SAMPLING PER MODE SIMULATION FOR SWITCHING DIFFUSIONS

Pascal Lezaud ${ }^{1}$ Jaroslav Krystul ${ }^{2}$ François Le Gland ${ }^{3}$

${ }^{1}$ DSNA/DTI/R\&D and Institut de Mathématiques de Toulouse
${ }^{2}$ Twente University, Enschede
${ }^{3}$ INRIA Rennes, Bretagne-Atlantique

8th International Conference on Rare Event Simulation, RESIM'10, Cambridge, June 21-22, 2010

This work is partially supported by a grant from the European project iFly
(1) Introduction

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYnMAn-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) SAMPLING PER MODE ALGORITHM
- Particle Methods
- Sampling per Mode algorithm
(4) Asymptotic Behaviour
- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) CONCLUSION

PLAN

(1) INTRODUCTION

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) Feynman-Kac Formulation
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) Sampling per Mode algorithm
- Particle Methods
- Sampling per Mode algorithm
(4) Asymptotic BEHAVIOUR
- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(3) CONCLUSION
- Many complex dynamical multi-agent systems make use of continuous-time strong Markov processes with an hybrid state space:
- Many complex dynamical multi-agent systems make use of continuous-time strong Markov processes with an hybrid state space:
- one state component evolves in \mathbb{R}^{d},
- Many complex dynamical multi-agent systems make use of continuous-time strong Markov processes with an hybrid state space:
- one state component evolves in \mathbb{R}^{d},
- the other state component evolves in a discrete set,
- Many complex dynamical multi-agent systems make use of continuous-time strong Markov processes with an hybrid state space:
- one state component evolves in \mathbb{R}^{d},
- the other state component evolves in a discrete set,
- and each component may influence the evolution of the other component.
- Many complex dynamical multi-agent systems make use of continuous-time strong Markov processes with an hybrid state space:
- one state component evolves in \mathbb{R}^{d},
- the other state component evolves in a discrete set,
- and each component may influence the evolution of the other component.
- Our motivation is to estimate the probability that the continuous component hits a critical set.
- Many complex dynamical multi-agent systems make use of continuous-time strong Markov processes with an hybrid state space:
- one state component evolves in \mathbb{R}^{d},
- the other state component evolves in a discrete set,
- and each component may influence the evolution of the other component.
- Our motivation is to estimate the probability that the continuous component hits a critical set.
- We use a splitting technique adapted to the context of switching diffusions: the sampling per mode algorithm introduced by Krystul in [Krystul, 2006]

PLAN
(1) INTRODUCTION

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues

2 FEYNMAN-KAC FORMULATION

- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) Sampling PER Mode ALGORITHM
- Particle Methods
- Sampling per Mode algorithm
(4) Asymptotic BEHAVIOUR
- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) Conclusion

SWITCHING JUMP DIFFUSION

- Strong Markov process $Z=\left\{\left(X_{t}, \theta_{t}\right) ; t \geq 0\right\}$ with value in $\mathbb{R}^{d} \times \mathbb{M}$ with a finite set $\mathbb{M}=\{1, \cdots, M\}$,
- Strong Markov process $Z=\left\{\left(X_{t}, \theta_{t}\right) ; t \geq 0\right\}$ with value in $\mathbb{R}^{d} \times \mathbb{M}$ with a finite set $\mathbb{M}=\{1, \cdots, M\}$,
- the continuous component is described as a d-dimensional SDE

$$
d X_{t}=b\left(X_{t}, \theta_{t}\right) d t+\sigma\left(X_{t}, \theta_{t}\right) d B_{t}
$$

- Strong Markov process $Z=\left\{\left(X_{t}, \theta_{t}\right) ; t \geq 0\right\}$ with value in $\mathbb{R}^{d} \times \mathbb{M}$ with a finite set $\mathbb{M}=\{1, \cdots, M\}$,
- the continuous component is described as a d-dimensional SDE

$$
d X_{t}=b\left(X_{t}, \theta_{t}\right) d t+\sigma\left(X_{t}, \theta_{t}\right) d B_{t}
$$

- and the discrete mode as a pure jump process

$$
\mathbb{P}\left(\theta_{t+\Delta t}=j \mid \theta_{t}=i, X_{t}=x\right)=\lambda_{i j}(x) \Delta t+o(\Delta t), i \neq j,
$$

with jump intensities depending on the continuous component.

- Strong Markov process $Z=\left\{\left(X_{t}, \theta_{t}\right) ; t \geq 0\right\}$ with value in $\mathbb{R}^{d} \times \mathbb{M}$ with a finite set $\mathbb{M}=\{1, \cdots, M\}$,
- the continuous component is described as a d-dimensional SDE

$$
d X_{t}=b\left(X_{t}, \theta_{t}\right) d t+\sigma\left(X_{t}, \theta_{t}\right) d B_{t}
$$

- and the discrete mode as a pure jump process

$$
\mathbb{P}\left(\theta_{t+\Delta t}=j \mid \theta_{t}=i, X_{t}=x\right)=\lambda_{i j}(x) \Delta t+o(\Delta t), i \neq j,
$$

with jump intensities depending on the continuous component.

- Z_{t} starts at $t=0$ in $D_{0} \times \mathbb{M}$ with known initial probability η_{0}
- Strong Markov process $Z=\left\{\left(X_{t}, \theta_{t}\right) ; t \geq 0\right\}$ with value in $\mathbb{R}^{d} \times \mathbb{M}$ with a finite set $\mathbb{M}=\{1, \cdots, M\}$,
- the continuous component is described as a d-dimensional SDE

$$
d X_{t}=b\left(X_{t}, \theta_{t}\right) d t+\sigma\left(X_{t}, \theta_{t}\right) d B_{t}
$$

- and the discrete mode as a pure jump process

$$
\mathbb{P}\left(\theta_{t+\Delta t}=j \mid \theta_{t}=i, X_{t}=x\right)=\lambda_{i j}(x) \Delta t+o(\Delta t), i \neq j,
$$

with jump intensities depending on the continuous component.
■ Z_{t} starts at $t=0$ in $D_{0} \times \mathbb{M}$ with known initial probability η_{0}

- Let $A \subset \mathbb{R}^{d}$ be a closed critical region in which X_{t} could enter but with a very small probability.
- Strong Markov process $Z=\left\{\left(X_{t}, \theta_{t}\right) ; t \geq 0\right\}$ with value in $\mathbb{R}^{d} \times \mathbb{M}$ with a finite set $\mathbb{M}=\{1, \cdots, M\}$,
- the continuous component is described as a d-dimensional SDE

$$
d X_{t}=b\left(X_{t}, \theta_{t}\right) d t+\sigma\left(X_{t}, \theta_{t}\right) d B_{t}
$$

- and the discrete mode as a pure jump process

$$
\mathbb{P}\left(\theta_{t+\Delta t}=j \mid \theta_{t}=i, X_{t}=x\right)=\lambda_{i j}(x) \Delta t+o(\Delta t), i \neq j,
$$

with jump intensities depending on the continuous component.

