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Summary

Over the course of the past five decades Monte Carlo methods have progressed from

their infancy to a set of powerful and widely used computational tools. Scarcely

any field which involves complex integration or optimisation problems has not been

influenced by this rapid development. The end of the twentieth century was marked

by an explosive development in Markov chain Monte Carlo methods. In recent

years, there has been a great deal of development in the field of population-based

Monte Carlo methods. These include a number of developments of the sequential

Monte Carlo methodology (which has been used as a technique for the approximate

solution of the optimal filtering problem for somewhat longer) allowing it to be

applied to a much broader range of sampling problems.

This thesis comprises three novel contributions to the field. The first of these is

somewhat theoretical in character: it is proven that one particular piece of method-

ology (the sequential Monte Carlo implementation of the probability hypothesis

density filter) which has recently been proposed in the literature converges almost

surely, and obeys a central limit theorem with a particular variance expression.

The other contributions are of a methodological nature. One of which is to

develop algorithms for maximum likelihood estimation for latent variable mod-

els using a population-based sampling technique. This approach allows for the –

possibly unknown – marginal likelihood to be maximised via a data augmenta-

tion strategy. The final contribution is a method by which rare event probabilities

can be estimated using another population-based simulation technique employ-

ing a sequence of artificial distributions. Illustrative examples of these techniques

are also presented – as are comparisons to alternative approaches, where this is

appropriate.
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1. Introduction
“We could, of course, use any notation we want; do not laugh at

notations; invent them, they are powerful. In fact, mathematics is, to a

large extent, invention of better notations.”

– Richard P. Feynman, “The Feynman Lectures on Physics”

1.1 Context

In recent years Monte Carlo methods have become a widely used and powerful tool

in many fields from statistics to biology, finance and even computer games. Chapter

2 summarises many of the main developments in this field, particularly where

they are relevant to the work presented in this thesis. Many of the ideas which

were adopted and widely used in the last few decades were originally proposed

in the 1950s. However, the development of fast, cheap computers was an obvious

prerequisite for the wide applicability of such computationally intensive methods.

Now that such computing power is widely available there remains work to be

done on the development of efficient and widely applicable algorithms. It is to

this end that this thesis has been largely concerned with the development of novel

algorithms which can be applied to, and might be expected to perform well in, a

wide variety of scenarios with minimal problem-specific “tuning” being required.

We have also been concerned with addressing certain theoretical problems asso-

ciated with existing algorithms to provide some insight into the situations in which

such algorithms might perform well and to provide some guidance to applications

specialists about the use of such algorithms in real-world problems. Particularly,

convergence results and central limit theorems provide guidance about the circum-

stances in which algorithms converge and asymptotic variance expressions provide

useful information about the design of particular algorithms.

1.2 Notation

It is useful to summarise the notation which is used throughout this thesis before

becoming involved in the details. Wherever possible, notation is used consistently

throughout the thesis, although the particular requirements of certain chapters

are such that there is inevitably some conflict between this requirement and the
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desire to be consistent with standard usage within the literature. Wherever there

is any likelihood of confusion this has been indicated in the text.

N, Z and R are used to denote the fields of natural numbers, integers and

real numbers, respectively and the + subscript is used to denote the non-negative

subsets of these fields where appropriate. Given a real quantity, x ∈ R, we define

the floor, ceiling and remainder of x as:

⌊x⌋ , sup{y ∈ Z : y ≤ x},

⌈x⌉ , inf{y ∈ Z : y ≥ x},

and x♯ , x− ⌊x⌋.

We make use of x∧ y and x∨ y to denote the minimum and maximum, respec-

tively, of x and y. The cardinality of a set, A, is denoted |A|; that of an explicitly

defined set by #{a1, . . . , aN} = N . The empty set is denoted ∅ and we adopt the

usual conventions for the sum and product of any function over it (
∑
∅

= 0 and
∏
∅

= 1), and its upper and lower bounds (inf∅ =∞ and sup∅ = −∞).

Allow xp:q to denote the vector comprising components xp, xp+1, . . . , xq. Given

a vector, x = x1:d we use x−k = x1:k−1,k+1:d to refer to all but the kth element of

that vector.

Where it is necessary to describe matrices in terms of their components, we

write A = [aij ] where aij is the expression for component i, j of matrix A. Given a

general measurable space (E, E) we refer to the set of all σ-finite measures on that

space, asM(E). The set of all probability measures on (E, E) is denoted P(E) ⊂
M(E), and the Dirac measured located at e is denoted δe(·). We denote the Banach

space of bounded measurable functions on E (endowed with the supremum norm,

||ξ||∞ = supu∈E |ξ(u)| for any ξ : E → R ), Bb(E). On any space, 0,1 and Id

denote the zero function, unit function and identity operator, respectively.

Given a probability measure P on (Ω,F) and an E/F-measurable random

variable X, we allow P ◦ X−1 to denote the measure on (E, E) corresponding

to the law of X. For example, given a random process (Xn)n∈N we denote the law

of the first N elements P◦X−1
1:N . That is, X−1 denotes the inverse image associated

with the random variable X.

Give a second general measurable space (F,F), we define a kernel from E to

F , K, to be a function K : E ×F → R+ such that:

∀e ∈ E,K(e, ·) ∈M(F ),

and ∀df ∈ F ,K(·, df) ∈ E .

Such a kernel induces two operators, one onM(E):

µK(·) =

∫

E
µ(de)K(e, ·)∀µ ∈M(E),
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and one on the F −measurable functions on F :

K(ξ)(·) =

∫

F
K(·, df)ξ(f)∀ξ ∈ Bb(F ).

When we wish to consider the joint distribution induced over (E, E) × (F,F) by

a measure π on (E, E) and such a kernel we use the notation π ⊗ K(de, df) =

π(de)K(e, df) and given a sequence of measurable spaces (En, En)n∈N and a col-

lection of kernels Kp : Ep−1 × Ep → R+, we write

K⊗
p:q(ep, dep+1:q) =

q∏

j=p+1

Kj(ej−1, dej).

We note that this allows us to relate the tensor product of kernels to their convo-

lution in a concise manner:

∀xp ∈ Ep, Aq ∈ Eq, Kp:q(xp, Aq) =

∫
K⊗
p:q(xp, dxp+1:q−1 ⊗Aq).

The terms Markov kernel and transition kernel will be reserved for those kernels

with the additional property that

∀e ∈ E,K(e, ·) ∈ P(F ).

Given a kernel from E to E, we define the n-fold application of that kernel induc-

tively as:

Kn(e, de′) = Kn−1K(de′)(e);K0(e, de′) = δe(de
′).

The following notations are used to describe various probability distributions:

Ber (p) describes the Bernoulli distribution with success probability p, Di (α)

the Dirichlet distribution with parameter vector α, N
(
µ, σ2

)
describes a nor-

mal of mean µ and variance σ2, Ga (α, β) a gamma distribution of shape α

and rate β, IG (α, β) the inverse gamma distribution associated with Ga (α, β),

Logistic (µ, s) the logistic distribution with location µ and scale s and KS refers

to the Kolmogorov-Smirnov distribution. The measures and densities associated

with these measures are indicated in the same way, with an additional argument

separated from the parameters by a semi-colon.

Finally, we note that the thesis is written first person plural in accordance with

the conventions of technical literature. No intention to indicate collaboration or

the involvement of other parties is attached to this usage, and collaborative work

is indicated explicitly within the text where necessary.

1.3 Outline

This thesis is concerned with some recent developments in the theory and method-

ology of Sequential Monte Carlo (SMC). It begins, in the next chapter, with a
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survey of the Monte Carlo literature before moving on to the novel contributions

of this thesis, which are:

– Chapter 3: provides an asymptotic analysis of the SMC implementation of the

Probability Hypothesis Density (PHD) filter, including convergence of the par-

ticle approximation and a central limit theorem.

– Chapter 4: presents a novel SMC algorithm for obtaining marginal parameter

estimates.

– Chapter 5: introduces a novel SMC approach to the estimation of the probability

of rare events.

Finally, some potentially interesting areas of further work are proposed.



2. Monte Carlo Methods
“Fortunately, the future is unpredictable and also – because of quantum

effects – uncertain.”

– Andrei Dmitrievich Sakharov

We shall take Monte Carlo Methods to be the class of algorithms which fundamen-

tally make use of random samples from some distribution to achieve their result.

In practice, of course, almost all computer simulations make use of pseudo-random

number generators, we shall not concern ourselves with that subtlety. Typical ap-

plications include approximateintegration of some function with respect to that

distribution, or the optimisation of a related function. This is an area with a rich

literature, with the recent interest in its use with modern computing machines

going back at least as far as [112] and we cannot hope to provide a comprehensive

discussion here. An excellent, and recent, book length review of the subject is

provided by [130]; historical commentaries on the early days of the Monte Carlo

method at Los Alamos National Laboratory are provided by [50, 110]. It is the

intention of this section to provide an overview of the major methods in use at

present, particularly those which the work presented later depends upon, and to

set them in context.

By way of motivation, we note that Monte Carlo methods – which a few decades

ago were of only specialist interest – are now one of the most broadly used compu-

tational techniques. Indeed, the Metropolis algorithm has been named one of the

ten most influential algorithms of the twentieth century by the editors of Com-

puting in Science and Engineering [44] – a more detailed commentary on their

choices was presented by [26]. It would not be possible to give any meaningful

overview of the areas in which such methods have found applications within the

last few decades, but these include signal processing [135], mechanical engineering

[22, 23], communications [129], statistics [19, 142], finance [61, 68, 70], many areas

of physics including optics [9, 115, 56], cosmology [143, 45] and the analysis of

spin glasses [120, 6], biology [103, 53], chemistry [10] and others.

We shall consider only Monte Carlo integration, although many of the same

principles apply equally to Monte Carlo optimisation. Given a probability space

(Ω,F ,P) , we allow π to describe the law of some random variable X : Ω → E.
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Throughout this section, π shall denote a probability measure on a measurable

space (E, E) with respect to which we wish to integrate a measurable function

ξ : E → R

2.1 Perfect Monte Carlo

The terms perfect, näıve and crude Monte Carlo simulation all refer to those

methods which involve obtaining a set of independent, identically distributed (iid)

samples from the distribution of interest and using these samples to perform inte-

gration of a function with respect to that distribution. It is this approach which

was originally referred to as the Monte Carlo method by [112] but in the interven-

ing decades the term has come to encompass a much broader class of approaches.

The generation of random variates themselves is a complex subject. Many ap-

proaches to the generation of uniform bits are described in [95, chapter 3]; a wide

variety of approaches to obtaining non-uniform random variates are considered in

[43]. For the purposes of this thesis, it is assumed that it is possible to draw the

samples which are required by the approaches described.

When a set of iid samples {Xi}Ni=1 drawn from π is available, the Monte Carlo

estimator of the integral of the function ξ under that measure can be expressed

as:

Î(ξ) :=
1

N

N∑

i=1

ξ(Xi), (2.1)

which may alternatively be interpreted as the integral of ξ under the empirical

measure of the sample set, π̂NMC :

π̂NMC(·) :=
1

N

N∑

i=1

δXi(·) Î(ξ) = π̂NMC(ξ). (2.2)

The Strong Law of Large Numbers (SLLN) for iid random variables (see, for

example, [140, p. 391]) ensures the almost sure convergence of this estimator to

the true value as the number of samples tends to infinity, provided only that they

have finite expectation,

lim
N→∞

1

N

N∑

i=1

ξ(Xi)
a.s.→ E [ξ(X1)] , (2.3)

and the central limit theorem (CLT) further ensures that the distribution of the

estimator is well behaved in the same limit [140, p. 335], providing the variance is

finite,

lim
N→∞

√
N
(
π̂NMC(ξ)− π(ξ)

) d→ N (0,Varπ (ξ)) . (2.4)

There are a number of methods for obtaining iid samples from distributions

from which it is not possible to sample directly. As these methods underly the
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more sophisticated methods upon which we will later rely, some of the common

approaches are summarised below.

