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1. INTRODUCTION AND PERSPECTIVES 

This is part of a series of papers devoted to the formulation and analysis 
of phenotypic (quantitative) inheritance. s The first concentrates on the classifi- 
cations and characterizations of the genetic and environmental structures. The 
multivariate framework provides wide scope and versatility for handling asym- 
metric (sex-dependent) attributes in parental and sibling relationships, the 
nonlinear selective processes innate to assortative mating patterns, natural 
selection forces, the selection embedded in adoption practices, demographic, 
migration, and population structure facets, and models where the unit of 
observation is a nuclear family or a mukigenerational family set. The basic 
convergence results for changes in the population mean and covariance over time 
are set forth in this work. 

Papers II and IV present detailed studies of the equilibrium covariance 
structure, discerning its dependence on the natural selection, assortative mating, 
transmission, and environmental parameters for a two-sex population model 
of a scalar trait. In the third paper of this series a hierarchy of kinship covariance 
calculations is elaborated within the framework of an extended selective mating 
mechanism. These include covariances involving parent, offspring, siblings, 
half-sibs, cousins, or more distant family relatives, and of adopted and natural 
children. Paper V presents contrasts and comparisons of our selective mating 
constructs with the linear assortative mating models which have been extensively 
pursued by many authors. The sixth paper elaborates finer propertics of the 
dynamic and equilibrium behavior on vector multifactorial inheritance. Papers 
VII and VIII investigate some variants of these models in a non-Gaussian 
setting. We also discuss aspects of cultural selection in several of these works. 
In the present series (I-VIII), we emphasize qualitative inferences and com- 
parisons, while in subsequent works we plan to provide simulation, numerical, 
and graphical addenda to the theory developed here. 

A “polygenic” character refers to a trait determined by many loci (genes) 
contributing mostly small effects and commonly manifesting a continuous 
variation in the trait expression. The concept of a polygenic model is not clear-cut 
by its very nature. Many genes interact intrinsically and are coupled to 
environmental stimuli in complex ways. The classical model traces the changes 
over successive generations of the phenotype frequency distribution as influenced 
by selection effects, mutation and migration forces, and transmission laws. This 
model includes mixed mating patterns, varying forms of parent-offspring correla- 
tions, and a myriad of environmental factors. The analysis concentrates on 
changes in phenotypic representations which do not properly account for 
genotype-phenotype associations and the basic genetic complex of multilocus 

z For the sake of clarity, throughout this article, subsequent papers in this series are 
referred to as Karlin (II) through Karlin (VIII), denoting the references, Karlin (1979d) 
through (1979i), respectively. 
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interactions. Previous attempts to incorporate the genetic mechanisms have 
implicitly relied on assumptions of additive gene contributions and global 
linkage equilibrium which are basically inconsistent with the operation of 
differential selection effects and/or the existence of various nonrandom mating 
patterns. 

Quantitative inheritance has had its primary stimulus in problems of animal 
and plant breeding (e.g., Falconer, 1960; Mather and Jinks, 1971). The theory, 
with some notable exceptions, is largely statistical rather than evolutionary 
(e.g., Kempthorne, 1957; Wright, 1921). In contradistinction, Robertson (1960), 
Hill (1970), and Latter (1965, 1972), among others, have studied a few evolu- 
tionary problems in the animal breeding framework, Kimura (1965), Slatkin 
(1970, 1978), Lande (1976a, b), Slatkin and Lande (1976), Cavalli-Sforza and 
Feldman (1976, 1977), Fleming (1979), Felsenstein (1977), Eshel (1971, 1972, 
1973) and Roughgarden (1972), among others, have introduced some aspects 
of population dynamics into polygenic and/or phenotypic inheritance in other 
ways. 

Intensive activity over the past decade has involved Genetic epidemiologists 
seeking to discern genetic, environmental, and cultural components which are 
relevant in assessing risk factors for (common) diseases. The analyses and 
modeling are based on biochemical, physiological, environmental, and cultural 
measurements collected on individuals, families, and pedigrees of various struc- 
tures. For references and representative papers, see the recent conference 
volumes edited by Morton and Chung (1978) and Sing and Skolnick (1979). 
The statistical methodology is usually linear covariance analysis founded on 
linear models of mating and polygenic-Galtonian transmission. Numerous 
authors of the Birmingham school (Eaves, Jinks, and collaborators), the Virginia 
group (Nance and colleagues), the Honolulu center (Morton, Rao, et al.), the 
St Lous contingent (Cloninger, Reich, et aE.), Jencks, Goldberger, Conlisk, 
Loehlin, and a number of other social scientists, Cavalli-Sforza and Feldman at 
Stanford, among others (see Feldman and Cavalli-Sforza (1979) for a review and 
references), motivated primarily by problems of mixed cultural-phenotype- 
“genetic” transmission have studied a variety of dynamic and/or stationary 
equation models, primarily in the guise of linear path analysis or by means of 
linear variance decompositions. Most formulations tend to mimic one-locus 
theory, where the genetic mechanism is expressed by the within family variance 
based on additive allelic and independent loci effects. The accommodation of 
assortative mating is usually done, following Fisher (1918), by postulating 
a time invariant spouse correlation (or set of correlations) and other stationarity 
assumptions. These formulations often lead to infinities and indeterminancies of 
the variance terms. A critique of their procedures, dissecting a number of hidden 
and manifest assumptions, is contained in Karlin (III) and (V). 

Our approach analyzes phenotypic variation in an intrinsic multivariate 
framework. We consider a large population characterized by a vector x -= 
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(Xl 7 x2 >***, x,) of phenotypic traits (generally correlated) whose (multivariate) 
frequency distribution changes over time as influenced by selection (natural 
and/or sexual), mutation, and migration forces, mating patterns, and various 
forms of parent-offspring transmission-segregation structures. The study of the 
vector version provides much flexibility to the formulation, as will be amply 
illustrated. 

The phenotype component variables may include continuous variables, counts, 
categorical observables, qualitative measurements, fractions of some fixed 
quantity, and variables on restricted ranges. Unless stated otherwise, it is 
understood that proper scalings and standardizations have been invoked, 
converting all components of x = (xr , x2 ,..., x,) to the same units with secular 
variables regressed out, if necessary. (The standardization problem generally 
presents a sensitive and formidable task.) 

Component variables may include such diverse traits as x = (x1 , x2, xs) = 
(egg number per unit time, average egg size, texture of albumin); x = (mathe- 
matical aptitude at a specified age, a measure of physical coordination, some 
metabolic rate/time, wealth, education); x = (flowering time, average number of 
fruits/plant, an appropriate fiber strength, degree of resistance to a specified 
disease); x = (insulin production/time, glucose absorption rate, nutrition scale, 
blood pressure scorings), x = (cholesterol level, triglyceride level, weight, 
personality type, scale of smoking, a set of blood types). 

Geographical distribution of a phenotypic variable can be encompassed in the 
array x = (x1, x2 ,..., xn) where xi is the trait (or vector trait) observation at the 
ith locality, such that x describes a group of indivduals-one from each locality. 

The effects of age structure can be incorporated by increasing the number of 
components for x = (x1, x2 ,..., xL) where xi represents the frequency of the 
phenotype single or multivariate trait for the ith age grouping so that a trait 
manifested in different age classes is considered a set of different traits. 

The mixed “genetic’‘-cultural transmission models are based on vector trait 
variables which partition into three sets. 

where the (xv} variables refer to “genotype” components, the { y,} are associated 
phenotype variables, and {.s,> are related environmental and/or cultural variables, 
e.g., wealth, schooling, customs. The distinction between genotype and pheno- 
type variables in this setting is unclear. An appeal to one-locus theory as a 
guide for separating these classes of variables is questionable. The attempt is 
made to reflect the genetics by adding an unobservable random term to the 
inheritance process, conveying a variance equal to one-half the phenotype 
variance intended to reflect the within family variance contribution as “Mendelian 
segregation” (e.g., Cavalli-Sforza and Feldman, 1976, 1977). However, this 
tactic is limited to the case of additive allelic effects at one locus, without 
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dominance, without epistasis, disallowing deviation from pure random mating, 
and other constraints. 

In a model with separate sexes we double the dimension of the vector trait in 
the manner 

z = (x, Y) = (Xl 7.S’) x,; Yl >.*.> Yn), (1.2) 

where x refers to the male and y corresponds to the female components. 
In simple qualitative terms, the dynamics of the population phenotype model 

involves two major stages, the mating (couple formation) process and the 
parent-offspring transmission structure. In our approach, a male and female 
x and y pairing are joined by a preference (selection) process which is intrin- 
sically nonlinear. For an established parental couple (52, 7) a male offspring 
acquires a phenotype value of the form 

x’ = R(f, 7) + dm), (1.3) 

where R is a transformation (not necessarily linear) of the parental values and 
E conveys a residual (random-environmental) contribution independent of the 
parental phenotypes. For a female offspring, the analog of (1.3) is 

y’ = S(f, 9) + e(f), (1.4) 

where S may differ from R, indicating sex-dependent transmission, The residual 
variable correlations among siblings may depend on their sexes. The standard 
version takes the vector functions R and S as linear transformations operating on 
the parental phenotypes 5 and 7. 

The vector framework enables us to consider a phenotype trait with reference 
to a specified family set; for example, a nuclear family consisting of parents and 
a number of offspring, or even more elaborate pedigree conglomerates. Thus, 
a nuclear family with two children of both sexes may be represented by a 4n 
component trait: 

f = (2, y, C(m), C(f)), (1.5) 

where f and 9 refer to the parental spouse types and c(m) and c(r) to the male and 
female child vector phenotypes. We elaborate this setup in Section 6. 

It is germane to emphasize that the vector phenotype treatment integrates 
simultaneously anthropometric, physiological, behavioral, biochemical, and/or 
cultural variables in one framework. The transmission functions R and S may 
operate on all or partial sets of such components. Our models treat phenotypic 
and cultural variables together as generally correlated traits. The difference in 
transmission, offspring expressivity, influences of mating pattern, etc., are 
subsumed in the versatility of the transformation relations that delimit the 
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model. The general impreciseness of parameter estimates from natural data in 
conjunction with sampling fluctuations and innate individual and population 
heterogeneity dictate that we project mostly the qualitative conclusions of the 
analysis rather than rely on its predictive value (cf. Karlin, 1979b). 

In this first paper our primary objective is to establish a broad phenotype 
model that properly accounts for selection forces, especially assortative mating 
as a phenomenon of a selective process coupled to a hierarchy of segregation- 
transmission rules, especially sex-dependent forms, and interactions among 
collaterals and cohorts. Various results on the dynamic and equilibrium behavior 
of the covariance structure for the population phenotype trait are presented in 
Sections 10 through 14. 

In the subsequent papers we address inter alia the following issues. How does 
assortative mating structure affect the parentoffspring covariances compared 
to sib-sib covariances, e.g., in terms of the strength and concordance parameters 
between mates? What is the dependence of these covariances on the parental 
transmission characteristics, especially the influence of asymmetric maternal and 
paternal contrasts and sex-dependent offspring expression? What is the nature 
of second- and higher-order kinship covariances in this new framework? 
Further questions will be amplified in those works. 