- Z_{t} starts at $t=0$ in $D_{0} \times \mathbb{M}$ with known initial probability η_{0}

■ Let $A \subset \mathbb{R}^{d}$ be a closed critical region in which X_{t} could enter but with a very small probability.

- If T_{A} denotes the hitting time of A, we would like to estimate $\mathbb{P}\left(T_{A} \leq T\right)$ with T a deterministic or a stopping time.

PLAN

(1) INTRODUCTION

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYnMAN-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) Sampling PER MODE ALGORITHM
- Particle Methods
- Sampling per Mode algorithm
(4) Asymptotic Behaviour
- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) CONCLUSION

Splitting TECHNIQUE

- Identify intermediate sets that are (sequentially) visited much more often than the rare target set:

SPLITTING TECHNIQUE

- Identify intermediate sets that are (sequentially) visited much more often than the rare target set:
■ Let $A=D_{n} \subset \cdots \subset D_{1} \subset \mathbb{R}^{d}, \quad D_{0} \cap D_{1}=\emptyset$

Splitting TECHNIQUE

- Identify intermediate sets that are (sequentially) visited much more often than the rare target set:
- Let $A=D_{n} \subset \cdots \subset D_{1} \subset \mathbb{R}^{d}, \quad D_{0} \cap D_{1}=\emptyset$

■ With $B=A \times \mathbb{M}$ and $B_{k}=D_{k} \times \mathbb{M}$, we define for $k=1, \cdots, n$

$$
T_{k}=\inf \left\{t \geq 0: Z_{t} \in B_{k}\right\}=\inf \left\{t \geq 0: X_{t} \in D_{k}\right\}
$$

which satisfy $0=T_{0} \leq T_{1} \leq \cdots \leq T_{n}=T_{B}$.

SPLITTING TECHNIQUE

- Identify intermediate sets that are (sequentially) visited much more often than the rare target set:
- Let $A=D_{n} \subset \cdots \subset D_{1} \subset \mathbb{R}^{d}, \quad D_{0} \cap D_{1}=\emptyset$

- With $B=A \times \mathbb{M}$ and $B_{k}=D_{k} \times \mathbb{M}$, we define for $k=1, \cdots, n$

$$
T_{k}=\inf \left\{t \geq 0: Z_{t} \in B_{k}\right\}=\inf \left\{t \geq 0: X_{t} \in D_{k}\right\}
$$

which satisfy $0=T_{0} \leq T_{1} \leq \cdots \leq T_{n}=T_{B}$.

- Then

$$
\mathbb{P}\left(T_{A} \leq T\right)=\mathbb{P}\left(T_{B} \leq T\right)=\prod_{k=1}^{n} \mathbb{P}\left(T_{k} \leq T \mid T_{k-1} \leq T\right)
$$

where conditional probabilities are not very small.

PLAN

(1) INTRODUCTION

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYNMAN-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) Sampling PER Mode ALGORITHM
- Particle Methods
- Sampling per Mode algorithm

4. ASYMPTOTIC BEHAVIOUR

- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) CONCLUSION

SOME ISSUES

- Splitting technique applies since a switching process is a strong Markov process, but
- Splitting technique applies since a switching process is a strong Markov process, but
- this approach fails to produce a reasonable estimate, since each resampling step tends
- Splitting technique applies since a switching process is a strong Markov process, but
- this approach fails to produce a reasonable estimate, since each resampling step tends
- to sample more particles from mode with higher probability,
- Splitting technique applies since a switching process is a strong Markov process, but
- this approach fails to produce a reasonable estimate, since each resampling step tends
- to sample more particles from mode with higher probability,
- to discard the particles in the "light" modes.
- Splitting technique applies since a switching process is a strong Markov process, but
- this approach fails to produce a reasonable estimate, since each resampling step tends
- to sample more particles from mode with higher probability,
- to discard the particles in the "light" modes.
- Increasing the number of particles should improve the estimate but only at the cost of increased simulation time,
- Splitting technique applies since a switching process is a strong Markov process, but
- this approach fails to produce a reasonable estimate, since each resampling step tends
- to sample more particles from mode with higher probability,
- to discard the particles in the "light" modes.
- Increasing the number of particles should improve the estimate but only at the cost of increased simulation time,
- Idea: keep constant the number of particles in each visited mode at each resampling step,
- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYNMAN-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) SAMPLING PER MODE ALGORITHM
- Particle Methods
- Sampling per Mode algorithm
(4) ASYMPTOTIC BEHAVIOUR
- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) CONCLUSION

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- To capture the behaviour of Z between each thresholds, we consider the random excursions \mathcal{Z}_{k} of Z between T_{k-1} and $T_{k} \wedge T$

$$
\mathcal{Z}_{k}=\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k} \wedge T\right),
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- To capture the behaviour of Z between each thresholds, we consider the random excursions \mathcal{Z}_{k} of Z between T_{k-1} and $T_{k} \wedge T$

$$
\mathcal{Z}_{k}=\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k} \wedge T\right),
$$

- and we introduce the selection functions,

$$
g_{k}\left(\mathcal{Z}_{k}\right)=1_{\left\{Z_{T_{k} \wedge T} \in B_{k}\right\}}, \quad g_{k}^{j}\left(\mathcal{Z}_{k}\right)=1_{\left\{Z_{T_{k} \wedge T} \in D_{k} \times\{j\}\right\}}, \quad j \in \mathbb{M},
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- To capture the behaviour of Z between each thresholds, we consider the random excursions \mathcal{Z}_{k} of Z between T_{k-1} and $T_{k} \wedge T$

$$
\mathcal{Z}_{k}=\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k} \wedge T\right),
$$

- and we introduce the selection functions,

$$
g_{k}\left(\mathcal{Z}_{k}\right)=1_{\left\{Z_{T_{k} \wedge T} \in B_{k}\right\}}, \quad g_{k}^{j}\left(\mathcal{Z}_{k}\right)=1_{\left\{Z_{T_{k} \wedge T} \in D_{k} \times\{j\}\right\}}, \quad j \in \mathbb{M},
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- To capture the behaviour of Z between each thresholds, we consider the random excursions \mathcal{Z}_{k} of Z between T_{k-1} and $T_{k} \wedge T$

$$
\mathcal{Z}_{k}=\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k} \wedge T\right),
$$