Inversion Sampling. If π is a distribution over the real numbers which admits a

density with respect to Lebesgue measure, and it is possible to invert its cumulative

distribution function (cdf ), F , then it is possible to transform a sample, U , from

a uniform distribution over [0, 1] into a sample, X, from π by making use of the

following transformation:

X = F−1(U).

Actually, it suffices to obtain a generalised inverse of F , a function with the prop-

erty that, F−1(U) = infx {F (x) ≥ U} as the image of the set of points over which

the true inverse is multi-valued is π-null. More details are provided by [130] and

[43, chapter 1] which also discusses some extensions to the method. This approach

had been considered by Ulam prior to 1947 [50].

2.1.1 Rejection Sampling

Another approach is available if there exists a distribution, µ, from which it is

possible to obtain samples, and with respect to which π is absolutely continuous

with bounded Radon-Nikodým derivative. In this case, we can simply draw sam-

ples, X, from µ and accept them as samples from π if an independent sample, U ,

from a uniform distribution over [0, 1] lies below 1
M

dπ
dµ(X) for some majorising con-

stant, M ≥ supx
dπ
dµ(x). Algorithm 2.1 gives a formal description of the algorithm.

Intuitively, this approach simply makes use of the fact that sampling uniformly

from the area beneath the probability density function (pdf ) (where it exists) of

a distribution and discarding the irrelevant coordinate provides samples from the

distribution itself (a result known as the fundamental theorem of simulation). The

first suggestion of this technique appears to have been in a 1947 letter from Von

Neumann to Ulam [50].

Algorithm 2.1 Rejection Sampling

Ensure: M ≥ supx
dπ
dµ

(x)

1: Sample X ∼ µ
2: Sample U ∼ U [0, 1]

3: if MU ≤ dπ
dµ

(X) then

4: Accept X as a sample from π

5: else {Reject this sample}
6: Go to step 1

7: end if

The expected proportion of samples which are accepted are given by:
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E
[
I[0, 1

M
dπ
dµ

(X)](U)
]

=

∫
1

M

dπ

dµ
(x)µ(dx)

=
1

M

which makes it clear that this approach can only be efficient when a distribution

close to π is available for use as a sampling distribution – otherwise there will

be regions in which the Radon-Nikodým derivative is large: consequently, a large

value of M is required, and many samples will be discarded for every one which

is retained. The correctness of the method is easy to verify by considering the

distribution of accepted samples:

P

(
X ∈ dx |MU ≤ dπ

dµ
(X)

)
=

P
(
X ∈ dx,MU ≤ dπ

dµ(X)
)

P
(
MU ≤ dπ

dµ(X)
)

= µ(dx)
1

M

dπ

dµ
(x)/

1

M

= π(dx).

[109] noted that it is possible to obtain greater computational efficiency if there

exist cheap-to-evaluate functions which tightly bound the density of π with respect

to µ, and termed such bounds squeezing functions. More recently, a mechanism

for adaptively obtained such bounds from the samples themselves, leading to a

sampling technique termed adaptive rejection sampling, has been proposed in the

case of log-concave densities [67, 62] (where it is possible to bound the log density

by considering functions which are piecewise linear between those points at which

it has already been necessary to evaluate the function) and subsequently for general

densities [65] (although the latter makes use of techniques from the field of Markov

chain Monte Carlo, described below, and does not produce independent samples).

2.2 Importance Sampling

Rejection sampling seems in some senses rather wasteful, as it necessarily discards

some samples without making any use of them. Importance sampling, in contrast,

makes use of every sample but weights each one according to the degree of similar-

ity between the target and instrumental distributions. Algorithm 2.2 describes the

approximation of π(ξ) using N samples from µ. This is essentially an application

of the result which [130] terms the importance sampling fundamental identity:

π(ξ) = µ
(
ξ dπ

dµ

)
provided that π << µ.

In many interesting cases, the target measure is known only up to a normalising

constant. In this case, a common strategy is to divide the unnormalised estimate

of the quantity of interest by the unnormalised estimate of the integral of the
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Algorithm 2.2 Importance Sampling
1: for i = 1 to N do

2: Sample Xi ∼ µ
3: Set Wi = dπ

dµ
(Xi)

4: end for

5: π̂N
IS,1(·) = 1

N

PN
i=1WiδXi(·)⇒ π̂N

IS,1(ξ) = 1
N

PN
i=1Wiξ(Xi)

unit function. The integral of the unit function under an unnormalised measure, is

exactly the normalising constant required to turn that measure into a probability

measure. This strategy, as it makes use of the ratio of two unbiased estimators,

introduces a bias for finite samples. It is, however, asymptotically consistent, and

can provide lower variance estimates than standard importance sampling [130].

Algorithm 2.3 provides a formal description of this approach.

Algorithm 2.3 Self-Normalised Importance Sampling
1: for i = 1 to N do

2: Sample Xi ∼ µ
3: Set Wi = Z dπ

dµ
(Xi), where Z is some unknown normalising constant

4: end for

5: π̂N
IS,2(·) =

PN
i=1WiδXi(·)/

PN
i=1Wi ⇒ π̂N

IS,2(ξ) =
PN

i=1Wiξ(Xi)/
PN

i=1Wi

This approach is justified by a SLLN and Central Limit Theorem (CLT) in the

same way as perfect Monte Carlo [61].

It has been noted that rejection sampling can be interpreted as importance

sampling on the space Ω × [0, 1] on which X × U are distributed using a par-

ticular importance function [20]. The same study demonstrates that importance

sampling has a lower variance than rejection sampling using the importance func-

tion as the proposal distribution, with a suitable majorising constant (when one

considers using N samples from that proposal distribution to estimate the integral

of a function under that distribution). As this argument shows that importance

sampling is essentially a Rao-Blackwellised [130, section 4.2] version of rejection

sampling, this is what would be expected.

A comparison between the two techniques is also provided by [130, section

3.3.3], who consider a slightly difference case. Their analysis considers drawing n

samples by rejection sampling, and producing in the process a random number of

samples which are used within the importance sampling estimator, which intro-

duces a stopping-time. This makes the comparison more complex, but it is possible

to say that there exists an instrumental distribution from which importance sam-

ples can be drawn which will lead to an estimator which dominates the rejection

sampling case. This is perhaps a more relevant comparison, although for large n

one would expect the differences to be negligible. However, if one actually requires
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iid samples from π, rather than an approximation to an integral, then importance

sampling cannot be used. Further details concerning Rao-Blackwellisation in gen-

eral, and in the particular case of rejection sampling, can be found in [15]. Their

Rao-Blackwellised version of rejection sampling is slightly more subtle than the

traditional importance sampling estimator, as it takes into account the stopping

time corresponding to accepting the nth sample.

It has also been demonstrated that the rejection sampling estimator is dom-

inated by one which makes use of the rejected samples to produce an unbiased

estimator of zero which has negative covariance with the rejection sampling esti-

mator [121].

2.3 Markov Chain Monte Carlo (MCMC)

In many cases it is extremely difficult to obtain large numbers of iid samples

from a distribution of interest. The principle behind Markov Chain Monte Carlo

(MCMC) methods is that, if one can construct an ergodic Markov chain which

has π as its stationary distribution, then the samples obtained from a sufficiently

long simulation of that Markov chain will correspond to a large set of dependent

samples from π. This is a complex and interesting area which extends far beyond

the scope of this thesis. An extremely good review of the theory of Markov chains

is given by [113], or more briefly by [119]; more approachable introductions to

the area are provided by [130, chapter 6] and [132, 146], and a good, if slightly

dated, reference for the application of MCMC methods is [66]. Many more recent

developments are summarised in [130].

It has recently been demonstrated that it is possible to consider a set of

weighted samples as a jump-Markov process with sojourn times corresponding

to their weights [108]. This is an exciting development which should in time lead

to the transfer of many results between the rich literatures of Markov Chains and

importance sampling.

2.3.1 Discrete Time Markov Chains

It is not possible to completely avoid reference to the theory of Markov Chains,

whilst adequately summarising MCMC. This section contains a few essential con-

cepts which motivate and justify the techniques which are described below. Sim-

ulation algorithms typically make use of discrete time Markov chains, and the

continuous time case (also referred to as Markov processes) will not be consid-

ered. We assume, without loss of generality, that the index set is N.

Consider a (possibly inhomogeneous) Markov chain, (Xn)n∈N, which takes its

values in a sequence of measurable spaces (En,Fn)n∈N with initial distribution
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η0 and elementary transitions given by the set of Markov kernels (Mn)n≥1, Mn :

En−1 → P(En), where P(En) denotes the class of probability measures on space

En, i.e. the canonical Markov chain:
(
Ω =

∞∏

n=0

En,F = (Fn)n≥0, (Xn)n∈N,Pη0

)
, (2.5)

where {Fn} denotes the natural filtration of {Xn} and the law Pη0 of the chain,

with initial distribution η0, is defined by its finite dimensional distributions:

Pη0 ◦X−1
0:N (dx0:N ) = η0(dx0)

N∏

i=1

Mi(xi−1, dxi). (2.6)

The defining property of a Markov chain is the (weak) Markov property : for

any deterministic times m ≤ n, for any η0 ∈ P(E0):

Pη0(Xm:n ∈ dxm:n|X0:m−1) = Pη0(Xm:n ∈ dxm:n|Xm−1).

For the remainder of this section we shall consider only time homogeneous

Markov chains for which Ei = E and Mi = M at all times. Such Markov chains

are sufficient for the purposes of considering MCMC algorithms, but the full gener-

ality of the above definition is required when we come to consider the Feynman-Kac

flows which underpin the theory of many other methods. It is useful to consider

certain fundamental properties of Markov chains, as they apply to the homoge-

neous case. Here, the strong Markov property extends its weak counterpart to

include finite stopping times, so that, for any P-almost surely (a.s.) finite stopping

time T , and any function ξ : E∞ → R, whenever the expectations exist:

E(ξ(XT+1, XT+2, . . . )|X1:T ) = E(ξ(XT+1, XT+2, . . . )|XT ), P− a.s..

The strong Markov property holds for all discrete time Markov chains [113], and

this can be straightforwardly proved by conditioning upon the possible values of

the stopping time and applying the weak Markov property.

Irreducibility. Loosely speaking, a Markov chain is irreducible if (almost) all

states communicate; the property corresponds to the existence of a path of positive

probability from (almost) any point in the space to (almost) any measurable set.

A Markov chain of the sort described is ψ-irreducible for some ψ ∈ P(E) if, for

ψ-almost every (a.e.) A ∈ E , the following holds:

∃n ∈ N s.t. ∀e ∈ E,Mn(e,A) > 0.