2. THEPRINCIPAL COMPONENTS OFTHE GENERAL DYNAMICPHENOTYPIC MODEL 

The possible types x of the population are identified with points in En 
(Euclidean n-space). In each generation the population, assumed to be of large 
size, is described by its frequency measure over En. For any set A of E”, let 
&A) be the proportion in the population at an appropriate census time of 
generation t consisting of vector types corresponding to A. For ease of exposition, 
we assume henceforth the existence of the density p,(x) so that 

144 = 1 P,(X) dx. 
“‘A 

(2.1) 

The population composition changes over successive generations under 
the influence of selection and mutation forces, the segregation mechanisms, and 
the nature of the population structure and mating pattern. For definiteness, we 
census the population in each generation at the juvenile stage and stipulate the 
order of forces to be 

Model I 

natural and/or mating selection - transmission-segregation 

+ environmental-mutation. 
(2.2) 
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A second arrangement has the sequence of forces 

Model II 

transmission-segregation + environmental-mutation -+ selection, (2.3) 

and finally, we can consider the sequence of effects to be 

Model III 

environmental-mutation + transmission-segregation -+ selection. (2.4) 

The models for (2.2) and (2.3) are equivalent and merely reflect a different 
census time in a generation period where the individuals according to (2.3) are 
sampled at the adult stage, i.e., just prior to mating. The qualitative results in all 
three models are the same. For definiteness of exposition, we concentrate 
in this paper on the order of forces of (2.2), Model I. 

It is increasingly recognized that assortative mating and mate selection 
mechanisms and other nonrandom mating operations, e.g., consanguinity, 
incompatibilities, imprinting, and regular inbreeding schemes, generally act 
differentially with respect to phenotypic expression; e.g., see O’Donald (1977) 
Matessi and Scudo (1975), and Karlin (1978b). 

A. Action of ViabiZity Selection 

We consider first forms of viability selection. Later, in the framework of the 
two-sex model, we emphasize selection effects by way of an assortative mating 
mechanism based on a mating selection function. In the same vein, we regard the 
child adoption events as a selection process in Section 8. In this perspective, 
effects of assortative mating and adoption resemble “fertility” selection differen- 
tials relative to mating types which operate nonlinearly over the population 
system. Actually, the action of viability selection and the operation of couple 
formations in the two-sex case essentially reduce to the same model. More 
details on these concepts and their applications are covered in Sections 5 
through 8. 

The relative fitness of a zygotic type x compared to that of y at generation t 
is G~MY)~ W e refer to y,(x) as the fitness function, also variously 
called the relative survival function and relative viability function. A realistic 
version of the influence of selection would have yt(x) varying stochastically in 
time and also frequency-dependent, meaning that rt( .) in generation t could be a 
functional also of the density Pt( .). The relative number of surviving individuals 
of type x due to selection is yt(x) p,(x). Th us, after selection the density of the 
population composition in generation t is 

(2.5) 
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To avoid technical complexities and other confounding effects, we mostly 
assume yt(x) independent of t. 

The nature of y(x) will usually be one of three kinds. 

(i) Direclional selection. (y(x) is monotone increasing in some direction.) 
Here a type is more advantageous if associated with “larger values.” There are 
three subclasses of special interest: 

(a) y(x) = e’“‘X) (& are generally positive constants and (h, x) = ‘& x,Xi 
denotes the scalar or inner product of the indicated vectors). In artificial selection 
schemes xy=, hExi may be a generalized phenotypic index and selection is for 
high vaIues of this index. 

(b) Suppose E = [w+, the positive real line, i.e., x is scalar, and y(x) = X& 
so that Y(X) grows at infinity at an algebraic rate. In this case, 

lim Z.k+A = 1 
s+m Y(X) 

and the dynamic process is significantly different compared to the exponential 
fitness function of case (a). 

(c) y(x) is increasing from 0 to 1. One interpretation for r(x) is that of a 
survival probability. Artificial selection programs often specify y(x) of the form 
Y(X) = 1, x > yo; Y(X) = 0, x < yo , corresponding to truncation selection. 
In this form, v(x) can also serve as a liability function of a disease trait. 

(ii) Stabilizing or optimizing selection (meaning that y(x) achieves one or more 
maxima fey some intermediate value). A leading case is 

Y(X) = exp[-X(x - 3, C(x - Ql, (2.6) 

where C is a positive semidefinite matrix so that h is the optimum fitness type. 
Another common specification is 

Y(X) = ]:, 
for x in a specified set S, 
otherwise. (2.7) 

(iii) Disruptive or diversifying selection. Here y(x) achieves a maximum at a 
number of extremes of the x range. The case of disruptive selection may be of 
significance in explicating some cases of speciation. 

B. Parent-Oflspring Segregation-Transmission Structure 

Random mating will formally connote that the frequency of the union of an 
x- and y-type individual is 

h&d NY> dx dy, (2.8) 

where5 is defined in (2.5). A key element in the model is the prescription of the 
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conditional probability segregation density function L,(u; x, y) which is equal to 
the probability that the offspring is of type u given that the parental types are x 
and y. Assuming random mating, the density of types in the next generation as 
a result of segregation-transmission is calculated by the formula 

P+%u) = jjL,(u; x, Y) Pt(x>l&(~) dx dy. (2.9) 

A more general mating scheme than random mating can be incorporated into 
the model. For example, a case of assortative mating is generated by specifying 
in generation t, for each x type, the conditional probability density &(y 1 x) dy 
of the pairing x and y. The segregation-transmission (2.9) is then adjusted to the 
form 

P,*,l(U> = jju u; x, Y) MY I 4 Pt(4 dx dy. (2.10) 

The setup of (2.10) is asymmetric in the mating process. If +,(y 1 x) dy is a 
degenerate density concentrating at x, then a case of complete assortative mating 
is operating. 

A formulation which distinguishes the sexes refers to a phenotypic vector pair 
(1.2). Accordingly, consider for generation t the male and female adult phenotype 
densities at generation t, fit(x) and C&(Y), respectively. Suppose that all individuals 
have, a priori, equal probability of meeting mates, so the frequency of an 
encounter of a male x phenotype and female y phenotype is &(x)&(y). Let 
+(x, y) be the relative conditionaZprobabiZity that an encounter between a female 
type x and male type y establishes the couple. Accordingly, the joint density 
function of successful pairings is 

A(z) = $4(x, Y) = 
PtW &t(Y) 4(x, Y) 

JJ-MS) &b-i??~~~ ’ 
2 =- (x, y). (2.11) 

Random mating corresponds to 4(x, y) = 1. The transformation (2.11) 
embraces a range of mating preference schemes. We refer to 4(x, y) as the 
preference mating function or selection mating function. It acts in the manner of 
fertility selection on the mating types. We discuss several natural specifications of 
9(x, y) in Section 5. 

The transmission-segregation rule in this framework is characterized by a pair 
of conditional densities M,(g; z) andF,(n; z), where 5 is the trait value of a male 
progeny following the conditional distribution law of iVlt and r) is the trait value 
of a female progeny following the conditional distribution law of Ft produced by 
the parental composition t = {jz, f}. The distribution governing the progeny 
types in this scheme is 

P$‘%) = j- W(5; 4 P,(z) dz (male progeny), 

~,l;‘f’h) = j- F&L 4 P,(z) dz 

(2.12) 
(female progeny). 
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We elaborate these transmission-segregation models in the Gaussian multi- 
variate framework in Section 5. 

C. Mutation-Environmental Pertubations 

Let gt(v; u) be the conditional probability density that a u offspring mutates 
or environmental pertubations change it to that of a v type. The transformation of 
phenotypic frequencies due to these factors after segregation is given by 

P,+~u) = 1 gt(u; 4 P&~v) dv. 

Referring to (2.9) or (2.12) it is actually possible to capture the effects of the 
mutation-environmental perturbations directly as part of the segregation distri- 
bution where, indeed, we define the new segregation distribution 

E,(u; x, Y) = j-Au; G-US; x, Y) 4. 

In tracking the phenotypic distributions over time, it is useful to associate 
formally a vector random variable with the various stages in each generation. 

Let X, be a vector random variable following the density p,(x). (2.15) 

Let 2, be a vector random variable in generation t following the 
densityj&(x). (2.16) 

Let X,*,, be a vector random variable in generation t + 1 following 
the density P;“,~(x). (2.17) 

The transformations corresponding to the action of selection, transmission- 
segregation, and mutation can be succinctly described by the diagram 

selection mutation- 
xt and mating , 8, ,g, transmission+ x~, , g, environment l x,+, . (2.18) 

The sequence of densities {p,(x)} is referred to as the phenotype dynamic process. 

The elements of the sequence {p,(x)} are recursively determined from knowledge 
ofpa (the initial population frequency density of the types), rt(x) (action of the 
viability fitness function of (2.5)), r&(x, y) (th e conditional preference mating 
function of (2. I l)), L,(u; x, y) (the transmission and segregation mechanisms), 
andg,(u; v) (the conditional environmental-mutation density). 

The structure and properties of the phenotype dynamic process {p,(x)> is 
the matter under investigation. Specifically, we are interested in discerning the 
mean, variance, and other properties of the frequencies of the types evolving 
over time and the limit behavior of pt( .) evaluated in terms of the fitness, mating 
pattern, transmission, and environmental parameters. 
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3. THE MODEL INVOLVING LINEAR TRANSMISSION-SEGREGATION AND 

ENVIRONMENTAL-MUTATIONAL FORCES 

We shall assume that the relative fitness function yt(x) = y(x) does not vary 
in time as a first approximation although results can be developed with yt varying 
systematically or randomly in time (cf. Section 13). 

We concentrate on the temporally homogeneous case, 

gt(x; Y> = g(x - Y) and Y&4 = Y(X) (3-l) 

so that the c/range between an offspring type and its altered form follows the 
density g(q), called the distribution of the mutation disturbance. The stipulation of 
(3.1) in conjuction with (2.13) is equivalent to the linear relation 

X t+l = JGL + et+, p (3.2) 

where Xt, of generation t + 1 is determined as a sum of two terms, the offspring 
type XF+, perturbed by an independent residual e,,, following the density law 
g(e) independent of t. 

We also assume that the conditional transmission-segregationrule is determined 
as a linear sum of two independent parts 

xtc,, = R(%t + S(m)vt + gp, Ykl = R(‘%, + sCf)Pt + gl”, (3.3) 

where R and S are matrices acting on the parental phenotypes X and $? which 
prescribes the segregation contributions to the offspring, while 5 is an inde- 
pendent residual term following the density h(.). The general transmission law 
qu; x, y) of (2.9) 11 a ows for bona fide environment-phenotype interactions in 
contrast to (3.3). 

In a population where each parent transmits in the same way to the offspring 
type, then R = S. In the literature the linear transmission usually has been 
restricted to the case R = S, often with R = S = a diagonal matrix. When the 
exact replica of the parental types is passed on equally, blending their contribu- 
tions, then a natural specification has 

R=S=&I (I = identity matrix) (3.4) 

such that the offspring inherits the midparental phenotypes modulo some 
random environmental effects or interactions. When the sexes transmit their 
types differentially to the offspring type then the condition R # S is likely in 
force. 

For the stipulation R = 0 two immediate interpretations can be appropriate: 

(a) The model is equivalent to a haploid model. 

(b) The transmission is uniparental (say manifesting only maternal inhe- 
ritance), allowing interpretations pertaining to cultural transmission endowments. 
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(c) IfR (m) = S(f) = Iand R(f) = S(m) = 0, then the genetic transmission 
reflects pure replication (modulo random environmental terms) of the relevant 
parental type. The dynamic behavior differs significantly even from the sym- 
metric diploid case with R = S; see Karlin (II). 