- and we introduce the selection functions,

$$
g_{k}\left(\mathcal{Z}_{k}\right)=1_{\left\{Z_{T_{k} \wedge T} \in B_{k}\right\}}, \quad g_{k}^{j}\left(\mathcal{Z}_{k}\right)=1_{\left\{Z_{T_{k} \wedge T} \in D_{k} \times\{j\}\right\}}, \quad j \in \mathbb{M},
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- Clearly,

$$
1_{\left\{T_{k} \leq T\right\}}=g_{k}\left(\mathcal{Z}_{k}\right), \text { and } 1_{\left\{T_{k} \leq T, \theta_{T_{k}}=j\right\}}=g_{k}^{j}\left(\mathcal{Z}_{k}\right)
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- Clearly,

$$
1_{\left\{T_{k} \leq T\right\}}=g_{k}\left(\mathcal{Z}_{k}\right), \text { and } 1_{\left\{T_{k} \leq T, \theta_{T_{k}}=j\right\}}=g_{k}^{j}\left(\mathcal{Z}_{k}\right)
$$

- We can interpret the rare event probability in terms of the Feynman-Kac measures defined by
$\gamma_{k}(f)=\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k-1}\left(\mathcal{Z}_{k-1}\right)\right]=\mathbb{E}\left[f\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k} \wedge T\right) 1_{\left\{T_{k-1} \leq T\right\}}\right]$
$\widehat{\gamma}_{k}(f)=\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k}\left(\mathcal{Z}_{k}\right)\right]=\mathbb{E}\left[f\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k}\right) 1_{\left\{T_{k} \leq T\right\}}\right]$,

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- Clearly,

$$
1_{\left\{T_{k} \leq T\right\}}=g_{k}\left(\mathcal{Z}_{k}\right), \text { and } 1_{\left\{T_{k} \leq T, \theta_{T_{k}}=j\right\}}=g_{k}^{j}\left(\mathcal{Z}_{k}\right)
$$

- We can interpret the rare event probability in terms of the Feynman-Kac measures defined by
$\gamma_{k}(f)=\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k-1}\left(\mathcal{Z}_{k-1}\right)\right]=\mathbb{E}\left[f\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k} \wedge T\right) 1_{\left\{T_{k-1} \leq T\right\}}\right]$
$\widehat{\gamma}_{k}(f)=\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k}\left(\mathcal{Z}_{k}\right)\right]=\mathbb{E}\left[f\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k}\right) 1_{\left\{T_{k} \leq T\right\}}\right]$,
- and the corresponding normalized measures defined by

$$
\begin{aligned}
& \eta_{k}(f)=\frac{\gamma_{k}(f)}{\gamma_{k}(1)}=\mathbb{E}\left[f\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k} \wedge T\right) \mid T_{k-1} \leq T\right] \\
& \widehat{\eta}_{k}(f)=\frac{\widehat{\gamma}_{k}(f)}{\widehat{\gamma}_{k}(1)}=\mathbb{E}\left[f\left(\left(X_{t}, \theta_{t}\right), T_{k-1} \leq t \leq T_{k}\right) \mid T_{k} \leq T\right]
\end{aligned}
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- In particular, for $f \equiv 1$

$$
\gamma_{k}(1)=\mathbb{P}\left(T_{k-1} \leq T\right), \quad \widehat{\gamma}_{k}(1)=\mathbb{P}\left(T_{k} \leq T\right),
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- In particular, for $f \equiv 1$

$$
\gamma_{k}(1)=\mathbb{P}\left(T_{k-1} \leq T\right), \quad \widehat{\gamma}_{k}(1)=\mathbb{P}\left(T_{k} \leq T\right),
$$

- and for $f=g_{k}$ or $f=g_{k}^{j}$, it holds

$$
\eta_{k}\left(g_{k}\right)=\mathbb{P}\left[T_{k} \leq T \mid T_{k-1} \leq T\right], \quad \eta_{k}\left(g_{k}^{j}\right)=\mathbb{P}\left[T_{k} \leq T, \theta_{T_{k}}=j \mid T_{k-1} \leq T\right] .
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- In particular, for $f \equiv 1$

$$
\gamma_{k}(1)=\mathbb{P}\left(T_{k-1} \leq T\right), \quad \widehat{\gamma}_{k}(1)=\mathbb{P}\left(T_{k} \leq T\right),
$$

- and for $f=g_{k}$ or $f=g_{k}^{j}$, it holds

$$
\eta_{k}\left(g_{k}\right)=\mathbb{P}\left[T_{k} \leq T \mid T_{k-1} \leq T\right], \quad \eta_{k}\left(g_{k}^{j}\right)=\mathbb{P}\left[T_{k} \leq T, \theta_{T_{k}}=j \mid T_{k-1} \leq T\right] .
$$

- We have the key formulas

$$
\gamma_{k}(f)=\eta_{k}(f) \prod_{p=0}^{k-1} \eta_{p}\left(g_{p}\right) \quad \text { and } \quad \widehat{\gamma}_{k}(f)=\widehat{\eta}_{k}(f) \prod_{p=0}^{k} \eta_{p}\left(g_{p}\right)
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

- In particular, for $f \equiv 1$

$$
\gamma_{k}(1)=\mathbb{P}\left(T_{k-1} \leq T\right), \quad \widehat{\gamma}_{k}(1)=\mathbb{P}\left(T_{k} \leq T\right),
$$

- and for $f=g_{k}$ or $f=g_{k}^{j}$, it holds

$$
\eta_{k}\left(g_{k}\right)=\mathbb{P}\left[T_{k} \leq T \mid T_{k-1} \leq T\right], \quad \eta_{k}\left(g_{k}^{j}\right)=\mathbb{P}\left[T_{k} \leq T, \theta_{T_{k}}=j \mid T_{k-1} \leq T\right] .
$$

- We have the key formulas

$$
\gamma_{k}(f)=\eta_{k}(f) \prod_{p=0}^{k-1} \eta_{p}\left(g_{p}\right) \quad \text { and } \quad \widehat{\gamma}_{k}(f)=\widehat{\eta}_{k}(f) \prod_{p=0}^{k} \eta_{p}\left(g_{p}\right)
$$

- Then, we recover

$$
\mathbb{P}\left(T_{n} \leq T\right)=\prod_{p=0}^{n} \eta_{p}\left(g_{p}\right)
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

■ In order to keep trace of the discrete mode, we construct for any $j \in \mathbb{M}$

$$
\begin{aligned}
& \gamma_{k}^{j}(f)=\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k-1}^{j}\left(\mathcal{Z}_{k-1}\right)\right]=\mathbb{E}\left[f\left(Z_{t}, T_{k-1} \leq t \leq T_{k} \wedge T\right) 1_{\left\{T_{k-1} \leq T, \theta_{T_{k-1}}=j\right\}}\right] \\
& \widehat{\gamma}_{k}^{j}(f)=\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k}^{j}\left(\mathcal{Z}_{k}\right)\right]=\mathbb{E}\left[f\left(Z_{t}, T_{k-1} \leq t \leq T_{k}\right) 1_{\left.\left\{T_{k} \leq T, \theta_{T_{k}}=j\right\}\right]}\right.
\end{aligned}
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