The term strongly ψ-irreducible is used to refer to chains for which this holds with

n = 1. Note that, in the discrete state space case, it is possible to term a chain

irreducible if there is a finite probability of moving from any state to any other

state in finite time, i.e. ∀x, y ∈ E,Pδx(inf {n : Xn = y} < ∞) > 0. This concept

clearly does not generalise to continuous state spaces.
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Aperiodicity. In the discrete state space case, a Markov chain is aperiodic if

there exist no cycles of length greater than one, where a cycle is defined as the

greatest common denominator of the length of all routes of positive probability

between two states. In the general case, a little more care is required. The in-

troduction of so-called small sets provides a suitable analogue for the individual

states of the countable state space case, see for example [119, chapter 2] or [113,

chapter 5]. In essence a small set is one from which a minorisation condition holds,

i.e. a set C is small if,

∀x ∈ C∃m ∈ N, δ ∈ R+, ν ∈M(E) s.t. ∀B ∈ E : Mm(x,B) ≥ δν(B). (2.7)

A Markov chain has a cycle of length d if, there exists a small set C, for which:

d = gcd {m ≥ 1 : ∀x ∈ C,B ∈ E∃δm > 0, νm ∈M(E) s.t. Mm(x,B) ≥ δmνm(B)} .
(2.8)

In full generality, if the longest cycle associated with a Markov chain is of length

one then that chain is aperiodic.

Recurrence. A recurrent Markov chain is, roughly, one which is expected to

visit every important state infinitely often. A Markov chain of the form described

above is recurrent if there exists some ψ ∈ P(E) for which it is ψ-irreducible and

E[# {Xi ∈ A}] =∞ for ψ-a.e. A.

In considering the convergence of MCMC algorithms, a stronger form of recur-

rence is useful. A set A is Harris recurrent if ∀e ∈ E,Pδe(# {Xi ∈ A} =∞) = 1; a

ψ-irreducible chain is Harris recurrent if ψ-a.e. set A is Harris recurrent. This form

of recurrence was shown to be sufficient to guarantee the existence of a unique

invariant distribution for the chain [76].

Ergodicity. The ergodic theorem [113, chapter 13] tells us that, for any Har-

ris recurrent Markov chain, {Xn}, with stationary distribution π, and any L1,µ-

integrable function ξ:

lim
n→∞

1

n

n∑

i=1

ξ(Xi) =

∫
ξ(x)π(dx).

Numerous theoretical results from the theory of general state space Markov

chains can be applied to the particular cases employed in MCMC. It is neither

feasible nor desirable to summarise them here, however, [145] provides a summary

of some of the more useful convergence results with particular emphasis on the

Metropolis-Hastings algorithm. See [119, chapter 7] for limit theorems of Harris

recurrent Markov Chains and [113, part III] for various forms of convergence.
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2.3.2 Metropolis-Hastings (MH)

The seminal paper of Metropolis et al. [111] is widely regarded as being the first in

this field, and introduced the principal ideas behind the most widely used MCMC

algorithm to date, the Metropolis-Hastings (MH) algorithm. The key feature of the

algorithm is that it provides a mechanism for taking a symmetric proposal kernel

and producing a new Markov kernel which has the desired stationary distribu-

tion. An alternative approach (which differs only in the form of the acceptance

probability) was proposed by [7]. The principal innovations of Hastings [77] were

to modify the methodology to permit asymmetric proposal distributions and to

generalise the form of the acceptance probability in such a way as to include both

of the earlier algorithms as special cases. The approach of Metropolis, as extended

to asymmetric proposal distributions by Hastings, was shown to be optimal, at

least in the case of discrete state spaces, in the sense of asymptotic variance [122].

Algorithm 2.4 describes the procedure for obtaining a sequence of samples from

a Markov chain of invariant distribution π by making use of a Markov transition

kernel K, both of which are assumed to admit a density with respect to a suitable

dominating measure, λ. For simplicity, we use the same symbols to refer to the

densities and their associated measures throughout the remainder of this section.

A more detailed historical survey is provided by [78].

Algorithm 2.4 Metropolis-Hastings
1: repeat

2: Sample X̂t ∼ K(Xt, ·).
3: Calculate the MH acceptance probability, α = min

“

1, π(X̂t)K(X̂t,Xt)

π(Xt)K(Xt,X̂t)

”

.

4: Sample U ∼ U [0, 1].

5: if U ≤ α then

6: Accept this proposal, and set Xt+1 = X̂t.

7: else

8: Reject this proposal, and set Xt+1 = Xt.

9: end if

10: until Sufficiently many samples have been obtained.

As mentioned above, the key feature of this algorithm is that it produces a

Markov kernel which has the desired invariant distribution. Consider the Markov

transition kernel, M : E → P(E) under whose influence the sample sequence, Xt,

described in algorithm 2.4 evolves:

M(x, dy) = α(x, y)K(x, y)λdy + (1− α(x, y))δx(dy)

=

[
1 ∧ π(y)K(y, x)

π(x)K(x, y)

]
K(x, dy) +

[
0 ∨ 1− π(y)K(y, x)

π(x)K(x, y)

]
δx(dy).
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It can easily be shown that this kernel satisfies the detailed balance condition for

π. Consider the case in which α(x, y) ≤ 1:

π(x)M(x, y) = π(x)

[
π(y)K(y, x)

π(x)K(x, y)
K(x, y) +

(
1− π(y)K(y, x)

π(x)K(x, y)

)
δx(y)

]

= π(y)

[
K(y, x) +

(
π(x)

π(y)
− K(y, x)

K(x, y)

)
δx(y)

]

= π(y)K(y, x) = π(y)M(y, x).

where the final equality holds because α(x, y) ≤ 1⇒ α(y, x) = 1. Note that result

must also hold in the converse case by symmetry.

Further, it is clear that detailed balance for π is sufficient to make π a stationary

measure for M :

π(x)K(x, y) = π(y)K(y, x)
∫
π(x)K(x, y)λ(dx) =

∫
π(y)K(y, x)λ(dx) = π(y).

It is precisely this property which makes single MH steps integral components

of many other Monte Carlo algorithms: it provides a mechanism for introducing

diversity into a set of samples from the target distribution without changing the

distribution of those samples.

2.3.3 Gibbs Sampling

The Gibbs sampler [59] produces a Markov Chain by updating one component

of the state vector during each iteration. The value of each element at time t is

sampled from the distribution of that element conditional upon the values of all

the other parameters at time t− 1 and those parameters which have already been

update at time t. An applied introduction the Gibbs sampler is provided by [103,

chapter 6]; a more theoretical approach is taken by [130, chapters 8-10].

The original Gibbs sampler updated each parameter in sequence, as described in

algorithm 2.5. Consequently, the deterministic-scan Gibbs update is not reversible,

although each individual component of it is. Another commonly used approach is

the random scan Gibbs sampler, which is described in algorithm 2.6.

Algorithm 2.5 Gibbs Sampler (Deterministic-Scan)

1: {This is a single step of the deterministic Gibbs Sampler}
2: Given a sampler Xt−1 from π (which contains D components)

3: for d = 1 to D do

4: Sample Xt,d ∼ µ (·|σ (Xt,1, . . . Xt,d−1, Xt−1,d+1, . . . , Xt−1,D))

5: end for
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Algorithm 2.6 Gibbs Sampler (Random Scan)

1: {This is a single step of the random scan Gibbs Sampler}
2: Given a sampler Xt−1 from π (which contains D components)

3: Sample, from a suitable distribution (typically one which is uniform over all permutations of

{1, . . . , D}), a set of indices {n1, . . . , nD} which is isomorphic to {1, . . . , D}.
4: for d = 1 to D do

5: Xt,nd
∼ µ

`

·|σ
`

Xt,n1 , . . . Xt,nd−1 , Xt−1,nd+1 , . . . , Xt−1,nD

´´

6: end for

Gibbs sampling is often viewed as an algorithm in its own right. It is, however,

simply a special case of the Metropolis-Hastings algorithm in which a single com-

ponent is updated during each step, and the proposal distribution which is used

is the true conditional distribution of that parameter given the present values of

the others. That is, a single iteration of the Gibbs sampler corresponds to the

application of D successive Metropolis-Hastings steps, with the relevant condi-

tional distribution used as the proposal kernel for each step. The consequence of

this special choice of proposal distribution is that the MH acceptance probability

is always one, and rejection never occurs. This connection was recognised, to at

least some degree, from the beginning, and [59] describes the algorithm as a “heat

bath” version of the Metropolis algorithm and further notes the equivalence of the

two approaches in particular cases in section 10.

It is straightforward to verify that the Metropolis-Hastings acceptance prob-

ability is uniformly one whenever the conditional distribution of the component

being updated is used as the proposal distribution. Consider the MH acceptance

probability associated with a move which updates component k of a D-component

vector using a proposal distribution corresponding to its conditional distribution

under the target measure given the present values of its other elements:

α(x, (x1:k−1, yk, xk+1:D) =
π((x1:k−1, yk, xk+1:D))π(xk|x−k)

π(x)π(yk|x−k)

=
π(x−k)π(yk|x−k)π(xk|x−k)
π(xk|x−k)π(x−k)π(yk|x−k)

= 1

Although Gibbs sampling has been widely used, it has two significant weak-

nesses:

– its performance is very heavily dependent upon the parameterisation of the

system being explored, as it is only able to make axis-aligned moves, and,

– it must be possible to sample from the conditional distributions of the target

measure.

2.3.4 Reversible Jump MCMC

Reversible Jump Markov Chain Monte Carlo (RJMCMC) is essentially a mech-

anism by which the Metropolis-Hastings algorithm can be extended to allow the
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exploration of a space comprising the disjoint union of subspaces of differing dimen-

sions, a defining feature of which is that any proposed move between dimensions

must be reversible [73, 75]. By comparing measures directly in this way it is pos-

sible to construct a Markov chain which explores the spaces of different dimension

with the desired invariant distribution.

It is possible to relate RJMCMC to Birth-and-Death Markov Chain Monte

Carlo (BDMCMC) [144] in which a continuous time jump-Markov process is sim-

ulated to produce a marked point process with the desired invariant distribution.

It is interesting to note that the BDMCMC approach can be interpreted as a limit

for RJMCMC [12]. This comparison notes no clear improvements due to the use of

continuous time implementations, and suggests that their increased computational

requirements more than outweigh potential advantages.

2.3.5 Perfect Sampling

Despite the similarities in their names, perfect Monte Carlo and perfect sampling

refer to different things. A perfect sampling algorithm shall be taken to mean any

one of several algorithms for making use of a Markov Chain to obtain iid samples

from the target distribution. The MCMC techniques described above cannot be

used to do this, as they would formally need to be allowed to iterate for an infinite

time to obtain a single sample from the true distribution.

The difficulty with using MCMC to obtain iid samples from the target distri-

bution is, essentially, that it is rarely possible to determine how long it takes for

the chain to forget its initial conditions. One approach to overcoming this prob-

lem would be to construct the chain in such a way that it is possible to determine

when a chain started from any position would have reached precisely the same

state. This is essentially the Coupling From The Past (CFTP) algorithm proposed

by [127] and later expanded upon in [128]. There are, however, some subtleties:

it is not possible to consider an ensemble of coupled1 Markov Chains initialised

at every possible starting point evolving until they coalesce, as the distribution of

the chain at this stopping time need not correspond to the stationary distribution.

Indeed, it is possible to construct transition kernels for which the state of the chain

at the point of coalescence is always the same!

The CFTP approach uses the intuition that under suitable conditions, a chain

initialised at time −∞ will correspond to a sample from the stationary distribution

at time 0. It is possible to obtain samples from such a chain by considering starting

chains at T = −1 and then checking for coalescence prior to time 0. If it is not

1 Coupled, in the sense that their evolution is determined by the same set of random variables.

For example, the transition made by each chain at each time being determined by inversion

sampling make use of the same U [0, 1] random variable.
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found, then the starting time is made earlier and the process repeated, ensuring

that the same collection of random variables are used to control the evolution from

time −1 onwards. The process is repeated until such a time as the chains have all

coalesced by time 0 at which point, the past has been forgotten as chains started

from anywhere have reached the same state and the final state is obtained at a

deterministic time.

