0
δξκ0 , η̂j,N

0 = 1
N j

∑
κ∈J j

0
δξ̂κ0

.

Here J j
0 is the set of the indices of the particles in the mode j .
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MUTATION (N̂k , ω
N
k , ξ̂k ) → (Nk+1, ω

N
k , ξk+1)

If N̂k = 0 the particle system dies, otherwise independently of each other,
each particle ξ̂κk evolves randomly according to the Markov transition
Mk+1

R
n

M

D0

D2

D1

D1

D2

A

A

Neither the total number of particles nor the weight of each particle
change (Nk+1 = N̂k ).

So ηN
k+1 =

∑
j∈Jk

ωj,N
k ηj,N

k+1, with ηj,N
k+1 = 1

N j

∑
κ∈J j

k
δξκk+1

, where J j
k is the set

of the labels of the particles in mode j ∈ Jk .
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SELECTION/RESAMPLING (Nk+1, ω
N
k , ξk+1) → (N̂k+1, ω

N
k+1, ξ̂k+1)

Select only the particles ξκk+1 having reached the desired set Bk+1;
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Let IN
k+1 denote the set of (indices of) good particles; if IN

k+1 = ∅ the
algorithm is stopped. Otherwise,
for each non empty mode j , resample N j particles according to
Ψj

k+1(ηN
k+1), and set

η̂N
k+1 =

∑
j∈Jk+1

ωj,N
k+1η̂
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k+1 = 1
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and
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k+1(g j
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ηN
k+1(g j

k+1)

ηN
k+1(gk+1)

.

The total number of particles is N̂k+1 =
∑

j∈Jk+1
N j .
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ASYMPTOTIC BEHAVIOUR

Now, we are addressing the asymptotic behaviour of our estimator as
N →∞.

To obtain a law of large numbers, we followed the [Del Moral 2004]’s
approach based on a martingale decomposition,
and for the central limit theorem, we used a CLT for triangular arrays
developed in [Le Gland & Oudjane, 2006]
Before the statement of the two theorems, we need some notations:

I Ninf = infj∈M N j

I let N → ∞ in such a way that each ρj := N j/N are ”preserved”
I this implies that Ninf → ∞.
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I this implies that Ninf → ∞.
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THEOREM (CENTRAL LIMIT THEOREM)

Let N →∞ in such a way that ρj = N j/N are ”preserved” for all j ∈M. Then,
the random variable

√
N
(

1{Nn+1 > 0}γ
N
n+1(1)− P(Tn < T )

)
converges in law to a Gaussian random variable with mean 0 and variance

Wn+1, where

Wn+1
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=
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[∆n

q ◦ π]2
)

η̂q
2 (∆n
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) − 1

]
,

with
Ωq =

∑
j∈M

(ωj
q−1)2ρ−1

j = 1 + χ2(ωq−1, ρ),

and
∆n

q(t , z) = P(Tn ≤ T |Tq = t ,ZTq = z).
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CONCLUSION

The ”sampling per mode” algorithm has ”good” properties.

However, to gain more time of simulation, we can:

I use importance sampling technique to make rare switches more frequent,
I or aggregate the modes in order to decrease the complexity (for large scale

distributed hybrid systems).

Thus, we need to extend the previous results.
A better comprehension of the expression of Wn+1 could help the choice
of the N j regarding the cost of the algorithm.
This algorithm is implemented in a software developed by National
Aerospace Laboratory (NLR) and used to evaluate the safety
characteristics of an arbitrary (new) operational Air Traffic Management
concept [Blom, 2009].
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