■ In order to keep trace of the discrete mode, we construct for any $j \in \mathbb{M}$

$$
\begin{aligned}
\gamma_{k}^{j}(f) & =\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k-1}^{j}\left(\mathcal{Z}_{k-1}\right)\right]=\mathbb{E}\left[f\left(Z_{t}, T_{k-1} \leq t \leq T_{k} \wedge T\right) 1_{\left\{T_{k-1} \leq T, \theta_{T_{k-1}}=j\right\}}\right] \\
\widehat{\gamma}_{k}^{j}(f) & =\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k}^{j}\left(\mathcal{Z}_{k}\right)\right]=\mathbb{E}\left[f\left(Z_{t}, T_{k-1} \leq t \leq T_{k}\right) 1_{\left.\left\{T_{k} \leq T, \theta_{T_{k}}=j\right\}\right]}\right.
\end{aligned}
$$

- and the normalized measures

$$
\begin{aligned}
& \eta_{k}^{j}(f)=\frac{\gamma_{k}^{j}(f)}{\gamma_{k}^{j}(1)}=\mathbb{E}\left[f\left(Z_{t}, \quad T_{k-1} \leq t \leq T_{k} \wedge T\right) \mid T_{k-1} \leq T, \theta_{T_{k-1}}=j\right] \\
& {\underset{\eta}{k}}_{j}^{(}(f)=\frac{\widehat{\gamma}_{k}^{j}(f)}{\widehat{\gamma}_{k}^{j}(1)}=\mathbb{E}\left[f\left(Z_{t}, \quad T_{k-1} \leq t \leq T_{k}\right) \mid T_{k} \leq T, \theta_{T_{k}}=j\right] .
\end{aligned}
$$

MULTILEVEL FEYNMAN-KAC DISTRIBUTIONS

■ In order to keep trace of the discrete mode, we construct for any $j \in \mathbb{M}$

$$
\begin{aligned}
& \gamma_{k}^{j}(f)=\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k-1}^{j}\left(\mathcal{Z}_{k-1}\right)\right]=\mathbb{E}\left[f\left(Z_{t}, T_{k-1} \leq t \leq T_{k} \wedge T\right) 1_{\left\{T_{k-1} \leq T, \theta_{T_{k-1}}=j\right\}}\right] \\
& \widehat{\gamma}_{k}^{j}(f)=\mathbb{E}\left[f\left(\mathcal{Z}_{k}\right) g_{k}^{j}\left(\mathcal{Z}_{k}\right)\right]=\mathbb{E}\left[f\left(Z_{t}, T_{k-1} \leq t \leq T_{k}\right) 1_{\left.\left\{T_{k} \leq T, \theta_{T_{k}}=j\right\}\right]}\right.
\end{aligned}
$$

- and the normalized measures

$$
\begin{aligned}
& \eta_{k}^{j}(f)=\frac{\gamma_{k}^{j}(f)}{\gamma_{k}^{j}(1)}=\mathbb{E}\left[f\left(Z_{t}, \quad T_{k-1} \leq t \leq T_{k} \wedge T\right) \mid T_{k-1} \leq T, \theta_{T_{k-1}}=j\right] \\
& {\underset{\eta}{k}}_{j}^{(}(f)=\frac{\widehat{\gamma}_{k}^{j}(f)}{\widehat{\gamma}_{k}^{j}(1)}=\mathbb{E}\left[f\left(Z_{t}, \quad T_{k-1} \leq t \leq T_{k}\right) \mid T_{k} \leq T, \theta_{T_{k}}=j\right] .
\end{aligned}
$$

- We have the decompositions

$$
\widehat{\eta}_{k}=\sum_{j \in \mathbb{M}} \omega_{k}^{j} \widehat{\eta}_{k}^{\prime}, \quad \eta_{k+1}=\sum_{j \in \mathbb{M}} \omega_{k}^{j} \eta_{k+1}^{j},
$$

where

$$
\omega_{k}^{j}=\widehat{\eta}_{k}\left(g_{k}^{j}\right)=\mathbb{P}\left(\theta_{T_{k}}=j \mid T_{k} \leq T\right)
$$

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYNMAN-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) Sampling PER Mode ALGORITHM
- Particle Methods
- Sampling per Mode algorithm
(4) ASYMPTOTIC BEHAVIOUR
- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) CONCLUSION

■ Using the Markov property of \mathcal{Z} (with Markov kernel \mathcal{M}_{k}), we obtain

$$
\gamma_{k}(f)=\gamma_{k-1}\left(g_{k-1} \mathcal{M}_{k} f\right) \text { and } \gamma_{k}^{j}=\gamma_{k-1}\left(g_{k-1}^{j} \mathcal{M}_{k} f\right)
$$

■ Using the Markov property of \mathcal{Z} (with Markov kernel \mathcal{M}_{k}), we obtain

$$
\gamma_{k}(f)=\gamma_{k-1}\left(g_{k-1} \mathcal{M}_{k} f\right) \text { and } \gamma_{k}^{j}=\gamma_{k-1}\left(g_{k-1}^{j} \mathcal{M}_{k} f\right)
$$

- and the nonlinear measure-valued transformations

$$
\widehat{\eta}_{k}(f)=\frac{\eta_{k}\left(f g_{k}\right)}{\eta_{k}\left(g_{k}\right)}:=\psi_{k}\left(\eta_{k}\right)(f), \quad \widehat{\eta}_{k}^{j}(f)=\frac{\eta_{k}\left(f g_{k}^{j}\right)}{\eta_{k}\left(g_{k}^{j}\right)}:=\psi_{k}^{j}\left(\eta_{k}\right)(f)
$$

- Using the Markov property of \mathcal{Z} (with Markov kernel \mathcal{M}_{k}), we obtain

$$
\gamma_{k}(f)=\gamma_{k-1}\left(g_{k-1} \mathcal{M}_{k} f\right) \text { and } \gamma_{k}^{j}=\gamma_{k-1}\left(g_{k-1}^{j} \mathcal{M}_{k} f\right)
$$

- and the nonlinear measure-valued transformations

$$
\widehat{\eta}_{k}(f)=\frac{\eta_{k}\left(f g_{k}\right)}{\eta_{k}\left(g_{k}\right)}:=\Psi_{k}\left(\eta_{k}\right)(f), \quad \widehat{\eta}_{k}^{j}(f)=\frac{\eta_{k}\left(f g_{k}^{j}\right)}{\eta_{k}\left(g_{k}^{j}\right)}:=\psi_{k}^{j}\left(\eta_{k}\right)(f)
$$