It is problematic that the time to coalescence of the chains considered in the

CFTP algorithm is a (typically unbounded) random variable which is not inde-

pendent of the final state of the chain. Consequently, bias is introduced by an

implementation which places any upper bound upon the time taken for a sam-

ple to be obtained. The algorithm presented in [54] is intended to overcome this

problem. The approach employed is related to rejection sampling, and constructs

a chain backwards from an arbitrarily selected state at an arbitrary future time.

Having done this, the values of the U [0, 1] random variables which govern each

transition are sampled, conditioned upon this path of the chain. If all possible

starting points at time 0 would have coalesced to this state under the action of

these random variables (and by construction, if they have coalesced then this must

be the state at that time), then whatever state is reached by the backward chain

at time 0 is a sample from the stationary distribution; otherwise rejection occurs

and a new attempt must be made. This approach requires the selection of the

future time which must be of the right magnitude to give a substantial acceptance

probability without taking an unduly long time to provide each candidate sample.

It is a perennial problem in the field of MCMC that it is extremely difficult

to determine how long it is necessary to allow the simulated chain to run for in

order for the samples obtain to correspond to the stationary distribution. This step

is completely avoided by the perfect sampling approach as iid samples from the

target distribution are provided. A good tutorial on the subject is provided by [14].

However, attractive though this paradigm is, it suffers from two major difficulties:

it is not straightforward to construct CFTP algorithms on infinite (or even large)

state spaces unless they have some (partial) ordering and the transition kernel has

a monotone structure and, even in cases where such chains can be constructed, the

time to coalescence can be enormous, making each sample extremely expensive.

At least at the present time, there seem to be many problems in which we are

compelled to use either approximate samples from the distribution of interest or

to employ importance sampling techniques.
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2.4 Feynman-Kac Methods

Whilst it is something of a departure from the usual classification, it is useful to

consider another family of Monte Carlo algorithms: those based upon measure-

valued Feynman-Kac flows, rather than Markov chains or independent samples.

2.4.1 Discrete Time Feynman-Kac Flows

As with Markov chains, the general theory of Feynman-Kac flows falls far outside

the remit of this thesis. An excellent monograph on the subject has recently been

published [34], and contains a great many useful results ranging from compre-

hensive semi-group analyses to propagation of chaos estimates and central limit

theorems. Some elementary aspects of the theory must be introduced here as it

underpins the work done in several of the following chapters. Again, only discrete

time flows will be considered here.

We begin with the canonical Markov chain, expression 2.5. In addition to the

collection of Markov kernels, {Mn}n∈N we employ a collection of potential func-

tions {Gn}n∈N where Gn : En → [0,∞) and use these to define the law of a

stochastic process in terms of that of the Markov chain. A given Feynman-Kac

flow produces two closely related stochastic processes, the unnormalised prediction

flow,

Qη0,n(dx0:n) =
1

Zn

n−1∏

i=0

Gi(xi)Pη0 ◦X−1
0:n (dx0:n) , (2.9)

and its associated update flow,

Q̂η0,n(dx0:n) =
1

Ẑn

n∏

i=0

Gi(xi)Pη0 ◦X−1
0:n (dx0:n)

=
Zn

Ẑn
Qη0,n(dx0:n)Gn(xn),

where Zn and Ẑn are normalising constants.

It is useful to associate four additional sets of distributions with this flow:

the predictive and updated, unnormalised and normalised time marginals. The

unnormalised distributions are defined weakly, for L1,Qη0,n functions fn : En → R:

γn(fn) =

∫ n−1∏

i=0

Gi(xi)fn(xn)Pη0 (dx0:n) ,

and γ̂n(fn) =

∫ n∏

i=0

Gi(xi)fn(xn)Pη0 (dx0:n) = γn(fnGn),

whilst the normalised forms are, as one might expect:
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ηn(fn) =
γn(fn)

γn(1)
,

and η̂n(fn) =
γ̂n(fn)

γ̂n(1)
.

For our purposes it suffices, at this stage, to note that distributions of this form pro-

vide an invaluable framework for sequential estimation and integration by Monte

Carlo methods. By considering the historical process, X ′
n = X1:n associated with

many sequential importance sampling type algorithms, one obtains a situation

which can be described as the mean field approximation of such a flow. Indeed,

this framework underlies, amongst other things, the whole of the sequential Monte

Carlo approach – including the celebrated particle filter.

2.4.2 Sequential Monte Carlo (SMC)

Any Monte Carlo scheme which makes use of an Interacting Particle System (IPS)

associated with the mean-field interpretation of a Feynman-Kac flow [34] – or a

similar measure-valued flow – shall be considered to be a SMC method in this

work. This is perhaps slightly more general than the usual interpretation, but

includes the traditional definition, which is loosely the approximate solution of

the optimal filtering equation by propagating the empirical measure associated

with a set of particles through time according to the filtering recursion.

Filtering and Particle Filters. It is useful to look at the various particle meth-

ods for approximating the optimal filtering equations which have been derived

over the past two decades and which comprise the standard SMC methods. Good

tutorials on the subject are available, notably [48] and the book length review [47].

A more recent summary which includes some elements which are introduced in

section 2.4.4 is [130, chapter 14].

We follow the formulation of [28], which includes a detailed proof that the

recursion results presented here lead to the correct conditional measures in the

case where the state and observation spaces correspond to finite dimensional real

spaces. We consider the canonical Markov chain, {Xn}n≥0 as introduced in section

2.3.1, which is termed the signal process, and an associated observation process

Yn = h(n,Xn) + Wn, n > 0 for some measurable function h and a sequence of

independent random variables which are independent of Xn. Wn is assumed to

admit a density gn with respect to some measure λ(dx). The filtering problem

is to determine the conditional distribution of the signal process, given the σ-

algebra generated by the observation process. Typically, it is necessary to do this

sequentially in time in order to obtain the distribution of some signal variable

given a sequence of observations obtained at times up to the present.



20 2. Monte Carlo Methods

We remark that, strictly, in general, it is necessary to consider the expectations

of regular functions integrated with respect to these measures as the generalised

Bayes theorem provides only a weak description of these measures [140, p230]).

Such a formulation is provided by many sources, particularly with reference to

IPS in [29, 34].

It is convenient to consider the sequence of measures defined weakly, for

bounded measurable ξn : E0:n → R, by:

πn(ξn) = Pη0 (ξn(X0:n)|Y0:n−1 = y0:n−1)

π̂n(ξn) = Pη0 (ξn(X0:n)|Y0:n = y0:n) ,

which are related, recursively via the following relationships:

πn(ξn) = π̂n−1Mn(ξn)

π̂n(ξn) =
πn(ξng

yn
n )

πn(g
yn
n )

where gyn
n (x) := gn(yn−h(n, x)). The first of these steps amounts to prediction of

the state of the system at time n based upon knowledge of its state at time n− 1

and the dynamics of the system and the second to updating that belief given an

indirect observation of the system at time n. Looking at this recursive structure,

it is clear that the filtering distributions amount to the normalised predicted and

updated Feynman-Kac measures, with the collection of Markov kernels determined

by the system dynamics and the potential functions by the measurement functions,

gn.

Particle Filters. We shall use the term particle filters to refer to SMC methods for

approximating the optimal filter by numerical integration techniques, as proposed

by [92]. Although we consider SMC somewhat more generally than this, for the

purposes of considering this important model, it is useful to consider the recursion

described above in terms of the sequence of densities which provide a version of

the conditional expectations of interest – see [46] for details. Loosely, one assumes

that all of the distributions of interest admit densities with respect to a suitable

dominating measure and, using p to denote these densities, one has the probability

of state xn generating an observation yn given by p(yn|xn) and the probability of

a state transition from xn to xn+1 by p(xn+1|xn) which allows us to recursively

express the density of the joint distribution of the state sequence from time 0 to

t given the associate observations using:

p(x1:n|y1:n−1) = p(xn|xn−1)p(xn−1|y1:n−1)

p(x1:n|y1:n) =
p(yn|xn)p(x1:n|y1:n−1)∫
p(yn|x′n)p(x′n|y1:n−1)dx′n

.
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The first method which is usually considered a SMC algorithm for approximate

filtering is the Sequential Importance Sampling (SIS) approach which is described

in algorithm 2.7 (Bayesian importance sampling was proposed by [61], see [48] for

the sequential formulation). The essence of this approach is to extend importance

sampling to a sequential framework by extending the length of the path associated

with each particle at each time, according to its marginal distribution conditioned

upon its present value.

Algorithm 2.7 Sequential Importance Sampling (SIS)
1: Set t = 1.

2: for i = 1 to N do

3: X
(i)
1 ∼ µ1

{where µ1 is an instrumental distribution.}
4: W

(i)
1 ∝ dπ1

dµ1
(X

(i)
1 )

5: end for

6: t← t+ 1

7: for i = 1 to N do

8: X
(i)
t ∼ µt

“

·|X(i)
1:t−1

”

{µt(·|X1:t−1) is some instrumental distribution which may depend upon the particle his-

tory.}
9: W

(i)
t ∝W (i)

t−1 ×
dπt(·|X

(i)
1:t−1)

dµt(·|X
(i)
1:t−1)

(Xi
t).

10: end for

11: Go to step 6.

The importance weighting step will, unless the proposal distribution is ex-

tremely close to the true distribution, lead over a number of iterations to a small

number of particles with very large weights and ultimately a single particle will

have a weight very close to unity, with the rest being essentially zero. This is the

problem of particle weight degeneracy. In order to address this problem, the Se-

quential Importance Resampling (SIR) algorithm was applied to filtering [72, 93],

following a proposal to use a SIR algorithm for missing data problems [136]. This

approach (which is referred to as the bootstrap filter in those instances in which

the prior is used as the proposal distribution) is described formally by algorithm

2.8. Resampling is a method by which a weighted set of samples from some distri-

bution are replaced with an unweighted set of samples from the same distribution

by replicating those particles with large weights and eliminating those with small

weights. As resampling leads to a set of equally weighted particles at each time,

the degeneracy problem is alleviated to some extent. However, resampling does re-

duce the number of distinct paths with particle representations, and any attempt

to perform integrations over the path space will suffer from this form of degen-

eracy. There are three resampling schemes in common use amongst the particle
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filtering community: multinomial resampling as used by [72], residual resampling

[102] and stratified resampling [13].

Algorithm 2.8 Sequential Importance Resampling (SIR)
1: Set t = 1.

2: for i = 1 to N do

3: X̂
(i)
1 ∼ µ1

{where µ1 is an instrumental distribution.}
4: W

(i)
1 ∝ dπ1

dµ1
(X̂

(i)
1 )

5: end for

6: Resample
n

X̂i
t ,W

(i)
t

o

to obtain {X(i)
t }.

7: t← t+ 1

8: for i = 1 to N do

9: X̂
(i)
t ∼ µt

“

·|X(i)
1:t−1

”

{µt(·|X1:t−1) is some instrumental distribution which may depend upon the particle his-

tory.}
10: W

(i)
t ∝ dπt(·|X

(i)
1:t−1)

dµt(·|X
(i)
1:t−1)

(Xi
t).

11: end for

12: Go to step 6.

Multinomial resampling is the simplest approach: a new particle set is sampled

with replacement from the discrete distribution provided by the original particle

set. Residual resampling has lower variance than multinomial resampling [104] and

differs in that particles are deterministically replicated according to the integer

part of their weight, and then multinomial resampling is performed, using the

fractional part of the particle weights to obtain the remainder of the particle set.