For a scalar trait, (3.3) becomes 

where (3i;im), El’)) denote the spouse trait values of generation t and (~1:; , &) 
the progeny male and female trait values. Four special cases of interest are 

cg=p=y=s=+ (midparental transmission), 

p = 6, {a, Y small) (p rimary maternal transmission), 

a = s, P=Y (sex symmetric transmission), 
(3.6) 

01 = 8, y=s (equal parental transmission but offspring 

sex-dependent). 

The offspring male (female) can inherit more or less than twice the mid- 
parental blend according as (Y > 6 (y > 6) or ol < /3 (y < S). The traditional 
adherance to midparent transmission rests on the proposition that an offspring 
receives half his genes equally from each parent. There is no reason to assume 
that a phenotypic (physiological, morphological, behavioral, cultural) trait 
carries equal parental contributions. With cultural components we could 
likely expect asymmetrical maternal-paternal transmission. Certainly for 
cultural variables and even for many physiological phenotypes the parental part 
of the trait expression may be attenuated or amplified, corresponding to 
a+/J<l,y+s<l orol+~>l,y+S>l,respectively.Somecasesof 
maternal and paternal effects are discussed in numerical terms by Cavalli-Sforza 
and Feldman (1977) and Rao et al. (1979). 

The environmental random perturbations t(m) and t(r) may be correlated but 
are assumed independent of the parental phenotypes. 

The Multideme Polygenic Trait Model 

Suppose x = (xr ,..., xN) represents a single real phenotype distributed at n 
localities so that x describes a group of individuals-one from each locality. 
Given the state y, let 

x=My+rl 

represent the state resulting from migration among demes, M = I/ mij jj is a 
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matrix with zy=i rnii = pi < 1 for all i, and 3 is distributed with the density 
g(q). The contribution q can be viewed in the traditional way as the input to the 
phenotypic value at the respective localities from a large external (or hypothetical) 
population in equilibrium. In this setup migration can replace mutation forces or 
be superimposed on the previous forces. 

4. THE MULTIVARIATE GAUSSIAN MODEL OF PHENOTYPE INHERITANCE 

We now specialize the model of Section 2, postulating that the underlying 
distributions are multivariate normal and that the viability selection and 
assortative mating functions conform to a normal density. Studies on the non- 
normal model are presented in Karlin (VII, VIII). We concentrate first on the 
model under pure random mating and deal with assortative mating structure 
in Section 5. 

The specific assumptions are as follows: 

(i) Fitness (or viability selection) function 

y(x) = exp[-&((x - Y), C(x - Y))] = exp -4 $J (Xi - y&j - rj) cij , 
I id=1 !  

(4-l) 

where 11 cii 11 = C conveys optimizing (stabilizing) selection with mode at y. 
We sometimes write C = Pi, whenever r is defined; the superscript (- 1) 
refers to the inverse matrix. The expression (4.1) is well defined in terms of 
cij even where C = 11 cij /j is not the inverse of a positive defmte matrix. In fact, 

it will be useful at times to take C as merely semide$nite and occasionally as 
just a symmetric matrix without any further restrictions. 

(ii) Transmission-segregation disturbance distribution 

h(E) is a normal density with mean h and covariance matrix H. (4.2) 

(iii) Mutational disturbance distribution 

g(q) is a normal density with mean m and covariance matrix M. (4.3) 

A normal distribution with mean vector u and covariance matrix .Z is denoted 
hereafter by N(p, 22). 

It is useful to summarize the forces and parameters of the normal (multi- 
variate) model in tabular form 
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Selection 
y(x) = normal density 

Mean Covariance matrix 

Y r = C-l (when C l exists) 

Segregation-transmission 
conditional distribution 
L(x 1 jZ(m), jz’f’) 
multivariate normal 

H 

Conditional mutation 
distribution 

g(x; 4 
multivariate normal 

m+q NI 

X - Rj;im’ + El” + 5 t+1 - 

where 5, independent of Z(m) and 5(r), is normally distributed with mean 
h + m = cp and covariance matrix F = H + M. 

The dynamics of the phenotypic process {X,} are described in the following 
familiar result. 

(i) Assume the density of X6 , pt(x), is N(P~ , .C,), i.e., follows a Gaussian 
distribution with mean vector p, and covariance matrix .& . Then p,+,(x) is distri- 
buted N(P~+~ , ,ZC+l), where the parameters are determined recursively according to 

2 - R(Z;l + r-l)-l R’ + S(Z:;’ + r-l)-l S’ + F, t+1 - 

with F = H + A4 (R’ denotes the transpose matrix to H). The matrix F may be 
construed as the total contribution to the covariances per generation, accruing 
from mutational and/or random environmental effectsplusperturbationdeviations 
from parental transmission. The mean vector change conforms to the recursion 

crt,, - (R + S&F’ + r-l)-l(Z:;l~t + r-ly) + v, 

where cp = h + m. 

Remark 4.1. When the order of forces conforms to (2.3), Model II, such that 
the population is sampled at the adult stage after selection, (4.4) is replaced by 

pt+, = ((RV,R’ + SV,S’ + F)-l + Pl)-l, (4.6) 

653lrs/3-4 
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and for the order of forces (2.4), Model III, again with census at the adult stage, 
then (4.4) is modified to the form 

W,,, = ((R( W, + F) R’ + S( W, + F)S’-l + r-l)-l. (4.7) 

The substitution P = RFR’ + SFS’ converts (4.7) into (4.6). The substitu- 

tion 2 = RVR’ + SVS’ + F converts (4.6) into (4.4). In the case R = S is 
invertible, the inverse transformations of (4.4) to (4.6) and (4.6) to (4.7) are 

P = (2’/“R)-‘(.Z - F)(21j2R’)-l, 

respectively. 
The relationship (4.4) (as well as (4.6) and (4.7)) can be regarded as a matrix 

linear fractional transformation. Our objective is to ascertain the dynamic and 
limiting behavior of .Zt and also that of t+ . Without any restrictions we can 

establish the existence of Z:, = im,,, Z, independent of the initial Z,, (Result I 
of Section 11) where zb, is the unique solution of the matrix equation (4.4) obtained 

. . 
by znsertang 2 in place of 2 t and’, t+l . I f  F and rare positive definite, then Z:, is 
positive definyte and finite. The conditions ensuring lim,,, pt = pL, are slightly 

more restrictive (Result II of Section 11). 
Explicit representations for Za and pa are available in some important cases, 

(Karlin, VI). Owing to the uniqueness, Z, can be approximated by successive 
iteration of (4.4) (or (4.6) (4.7)) starting with any positive definite ,?Y,, . The 

equilibrium parameters 2, and lo., , and thereby N(p, , Z:,), characterize the 
evolutionary outcome of the phenotypic vector trait subject to optimizing 
selection (of the form (4.1)), transmission as described in (3.3) with normal 

environmental disturbances and mutation residuals. 

Regression on the Population Mean 

In the spirit of the classic Galtonian formulation the convergence results 

extend to the model in which the transmission law is 

(4.8) 

where T is a transmission matrix operating on the midparental value, t~.~ 
is the mean population type and 5 is an independent random-environmental 
contribution (cf. Lande and Slatkin, 1975; see also Karlin et al., 1979). 
Thus, the transmission law of (4.8) entails a weighted combination of a direct 
parental input plus a deterministic part directed toward the current population 
mean phenotype. The magnitudes of the coefficients 01 and p govern or reflect the 
relative weights of the two parts. 

A possible interpretation has the term /3pt as a form of social conformance. 
The other forces (natural and mating selection, transmission, mutation, etc.) 
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transpire as before. The recursion of the phenotype covariance matrix over time 
attains a form similar to (4.4). Th e mean phenotype changes are calculated 
paraphrasing (4.5). 

5. A VECTOR PHENOTYPE MODEL FOR A TWO-SEX POPULATION SUBJECT 
TO NONLINEAR ASSORTATIVE MATING PATTERN 

In a model with separate sexes we consider for generation t the female and male 
adult phenotype densities at generation t, p,(x) RZ N(h, , U,) and qt(y) m 

Vu, > I’,), respectively. Assuming a priori equal probability of meeting mates, the 
frequency of an encounter of a male x phenotype and y female phenotype is 
p,(x) g,(y). The assortative mating mechanism is effected via the selection mating 

function 4(x, y) that indicates the conditional probability of a successful mating 
of the x male and y female. In line with (2.11) the induced density of a spouse 
couple is 

(5.1) 

This kind of selection assortative mating operation introduced in a generalized 
one-gene model with continuous phenotype expression occurs in Wilson (1973) 
and Wagener (1976). 

Conforming to the Gaussian model we take 4(x, y) of the form 

(5.2) 

where 

is a 2n x 2n positive semidefinite matrix and z = {x, y} is the 2n-tuple vector 
with the female phenotype components y juxtaposed to the male phenotype x. 
We write Y = @-I where the positive dejnite matrix @ exists. It may be relevant 
to have y linearly dependent on the population’s mean pLt so that &(x, y) depends 
on t (cf. (4.8)). The influence of yt = &.L~ + 0 does not occur in the analysis of 
the changes in the population covariance structure & over time. The special 
modal phenotype y = (yl ,..., ys,) of (5.2) can be construed as a standard that 
social or cultural conditions impose on population mating tendencies. 

It is worth emphasizing that the x vector-phenotype can include the usual 
phenotype variables plus cultural variables such that the structure of (5.1) 
accommodates the possibility that the assortative mating determination is 
based on a partial set of its phenotype components. In this way, the con- 
tingencies of cultural (or “common environmental”) versus phenotype assort- 
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ment is encompassed by the flexibility in the delineation of the vector phenotypes 
x and y and by the determination of the matrix Y = @p-l that characterizes 
4(x, y). That is, where +(x, y) concentrates on the cultural components, e.g., 
education or social class, we can speak of cultural assortment and when 4(x, y) 
depends only on the more usual biological components, e.g., height or blood 
pressure, assortment can be said to have a primary phenotype (“genetic”) 
basis. The concepts of traditional phenotypic assortment as against cultural 
assortment and further criteria based on “social homogamy” promulgated in 
the discussions of Rao et al. (1976), Cl oninger et al. (1978), Cavalli-Sforza and 
Feldman (1977), among others, are subsumed in the flexibility of the vector trait 
formulation and the scope of the selection mating function. The essential 
distinction in our assortment mechanisms rests on the fact that we treat it as a 
selection process (which makes it automatically nonlinear), while previous 
studies of phenotypic inheritance incorporating assortative mating follow the 
linear modeling structure in the style of Fisher (see Section 10 and Karlin (V) for 
further discussion of this matter). 

The mating selection function assignment for a phenotypic scalar trait 
conforming with (5.2) becomes 

c > 0, - 1 < Y < 1, f, g positive unrestricted. 

Here I serves as a measure of the degree of the preferential concordance between 
the mate phenotype values, possibly also based on appropriate cultural or environ- 
mental concomitants (e.g., social homogamy, physical coincidence). The 
parameter c can be regarded as a measure of the width of the preference function. 
Forf+ 03, the assortment probabilities depend only on the maternal phenotype 
value y. For f = g = 1, a sex semigeometric form, 

44x, r> = exp [ - 2c(l ‘_ r2) (x2 - 2rxy + uz)] (5.3) 

with - 1 < r < 1, c > 0. The probability level curves are decreasing to zero as 
1 x 1 and/or 1 y / tend to co. Accordingly the chance for a successful mating is 
diminishingly small when one or both traits are extreme. 