- so, the following two separate selection/mutation transitions

$$
\eta_{k} \xrightarrow{\text { selection }} \widehat{\eta}_{k}:=\Psi_{k}\left(\eta_{k}\right) \xrightarrow{\text { mutation }} \eta_{k+1}=\widehat{\eta}_{k} \mathcal{M}_{k+1} .
$$

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYNMAN-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) SAMPLING PER Mode ALGORITHM
- Particle Methods
- Sampling per Mode algorithm
(4) ASYMPTOTIC BEHAVIOUR
- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) CONCLUSION
- Particle methods are a kind of stochastic linearisation technique for solving nonlinear equation in measure space.
- Particle methods are a kind of stochastic linearisation technique for solving nonlinear equation in measure space.
■ Using two sequences of N particles $\xi=\left(\xi^{1}, \cdots, \xi^{N}\right)$ and $\widehat{\xi}=\left(\widehat{\xi}^{1}, \cdots, \widehat{\xi}^{N}\right)$, we approximate the two step transitions
- Particle methods are a kind of stochastic linearisation technique for solving nonlinear equation in measure space.
■ Using two sequences of N particles $\xi=\left(\xi^{1}, \cdots, \xi^{N}\right)$ and $\widehat{\xi}=\left(\widehat{\xi}^{1}, \cdots, \widehat{\xi}^{N}\right)$, we approximate the two step transitions
- Particle methods are a kind of stochastic linearisation technique for solving nonlinear equation in measure space.
■ Using two sequences of N particles $\xi=\left(\xi^{1}, \cdots, \xi^{N}\right)$ and $\widehat{\xi}=\left(\widehat{\xi}^{1}, \cdots, \widehat{\xi}^{N}\right)$, we approximate the two step transitions

$$
\eta_{k} \xrightarrow{\text { selection }} \widehat{\eta}_{k}:=\Psi_{k}\left(\eta_{k}\right) \xrightarrow{\text { mutation }} \eta_{k+1}=\widehat{\eta}_{k} \mathcal{M}_{k+1},
$$

- Particle methods are a kind of stochastic linearisation technique for solving nonlinear equation in measure space.
■ Using two sequences of N particles $\xi=\left(\xi^{1}, \cdots, \xi^{N}\right)$ and $\widehat{\xi}=\left(\widehat{\xi}^{1}, \ldots, \widehat{\xi}^{N}\right)$, we approximate the two step transitions

$$
\eta_{k} \xrightarrow{\text { selection }} \widehat{\eta}_{k}:=\Psi_{k}\left(\eta_{k}\right) \xrightarrow{\text { mutation }} \eta_{k+1}=\widehat{\eta}_{k} \mathcal{M}_{k+1},
$$

by

$$
\eta_{k}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{k}^{i}} \xrightarrow{\text { selection }} \widehat{\eta}_{k}^{N}:=\frac{1}{N} \sum_{i=1}^{N} \delta_{\widehat{\xi}_{k}^{i}} \xrightarrow{\text { mutation }} \eta_{k+1}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{k+1}^{i}}
$$

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYNMAN-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) SAMPLING PER MODE ALGORITHM
- Particle Methods
- Sampling per Mode algorithm
(4) Asymptotic BEHAVIOUR
- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) Conclusion
- The main idea of Sampling per mode algorithm consists in maintaining a fixed number of particles in each mode, at each resampling step.
- The main idea of Sampling per mode algorithm consists in maintaining a fixed number of particles in each mode, at each resampling step.
- So, instead of starting the algorithm with N particles randomly distributed, we draw in each mode j, a fixed number N^{j} particles and at each resampling step, the same number of particles is sampled for each visited mode.
- The main idea of Sampling per mode algorithm consists in maintaining a fixed number of particles in each mode, at each resampling step.
- So, instead of starting the algorithm with N particles randomly distributed, we draw in each mode j, a fixed number N^{j} particles and at each resampling step, the same number of particles is sampled for each visited mode.
■ Obviously, the total number of particles can change at each time some mode is not visited, or empty mode is visited afresh.
- The main idea of Sampling per mode algorithm consists in maintaining a fixed number of particles in each mode, at each resampling step.
- So, instead of starting the algorithm with N particles randomly distributed, we draw in each mode j, a fixed number N^{j} particles and at each resampling step, the same number of particles is sampled for each visited mode.
■ Obviously, the total number of particles can change at each time some mode is not visited, or empty mode is visited afresh.
- Let \widehat{N}_{k} and N_{k} denote the total numbers of particles $\widehat{\xi}_{k}$ and ξ_{k}, and $\omega_{k}^{j, N}$ the weights associated with the modes, we have the evolution scheme

$$
\left(N_{k},\left(\omega_{k-1}^{j, N}\right)_{j \in J_{k-1}}, \xi_{k}\right) \rightarrow\left(\widehat{N}_{k},\left(\omega_{k}^{j}\right)_{j \in J_{k}}, \widehat{\xi}_{k}\right) \rightarrow\left(N_{k+1},\left(\omega_{k}^{j, N}\right)_{j \in J_{k}}, \xi_{k+1}\right)
$$

where J_{k} denotes the set of non empty modes at step k

INITIALIZATION

- In each mode j, we sample N^{j} particles $\xi_{0}^{\kappa}=\widehat{\xi}_{0}^{\kappa}=\left(0,\left(X_{0}^{\kappa}, j\right)\right) \sim \eta_{0}^{j}$.

INITIALIZATION

- In each mode j, we sample N^{j} particles $\xi_{0}^{\kappa}=\widehat{\xi}_{0}^{\kappa}=\left(0,\left(X_{0}^{\kappa}, j\right)\right) \sim \eta_{0}^{j}$.

- Let $\omega_{0}^{j}=\mathbb{P}\left(\theta_{0}=j\right)$, then η_{0}^{N} and $\widehat{\eta}_{0}^{N}$ are given by

$$
\eta_{0}^{N}=\sum_{j \in \mathbb{M}} \omega_{0}^{j} \eta_{0}^{j, N}, \quad \widehat{\eta}_{0}^{N}=\sum_{j \in \mathbb{M}} \omega_{0}^{j} \overbrace{0}^{, N},
$$

with

$$
\eta_{0}^{j, N}=\frac{1}{N^{j}} \sum_{\kappa \in J_{0}^{j}} \delta_{\xi_{0}^{\kappa}}, \quad \widehat{\eta}_{0}^{j, N}=\frac{1}{N^{j}} \sum_{\kappa \in J_{0}^{j}} \delta_{\widehat{\xi}_{0}^{\kappa}} .
$$

INITIALIZATION

- In each mode j, we sample N^{j} particles $\xi_{0}^{\kappa}=\widehat{\xi}_{0}^{\kappa}=\left(0,\left(X_{0}^{\kappa}, j\right)\right) \sim \eta_{0}^{j}$.