Stratified resampling is the minimum variance unbiased resampling technique [13]

and can be interpreted as stratified sampling from a mixture distribution in which

each particle provides one mixture component.

In practice it is not desirable to resample after every iteration of a sequential

algorithm as the resampling process can only increase the Monte Carlo variance

of the current particle set – as a Rao-Blackwellisation argument makes clear. The

Effective Sample Size (ESS) [97] is often used as a measure of sample impoverish-

ment, with resampling carried out whenever the effective sample size falls below

some threshold. The ESS, which is generally approximated by a simple function

of the importance weights, is defined (when one is using weighted samples from µ

to approximate π) by:

ESS(t) ,
N

1 + Varµ

(
dπ
dµ

) ≈ N2

∑N
i=1

dπ
dµ(X(i))2

is obtained by considering the ratio of the variance of the integral of an arbitrary

function under the empirical measure of the particle set obtained by importance

sampling to that which would be obtained with the same number of iid samples
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from the true distribution. This expression is obtained by applying the delta-

method (see, for example, [32, p. 33]) which amounts to a second order Taylor

expansion of the function about its mean justified by the asymptotic normality of

the distribution, and approximating the variance of the weights with their sample

variance. For this reason, some danger is involved: if the current empirical distri-

bution is bad enough then none of the particles will have much weight, but it is

entirely possible that the variance of the weights will be small. However, if it could

be evaluated as an expectation under the true distribution, the small possibility

of extremely large values of the weight would show that in fact the representation

is extremely poor.

Although it has the verisimilitude of a degeneracy reduction technique, as noted

by [24], resampling does not really alleviate the problem of sample degeneracy –

it simply leads to a number of identical particles with equal weights rather than

a single particle with a large weight. Although this mechanism can allow the

marginal distribution of the state Xt to be estimated well, the path space distri-

bution rapidly becomes degenerate. This is illustrated in a rare event estimation

context in chapter 5, along with a novel algorithm which avoids this problem.

One approach to avoid sample degeneracy is provided by the Resample-Move

algorithm [63, 64]. A particular case termed Gibbs iteration within SIS was pro-

posed by [105]. The innovation of this approach is to move each particle according

to a Markov kernel of the appropriate distribution after the resampling step. This

is a useful degeneracy reduction technique in a much more general setting. In

principle, it is possible to apply such a kernel to the path space on which the

particles exist, but this is computationally infeasible as the space grows at every

iteration and obtaining fast mixing kernels with acceptable computational cost is

not possible. Sampling approaches which operate directly on the path space are

becoming possible as a result of the work described in section 2.4.4.

It is not uncommon for an MCMC step to be included, either after resampling

or after every iteration, to help reduce the rate at which the sample becomes

impoverished. Thus, a general particle filter corresponds to something like the SIS

algorithm, with resampling according to the current weight distribution carried

out whenever the effective sample size falls below a suitable threshold and in some

instance with a Markov move of suitable invariant distribution applied to each

particle after each iteration or resampling step.

2.4.3 Auxiliary Variable Methods: The APF

We mention the Auxiliary Particle Filter (APF) proposed by [125, 126] and sub-

sequently enhanced by [3]. This approach allows a weighting to be applied to par-
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ticles based upon how well they explain the next observation prior to resampling,

leading to a better set of particles at the next time-step. We assume that the den-

sities mentioned above when describing the optimal filter exist, and that we have

a further density, p̂(yt|xt−1) which is an approximation of
∫
p(yt|x′t)p(x′|xt−1)dx

′.

This approach is described in algorithm 2.9.

Algorithm 2.9 Auxiliary Particle Filter (APF)
1: t = 0

2: for i = 1 to N do

3: X̂
(i)
0 ∼ π0

{where π0 is an instrumental distribution.}
4: W

(i)
0 ∝ dπ0

dπ0
(Xi

0)

{ π0 is the marginal distribution of X0}
5: end for

6: t← t+ 1

7: for i = 1 to N do

8: Set λ
(i)
t ∝W (i)

t−1 × p̂(yt|X(i)
t−1)

{Where p̂ is an analytically tractable approximation to the likelihood.}
9: end for

10: Resample
n

X
(i)
t−1, λ

(i)
t

o

to obtain
n

X
′(i)
t , 1

N

o

.

11: for i = 1 to N do

12: Sample X
(i)
t ∼ q(·|X ′(i)

t ).

13: Set W
(i)
t ∝ p(yt|Xt)p(X

(i)
t |X

(i)
t−1)

p̂(yt|X
(i)
t−1)q(X

(i)
t |X

(i)
t−1)

14: end for

15: Go to step 6.

Feynman-Kac Formulation. It is convenient to express this algorithm in terms

of a mean field approximation to a Feynman-Kac flow, an approach which has

proved extremely fruitful for standard particle filtering [34] (notation should cor-

respond to that used there). As far as we are aware, this reformulation which

allows a central limit theorem to be obtained straightforwardly has not previously

been proposed in the literature.

Consider a sequence of random variables, {Xn}n≥1, each of which is a vector,

Xn := Xn,1:n ∈ En, and corresponds to the full sequence of hidden states from

time 1 to time n. Defining a sequence of potential functions, Gn : En → (0,∞) as:

G1(x1) =
p(y1|x1,1)p(x1,1)

q1(x1,1)
× p̂(y2|x1,1) (2.10)

Gn(xn) =
p(yn|xn,n)p(xn,n|xn,n−1)

p̂(yn|xn,n−1)qn(xn,n|yn, xn,n−1)
× p̂(yn+1|xn,n) (2.11)

and a sequence of Markov kernels, Mn : En−1 → P(En), as:

Mn(xn−1, dxn) =
∏

p=1:n−1

δxn−1,p(dxn,p)qn(dxn,n|yn, xn−1,n) (2.12)
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we obtain a Feynman-Kac flow in distribution space, whose normalised time-

marginal prediction measures allow us to view the auxiliary particle filter described

previously as a mean field approximation of this distribution.

There is a slight subtlety as we wish to weight the terminal particle set slightly

differently, but this can be easily achieved by considering the integral of a function

under the empirical distribution of the Auxiliary Particle Filter (APF) as the

integral of the product of that function and a suitable weighting function under

the empirical measure associated with an N -particle mean field approximation to

this Feynman-Kac flow. We define this sequence of weight functions as:

W1(x1) ∝
p(y1|x1,1)p(x1,1)

q1(x1,1)
(2.13)

Wn(xn) ∝
p(yn|xn,n)p(xn,n|xn,n−1)

p̂(yn|xn,n−1)qn(xn,n|yn, xn,n−1)
. (2.14)

It is clear that if η1 := q1 then ηn(Wn×fn)/ηn(Wn) =
∫
fn(xn,1:n)p(dx1:n|y1:n).

This formulation amounts to viewing the APF as a mechanism by which a

Feynman-Kac flow is produced which has the property that its mean field in-

terpretation will place more particles in the correct place than that associated

with the distribution of interest; this flow is then used as an importance sampling

instrumental distribution for that of interest.

In order to obtain a mean field approximation which corresponds directly

to the APF, it is necessary to make use of the correct McKean interpreta-

tion of the flow. This amounts to defining a sequence of non-linear kernels,

Kn,η : En−1×P(En−1)→ P(En) such that ηn−1Kn,ηn−1 = ηn. Using selection and

mutation operations, with the selection operation corresponding to a Boltzmann-

Gibbs operator with potential function Gn−1 corresponds to precisely the case

which we require.

So, we have: Kn,η := Sn−1,ηMn, where Sn−1,η(dx) = Gn−1(x)η(dx)
η(Gn−1) . A mean field

interpretation of this flow corresponds to algorithm 2.9 without the final weighting

stage. Consequently, we have that:
∫
p(dx1:n|y1:n)f(x1:n) = ηn(Wn × f)/ηn(Wn)

and the behaviour of the particle system can be analysed using the techniques

pioneered in [34].

Using results from [34, chapter 9], we know that under suitable conditions:

lim
N→∞

γNn (Wn)→ γn(Wn) (2.15)

and we know that we seek a central limit theorem for the quantity:

ηNn (Wnf)

ηNn (Wn)
=
γNn (Wnf)

γNn (Wn)
. (2.16)

Now,
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γNn (Wnf)

γNn (Wn)
− γn(Wnf)

γn(Wn)
=
γn(Wn)γ

N
n (Wnf)− γNn (Wn)γn(Wnf)

γn(Wn)γNn (Wn)
(2.17)

=
γn(Wn)

γNn (Wn)

(
γNn (Wnf)

γn(Wn)
− γNn (Wn)γn(Wnf)

γn(Wn)γn(Wn)

)
(2.18)

=
γn(Wn)

γNn (Wn)

(
1

γn(Wn)
γNn

(
Wnf −Wn

γn(Wnf)

γn(Wn)

))
(2.19)

=
γn(Wn)

γNn (Wn)
γNn


Wn

f − γn(Wnf)
γn(Wn)

γn(Wn)


 . (2.20)

By employing exactly the approach which [34] uses to obtain a central limit theo-

rem for the normalised flow, we are able to note that limN→∞
γn(Wn)
γN

n (Wn)
→ 1 and by

applying Slutzky’s theorem, we can make use of the central limit theorem which

applies to γNn .

We know from [34, chapter 9] that:

√
N
(
γNn (f)− γn(f)

) d→Wn(f), (2.21)

where Wn(f) is a centred Gaussian field with variance given by:

σ2(Wn(f)) =
1

N

N∑

q=1

γq(1)2
[
ηq−1Kq,ηq−1

[
Qq,n(f)−Kq,ηq−1(Qq,n(f))

]2]
. (2.22)

Thus, by applying Slutzky’s lemma, and defining f ′n := Wn
f− γn(Wnf)

γn(Wn)

γn(Wn) we obtain:

√
N

(
γNn (Wnf)

γNn (Wn)
− γn(Wnf)

γn(Wn)

)
d→Wn(f

′
n). (2.23)

Work is ongoing to make use of this result to obtain guidelines upon the use

of auxiliary variable approaches within SMC methods, as well as to allow the

comparison of this method, the marginalised particle filter [94] and more standard

particle filtering techniques in realistic scenarios.

2.4.4 SMC Samplers

We consider here the methods developed in [36, 37, 38, 123]. The motivation for

this approach is that it would be extremely useful to have a generic technique for

sampling from a sequence of distributions defined upon arbitrary spaces which are

somehow related. It is not possible to employ the standard SMC framework for

this approach as this approach makes no changes to the history of the process,

only to new states which are added, and can only be applied to a sequence of

distributions defined on a strictly increasing sequence of spaces with the same

conditional independence properties as the optimal filter.

The principal innovation of the SMC sampler approach is to construct a se-

quence of synthetic distributions with the necessary properties. Given a collection
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of measurable spaces (En, En)n∈N, upon which the sequence of probability mea-

sures from which we wish to sample, (πn)n∈N is defined, it is possible to construct

a sequence of distributions (π̃n)n∈N upon the sequence of spaces (
∏n
p=1En)n∈N en-

dowed with the product σ-algebras, which have the target at time n as a marginal

distribution at that time. As we are only interested in this marginal distribution,

there is no need to adjust the position of earlier states in the chain and standard

SMC techniques can be employed.

However, this approach suffers from the obvious deficiency that it involves con-

ducting importance sampling upon an extremely large space, whose dimension is

increasing with time. In order to ameliorate the situation, the synthetic distribu-

tions are constructed as:

π̃n(dx1:n) = πn(dxn)
∏

p=1:n−1

Lp (xp+1, dxp) , (2.24)

where (Ln)n∈N is a sequence of Markov kernels from En into En−1.