Consider next the special mating preference function 

+(x3 r> = exp [ - & (x - A’]. (5.4) 

This arises from (5.3) by letting r -+ 1 and c -+ cc in such a way that c( 1 - r) -+ 
c*/2. The probability level curves for (5.4) are straight lines (degenerate 
ellipsoids). This means that concordance of the male and female phenotype 
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values (independent of their magnitude) invites for successful matings. The 
quadratic form of the exponential in (5.4) is singuZur ofrank 1 unlike that of (5.3), 
where the quadratic form is nonsingular positive definite. 

An interesting case of 4(x, y) of (5.2) generalizing (5.4) prescribes 

46, y) = exp [ - $ fJ (xi - yJ21, 
r=l 

c > 0 

where 1 /c can be construed as an index of the strength (or width) of the preference 
function. Specifically, c -+ + cc renders the mating system as pure random 
mating. For the specification (5.5) the 2n x 2n associated covariance matrix is 

n 

F---- 1 0 . . . 0 
c 

0 ; 

tu - 1 
r= 

I 

O O *If : 

1 -- . . . 0 

; 

0 
1 . . . _- 
c 

l 0 -- 
C 

0 -; 

0 0 

1 - 
c 

0 0 

. . . 

. . . 

. . . 

-I 

0 

0 
1 
C 

0 

1 - 
cd 

(5-6) 

=;]@I (h K t e ronecker product of the matrices J and I), 

where I is the n x 71 identity matrix and J is the 2 x 2 matrix (-i -:). A 
natural extension of (5.6) is 

+(x7 y) = exp - & jj 8,(xi - yd2 , 
1 Z==l 1 

where the Bi allow different weightings of the components. The mating selection 
function of (5.6) is singular. 

In the case that Q-l = Y is singular positive semidefinite the convergence 
behavior of the population covariance matrix ,?Yf can be a bit restricted (Karlin, 
II). The realistic case would likely have 0-l = Y positive definite. 

A direct analysis on (5.1) reveals that j&(x, y) the density of a viable spouse 
couple is a normal density with covariance matrix f?, of order 2n x 2n given 

by 

c;t = (C, + Y/-y, (5.8) 
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where C, is the 2n x 2n covariance matrix of the joint density p,(x) qt(y), which in 
turn is of the form 

c, = 
( 

.zCrn) 0 

b zl” 1 
where Zi”’ (Zif’) . is t h e covariance matrix of Xi”’ (Xjf’). 

(5.8a) 

For those accustomed to thinking in terms of spouse covariance matrices, we 
have 

1 
where iI?& = Cov(X, , g,) = n,‘“‘@,~Ir’, (5.8b) 

where dim’ (~Ilr)) is the diagonal matrix with male (female) spouse standard 
deviation values down the diagonal and 0, is the spouse correlation matrix of 
generation t. 

The transmission-segregation process associated with an established pairing 
produces male and female offspring following the transmission law 

X ,*,I = 8% + St 7 Y,*,l = 3% + ?t , (5.9) 

where Z is a spouse pair distributed according to j(z) = j(x, y) of (5.1) and I? 
and 3 are n x 2n matrices. Also, the 2n environmental-mutation perturbation 
vector et = {St , Q} is distributed N(B,F), w h ere 6 is a vector of 2n coordinates 
and F is now a covariance matrix of order 2n x 2n. I? and 3 may differ under 
sex-dependent transmission with respect to parental contribution and/or 
offspring expression. 

It follows that a male child of the next generation is distributed according to 
the density pf+r(x), which is the normal density with covariance matrix ,Zi1,“: = 

V&l = Rz;,R’ + Fl , where Fl consists of the first n rows and columns of F. 
SimiIarly, we find that an independent female child is governed by the density 
qF+l(y) with covariance matrix .Z$r = Vf+, = s&s’ + F, , where F, consists 
of the last n rows and columns of F. If viability selection is inconsequential then 
obviously 

C 
( 

u* 0 t+1 
t+1 = 

0 ) CL . 

It is useful to express the representation in the form 

c ( 
u* 0 t-t1 

t+1 = 
0 c+l 1 

= m‘,i? + SC&? + P, 

(5.10) 

(5.11) 

where R is the 2n x 2n extended square matrix /I { /I augmented by a block of n 
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rows and 2n columns of zero entries under the matrix l? as displayed. Similarly, 
we have 9 = 11 i // and define $’ as the block diagonal matrix 

We should emphasize that the extended covariance matrix C, refers to a male and 
female individual in the polulation at large and not to two sibs. 

The conjunction of (5.8) and (5.11) p rovides the recursion relationship (for 
matrices of order 2n) 

c - B(C,' + !q-l I? + s(c;l+ q-l s' + E*, t+1 - (5.12) 

which is of the form (4.4). With (5.12) in hand, the convergence theorems 
(Section 11) apply, establishing (for the two-sex model with the general assorta- 
tive mating mechanism of (5.1)) that & converges to a unique equilibrium 
covariance matrix Zm . Note that if Y is only semidefinite (e.g., when the mating 
selection function depends only on a subset of the variables), then the finite con- 
vergence equilibrium covariance matrix often occurs, albeit not universally 
guaranteed (cf. Karlin, II, Section 2). 

We can easily incorporate the consequences of natural selection and then 
P~+~(x) is converted to p,+r(x) having covariance matrix 

u t+1 = w,*,,>-’ + m-’ (5.13) 

and similarly qF+r(y) transformed to qt+l(y) is characterized by the covariance 
matrix 

v,,, = ((&Q-” + c>-1. 

The matrices F;land r$ correspond to the Gaussian viability selection functions 
as in (2.6) for male and female individuals, respectively. 

The relations (5.12)-(5.14) imply the connections of the covariance pair 

over two successive generations. The development of the covariance structure & 
and also the mean trends (h t , vt) over time describes a two-sex phenotypic 
population evolution subject to natural selection, mating selection entailing both 
random and assortative mating patterns, a bisexual transmission-segregation 
mechanism, and mutational and environmental perturbations. Of particular 
interest would be to contrast the relative influence of mating selection reflected 
by the existence of mating combinations (in the form of (5.1)) versus the force of 
natural selection acting as in (2.5) and (2.6) with differential selection expression 
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between sexes when r, # r, . The requirements for Y$ + Z,,, (Results I and II, 
Section 11) apply to this generalized context. We describe various facets and 
contrasting properties on bounds and dependence relations of Zb, on the mating, 
transmission, and environmental parameters in Karlin (II) and (VI). 

6. A PHENOTYPE NUCLEAR FAMILY VECTOR TRAIT MODEL 
WITH SELECTIVE ASSORTATIVE MATING 

The following model shows the flexibility and wide scope of the phenotypic 
vector trait formulation. At first we take the basic unit as a nuclear family 
composed of two parents and one child. Afterward we briefly indicate the 
model with a nuclear family having two children, one of each sex; the model 
carrying a prescribed sibship size can be handled by appropriate modifications. 
The vector trait is now summarized by three groups of coordinates, 

x = (X(m), x(f), c), (6.1) 
comprised of 

x(m) = male parent phenotype, 

x(r) = female parent phenotype, (6.2) 
c = child phenotype, 

where each is an n-tuple measurement. For convenience of exposition, we deal 
with a sex symmetric situation where male and female children follow the same 
distribution law. (It is worth emphasis that a unit of time in the nuclear family 
model keeps track of related individuals of two generations.) For a second 
nuclear family represented by y = (y(m), y(r), d), we form the 6n vector 
z = (x, y) of the two joined nuclear families. We stipulate that a union occurs 
between the young of the two families with probability 

9(z) = exp[-B(z, yz>l 

given that they meet. In this nuclear family setup even the parental types may 
influence the success of the union. If the phenotype trait x is an n-tuple vector, 
then Y = Q-l can in this formulation, a priori, be a 672 x 6n positive definite 
form. It is suggestive to partition Y as indicated 

(6.4) 

where each rii is an nth-order matrix. 
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When only the children’s phenotypes affect the mating probabilities then !P 
effectively reduces to a 2n x 2n matrix. The detailed structure (6.4) can be 
interpreted to embody factors of social homogamy, customs, wealth status, 
external environmental, and other familial influences, especially if some of the 
trait components are cultural attributes. In line with (5.1) the joint distribution of 
two united families is 

j(z) = $(x, y) = #(x(m), x(f), c; y(m), y(f), d) 

= KP(x) P(Y) 5w (6.5) 

where K is a normalizing constant. The 672 covariance matrix for &(z)is computed 
by the recipe (5.8), namely, 

ct = ((“C ,ol) + Yfy, (64 

where & is the 3n x 3n covariance matrix of a nuclear family. With the distribu- 
tion (6.5) in hand we can routinely extract the marginal joint distribution of the 
newly established couple 

p(t a (6.7) 
,. 

with 2 = c, d = d; the hat emphasizes that the union is established in accor- 
dance with the operation of the mating selection structure induced by (6.4). 

The transmission-segregation implementation for the newly formed couple 
produces an offspring of phenotype value 

r = T(Z, ci) + 0, 

where T is an n x 2n matrix operating on the joint vector (6, d) = (c, d) and 
8 is an environmental-mutational perturbation. 

The family of the next generation is the conglomerate triplet x’ = (I?, d, r). 
The transition from 

x of (6.2) to x’ = (e, d, r) (6.8) 

encompasses the changes from a nuclear family of one generation to the next. 
The transformation of the distribution of x to x’ or, more accurately, the mapping 
of z to z’ (z determined in (6.5) referring to a pair of nuclear families) is of the 
form (4.4) and, therefore (by Result I, Section 1 l),agZobalZy attracting equilibrium 
phenotypic covariance array for the transition of nuclear families over successive 
generations exists. 

Nuclear Family of Four Members 

The model of nuclear families with any prescribed family size can be handled 
by the same means as that above, To be concrete, we concentrate on nuclear 
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families consisting of two children (one of each sex) and on unions that lead to 
that same progeny makeup. 

A family unit for our present purposes is described by the four n-tuple of 
phenotype arrays 

f = (xtm), XCf), cl”‘, CF’), (6.9) 

following a Gaussian distribution p(f). In line with the assortative mating 
processes of Section 5, when a union is established between two nuclear families 
of phenotype configurations fi and fa , the realization follows the joint 
probability density 

a(& Y 4) = Q(fJ PVJ 9% T f2)F (6.10) 

where #(fi, f2) stands for the conditional probability of a union (i.e., among a 
pair of children) culminating the contacts of the given nuclear families. 

Stipulating $(fi , fi) as a Gaussian selection function akin to (6.3), the normal 
distribution (i.e., mean and covariance structure) of (6.10) is readily ascertained. 
With #(fi , fJ possibly depending on all the components of fr and fi , the 
probability of the union between these families may be influenced by all the 
members thereof or a part of them; compare to the discussion of mating pre- 
ference functions like (6.4). 

The resulting nuclear family of the union of fi and fa consists of, for 
definiteness, 

g = @I”‘, $‘, o(m), .Cf)), (6.11) 

where eirn’ = I$“’ is the male child of family fi marrying the female child 
-(f) cv’ of family fi , where (Si”‘, 
Zat Yf (6.10). 