- Let $\omega_{0}^{j}=\mathbb{P}\left(\theta_{0}=j\right)$, then η_{0}^{N} and $\widehat{\eta}_{0}^{N}$ are given by

$$
\eta_{0}^{N}=\sum_{j \in \mathbb{M}} \omega_{0}^{j} \eta_{0}^{j, N}, \quad \widehat{\eta}_{0}^{N}=\sum_{j \in \mathbb{M}} \omega_{0}^{j} \overbrace{0}^{, N},
$$

with

$$
\eta_{0}^{j, N}=\frac{1}{N^{j}} \sum_{\kappa \in J_{0}^{j}} \delta_{\xi_{0}^{\kappa}}, \quad \quad_{0}^{i, N}=\frac{1}{N^{\prime}} \sum_{\kappa \in J_{0}^{j}} \delta_{\hat{\xi}_{0}^{\kappa}} .
$$

- Here J_{0}^{j} is the set of the indices of the particles in the mode j.
- If $\widehat{N}_{k}=0$ the particle system dies, otherwise independently of each other, each particle $\widehat{\xi}_{k}^{\kappa}$ evolves randomly according to the Markov transition \mathcal{M}_{k+1}

- If $\widehat{N}_{k}=0$ the particle system dies, otherwise independently of each other, each particle $\widehat{\xi}_{k}^{\kappa}$ evolves randomly according to the Markov transition \mathcal{M}_{k+1}

- Neither the total number of particles nor the weight of each particle change ($N_{k+1}=\widehat{N}_{k}$).

MUTATION $\left(\widehat{N}_{k}, \omega_{k}^{N}, \widehat{\xi}_{k}\right) \rightarrow\left(N_{k+1}, \omega_{k}^{N}, \xi_{k+1}\right)$

- If $\widehat{N}_{k}=0$ the particle system dies, otherwise independently of each other, each particle $\widehat{\xi}_{k}^{\kappa}$ evolves randomly according to the Markov transition \mathcal{M}_{k+1}

- Neither the total number of particles nor the weight of each particle change ($N_{k+1}=\widehat{N}_{k}$).
- So $\eta_{k+1}^{N}=\sum_{j \in J_{k}} \omega_{k}^{j, N} \eta_{k+1}^{j, N}$, with $\eta_{k+1}^{j, N}=\frac{1}{N^{j}} \sum_{\kappa \in J_{k}^{j}} \delta_{\xi_{k+1}^{k}}$, where J_{k}^{j} is the set of the labels of the particles in mode $j \in J_{k}$.

SELECTION/RESAMPLING $\left(N_{k+1}, \omega_{k}^{N}, \xi_{k+1}\right) \rightarrow\left(\widehat{N}_{k+1}, \omega_{k+1}^{N}, \widehat{\xi}_{k+1}\right)$

■ Select only the particles ξ_{k+1}^{κ} having reached the desired set B_{k+1};

SELECTION/RESAMPLING $\left(N_{k+1}, \omega_{k}^{N}, \xi_{k+1}\right) \rightarrow\left(\widehat{N}_{k+1}, \omega_{k+1}^{N}, \widehat{\xi}_{k+1}\right)$

■ Select only the particles ξ_{k+1}^{κ} having reached the desired set B_{k+1};

- Let l_{k+1}^{N} denote the set of (indices of) good particles; if $l_{k+1}^{N}=\emptyset$ the algorithm is stopped. Otherwise,

■ Select only the particles ξ_{k+1}^{κ} having reached the desired set B_{k+1};

- Let l_{k+1}^{N} denote the set of (indices of) good particles; if $l_{k+1}^{N}=\emptyset$ the algorithm is stopped. Otherwise,
■ for each non empty mode j, resample N^{j} particles according to $\Psi_{k+1}^{j}\left(\eta_{k+1}^{N}\right)$, and set

SELECTION/RESAMPLING $\left(N_{k+1}, \omega_{k}^{N}, \xi_{k+1}\right) \rightarrow\left(\widehat{N}_{k+1}, \omega_{k+1}^{N}, \widehat{\xi}_{k+1}\right)$

■ Select only the particles ξ_{k+1}^{κ} having reached the desired set B_{k+1};

- Let l_{k+1}^{N} denote the set of (indices of) good particles; if $l_{k+1}^{N}=\emptyset$ the algorithm is stopped. Otherwise,
- for each non empty mode j, resample N^{j} particles according to $\psi_{k+1}^{j}\left(\eta_{k+1}^{N}\right)$, and set
- $\widehat{\eta}_{k+1}^{N}=\sum_{j \in J_{k+1}} \omega_{k+1}^{j, N} \hat{\eta}_{k+1}^{j, N}$, with $\widehat{\eta}_{k+1}^{j, N}=\frac{1}{N^{\prime}} \sum_{\kappa \in \widehat{J}_{k+1}^{j}} \delta_{\widehat{\xi}_{k+1}^{k}}$ and

$$
\omega_{k+1}^{j, N}=\widehat{\eta}_{k+1}^{N}\left(g_{k+1}^{j}\right)=\frac{\eta_{k+1}^{N}\left(g_{k+1}^{j}\right)}{\eta_{k+1}^{N}\left(g_{k+1}\right)} .
$$

SELECTION/RESAMPLING $\left(N_{k+1}, \omega_{k}^{N}, \xi_{k+1}\right) \rightarrow\left(\widehat{N}_{k+1}, \omega_{k+1}^{N}, \widehat{\xi}_{k+1}\right)$

- Select only the particles ξ_{k+1}^{κ} having reached the desired set B_{k+1};

- Let l_{k+1}^{N} denote the set of (indices of) good particles; if $l_{k+1}^{N}=\emptyset$ the algorithm is stopped. Otherwise,
- for each non empty mode j, resample N^{j} particles according to $\psi_{k+1}^{j}\left(\eta_{k+1}^{N}\right)$, and set
- $\widehat{\eta}_{k+1}^{N}=\sum_{j \in J_{k+1}} \omega_{k+1}^{j, N} \hat{\eta}_{k+1}^{j, N}$, with $\widehat{\eta}_{k+1}^{j, N}=\frac{1}{N^{\prime}} \sum_{\kappa \in \widehat{J}_{k+1}^{j}} \delta_{\widehat{\xi}_{k+1}^{k}}$ and

$$
\omega_{k+1}^{j, N}=\widehat{\eta}_{k+1}^{N}\left(g_{k+1}^{j}\right)=\frac{\eta_{k+1}^{N}\left(g_{k+1}^{j}\right)}{\eta_{k+1}^{N}\left(g_{k+1}\right)} .
$$

- The total number of particles is $\widehat{N}_{k+1}=\sum_{j \in J_{k+1}} N^{j}$.