With this structure, an importance sample from π̃n is obtained by taking the

path x1:n−1, a sample from π̃n−1, and extending it with a Markov kernel Kn :

En−1 → P(En), which leads to the importance weight2:

dπ̃n
d [π̃n−1 ⊗Kn]

(x1:n) =
d
[
πn ⊗ L⊗

n:1

]

d
[
πn−1 ⊗ L⊗

n−1:1 ⊗Kn

](x1:n)

=
d [πn ⊗ Ln−1]

d [πn−1 ⊗Kn]
(xn−1, xn).

Where densities exist, this may be written in the rather more intuitive form:

πn(xn)Ln−1(xn, xn−1)

πn−1(xn−1),Kn(xn−1, xn)
,

and this perhaps makes it clearer than the previous expression that the construc-

tion is chosen such that the distribution of the beginning of the path, conditional

upon the terminal values is the same under successive distributions due to this

Markovian structure. This approach ensures that the importance weights at time

n depend only upon xn and xn−1. This also allows the algorithm to be constructed

in such a way that the full path of the sampler is not stored, in much the same

manner as standard SMC. Algorithm 2.10 describes the basic algorithm.

This approach is clearly very flexible, and is perhaps too general: in addition

to the choice of the proposal kernels Kn, it is now necessary to select a sequence

of auxiliary kernels Ln. The appearance of these kernels in the weight expression

makes it clear that it will be extremely important to select these carefully. In

fact, the central limit theorem presented in [37] demonstrates that the variance of

2 With the obvious abuse of notation, the ordering of the arguments is unambiguous. We refer

the reader to chapter 1 for an explanation of the tensor product notation.
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Algorithm 2.10 SMC Sampler
1: t = 1

2: for i = 1 to N do

3: X
(i)
1 ∼ µ1

{where µ1 is an instrumental distribution.}
4: W

(i)
1 ∝ dπ1

dµ1
(X

(i)
1 )

5: end for

6: t← t+ 1

7: for i = 1 to N do

8: X
(i)
t ∼ Kt(X

(i)
t−1, ·)

9: W
(i)
t ∝W (i)

t−1

πt(X
(i)
t )Lt−1(X

(i)
t ,X

(i)
t−1)

πt−1(X
(i)
t−1)Kt(X

(i)
t−1,X

(i)
t )

10: end for

11: Resampling can be conducted at this stage.

12: Sample rejuvenation can be conducted at this stage by allowing the particles to evolve under

the action of a Markov kernel of the invariant distribution πt.

the estimator is strongly dependent upon the choice of these kernels. The same

source obtains an expression for the optimal auxiliary kernels (in the sense that

they minimise the variance of the importance weights if resampling is conducted

at every step):

Loptn−1(xn, dxn−1) =
dKn(xn−1, ·)

dπn−1Kn
(xn)πn−1(dxn−1). (2.25)

Using the optimal kernel, one finds that the weight expression reduces to the

following form – where densities are assumed to exist for simplicity of presentation:

πn(xn)L
opt
n−1(xn, xn−1)

πn−1(xn−1),Kn(xn−1, xn)

=
πn(xn)πn−1(xn−1)Kn(xn−1, xn)/πn−1Kn(xn)

πn−1(xn−1),Kn(xn−1, xn)

=
πn(xn)

πn−1Kn(xn)
,

and this has the intuitive interpretation that this is the kernel which amounts

to integrating out the effect of xn−1 and thus performing importance sampling

directly on the space of interest.

Whenever it is possible to use this kernel, one should do so. However, in many

instances the integral πn−1Kn will prove intractable, and an approximation to the

optimal kernel must be used instead3. A number of strategies are suggested in [38].

In instances in which all distributions are defined on a common space (E, E), Kn

has invariant distribution πn and the target distributions do not differ too much

from one another. One particularly interesting variant is:

Ltrn−1(xn, dxn−1) =
dKn(xn−1, ·)

dπn
(xn)πn(dxn−1), (2.26)

3 We note that it is approximately optimal rather than an algorithmic approximation: the algo-

rithm remains exact, only the estimator variance suffers as a result of the approximation.
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which is the time-reversal kernel associated with Kn. Using this kernel amounts

to approximating πn−1 by πn which, in these circumstances, is likely to be a very

good approximation if πn−1 ≈ πn. We note that if this auxiliary kernel is employed

then the importance weight is, in the case where a density exists, given by:

πn(xn)L
tr
n−1(xn, xn−1)

πn−1(xn−1),Kn(xn−1, xn)

=
πn(xn−1)

πn−1(xn−1)
.

In this instance, the weighting of each particle is independent of the final state

and it becomes sensible to perform resampling before sampling that state.

It can be seen that some other methodologies which have been developed re-

cently can be interpreted as special cases of SMC Samplers. Annealed Importance

Sampling (AIS) [117] can be interpreted as a special case of the SMC samplers ap-

proach, employing 2.26 as the auxiliary kernel in which no resampling is performed.

The particle filter for static parameters of [24] is a resample move approach with

the same implicit backward kernel, this time with resampling. Population Monte

Carlo (PMC) [11] can be interpreted as another special case of this framework,

with πn = π and Ln−1(x, x
′) = π(x′).

A wide range of convergence results for these methods have been obtained,

including a central limit theorem [38] and stability results via a Foster-Lyapunov

approach [82].

2.4.5 Feynman-Kac Metropolis Sampling

Another area in which Feynman-Kac flows seem likely to make a major impact is

that of interacting Markov Chains. By allowing a particle set to evolve according

to a Feynman-Kac flow with a particular stationary distribution, one essentially

produces an interacting set of “non-linear Markov Chains” (in the sense that their

evolution depends upon one another’s states, and this can dramatically improve

the rate of convergence to equilibrium.

The Feynman-Kac Metropolis model described by [34, chapter 5] and the ap-

proach of [35], can be seen as the logical extension of MCMC from the realm of

Markov chains to that of Feynman-Kac flows. The drawback of these methods is

that the nonlinearity of the normalised Feynman-Kac flows is such that it is not

possible to simulate them exactly. A particle approximation scheme is proposed

in these works, together with a selection of stability results. The usual mean field

particle interpretation convergence results apply. As noted in the original articles,

a major advantage of these models over more traditional MCMC techniques is

that the rate of decay to equilibrium is independent of the limiting measure.
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2.5 Summary

We have presented a brief survey of the Monte Carlo literature, concentrating upon

recent developments in the SMC field. It is in this area that this thesis makes its

contribution, and we begin in the next chapter with an asymptotic analysis of a

recently developed interacting particle system which is unusual in that it does not

have a Feynman-Kac interpretation.



3. The SMC Implementation of the PHD Filter
“In some sort of crude sense, which no vulgarity, no humour, no

overstatement can quite extinguish, the physicists have known sin; and

this is a knowledge which they cannot lose.”

– J. Robert Oppenheimer

The work done in sections 3.3 and particularly 3.4 was done in collaboration with

Sumeetpal Singh, Arnaud Doucet and Ba-Ngu Vo. An early version of these results

was published as [90] and the following sections closely resemble [91].

3.1 Introduction

In a standard Hidden Markov Model (HMM), the state and measurement at time

k are two vectors of possibly different dimensions, belonging to E and F respec-

tively. These vectors evolve randomly over time but their dimensions are fixed.

The aim is to compute recursively in time the distribution of the hidden state

given all the observations that have been received so far. In multiple-object filter-

ing, recently introduced and studied by the data-fusion and tracking community

[71, 107], the aim is to perform filtering when the state and observation variables

are the finite subsets of E and F . Conceptually, this problem can be thought of as

that of performing filtering when the state and observation spaces are the disjoint

unions, ⊎∞i=0E
i and ⊎∞i=0F

i , respectively. We remark that developing efficient

computational tools to propagate the posterior density is extremely difficult in

this setting – see, for example, [60].

An alternative which is easier to approximate computationally, the Probability

Hypothesis Density (PHD) filter, has recently been proposed [107]. The PHD

filter is a recursive algorithm that propagates the first moment, also referred to

as the intensity [31], of the multiple-object posterior. The first moment is an

appropriately defined measure on E (although the term is also used to refer to

the Radon-Nikodým derivative of this measure with respect to some appropriately

defined dominating measure on the same space). While the first moment is now a

function on E, i.e. the dimension of the “state space” is now fixed, the PHD filter

recursion still involves multiple integrals that have no closed form expressions in

general. An SMC implementation of the PHD filter was proposed in [147].
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The aim of this chapter is to analyse the convergence of the SMC implementa-

tion of the PHD filter proposed in [147]. Although numerous convergence results

and central limit theorems have been obtained for particle systems which ap-

proximate Feynman-Kac flows [5] (including the optimal filtering equations) as

mentioned in section 2.4, the PHD filter, being a first moment of the multiple-

object posterior, is an unnormalised density that does not obey the standard Bayes

recursion. Thus, convergence results and central limit theorems which have been

derived for Feynman-Kac flows do not apply to the SMC approximation of the

PHD filter. Our contribution is to extend existing results to this system which has

a number of added difficulties, particularly that the total mass of the filter is a

time-varying quantity and the recursions are non-standard.

3.2 Background and Problem Formulation

3.2.1 Notation and Conventions

It is convenient, at this stage, to summarise the notation required to deal with

random sets and the PHD filter and the conventions which have been adopted

throughout the remainder of this chapter. Except where otherwise specified, this

is consistent with usage throughout the rest of the thesis, however some additional

notation is needed to deal with random sets and related concepts, and that is

summarised here rather than in section 1.2 as it is not required elsewhere in the

thesis.

It is assumed throughout that the particle system first introduced in section

3.2.3 is defined on a probability space (Ω,F ,P). All expectations and probabilities

which are not explicitly associated with some other measure are taken with respect

to P. We have assumed throughout this chapter that all measures admit a density

with respect to some dominating measure, λ (dx), and used the same symbol to

represent a density and its associated measure, i.e. for some measure µ ∈M(E),

µ(dx) = µ(x)λ (dx) .

Given a measure µ, the integral of a function, f , with respect to µ is denoted µ(f).

Given two transition kernels K and L which admit a density with respect to a

suitable dominating measure, where L is absolutely continuous with respect to K

(i.e.K >> L), we define L
K (u, v) = dL(u,·)

dK(u,·)(v) (i.e. the Radon-Nikodým derivative).

Given a transition kernel K and a non-negative function g : E×E → R+ we define

the new kernelK×g by K×g(u, dv) = K(u, dv)g(u, v). Similarly, for two measures

µ and ν on E, we define µ
ν (u) to be dµ

dν (u). If µ and ν both admit densities with

respect to the same dominating measure λ then dµ
dν (u) is simply the ratio of those
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densities evaluated at the point u. For any two functions f, g : E → R we write

fg for the standard multiplication of these functions.

When dealing with random finite sets, the convention in the literature is to use

capital Greek letters to refer to a random set, a capital Roman letter to refer to a

realisation of such a set and a lower case Roman letter to refer to an element of a

realisation. We have followed this convention wherever possible.

Finally, we have considered the evolution of the PHD as an unnormalised den-

sity on a general space E. It is usual, but not entirely necessary, to assume that

E = Rd and that the dominating measure λ (dx) is Lebesgue measure. For the

target tracking application described in section 3.2.4, this is, indeed, the case.

3.2.2 Multiple Object Filtering

We remark that although the description below is removed from any particular ap-

plication, the model is popular with the data fusion and target tracking community

[60, 71, 107]. Our intention in giving this abstract presentation is to emphasise

the generality of the model with the intention of arousing the interest of other

scientific communities.