Cdf’) follow the marginal density induced by 

The children types o(m) and o(r) resulting from this union are determined in 
the usual manner, viz., 

o(m) = &m)$m) + S(m)$) + E(m) 

(6.12) 
O(f) = R(f)e;mm’ + S(f)@ + E(f) 

composed of a parental transmissible part and an independent residual environ- 
mental-mutational part. The transmission rule, in general, will be sex-dependent, 
as the notation of (6.12) indicates. It could even be more elaborate and depend 
on the grandparent types (?P), f(r), F(m), v(r)), particularly when cultural 
components are involved. 

Extensions to Multigenerational Pedigrees 

It is routine to extend the nuclear family model to allow for multigenerational 
effects. For example, the family unit would then involve both sets of grandparents, 
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the parents, and a prescribed sibship composition. The selection process 
establishing a union (wedding) of the two families paraphrases that of (6.10), 
where the mating selection function (the analog of #) can be influenced by part 
or all of the family member phenotypes. 

It would be of much value to develop a model of nuclear families accommo- 
dating variable sibship sizes and their sex ratio, age distribution of children (e.g., 
two or three age classes), and other family characteristics. In this vein, it would 
also be of interest to try to assess the influences of sets of demographic, social, and 
ecological factors (e.g., population density, rural-urban contrasts, customs, life 
styles, climatic variables). Some of the above factors, e.g., scorings on religious or 
life-style traits, can be easily integrated as part of the phenotype by appending to 
the description of the trait vector more components. Geographic effects and 
migration patterns can also be dealt with by way of the transmission rule. 
However, the effects of family size engender more formidable problems. Indeed, 
the multivariate Gaussian distribution endowment is not preserved in the 
presence of different family sizes. The induced distribution of a family of a given 
size actually occurs as a mixture of several distributions and this realization 
corrupts the basic Gaussian distribution description, leaving the dynamic and 
equilibrium behavior of the process virtually prohibitive to track. 

However, the model of this section can be adapted to study transmission on 
families with a specified set of collateral relatives including the occurrence of 
monozygotic and/or dizygotic twins. 

7. THE MULTIVARIATE GAUSSIAN PHENOTYPE MODEL WITH Two AGE CLASSES 

Let xc = (x1 ,..., xn) denote a m a e phenotype array in the child age class and 1 
xa. an adult male phenotype. The notations y, and ya refer to corresponding 
female phenotypes. Let these random variables follow the population densities 

Pt%), PF%), p%>, Pi?(y). 

For definiteness, the order of forces is taken as follows: 

adults census 
%J. 

phenotypic Galtonian 
mating pairings 

f couples 
transmission 

+ child 
ir,& X;“; 

selection and cultural 
transmission 

l adult in the next generation. 
xi,‘; (7.2) 

The mating structure can encompass aspects of assortative mating (in terms of 
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a mating selection function) such that the induced joint distribution of a spouse 
pair as delineated in Section 5) is determined to be 

P(% Y) = &P(x) pif’(y) #J(x, y) (% F) = (x, Y) (7.3) 

where 4(x, y) expresses the probability that the indicated couple mate, conditioned 
that they meet, and K is a normalizing constant to ensure that $ is a density. 

As usual, the offspring of the next generation receive a transmissible com- 
ponent depending on the parental types plus an independent random disturbance 
factor in the form 

y; = R'f'ji; + s'f'jT, + e(f), 

where R(m), S(m), R(f), and Sf) a re appropriate matrices that characterize the 
parental segregation-transmission rule where the environmental-mutational- 
error addends s(m) and e(f) are stipulated jointly Gaussian and independent of the 
parental makeup. 

The explicit distributions of the next generation young individuals pp’(x’) 
and pif’(y’) are directly ascertained on account of the linear relationship of (7.4) 
and knowledge of (7.3). 

The transformation of x’, to XL (and yk to y!J may involve some natural 
selection effects coupled to choices and innovations associated with cultural 
transmission. The action of selection, merging viability selection as (2.5) and 
cultural offspring-parental interactions, can transform the offspring and parents 
such that 

{X;:,jia,Pa}-f(Xa*,fa,fa}. (75) 

The actual phenotype values of each family triplet remain unchanged but their 
population distribution is that of the normal density 

where$(xi , jZa, 9,) is the joint density of the parents and child family set after the 
transmission-segregation stage of (7.4) and I#*; 5, q) is a Gaussian selection 
function which can depend on both the child and parental phenotypes. Even 
for the specification 

$ys*; g, ‘1) = G”), (7.7) 
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where the selection is a function of only the child phenotype, the induced 
family distribution p* of (xz, %a , 7%) = (XL , & , f&) is ordinarily altered as 
calculated by (7.6). Even in this circumstance, the marginal distribution 
p*(& , Pa) of the parent couple (&, qa) is changed owing to the action of 
selection on the child in maturing to a young adult, especially if the vector 
phenotype involves a number of cultural components. 

Alternative and/or additional transformations of cultural inheritance can be 
effected via the linear relationships of (7.4) or by invoking a further linear 
transformation of the form 

x; = Rx,*+ usi,+ vj+a+ E’ (7.8) 

where R, U, V are again matrices which bear contrasts in the determination of 
the adult phenotype of the succeeding generation XL . 

The passage of the child xh to the adult stage XL via (7.8) embodies a mixture of 
effects contributed by the parents and the child. This may be particularly apt for 
cultural transmission in which both the parents and the child are involved without 
the selection imprint of the type (7.6) but in the presence of (7.8). The joint 
distribution of (XI,, L& , ya), because (7.8) entails a linear transformation, is 
certainly Gaussian where the marginal parental density J(ii, ,qa) without (7.6) 
would coincide with that of (7.3). On the other hand, in the presence of (7.6) 
p*(5& ,frJ generally differs from $(&, y&). The essential concept is that the 
transition from the child phase to adult stage can involve nonlinear interactions 
as in (7.6) and/or linear relationships as in (7.8). In this perspective the aspects of 
cultural transmission (as with our assortative mating mechanism) and natural 
selection forces embrace nonlinear effects depending on the parental types 
interacting with the child’s type. 

The details concerning the calculation of covariances and the existence and 
uniqueness establishing an equilibrium Gaussian distribution for the conglo- 
merate (x, , xa , y, , ya} emanate from the general analysis of Theorem I, 
Section 11. 

With all the multivariate distributions accessible we can then compute spouse 
covariances, adult child covariances xs, with xc for the same individual or for 
different individuals of the same or opposite sexes, say xa with yC and many 
other combinations; see Karlin (III). 

8. A PHENOTYPE SELECTION MODEL FOR ADOPTED CHILDREN 

Our key idea is to regard the undertaking of an adoption as a selection process akin 
to that of mating preference, i.e., mating and adoption formations are analogous in 
that for mating two individuals are participating whereas with adoptions a spouse 
couple and a child are united. We formalize this approach; let p(m)(x)[p(r)(r)] 



334 SAMUEL KARLIN 

be the equilibrium phenotype distribution of the male (female) population. 
Consider a spouse couple of phenotype {5&y} following a distribution law 

B(x, Y). (8.1) 

For definiteness, the x (or x when it is vector-valued) stands for the male spouse 
phenotype value and y for the female phenotype value. 

Recall that 9(x, y) is the distribution induced by an appropriate mating 
selection function, as described in Section 5. Consider a male (child) in the 
population of phenotype Z. It seems reasonable to assume that the potential 
adoptee is a representative child in the population. On the other hand, there is the 
less well-founded assumption implicit in (8.2) below that the probability density 
of a couple seeking an adoption is that of (8.1). We would expect that adoptive 
families are not representative of normal families, and in this sense, the for- 
mulation (8.2) should be construed as limited and serves only as an approxima- 
tion. With this caveat, we assume that the meeting of a couple (5, y} with a child 
of phenotype Z, assuming random encounters, occurs with probability 

Rx, Y)P’“‘(4. (8.2) 

Paraphrasing the concept of selective matings, an encounter does not ensure 
an adoption, but rather I,!J(x, y; Z) estimates the conditional probability that the 
adoption is established. (The adoption selection function can emphasize more 
the family component than the child’s.) The joint density of a certified adoption 
of the couple {x, y} of a male child of phenotype z is 

(8.3) 

As usual, we stipulate that #(x, y; a) is a Gaussian density, of the general form 

4(x, y; 4 = exp [ - & {fix2 -t f2y2 +f$ + 2wy + 2b= +- 2h,y4 1 (8.4) 

with associated matrix 

(8.5) 

When the preference determinations on adoption are symmetric between the 
spouses we may assume 

fi =f2 7 h, = h, . (8.6) 
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A special symmetric form of #(x, y; z) in the spirit of (5.5) uses the adoption 
selection function 

%(x,34 x> = exp ( - & [(x - 4” + (y - 421), (8.7) 
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A nonsymmetric version assigning different degrees of influence for the two 
parents in the adoption process may prescribe 

r//(x, y; z) = exp [ - & {pi(.r - z)” + p2(y - @)]. WI 

In line with the general devlopments leading to (5.8), the density 4*(x, y, z) 
of (8.3) is Gaussian with covariance matrix 

I 
-1 

(8.9) 

(8.10) 

The explicit evaluations of (8.10) in the circumstance of (8.6) are easily accessible 
(cf. Karlin, III). With C * in hand, we can readily calculate the various covariances 
involving adoptees and other family members. We illustrate some cases under 
the sex-dependent symmetric transmission rule (3.6) and in the circumstance of 
(8.7) for a scalar trait. 

Consider a biological male offspring for the spouse pair (Z(m), Z(r)) whose 
trait value is determined by the linear form 

X(m) = ,$n) + p(f) + E. (8.11) 

The phenotype of the adoptee is, taking account of environmental and other 
external sources, 

X” = 2 + l A (8.12) 
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where the random residual contributions to the phenotype expressions E and 
l A may be correlated. The transmission from adoptive parents to adoptive child 
reflecting cultural and other acquirements from infancy to adulthood can be 
incorporated in a nonlinear manner similar to our developments of Section 7 
distinguishing two or several age classes. 

Assuming for ease of exposition the means equal to zero, we have 

E[X*P)] = c&[3i;‘m’ -(f) xl + B-q% zl + -Q%iI = 4* + B&t4 + COV(G E*) 
Var[x,] = VP,“’ + var E* , 

(8.13) 

while UP’ is the equilibrium variance of a regular male individual. 
The qualitative and quantitative results for the kinship correlations and for 

twin correlation models differ from the evaluations following the traditional 
lines (e.g., of Rao et al., 1976; Nance and Corey, 1977). 

9. EVOLUTION OF A QUANTITATIVE TRAIT UNDER CONTINUAL SIB-MATING 

In order to convey well the scope of the formulations and because historically 
(in 1971) I commenced these studies at the Weizmann Institute of Science, with 
quantitative genetical breeding programs in mind, I devote the present short 
section to the application of the concepts and methodology to a model of 
continual sib-mating. 