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYNMAN-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) SAMPLING PER MODE ALGORITHM
- Particle Methods
- Sampling per Mode algorithm

4 AsYmptotic Behaviour

- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) CONCLUSION

ASYMPTOTIC BEHAVIOUR

- Now, we are addressing the asymptotic behaviour of our estimator as $N \rightarrow \infty$.

ASYMPTOTIC BEHAVIOUR

- Now, we are addressing the asymptotic behaviour of our estimator as $N \rightarrow \infty$.
- To obtain a law of large numbers, we followed the [Del Moral 2004]'s approach based on a martingale decomposition,

ASYMPTOTIC BEHAVIOUR

■ Now, we are addressing the asymptotic behaviour of our estimator as $N \rightarrow \infty$.
■ To obtain a law of large numbers, we followed the [Del Moral 2004]'s approach based on a martingale decomposition,

- and for the central limit theorem, we used a CLT for triangular arrays developed in [Le Gland \& Oudjane, 2006]

ASYMPTOTIC BEHAVIOUR

■ Now, we are addressing the asymptotic behaviour of our estimator as $N \rightarrow \infty$.
■ To obtain a law of large numbers, we followed the [Del Moral 2004]'s approach based on a martingale decomposition,

- and for the central limit theorem, we used a CLT for triangular arrays developed in [Le Gland \& Oudjane, 2006]
- Before the statement of the two theorems, we need some notations:

ASYMPTOTIC BEHAVIOUR

■ Now, we are addressing the asymptotic behaviour of our estimator as $N \rightarrow \infty$.
■ To obtain a law of large numbers, we followed the [Del Moral 2004]'s approach based on a martingale decomposition,

- and for the central limit theorem, we used a CLT for triangular arrays developed in [Le Gland \& Oudjane, 2006]
- Before the statement of the two theorems, we need some notations:
- $N_{\text {inf }}=\inf _{j \in \mathbb{M}} N^{j}$

ASYMPTOTIC BEHAVIOUR

■ Now, we are addressing the asymptotic behaviour of our estimator as $N \rightarrow \infty$.
■ To obtain a law of large numbers, we followed the [Del Moral 2004]'s approach based on a martingale decomposition,

- and for the central limit theorem, we used a CLT for triangular arrays developed in [Le Gland \& Oudjane, 2006]
- Before the statement of the two theorems, we need some notations:
- $N_{\text {inf }}=\inf _{j \in \mathbb{M}} N^{j}$
- let $N \rightarrow \infty$ in such a way that each $\rho_{j}:=N^{j} / N$ are "preserved"

ASYMPTOTIC BEHAVIOUR

■ Now, we are addressing the asymptotic behaviour of our estimator as $N \rightarrow \infty$.

- To obtain a law of large numbers, we followed the [Del Moral 2004]'s approach based on a martingale decomposition,
- and for the central limit theorem, we used a CLT for triangular arrays developed in [Le Gland \& Oudjane, 2006]
- Before the statement of the two theorems, we need some notations:
- $N_{\text {inf }}=\inf _{j \in \mathbb{M}} N^{j}$
- let $N \rightarrow \infty$ in such a way that each $\rho_{j}:=N^{j} / N$ are "preserved"
- this implies that $N_{\text {inf }} \rightarrow \infty$.
- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYNMAN-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) Sampling PER Mode ALGORITHM
- Particle Methods
- Sampling per Mode algorithm

4 ASYMPTOTIC BEHAVIOUR

- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) CONCLUSION

MAIN THEOREMS: LAW OF LARGE NUMBERS

THEOREM (LAW OF LARGE NUMBERS)

For any $n \geq 0$ and any bounded function f, we have

$$
\mathbb{E}\left(\gamma_{n}^{N}(f) 1_{\left\{N_{n}>0\right\}}\right)=\gamma_{n}(f),
$$

Main Theorems: LAw of Large Numbers

THEOREM (LAW OF LARGE NUMBERS)

For any $n \geq 0$ and any bounded function f, we have

$$
\begin{gathered}
\mathbb{E}\left(\gamma_{n}^{N}(f) 1\left\{N_{n}>0\right\}\right)=\gamma_{n}(f), \\
\sup _{f:\|f\|_{\infty} \leq 1} \mathbb{E}\left(\left[1_{\left\{N_{n}>0\right\}} \gamma_{n}^{N}(f)-\gamma_{n}(f)\right]^{2}\right) \leq \frac{b^{2}(n)}{N_{\text {inf }}} .
\end{gathered}
$$

Main Theorems: Law of Large Numbers

THEOREM (LAW OF LARGE NUMBERS)

For any $n \geq 0$ and any bounded function f, we have

$$
\begin{gathered}
\mathbb{E}\left(\gamma_{n}^{N}(f) 1\left\{N_{n}>0\right\}\right)=\gamma_{n}(f), \\
\sup _{f:\| \| \|_{\infty} \leq 1} \mathbb{E}\left(\left[1_{\left\{N_{n}>0\right\}} \gamma_{n}^{N}(f)-\gamma_{n}(f)\right]^{2}\right) \leq \frac{b^{2}(n)}{N_{\text {inf }}} .
\end{gathered}
$$

LLN FOR NORMALIZED MEASURES

For any $n \geq 0$ and any bounded function f, we have

$$
\sup _{f:\|f\|_{\infty} \leq 1}\left|\mathbb{E}\left[\eta_{n}^{N}(f) 1_{\left\{N_{n}>0\right\}}-\eta_{n}(f)\right]\right| \leq \frac{b(n)^{2}}{N_{\text {inf }}}+a(n) e^{-N_{\text {inf }} / c(n)} .
$$

Main Theorems: Law of Large Numbers

THEOREM (LAW OF LARGE NUMBERS)

For any $n \geq 0$ and any bounded function f, we have

$$
\begin{gathered}
\mathbb{E}\left(\gamma_{n}^{N}(f) 1\left\{N_{n}>0\right\}\right)=\gamma_{n}(f), \\
\sup _{f:\| \| \|_{\infty} \leq 1} \mathbb{E}\left(\left[1_{\left\{N_{n}>0\right\}} \gamma_{n}^{N}(f)-\gamma_{n}(f)\right]^{2}\right) \leq \frac{b^{2}(n)}{N_{\text {inf }}} .
\end{gathered}
$$

LLN FOR NORMALIZED MEASURES

For any $n \geq 0$ and any bounded function f, we have

$$
\begin{aligned}
& \sup _{f:\|f\|_{\infty} \leq 1}\left|\mathbb{E}\left[\eta_{n}^{N}(f) 1_{\left\{N_{n}>0\right\}}-\eta_{n}(f)\right]\right| \leq \frac{b(n)^{2}}{N_{\text {inf }}}+a(n) e^{-N_{\text {inf }} / c(n)} . \\
& \sup _{f:\|f\|_{\infty} \leq 1}\left[\mathbb{E}\left|1_{\left\{N_{n}>0\right\}} \eta_{n}^{N}(f)-\eta_{n}(f)\right|^{2}\right]^{1 / 2} \leq \frac{2 b^{2}(n)}{\left|\gamma_{n}(1)\right|^{2} N_{\text {inf }}} .
\end{aligned}
$$