The multiple-object state evolves over time in a Markovian fashion and at each

time k, a multiple-object measurement is generated based upon the state at time

k only. The multiple-object state and multiple-object measurement at time k are

naturally represented as finite subsets Xk ⊂ E and Zk ⊂ F respectively. For

example, at time k, let Xk have M(k) elements, i.e.,

Xk = {xk,1, . . . , xk,M(k)} ∈ T (E),

where T (E) denotes the collection of all finite subsets of the space E. Similarly,

if N(k) observations zk,1, . . . , zk,N(k) from F are received at time k, then

Zk = {zk,1, . . . , zk,N(k)} ∈ T (F ),

is the multiple-object measurement. Analogous to the standard HMM case, in

which uncertainty is characterised by modelling the states and measurements by

random vectors, uncertainty in a multiple-object system is characterised by mod-

elling multiple-object states and multiple-object measurements as Random Finite

Set (RFS) Ξk and Σk in E and F respectively. We denote particular realisations

of Ξk and Σk by Xk and Zk, respectively. Conditioned upon a realisation Xk−1 of

the state at time k − 1, Ξk−1 the state evolution satisfies

Ξk = ΞS
k (Xk−1) ∪ΞB

k (Xk−1) ∪ Γ, (3.1)

where ΞS
k (Xk−1) denotes the RFS of elements that have ‘survived’ to time k and

the other terms are RFSs of new elements, which are decomposed as ΞB
k (Xk−1)
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of elements spawned (spawning is a term used in the tracking literature for the

process by which a large target, such as an aircraft carrier, emits a number of

smaller targets, such as aircraft) from Xk−1 and the RFS Γk of elements that

appear spontaneously at time k. Note that the state evolution model incorporates

individual element motion, element birth, death and spawning, as well as interac-

tions between the elements. Similarly, given a realisation Xk of Ξk at time k, the

observation Σk is modelled by

Σk = Θk(Xk) ∪ Λk, (3.2)

where Θk(Xk) denotes the RFS of measurements generated by Xk, and Λk denotes

the RFS of measurements that do not originate from any element in Xk, such as

false measurements due to sensor noise or objects other than the class of objects

of interest. The observation process so defined can capture element measurement

noise, element-dependent probability of occlusions and false measurements.

The multiple-object filtering problem concerns the estimation of the multiple-

object state Xk at time step k given the collection Z1:k ≡ (Z1, ..., Zk) of all obser-

vations up to time k. The object of interest is the posterior probability density of

Ξk.

The above description of the dynamics of {Ξk} and {Σk} was a constructive

one, while in filtering one needs to specify the state transition and observation

density, that is, the densities of the following measures,

P (Ξk ∈ A|Ξk−1 = Xk−1),

P (Σk ∈ B|Ξk = Xk),

where A ⊂ T (E) and B ⊂ T (F ) are the measurable sets of their respective

spaces. As this chapter is concerned with the propagation of the first moment

of the filtering density, we refer the reader to [147, 107] for details on the state

transition and observation densities. We have also omitted details on how the RFSs

of survived elements ΞS
k (Xk−1), spawned elements ΞB

k (Xk−1) and spontaneously

spawned elements Γk are constructed. Similarly, details on the RFSs of true (or

element generated) observations Θk(Xk) and false measurements Λk were omitted.

Naturally, the construction of these sets are application specific and a simple

numerical example provided in Section 3.2.4 aims to clarify the ideas. We refer

the reader to [71, 107] for the constructions for applications in target tracking.

Although much work is being done in the area of multiple target tracking, in-

cluding attempts at developing practical SMC algorithms which operate on the

multiple target state spaces [98, 118], it is extremely difficult to perform the com-

putations involved in the filtering problem for this type of model when the number

of targets is large. SMC methods cannot operate efficiently when direct importance
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sampling on a very high dimensional space is involved. Thus it is important to

consider computationally tractable principled approximations. One such approx-

imation is the PHD filter, one such approximation which has become popular

among the tracking community [107, 147].

3.2.3 The PHD Filter

The PHD filter is a method of updating a measure, α̃k−1 given a random set

of observations, Zk, which can be interpreted as a first moment approximation

of the usual Bayesian filtering equation. Within this framework, the quantity of

interest is the intensity measure of a point process. Whilst it can be described by a

measure, it is not in general a probability measure and it is necessary to maintain

an estimate of both the total mass and the distribution of that mass.

Before summarising the mathematical formulation of the PHD filtering recur-

sion, we briefly explain what is meant by the first moment of a random finite set.

A finite subset X ∈ T (E) can also be equivalently represented by the counting

measure, NX , on the measurable subsets of E defined, for all such sets, A, by

NX(A) =
∑
x∈X

1A(x) = |A ∩X|. Consequently, the random finite set Ξ can also

be represented by a random counting measure NΞ defined by NΞ(A) = |Ξ ∩ A|.
This representation is commonly used in the point process literature [31].

The first moment of a random vector is simply the expectation of that random

vector under a suitable probability measure. As there is no concept of set addition,

an exact analogue of this form of moment is not possible in the RFS case. However,

using the random counting measure representation, the 1st moment or intensity

measure of a RFS Ξ is the first moment of its associated counting measure, i.e.,

α̃(A) = E [NΞ(A)] .

The intensity measure of a set A gives the expected number of elements of Ξ that

are in A. Although the intensity measure α̃ is an integral of the counting measures,

it is not itself a counting measure and hence does not necessarily have a finite set

representation.

The density of the intensity measure with respect to a suitable dominating

measure λ, when it exists, is also denoted α̃ and is termed the intensity function1.

In the tracking literature, α̃ is also known as the PHD.

The PHD is the first moment of a RFS and hence tells us, for any region,

the expected number of elements within that region. In the context of multiple-

object filtering, the PHD recursion described below propagates the density of

the intensity measure α̃k(A) := E [NΞk
(A)|Z1, . . . , Zk] for k ≥ 0. This is clearly

1 As a reminder, we use the same notation for a measure and its density throughout this chapter.
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a useful representation for multiple-object filtering and other applications, as it

provides a simultaneous description of the number of elements of Ξk within the

space, and their locations.

The PHD recursion can be described in terms of prediction and update steps,

just as the optimal filtering recursion can. The derivation of the update step can-

not be reproduced here due to space constraints, but the most elegant approach

involves considering the evolution of the probability generating functional associ-

ated with a Poisson process under the action of the update step. It is not possible

to reproduce this derivation here, but it is presented accessibly in [107]:

αk(dx) = (Φkα̃k−1)(dx) = (α̃k−1φk)(dx) + γk(dx) (3.3)

α̃k(dx) = (Ψkαk)(dx) =


νk(x) +

∑

z∈Zk

ψk,z(x)

κk(z) + αk(ψk,z)


αk(dx). (3.4)

The prediction operator Φk is described in terms of a kernel, φk, which does not

in general integrate to 1, and an additive measure, γx. The prediction kernel, φk

describes the dynamics of existing elements and can be decomposed as: φk(x, dy) =

ek(x)fk(x, dy)+bk(x, dy) where ek(x) is the probability of an element at x at time

k−1 surviving to time k, fk(x, dy) is a Markov kernel which describes the dynamics

of the surviving elements and bk(x, dy) is a “spawning” kernel which describes the

probability of an element at x at time k − 1 giving rise to a new element in a

neighbourhood dy at time k.

The update operator Ψk is a nonlinear operator which resembles a linear combi-

nation of Boltzmann-Gibbs operators (one of which describes the update equation

of Bayesian filtering) with different associated potentials. However, there are some

subtle differences which prove to be significant. The term Zk denotes the random

set of observations at time k and ψk,z is the “likelihood” function associated with

an observation at z at time k. κk(z) is the intensity of the false measurement

process at z. Finally, νk(x) is the probability of failing to observe an element at x

at time k.

Note the correspondence between the terms in the PHD recursion and the

sets in the constructive description of the multiple-object filtering problem in

section 3.2.2. The pairing of the terms are as follows: (ΞB
k , bk) describe object

birth including spawning, (Γk, γk) describe spontaneous births, and (ΞS
k , ekfk)

describe the dynamics of surviving objects. The measurement model has a more

subtle relationship, Θk incorporates all of the information of ψk,z and νk while the

effect of Λk on the first moment is described by κk.

An SMC Implementation of the PHD Filter. We consider algorithm 3.1,

which is essentially that proposed in [147], which describes a sequential Monte
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Fig. 3.1. PHD Filter Example: plots of 4 superimposed tracks over 40 time steps. Taken from

[147].

Carlo method for approximating the evolution of the PHD filter. Alternative SMC

implementations of the PHD filter have also been proposed [141, 148], the first of

which is substantially different from that considered here as different particle sets

are used to deal with differing target numbers whilst the second is more similar in

character. It is assumed that the filter is initialised at time zero by sampling a set

of L0 particles from the true PHD (or, rather, the probability measure obtained

by appropriately normalising it) and weighting them according to the total mass

at time zero such that each particle has weight w
(i)
0 = α̃0(1)/L0. The following

recursion is then used to predict the configuration of the particle set at the next

time step and then to update the estimate based upon the next observation set, just

as in the standard filtering case. It is understood that the importance densities used

may be conditioned upon the current observation set in addition to the previous

particle position. We omit the dependency on the observation set in our notation.

3.2.4 A Motivating Example

We present a brief example (which is borrowed directly, with permission, from

[147]) to illustrate the utility of the multiple-object filtering framework and the

SMC implementation of the PHD filter. Consider the problem of tracking an un-

known number of targets that evolve in R4. For instance, in a two dimensional

tracking example, each target could be described by its x and y coordinates as

well as its velocity in these directions. Existing targets can leave the surveillance

area and new targets can enter the scene. At time k, a realisation of the state

is Xk = {xk,1, . . . , xk,M(k)} ⊂ R4. As for the observations, each target generates

one observation with a certain probability (i.e. each target generates at most one

observation) and the sensors can measure false observations that are not asso-
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Algorithm 3.1 An SMC implementation of the PHD filter
Assume that a particle approximation consisting of Lk−1 weighted particles is available at time

k − 1, with associated empirical measure α̃
Lk−1

k−1 . Then the following sequence of steps can be

applied to provide such a particle approximation at time k:

Prediction:

Propagate forward the particles which survived the previous iteration to account for the dy-

namics of existing objects. For i = 1, . . . , Lk−1, sample Y
(i)

k from some importance distribution

qk(X
(i)
k−1, ·) and calculate the importance weights

w̃
(i)
k =

φk

“

X
(i)
k−1, Y

(i)
k

”

qk

“

X
(i)
k−1, Y

(i)
k

”w
(i)
k−1 (3.5)

Generate some new particles to account for spontaneous births. For i = Lk−1+1, . . . , Lk−1+Jk,

sample Y
(i)

k from some importance distribution pk(·) and calculate the importance weights

w̃
(i)
k =

1

Jk

γk(Y
(i)

k )

pk(Y
(i)

k )
(3.6)

Update:

Compute the empirical estimate of the normalising constant associated with each observation,

Ck(z) = κk(z) +

Lk−1+Jk
X

i=1

w̃
(i)
k ψk,z(Y

(i)
k )

Adjust the particle weights to reflect the most recent observations. Update all the particle

weights with:

ŵ
(i)
k =

2

4ν
“

Y
(i)

k

”

+
X

z∈Zk

ψk,z

“

Y
(i)

k

”

Ck(z)

3

5 w̃
(i)
k

Resampling:

Estimate the total mass: N̂k =
PLk−1+Jk

j=1 ŵ
(j)
k

Resample to reduce sample impoverishment (that is, the presence of a large (and increasing in

time) number of particles with very small weights) and to prevent exponential growth of the size

of the particle ensemble. Starting from the particle/weight pairs



ŵ
(i)
k

N̂k
, Y

(i)
k

ffLk−1+Jk

i=1

sample

Lk particles from the empirical probability distribution obtained by suitably normalising it, to

obtain a set of Lk particles of equal weight
n

w
(i)
k /N̂k, X

(i)
k

oLk

i=1
Rescale the weights to reflect the total mass of the system (i.e. multiply the particle weights

by a factor of N̂k) giving the particle/weight ensemble
n

w
(i)
k , X

(i)
k

oLk

i=1
which defines α̃Lk

k .
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ciated with any target, i.e., clutter. Assume that sensors measure a noisy value

of the x and y coordinate of a target. A realisation of the observation would be

Zk = {zk,1, . . . , zk,N(k)} ⊂ R2 where measurement zk,i could either correspond to

an element in Xk or be a false measurement. Note that the number of observations

need not coincide with the number of targets.