Let x and y be two sib vector phenotypes following the distribution law 
pt(x, y) of 2nth-order covariance matrix S, . They generate viable offspring with 
probability $(x, y) = exp[-(z, Yz)], z = (x, y), !P is a positive definite 
matrix, where 4(x, y) = Q(z) exercises a stabilizing selection force. The distribu- 
tion of a viable sib pair is then 

a&b Y) = 
P&h Y) 4(x, Y) 

J-M& 4 CC% rl) dS dq 
(9.1) 

whose covariance matrix is 

s, = (SF1 + !q-‘. 
Let the matrix T of order 2n x 2n be the transmission-segregation operator 

z’ = (z’, y’) = Tz + E (9.2) 

where E is an independent residual (random environmental-mutational) contri- 
bution normally distributed with covariance matrix F. The recursion of the 
covariance over two successive generations is 

s tt1 = T(S;’ + ‘P)-lT’ + F. (9.3) 
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The recursion (9.3) resembles (4.4) but differs from the model with separate 
sexes in the following essential way. In the present line of descent for sib 
mating, S, is a bona fide 2n x 2n irreducible positive definite matrix whereas 
in (5.10) the two-sex covariance matrix 

is reducible. The contrasting features of the equilibrium distribution for the 
sib-mating scheme as against the two-sex model of Section 5 will be under- 
scored in Karlin (VI), especially in the treatment of the parent-offspring and 
sib-sib covariances. 

10. SUMMARY AND DISCUSSION 

In this work and the companion papers in this series we set forth dynamic 
models of a vector phenotypic trait subject to assortative mating (selective) 
forms, viability selection forces, environmental-mutational factors, and various 
parent-offspring segregation-transmission rules. The formulation is sufficiently 
flexible to incorporate age class effects, discrete and continuous characters, 
geographical variation, sex-dependent transmission, and asymmetry with 
respect to male and female offspring expression, relationships among family 
and pedigree structures, and aspects of family set sampling units. The com- 
ponents of the vector phenotype can involve physiological, anthropometric, 
behavioral, and cultural variables. Artificial selection programs for vector 
quantitative traits, mixed cultural-polygenic inheritance processes, inter- 
pretations of population genetic epidemiology surveys, and descriptions of 
ecological phenotype evolution are unified in one setting. 

The. three principal forces considered pertain to mating pattern, parental 
transmission, and nontransmissible environmental perturbations. 

Assortative Mating Mechanisms 

The essence in our formulation of the assortment process is that it acts as 
a differential selection force with respect to mating types. The establishment of 
a spouse pair relates to the frequency of enounters among male and female 
individuals of varying phenotypes mediated by a relative conditional probability 
law (induced by a mating-selection function) that the encounter culminates in 
reproduction. The mating-selection function depends on the phenotype expres- 
sion of the potential mates. These can emphasize to varying degrees the different 
vector trait components. In this perspective, the contrasts between phenotype 
assortment and cultural assortment, or assortment based on social homogamy 
(as wealth status, religious customs, attitudes) merely concentrate the assortment 
selection mechanism on one or the other of the phenotype components. 

653/15/3-s 
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A curious aspect of the assortative mating equilibrium model that occurs in 
most recent works, e.g., Rao et al. (1974, 1976, 1979), Cavalli-Sforza and Feldman 
(1979), and Cloninger et al. (1978) is the tacit assumption that the equilibrium 
variance of the male (and female) partner from a couple is the same as the variance 
of a typical male (and corresponding female) in the population at large. This is 
never the case under our assortative mating process except in the special circum- 
stance of pure random mating. In our models the joint distribution of couple 
phenotypes generally induces a marginal distribution for the male (or the female) 
spouse with reduced variance compared to the corresponding population 
members at large. 

The assortative mating formulation following Fisher postulates linear 
stationary relationships where usually a scalar phenotype is expressed linearly 
in terms of genotype, family environment (and associated variables that index 
the family environment), and independent error factors. The assortment 
correlations are assumed to be invariant over successive generations, which 
contrasts with our assortment mechanism in that our spouse correlations change 
in time. 

We treat adoption practices (Section 8) similarly to assortative mating. Thus, 
adoption conforms to a selection (nonlinear) mechanism by way of a differential 
preference function that binds a couple with a potential adoptee. This approach 
again diverges from the methodology of linear structural equation models. 

Transmission Rules 

Our formulation allows sex dependence both with respect to the parental 
transmission and in the offspring expression, distinguishing it from the usual 
determinations that treat the sexes symmetrically. In a model with two age 
classes (Section 7) the cultural transmission scheme passing from the child to 
adult stage is promulgated in a nonlinear fashion. 

Convergence Results (Sections 4 and 11) 

It is perhaps remarkable that under the multivariate Gaussian model with all 
the influences and effects involved, and more generally with the two-sex structure 
allowing a quite general transmission-segregation scheme and varied mating 
patterns(nonlinear selective mating), stabilizing natural selection forces,mutation 
and migration pressures, and other environmental influences, there is practically 
always a unique equilibrium covariance structure z‘, to which the population 
covariance matrix 2, (of generation t) converges independent of the initiulpopula- 
tion composition. The convergence to the unique limit takes place even with 
non-Gaussian initial conditions. The global convergence theorem to a jinite 
limit is assured when the mating selection function is nonsingular, that is, where 
Y of (5.2) is positive definite. 
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The calculation of rates of approach to equilibrium in terms of the mating, 
transmission, and environmental parameters is of interest and this analysis is 
largely tractable. In fact, the rate of approach of ,?Yt is always geometrically 
fast. These can have bearing on ascertaining rates of selection advance for 
controlled programs and may be pertinent to understanding many inherited 
correlated risk factors in certain diseases. 

Further developments that allow the mating, transmission and environmental 
parameters to fluctuate systematically or randomly in time and space are covered 
in Section 13. 

The existence of a unique stable equilibrium (as in the multivariate Gaussian 
models) entails less sensitivity to the model construction retaining “continuity” 
with respect to small perturbations of the model system. Accordingly, although 
restrictions to normality may be inappropriate in several cases of stabilizing 
selection, the qualitative results appear to be robust. 

The behavior of the mean population phenotype p.t is less predictable compared 
to the population covariance development of Zt , depending more finely on the 
balance of all the mating, transmission, and environmental characteristics. There 
are cases where p*t may drift to co yet z‘, is persistently finite. The equilibrium 
mean population phenotype p, generally departs from the modal phenotype y 
(see (5.2)). An explicit formula of IL, - y is available; see Eq. (12.1). It is 
noteworthy that where the environmental and mating forces are concordant, 
meaning that the components of x are affected in a “synchronized” manner by 
the various genetic and environmental forces (formally, R, S, !P, F commute), 
and provided there is no mean environmental trend, then y, = y. However, 
even without deterministic trends, but where the interaction among the mating, 
transmission, and environment covariance terms are not concordant, meaning 
that some or all of the matrices R, S, !P, and F (defined in Section 3) do not 
commute, then II, will tend to deviate from y. 

“Genotypes vs Phenotypes” 

With respect to genotype-phenotype associations, the gene interactions 
determining the trait are complex and no clear mechanism is likely to be 
discerned. A distinction is made by several authors between genotype and 
phenotype components and cultural variables. The genotypic inheritance is 
often reflected by exact midparent transmission coupled to an added normal 
variate with variance equal to one-half of the phenotype variance which is 
supposed to reflect a within-family (“Mendelian segregation”) variance term 
(cf. Cavalli-Sforza and Feldman, 1976, 1977). This tactic seems quite arbitrary, 
apparently paraphrasing the presumption of additive equal allelic independent 
loci effects and global linkage equilibrium. These assumptions are generally 
inconsistent in the presence of assortative mating or almost any kind of selection 
differentials, dominance deviations, and other demographic and geographical 
influences in operation. 
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The nature and/or level of representation of phenotype observables in linear 
equation models in terms of “genotype,” “dominance,” “epistatic,” and “family 
environmental” variables is difficult to assess. In our formulation, there are only 
transmissible phenotypes to varying degrees subject to environmental (non- 
transmissible) perturbations. The “unobservable” variables such as genotype, 
dominance, epistatic components are blurred, and probably only meaningful 
in one-locus contexts. 

Alternative Multilocus Approaches for Polygenic Inheritance 

An appropriate theoretical model taking account of interactive loci effects, 
linkage relationships, and other genetic mechanisms has not been duly treated 
as yet. We propose as a more natural approach in order to unravel the nature of 
polygenic inheritance and its mechanisms the framework of multilocus inter- 
actions. It is meaningful to envision genotypic-phenotypic associations based on 
2 to 10 loci contributions coupled to forms of partial expressivity and random- 
environmental terms as a basis for phenotype expressions. Classifications and 
characterizations relevant to the dynamics and equilibrium behavior of n-locus 
theory incorporating components of selection-recombination events, nonrandom 
mating patterns, and facets of population structure are increasingly amenable to 
theoretical analyses, appropriate numerical simulation, and suggestive interpre- 
tations, see Karlin (1977, 1978a, 1979a), Karlin and Liberman (1979). 

Perspectives and Preview 

We develop in Karlin (II) and (IV) a detailed analysis of the qualitative 
properties of the equilibrium covariance structure of a scalar trait for a two-sex 
population allowing contrasting asymmetric transmission forms and general 
assortative mating patterns. In Karlin (III), kinship covariance calculations 
are done on a number of first and second cognate and affine relatives. The 
effects of selective mating and asymmetric transmission rules are particularly 
stressed. Contrasts are emphasized between sib-sib and parent-offspring 
covariances and also for more elaborate pedigree member covariance expres- 
sions. The method of computing kinship covariances of half-sibs, cousins, 
grandparent-child, etc., depends, as usual, on ascertaining the joint distribution 
of the relatives involved. However, in our approach the calculations’depend on 
a selection mechanism extending the scheme of assortative mating to include 
more relatives. 

The sixth paper in this series develops bounds and establishes various 
monotonicity properties of the multivariate equilibrium covariance matrix 
Zm( T, r, Y, F) seeking to elucidate their dependence on the transmission (T), 
viability selection (r), mating selection (Y), and environmental (F) variance 
parameters. 

With analytical modeling one should attempt a complete classification of 
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the formal structures elucidating functional relations between parameter 
specifications of the pertinent biological and environmental factors and the 
resulting possible observables. The solution of the model will rarely be 
quantitatively applicable, but may help provide a deeper qualitative conceptual 
basis for the interpretation of part of the findings, as well as in stimulating the 
intuition and imagination for further studies. Mathematical models can at their 
best reveal the principal potentialities at a given level and uncover their limita- 
tions. The analysis of models is in essence an educating process rather than an 
engineering construction. The qualitative information furnished by relevant 
analytical models meshed with the intimate experience on the empirical side is 
more likely to suggest suitable indices or functions for estimation purposes and 
the use of appropriate descriptive statistics in the interpretation of the data. 

Limitations 

It is now appropriate to list a number of the limitations, caveats, and cautionary 
notes concerning the conclusions derived from our models. 

(1) Although a general formulation of processes pertaining to multi- 
factorial inheritance is set forth in Section 2 the principal tractable case assumes 
multinormal distributions. It is recognized that many traits are intrinsically 
nonnormal. For example, the amount of phenylalanine in the blood plasma is 
bimodal (Penrose, 1952). Head size (Penrose, 1952) displays unimodal histograms, 
but diverges from normality. Many epidemiological data sets manifest strong 
skewness, kurtosis, and nonnormal higher moments, and the normality assump- 
tion may be inappropriate, e.g., weight, triglyceride levels, and glucose tolerance 
rates. Procedures using a power or log transformation on the data (which is 
intrinsically heterogeneous or likely comes from mixtures of distributions), 
purporting to remove skewness and thereby achieve approximate normality, 
are quite moot. The prospect of transforming measurements to a Gaussian state 
is generally not feasible for collections of random variables. The temptation to 
transform each component variable separately to normality will generally 
corrupt the basic correlation structure and obscure the dependence relations 
among the variables. With categorical data it is even less natural and here 
probably quanta1 regression forms are more relevant. Other trait expressions 
involve intrinsically constrained variables where the Gaussian model in this 
context is likely unsuitable. The modeling of some cases of nonnormal phenotypic 
inheritance is dealt with in Karlin (VII, VIII). 