- Motivation
- Switching jump diffusion
- Splitting technique
- Some issues
(2) FEYNMAN-KAC FORMULATION
- Multilevel Feynman-Kac distributions
- Dynamical evolution
(3) SAMPLING PER MODE ALGORITHM
- Particle Methods
- Sampling per Mode algorithm

4 ASYMPTOTIC BEHAVIOUR

- Asymptotic Behaviour
- Law of Large Numbers
- Central Limit Theorem
(5) CONCLUSION

Main Theorems: Central Limit Theorem

Theorem (CEntral Limit Theorem)

Let $N \rightarrow \infty$ in such a way that $\rho_{j}=N^{j} / N$ are "preserved" for all $j \in \mathbb{M}$. Then, the random variable

$$
\sqrt{N}\left(1_{\left\{N_{n+1}>0\right\}} \gamma_{n+1}^{N}(1)-\mathbb{P}\left(T_{n}<T\right)\right)
$$

converges in law to a Gaussian random variable with mean 0 and variance W_{n+1}, where

Main Theorems: Central Limit Theorem

Theorem (CEntral Limit Theorem)

Let $N \rightarrow \infty$ in such a way that $\rho_{j}=N^{j} / N$ are "preserved" for all $j \in \mathbb{M}$. Then, the random variable

$$
\sqrt{N}\left(1_{\left\{N_{n+1}>0\right\}} \gamma_{n+1}^{N}(1)-\mathbb{P}\left(T_{n}<T\right)\right)
$$

converges in law to a Gaussian random variable with mean 0 and variance W_{n+1}, where

$$
\frac{W_{n+1}}{\mathbb{P}^{2}\left(T_{n}<T\right)}=\sum_{q=0}^{n+1} \Omega_{q}\left(\frac{1}{P_{q}}-1\right)+\sum_{q=0}^{n+1} \frac{\Omega_{q}}{P_{q}}\left[\frac{\widehat{\eta}_{q}\left(\left[\Delta_{q}^{n} \circ \pi\right]^{2}\right)}{\widehat{\eta}_{q}^{2}\left(\Delta_{q}^{n} \circ \pi\right)}-1\right]
$$

with

Main Theorems: Central Limit Theorem

Theorem (Central Limit Theorem)

Let $N \rightarrow \infty$ in such a way that $\rho_{j}=N^{j} / N$ are "preserved" for all $j \in \mathbb{M}$. Then, the random variable

$$
\sqrt{N}\left(1_{\left\{N_{n+1}>0\right\}} \gamma_{n+1}^{N}(1)-\mathbb{P}\left(T_{n}<T\right)\right)
$$

converges in law to a Gaussian random variable with mean 0 and variance W_{n+1}, where

$$
\frac{W_{n+1}}{\mathbb{P}^{2}\left(T_{n}<T\right)}=\sum_{q=0}^{n+1} \Omega_{q}\left(\frac{1}{P_{q}}-1\right)+\sum_{q=0}^{n+1} \frac{\Omega_{q}}{P_{q}}\left[\frac{\widehat{\eta}_{q}\left(\left[\Delta_{q}^{n} \circ \pi\right]^{2}\right)}{\widehat{\eta}_{q}^{2}\left(\Delta_{q}^{n} \circ \pi\right)}-1\right]
$$

with

$$
\Omega_{q}=\sum_{j \in \mathbb{M}}\left(\omega_{q-1}^{j}\right)^{2} \rho_{j}^{-1}=1+\chi^{2}\left(\omega_{q-1}, \rho\right),
$$

and

$$
\Delta_{q}^{n}(t, z)=\mathbb{P}\left(T_{n} \leq T \mid T_{q}=t, Z_{T_{q}}=z\right) .
$$

CONCLUSION

- The "sampling per mode" algorithm has "good" properties.

■ The "sampling per mode" algorithm has "good" properties.

- However, to gain more time of simulation, we can:
- The "sampling per mode" algorithm has "good" properties.
- However, to gain more time of simulation, we can:
- use importance sampling technique to make rare switches more frequent,

■ The "sampling per mode" algorithm has "good" properties.

- However, to gain more time of simulation, we can:
- use importance sampling technique to make rare switches more frequent,
- or aggregate the modes in order to decrease the complexity (for large scale distributed hybrid systems).
- The "sampling per mode" algorithm has "good" properties.

■ However, to gain more time of simulation, we can:

- use importance sampling technique to make rare switches more frequent,
- or aggregate the modes in order to decrease the complexity (for large scale distributed hybrid systems).
- Thus, we need to extend the previous results.
- The "sampling per mode" algorithm has "good" properties.

■ However, to gain more time of simulation, we can:

- use importance sampling technique to make rare switches more frequent,
- or aggregate the modes in order to decrease the complexity (for large scale distributed hybrid systems).
- Thus, we need to extend the previous results.
- A better comprehension of the expression of W_{n+1} could help the choice of the N^{j} regarding the cost of the algorithm.
- The "sampling per mode" algorithm has "good" properties.

■ However, to gain more time of simulation, we can:

- use importance sampling technique to make rare switches more frequent,
- or aggregate the modes in order to decrease the complexity (for large scale distributed hybrid systems).
- Thus, we need to extend the previous results.
- A better comprehension of the expression of W_{n+1} could help the choice of the N^{j} regarding the cost of the algorithm.
- This algorithm is implemented in a software developed by National Aerospace Laboratory (NLR) and used to evaluate the safety characteristics of an arbitrary (new) operational Air Traffic Management concept [Blom, 2009].

RÉFÉRENCES

围 Henk Blom, Bert Bakker, and Jaroslav Krystul.,
Rare event estimation for a large-scale stochastic hybrid system with air traffic application. Rare Event Simulation using Monte Carlo Methods, pp. 194-214. Wiley, 2009.
围 Krystul, J.,
Modelling of Stochastic Hybrid Systems with Applications to Accident Risk Assessment (2006). PhD Dissertation: University of Twente.
R Del Moral, P. (2004).
Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications (2004). Springer-Verlag.
Le Gland, F. and Oudjane, N.,
A sequential particle algorithm that keeps the particle system alive. (2006) in Stochastic Hybrid Systems : Theory and Safety Critical Applications, pp. 351-389, Springer, 2006
F. Cérou, P. Del Moral, F. Le Gland and P. Lezaud, Genetic genealogical models in rare event analysis, ALEA, volume 1, paper 8, 2006