(2) A serious limitation in most of the modeling is the linear parent- 
offspring transmission structure. An important modification seeks to stipulate 
a nonlinear function of the key variables and/or parameters. We have proposed 
some nonlinear transmission forms for cultural transmission in our treatment of 
the model with two age classes (Section 7) which should be regarded as only 
a first step in this direction. 
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(3) Our models do incorporate extended family formation and mate 
selection mechanisms conforming with population genetic concepts of sexual 
selection and selection differentials over mating types. Unfortunately, in these 
constructions of phenotypic interactions the genetics is minimal. This is a 

significant lacuna in all treatments of multifactorial inheritance to date. We 
have discussed earlier some possibilities with multilocus theory as a more 
natural structure in order to refine our understanding of polygenic inheritance 
and more easily and accurately incorporate epistasis, linkage relationships, 
and variable expressivity for the gene components. 

(4) We studied a model of multifactorial inheritance where the sampling 
unit is a nuclear family of a fixed sibship size. We do not know how to handle 

the more realistic case allowing variable family sizes and other family structure 
characteristics (e.g., age distribution of children, the role of sex ratio among 

siblings, other relatives living in the household). Stratification of variables 
usually induces mixtures of Gaussian distributions which are no longer Gaussian. 
New classes of models and techniques are needed here. 

(5) In dealing with the comparisons of adopted versus natural children 

(Section 8) a severe limitation in this discussion is the lack of a reasonable 
characterization of adoptive families. Similar problems arise in attempting to 
model and exploit data on sibs reared apart or together. 

(6) A number of problems connected with kinship covariance calculations 
are presented in Karlin (III). 

(7) We have been somewhat casual in lumping cultural, physiological, 
behavioral, and anthropometric variables as part of a general vector trait x. Their 
transmissibility characteristics are not similar and the environmental influences 
can be delicate concomitants and confounders. The statistical problems are 

formidable if not prohibitive. 

(8) The whole gamut of our models and its methodology accents departures 
from linearity in dealing with family formation processes, adoption practices, and 
cultural transmission forms and may be useful as a further approach in studying 
some econometric and sociological systems. Maybe some of these ideas can be 
modified and adapted to lend insights into the nature of distribution of earnings, 
education processes, etc. The problems are certainly never resolvable in analytical 
terms. It is our belief that no all-purpose strategy, when it comes to empirical 
research, exists, but each problem needs several reinforcing or counteracting 
approaches, including a thorough mix of modeling and empiricism. 

The evolutionary polemics at the close of the last century were concerned 
mostly with continuously distributed traits. With the rediscovery of Mendel the 
focus turned to discrete single or a few gene-induced traits. Intensive effort has 
been increasingly devoted to the study of multilocus interactions starting with 
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the decade of the 1960’s. Population genetics theory into the last decade has come 
full circle, engaging with new vigor the description and analysis of the trans- 
missibility characteristics innate to continuous phenotypic variation over space 
and time. 

11. THE PRINCIPAL CONVERGENCE THEOREMS 

To ease the exposition, we take R = Sin (4.4) and use the notation T = 2112R. 
The recurrence relations (4.4) and (4.5) have the forms 

where 
4+1 = f(4), (11.1) 

f(Z) = T(.?-l + P-I)-lT’ + F, 

defined for ,Z positive definite, and 

(11.2) 

~t+l = T&T1 + r-l)-l(G’~, + ~-IY) + 4. 

To simplify the analysis we stipulate r + F positive definite. With mating 
selection in place of viability selection replace @ for r throughout. The following 
result of wide scope and utility is proved in Appendix A. 

RESULT I. 

(a) The equation f(X) = .Z (f(Z) defined in (11.2)) has a unique positive 

defkite solution ,Zm andfrom any initial & , lim,,, Zlt = zl, . 

(b) Moreover, the matrix-valued function f (LX’) is strictly increasing and 
concave, meaning that if 

then 

Z < Z* (the ordering deftned for symmetric matrices sign$ies 

that Z* - Z is positive semide$nite and positive definite when 

we write Z* > .Z), (11.3) 

f(L‘*) > f (~1 and f ( ‘* : “) > ‘m2m providedZ* # Z. 

(11.4) 
We next highlight the limit value of t+ . 

RESULT II. We denote the spectral radius of a matrix C by p(C). Set P, = 
T(Z&’ + P-l)-lZ;‘. If the spectral radius of P, satisjies p(PJ < 1, then the 
existence of lim,,, pt = pm prevails with 

P Jo = (I - P,)-l[T(Z,-l + P-l)-l P-‘y + cp]. 

If P > Oandp(TT’) < I thenp(P,) < 1. 

(11.5) 
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Remark 11.1. (i) The result of (11.5) clearly holds if the norm of T obeys 
11 T/I < 1 and r > 0. (ii) The condition TT’ < I is present, for example, if T 
is a doubly stochastic matrix. (iii) Refinements on the convergence results will be 
elaborated in Sections 13 and 14. 

Observe that we need to impose growth restrictions on the norm of T in 
order to guarantee the convergence of pt which was unnecessary in establishing 
the convergence of the of covariance matrices Z, . 

Where F = 0 such that the mutation and environmental influences are deter- 
ministic (or nonexistent) and T = I (e.g., hapoid reproduction or uniparental 
transmission), then Z; converges to 0, signifying that the limiting phenotype 
value behaves deterministically. Further study of the progress of p, in this case 
reveals often I/ pt 11 ---f co, indicating that the deterministic environmental 
influence when extant overwhelms the stabilizing fitness effects. 

It is of interest to determine the population dynamics when no random- 
environmental (residual) is involved. Accordingly, we consider the reduced 
dynamic relation of (11.2) when F = 0, yielding 

Zt+l = T(Z;’ + I--l)-l T’ (11.6) 

(assuming for ease of exposition T nonsingular). This is equivalent to the linear 
recursion in 2;’ = W, of the form 

W t+l = T’-‘W,T-1 $ p, (11.7) 

where p = (T’-lr-‘T-l). The analysis of (11.7) is classical and we find that 

W, converges to a $nite nonzero covariance if and only if p( T’-lT-l) < 1 

or equivalently if and only if all the eigenvalues of T’T exceed 1. (11.8) 

We can sum up the preceding in the following result. 

RESULT III. With no candor-env~~on~entaz-mutational variance, F = 0, 
the equilibrium population covariance EC = 0 unless all the eigenvalues of T’T 
exceed 1. In the latter event, i.e., when the principal eigenvalue p((TT’)-l) < 1, a 
balance between selection and transmission is established entailing 2, > 0 as the 
unique solution of the equation 2& = T(Z;’ + r-l)-lT’. 

12. THE DEVIATION OF THE MEAN POPULATION PHENOTYPE 
FROM THE “OPTIMAL" PHENOTYPE 

It is of some interest to assess the departure of the equilibrium phenotypic 
mode p, from the optimal selection mode located at y (see (4.1)). Recall the 
explicit formula (11.5): 

P a = (I - I’,)-‘[T(Z;’ + r-‘) r-‘y + cp], (12.1) 
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where P, = T(Z:,l + r-1)-1Z;1 W e are now concerned with the magnitude of 

II Pm - Y II (12.2) 

evaluated in any suitable metric. 
In the context of preferential mating expressed by fertility selection acting on 

certain mating types (see (5.2)) such that 

464 = exp[-(lP)((z - Y, W - y))h 
the mode y can be interpreted as the socially optimal couple phenotype. 

From careful scrutiny of (12.1) we see that the mean random environmental- 
mutational translation endowed to the vector cp, if nonzero, compels a deviation 
of p, from y. However, even if cp = 0, then generally (12.2) is nonzero. More 
precisely, where T, r, and F commute (as in the one-dimensional case or when 
these effects are properly “synchronized”), note that (I - Pm) = T(.XL + 
P1).P1 and then formula (12.1) reduces to IL, = y + (I - P,)pkp. Then, 
as long as ‘p = 0 and even in the presence of environmental and natural and/or 
sexual selection variance, we see that pm coincides with the optimal fitness mode. 
On the other hand, even with cp = 0, but where T, r, and F do not commute (i.e., the 

interactions expressed in these forces are not consonant in phase and direction) then 
p, willgenerally deviate from y. For T = I and cp = 0 then always p., = y. 

The Existence of a Finite Mean Equilibrium Phenotype 

Recall that Ij pm 11 < co holds if p(P,) < 1 (Result II), signifying that the 
spectral radius of P, is less than 1. In particular, the existence of p, holds if T is 
doubly stochastic. However, if the segregation mechanism of T engenders 
excessive dispersion in parent-offspring phenotypic transmission, then Jo, does 
not exist, yet in sharp contrast ,EYm is always uniquely determined. For the 
contingency of // pdJ 11 = co, the centered phenotype variable X, - F, invariably 
settles as t + cc to the normal density N(0, Zm). Thus, with weak selection and 
strong parental transmissible overloading, the mean phenotype tends appro- 
priately to co, although the accompanying variability (covariance structure) of 
the process is predictable. 

13. THE VECTOR PHENOTYPE MODEL WITH GENETIC AND ENVIRONMENTAL 
PARAMETERS VARYING SYSTEMATICALLY OR RANDOMLY IN TIME 

The changes over successive generations in the phenotypic covariance matrix 
for the phenotypic model of (Section 5) involving preference mating (sexual 
seIection and/or viability selection), mutation-environmental perturbations, and a 
parental transmission matrix T is described by the recursion 

2 t+l =f(ZJ = T&Z,-’ + r-l)-l T’ + F. (13.1) 
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We know by Result I that Z:, converges to Z, , the unique equilibrium pheno- 
type covariance matrix associated with the vector phenotype trait. 

It is relevant to examine the validity of an equilibrium phenotype covariance 
matrix when the underlying genetic and environmental forces change in time. 
We report results on three aspects of this problem. 

A. Systematic Variation in the Forces 

Consider the model leading to (11.2) or (4.4) where the preference mating 
determination @(x, y) characterized by the matrix r, the total environmental 
variance F, and parental transmission form T vary in time such that 

r, --+ r* 

F,+F” as t-+co. (13.2) 

T,+ T* 

The relations (13.2) cover the situation of a systematic temporal trend in the 
basic forces tending to the limits as indicated. 

In this context the transformation equation of the population phenotype 
covariance over successive generations is adjusted to 

z t+l = T&Z,-’ + r;‘)-l T; + Ft . (13.3) 

Exploiting the innate monotonicity properties of f(Z) (see Result I and 
Appendix A) we again can confirm the limit relation 

‘&t-&c? (13.4) 

where zb, uniquely satisfies 

z = T*(z-1 + r*-l)-IT*’ + F*. (13.5) 

Accordingly, all the influences operating on the limiting phenotype covariance 
matrix as determined by the model forces {Tt , Ft , r,} translate into its 
dependence on T*, r* and F* where &,( T*, P, F*) and its properties and 
operations are as elaborated previously; see Karlin (VI). 

B. Periodic (as Seasonal) Variations in Genetic and Environmental Forces 

Consider the basic model subject to a cycle of forces with parameter specifica- 
tions as follows 

r,, = 4 , r,,,, = rl , F,t = Fz > F,,,l = F, , 
T,, = Tz , Tz,,, = Tl , t = 1) 2, 3 )... . 

(13.6) 
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Thus, subject to (13.6), every other generation is influenced by the same array 
of forces (a grandparent-grandchild concurrence). These cyclic possibilities may 
partly reflect psychological and physiological factors that cause “generation gaps.” 
The flexibility in our analysis, of course, allows us to treat periodicity of any 
prescribed order. 

The analog of (13.1) in the context of (13.6) connects the population phenotype 
covariance over two generations in the manner that 

where 
A~=> = fi(fl(a? (13.7) 

f,(Z) = Ti(zF1 + T;‘)-’ T; + Fi , i = 1,2. 

Again, we deduce for t + CO, convergence to the pair of equilibrium covariance 
matrices 

.& - 2*, &,, - z**, t-cc 

effective with period 2. 

C. Random Temporal Fluctuations of the Parameters 

To ease the discussion we consider the one-dimensional (numerical trait) 
model. The recursion of (13.1) becomes, with T = c#, 

%+l = ((i&(l/rt)) +ft 

v - t+1 - 
vt(aYt + ft) + Ytft . 

vt + Yt 

It is convenient to introduce the auxiliary variable wt , writing 

%+1 (VtlWt)(~Yt +ft) + rtft -=- 
Wt+1 (v&t) + Yt . 

(13.8) 

(13.9) 

The recursion (13.9) can be equivalently expressed by the linear system 

Et+1 = (“Yt + ft) fit + Ytft4 

et+1 = Gt + Yt% 

and consequently in the vector-matrix form 

(ii:::) = ( 
vt +ft 7 Ytft fit 

l,y, )irzJ 

(13.10) 

(13.11) 

When the matrices 
u 

t 
= vt + ft 3 Ytft 

( 1 9 Yt 1 
(13.12) 
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have random independently distributed entries over successive generations, then 

the important theory concerning the product of random matrices (e.g., Fursten- 
burg and Kesten, 1960; Furstenburg, 1963; Kingman, 1973) on iteration of 
random mixing transformations reduces to 

vt+1 L 1 %A1 
= (up-lU,-2 ... Ul) (;g. (13.13) 

It is known (lot. cit.) that 

U,U,_, ‘.’ U, , meircA (13.14) 

where rt is a constant that grows to 00 and A is a fixed positive random matrix 
governed by a discernible distribution. It follows on the basis of (13.14) that 

vt+1 
vt+1 = _ 

wti-1 
possesses a limiting distribution. (13.15) 

The multidimensional extensions of (13.8) are probably also valid. 

14. APPENDIX A: THE MONOTONICITY AND CONCAVITY OF f(Z) 

DEFINED IN (11.2) AND PROOF OF RESULT I OF SECTION 11 

The following analysis extends to a wide range of matrix-valued transforma- 
tions including 

and 

f(Z) = ((ZW?’ + S,ZS’)-l + F-l + F 

j(2) = ((T(,E1 + cI-~)-~T’ + F)-’ + P-1, 

defined for Z positive definite where r, F, and @ are positive definite. Recall the 

function f(Z) from (11.2) 

f(Z) = T(2-’ + I’-l)-lT’ + F. 

It is a familiar property that if 

0 < z; < & 3 i.e., Z; - Z1 is positive semidefinite and .Zr is positive definite 

(A.1) 
then 

z;-’ > z;’ and strict inequality holds unless Z; = Za . 

Applying this fact twice we deduce straightforwardly that f(Z) is strictly 
increasing. 
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For A a symmetric matrix and small (in any norm), we have 

f(z + A) -f(z) =f’(A) + Qf”(4 + O(ll A 113), (A.3 

where f  ‘(A) is a linear matrix valued mapping andf “(A) is a quadratic matrix map, 
viz., 

f’(A) = TLAL’T’ where L = (,X:-l + P1)-l Z-l 

f”(A) = 2T[(- 1) LAP’AL + LAPLAL’] T’ 
(A.3) 

and O(ll A 11”) is an anlytical matrix function in A of the ordu (( A 113. 

We establish now the Taylor expansion as displayed in (A.2). Let A be a 
symmetric matrix of small norm. Consider 

(Z + J-1 =zz ,F/2(1 + ~-l/~A~-W)-1~-1/~~ 

Set U = .ZW2A.Z-~~2 and writing the Neumann series for (I + U)-1 gives 

(z + A)-1 = Z-112 (g U”(4)“) Z-1’” 
?I=0 

= Z-l - Z-1AZ-1 + Z-‘APIA,C1 + 0( I[ A 1;“) 

= E-l + 2 + O(ll A II”) 

where WI A II”) re P resents a matrix of the order II A 1j3. (We have simplified the 
notation with 2 = -Z-*AZ-l + Z-lA,PAP.) A completely analogous 
expansion for (E-1 + I’-l + 2)-l, setting K = 2-l + r-l, produces 

(Z-1 + r-1 + 2)-l = K-1 - K-lZK-1 + K-lZK-1.2x-1 + O(ll 2 II”). 

Substituting for 2 yields the expansion (A.3). 
We claim that 

f”(A) < 0, i.e.,f”(A) is strictly negative definite if A is 

nonsingular symmetric. (-4.4) 

Manifestly the validation of the foregoing assertion reduces to proving 

z-1 > ‘E-IL where L = (Z-1 + P1)-lZ:-l. (A4 

Observe that EIL = P1(E1 + f-1)-1Z-1 is positive definite so that the 
comparison (A.5) is well defined. We next consider (A.5). Let 0 be orthogonal 
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such that 0’2’0 = /l = a positive diagonal matrix having (A1 ,..., A,) down 
the diagonal. Then for any nontrivial vector x, we have the inner product value 

Moreover, 

((0’210x, x)) = ((Ax, x)) = f  &X,2. 
i=l 

O’P(/v + r-y,Po = A(A + o’r-10)-*/1, 

and therefore, since O’.FO is positive definite, we have 

((0’2’LOX, x)) = ((Ll(A + o’r-IO)-’ Ax, x)) < f  &Xi2 (A.6) 
i=l 

and (AS) ensues and thereby (A.4) is established. 
Since the second variation of f(A) is strictly negative for A nonsingular, it 

follows that f(A) is strictly concave. 
By appeal to the theory of concave monotone operators (Krasnoselskii, 1964), 

the assertions of Result I, part (a), follow. 
The proof of convergence when T = I (or a muItipIe of the identity as with 

midparental transmission) of the recursion 

&+I = (2;’ + r-*)-l + F (A-7) 

is more accessible employing a simultaneous diagonalization of the positive 
definite matrices r and F. Actually, the procedure described leads to an explicit 
representation to the extent that eigenvalues and eigenvectors are computable. 

Define V, = B-1.ZtB-1 where B = Pi2 is the positive square root of r. By 

multiplying on the right and left by B-l, the relation (A.7) is converted into 

Y ttl = (K’ + 4-l + G, t = 0, 1, 2,... (A-8) 

where G = B-lFB-l. We will prove that V, converges to 

v  
m 

= G + (G2 + 4GY2 
2 

for any initial V,, > 0. There exists E > 0 sufficiently small and K > 0 
sufficiently large such that EI < V, < kl. (It suffices to take E < min{h 1 h an 
eigenvalue of V,} and K > maximum of such eigenvalues. By virtue of the 
monotonicity of f(A) the ordering V, < Vf entails V,,, < V:+, . The 
iteration of (A.8) can be performed if V, * = CT as only matrices commuting with 
G are involved and then (A-8) can be considered in its diagonal canonical 
form. We find that the limit is V, independent of the constant c. Since V, is 
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captured in the sense of the ordering of positive definite matrices between two 
sequences converging to V, of (A.9) it follows that V, + V, as claimed. 
The convergence of 2Yt to & follows directly from that of V, converging to V, . 

15. APPENDIX B: DISCUSSION OF RESULT II OF SECTION 11 

It is necessary to analyze the recursion formula (4.5) which we write in the 
compact notation 

where 

pt+l = Ptlrt + Qtu + 9 = Ptvt + Et , (B-1) 

Pt = T(Z;l + r-l)-l .Z;l, 

and 

Qt = T&l + r-l)-l r-l, 

et = Qtr + 4. 

Obviously P, --+ P, and Qt + Qm since Zt + zb, by Result I (see Appendix A). 
Moreover, the spectral radius of P, is less than 1 by assumption. 

We need the following lemma. 

LEMMA B.l. Under the conditions of Result II, then for all t large enough, we 
have the norm estimate 

II PlPt II < A2 < 1, forsomeh, O<h<l. (B.3) 

Proof. It suffices to establish (B.3) for t = co. Recall the notation L = 
(Z;’ + F-1)--127;r of (AS). Consider 

((P:Pmx, x)) = ((L’T’TLx, x)) < ((L’Lx, x)) 

the last inequality resulting since I - T’T > 0. But the analysis of (A.6) of 
Appendix A shows that I - L’L is strictly positive definite and therefore 
((L’Lx, x)) < h2((x, x)) for some 0 < /\ < 1. 

COROLLARY B.l. The spectral radius of P, is less than X < 1. 

In fact, let the eigenvalue of the largest magnitude be p2 and a corresponding 
normalized eigenvector be z, I/ z 11 = 1. Then 

p2 = I/ Paz /I2 = ((P&P& 2)) < x2. 
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The first step in the developement of Result II concerns the proof of the fact 
that (1 I+ 11 is bounded independent oft. 

Manifestly, /I et /I < C since the operators Qt (-+ QJ are bounded. From 

(B.1) 

((P t+l , P,,,)) = II i~t+lll~ = ((Pt~t , Pt1-4) + W’t~t , 4) + II A2 (B.4) 

and for t large enough, t > to, in view of Lemma B.l, we have 

or equivalently, 

< A2 II Pt II2 + x3 II I% II + c2 
< (A II k II + q2, 

II Pt+1/I G WI &II + c> f 2 to, O</\<l. P.5) 

We find that (I I+ I/ < C/(1 - X), f or all t > to and consequently (I pt II is uni- 
formly bounded. 

We are now prepared to establish convergence of pLt . To this end, it is con- 
venient to rewrite (B.l) in the form 

pt+l = Pat + Q~Y + 4 + St P.6) 

where St = (Pt - P&Q + (Qt - Qm)y. 
SincePt-+P,,Qt+Qm, and /I pc jl is uniformly bounded, it follows that for 

any prescribed positive 6 > 0 there exists t large enough, say t > to with the 
property // St \j < 6. Then iteration of (B.6) leads to 

l%,+n = Pm”&, + f Pmk(Qmiy + (P) + f PmkSto+“-k--l. (B-7) 
k=O k=O 

Since the spectral radius p = p(P,) < 1, then /I Pmk // < pk for all K > 0, 
and as 11 8, /I < 8 for all t > to and plainly Czz=, P,” = (I - P&l, we deduce 
standardly 

lim II IL~~+~ - (f - PP(Q,Y + #fll 6 CA n--m Cl = f Ii P,“I/. (B.8) 
k=O 

As 6 can be made arbitrarily small, (11 S) obtains. 
The proof of Result II is complete. 
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