We now demonstrate the results of tracking the targets using the SMC im-

plementation of the PHD filter. In our example each target moves according to

a standard linear Gaussian model. Each existing target has a probability of sur-

vival that is independent of its position and velocity. In this example, a target at

time k − 1 survives to time k with probability 0.95. For simplicity no spawning

is considered. At each time k, new targets can appear spontaneously according to

a Poisson point process with an intensity function γk set to 0.2N (·; x̄, Q), where

N (·; x̄, Q) denotes a normal density with mean x̄ and uncertainty corresponding

to the covariance, Q. This corresponds to one new target being created every five

time steps around a location x̄ with covariance Q. As for the observations, each

target generates a noisy observation of its position with certain probability. Ad-

ditionally, false measurements are generated according to a Poisson point process

with a uniform intensity function.

The peaks of α̃k are points in E with the highest local concentration of the

expected number of targets, and hence may be used to generate estimates for the

location of the elements of Ξ. Since the total mass of the intensity measure gives

the expected number of targets, the simplest approach is to round the particle

estimate of this quantity to the closest integer, N̂k and then to select the N̂k

largest peaks as target locations. This was the approach adopted in this numerical

example, for which the positions of 4 targets over 40 time steps are displayed in

Figure 3.1(b). These 4 targets start in the vicinity of the origin and move radially

outwards. The start and finish times of each target can be seen from Figure 3.2(a),

which plots the individual x and y components of each track against time. The x

and y coordinates of the observations Zk for all 40 time steps are shown in Figure

3.2(b). Figure 3.1(b) shows the position estimates superimposed on the true tracks

over the 40 time steps. Observe the close proximity of the estimated positions to

the true tracks even though the tracks of the targets were not strictly generated

according to the assumed model.

3.3 Convergence Study

It is shown in this section that the integral of any bounded test function under

the SMC approximation of the PHD filter converges to the integral of that func-

tion under the true PHD filter in mean of order p (for all integer p) and hence
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(a) Ground truth: plots of x and y components of the 4 true tracks against time, showing the

different start and finish times of the tracks.
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(b) x and y components of position observations immersed in clutter of rate r = 10.

Fig. 3.2. PHD filter example: true target positions and generated observations as a function of

time. Taken from [147].
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almost surely. The restriction that test functions must be bounded seems more

reasonable in the context of the PHD filter than the standard optimal filter as one

is typically interested in the integrals of indicator functions. The result is shown

to hold recursively by decomposing the evolution of the filter into a number of

steps at each time. A number of additional points need to be considered in the

present case. We assume throughout that the observation record {Zk}k≥0 is fixed

and generates the PHD recursion.

We note that the results of this section are somewhat similar to those derived

concurrently by [27]. Both approaches are obtained by considering a modification

of the approach of [30] to take into account the differences between the PHD filter

and the standard particle filter. Our approach to obtaining almost sure conver-

gence is somewhat different to that employed by either of these papers. The central

limit theorem presented below has no analogue in [27].

Remark 3.3.1. As a preliminary, we need to show that both the true and approx-

imate filters have finite mass at all times. In the case of the true filter this follows

by assuming that the mass is bounded at time zero and that ||φk||∞ is finite.

Proceeding by induction we have:

α̃k(1) = ΨkΦkα̃k−1(1)

Φkα̃k−1(1) ≤ γk(1) + ||φk||∞ α̃k−1(1)

α̃k(1) ≤ |Zk|+ γk(1) + ||φk||∞ α̃k−1(1) (3.7)

whilst, in the case of the particle approximation, it can always be shown to hold

from the convergence towards the true filter at the previous time. Note that,

whenever we have a result of the form (3.10) or (3.11) together with (3.7) the

total mass of the approximate filter must be finite with probability one and a

finite upper bound upon the mass can be obtained immediately (consider the L1

convergence result obtained by setting p = 1 in (3.10) or (3.11)).

We make extensive use of [34, Lemma 7.3.3], the relevant portion of which is

reproduced here.

Lemma 3.3.1 (Del Moral, 2004). Given a sequence of probability measures

(µi)i≥1 on a given measurable space (E, E) and a collection of independent ran-

dom variables, one distributed according to each of those measures, (Xi)i≥1, where

∀i,Xi ∼ µi, together with any sequence of measurable functions (hi)i≥1 such that

µi(hi) = 0 for all i ≥ 1, we define for any N ∈ N,

mN (X)(h) =
1

N

N∑

i=1

hi(Xi) and σ2
N (h) =

1

N

N∑

i=1

(sup(hi)− inf(hi))
2

If the hi have finite oscillations (i.e., sup(hi)− inf(hi) <∞ ∀i ≥ 1) then we have:
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√
NE [|mN (X)(h)|p]1/p ≤ d(p)1/pσN (h)

with, for any pair of integers n, p such that n ≥ p ≥ 1, denoting (n)p = n!/(n−p)!:

d(2n) = (2n)n2
−n and d(2n− 1) =

(2n− 1)n√
n− 1

2

2−(n− 1
2
)

We begin by showing that as the number of particles used to approximate the

PHD filter tends towards infinity, the estimate of the integral of any bounded

measurable function under the empirical measure associated with the particle

approximation converges towards the integral under the true PHD filter in terms of

Lp norm and that the two integrals are P−a.s. equal in the limit of infinitely many

particles. The principal result of this section is theorem 3.3.1 which establishes the

first result and leads directly to the second.

Throughout this section we assume that a particle approximation consisting

of Lk−1 weighted particles is available at time k − 1, with associated empirical

measure α̃
Lk−1

k−1 . These particles are propagated forwards according to algorithm

3.1, and an additional Jk particles are introduced to account for the possibility

of new objects appearing at time k. This gives us a Mk = Jk + Lk−1 particle

approximation, denoted αMk
k , to the PHD filter at time k, which is subsequently re-

weighted (corresponding to the update step of the exact algorithm) and resampled

to provide a sample of Lk particles at this time, α̃Lk
k . This leads to a recursive

algorithm and provides a convenient decomposition of the error introduced at each

time-step into quantities which can be straightforwardly bounded. We assume that

Jk and Mk are chosen in a manner independent of the evolution of the particle

system, but which may be influenced by such factors as the number of observations.

3.3.1 Conditions

As a final precursor to the convergence study, we present a number of weak condi-

tions which are sufficient for the convergence results below to hold. The following

conditions are assumed to hold throughout:

– The particle filter is initialised with some finite mass by iid sampling from a

tractable distribution α̃0.

– The observation set is finite, |Zk| <∞∀k.
– All of the importance ratios are bounded above:

sup
(x,y)∈E×E

∣∣∣∣
φk(x, y)

qk(x, y)

∣∣∣∣ < R1 <∞ sup
x∈E

∣∣∣∣
γk(x)

pk(x)

∣∣∣∣ < R2 <∞ (3.8)

and that at least one of these ratios is also strictly positive.

– The individual object likelihood function is bounded above and strictly positive:

0 < ψk,z(x) < R3 <∞ (3.9)
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– The number of particles used at each time step are not dependent upon the

particle approximation at that time step. In the case of the convergence results

we allow for fairly general behaviour, requiring only that the number of particles

at each stage is proportional to the number used at the previous step in the

algorithm, Lk ∝ Mk = Lk−1 + Jk and Jk ∝ Lk−1; in the central limit theorem

we assume that N particles are propagated forward at each time step and some

additional fraction ηk are introduced at each time k to describe the spontaneous

birth density (this is done for convenience rather than through necessity).

– Resampling is done according to a multinomial scheme, i.e. the number of rep-

resentatives of each particle which survives is sampled from a multinomial dis-

tribution with parameters proportional to the particle weights.

The first of these conditions simply constrain the initialisation of the particle

approximation, the next is a weak finiteness requirement placed upon the true

system, the next two are implementation issues and are required to ensure the

importance weights and that the filter density remains finite. The penultimate

condition prevents unstable interactions between the filter mass and the particle

approximation.

3.3.2 Lp Convergence and Almost Sure Convergence

The following theorem is the main result of this section and is proved by induction.

It is shown that each step of the algorithm introduces an error (in the Lp sense)

whose upper bound converges to zero as the number of particles tends to infinity

and that the errors accumulated by the evolution of the algorithm have the same

property.

Theorem 3.3.1 (Lp Convergence). Under the conditions specified in section

3.3.1, there exist finite constants such that for any ξ ∈ Bb(E), ξ : E → R the

following holds for all times k:

E
[∣∣∣αMk

k (ξ)− αk(ξ)
∣∣∣
p]1/p

≤ c̄k,p
||ξ||∞√
Mk

(3.10)

E
[∣∣∣α̃Lk

k (ξ)− α̃k(ξ)
∣∣∣
p]1/p

≤ ck,p
||ξ||∞√
Lk

(3.11)

Convergence in an Lp sense directly implies convergence in probability, so we also

have:

αMk
k (ξ)

p→ αk(ξ)

α̃Lk
k (ξ)

p→ α̃k(ξ)

Furthermore, by a Borel-Cantelli argument, the particle approximation of the in-

tegral of any function with finite fourth moment converges almost surely to the
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integral under the true PHD filter as the number of particles tends towards infin-

ity.

Proof. Equation (3.11) holds at time 0 by lemma 3.3.2.

Now, if equation (3.11) holds at time k − 1 then, by lemmas 3.3.3 and 3.3.4,

equation (3.10) holds at time k.

Similarly, if equation (3.10) holds at time k then by lemmas 3.3.5 and 3.3.6,

equation (3.11) also holds at time k.

The theorem follows by induction. ⊓⊔

Lemma 3.3.2 (Initialisation). If, at time zero, the particle approximation, α̃L0
0 ,

is obtained by taking L0 iid samples from α̃0/α̃0(1) and weighting each by α̃0(1)/L0,

then there exists a finite constant c0,p such that, for all p ≥ 1 and for all test func-

tions ξ in Bb(E):

E
[∣∣∣α̃L0

0 (ξ)− α̃0(ξ)
∣∣∣
p]1/p

≤ c0,p
||ξ||∞√
L0

Proof. This can be seen to be true directly by applying lemma 3.3.1. ⊓⊔

Lemma 3.3.3 (Prediction). If, for some finite constant ck−1,p, and all test

functions ξ in Bb(E):

E
[∣∣∣α̃Lk−1

k−1 (ξ)− α̃k−1(ξ)
∣∣∣
p]1/p

≤ ck−1,p
||ξ||∞√
Lk−1

Then there exists some finite constant ĉk,p such that, for all test functions ξ in

Lp(E):

E
[∣∣∣Φkα̃Lk−1

k−1 (ξ)− Φkα̃k−1(ξ)
∣∣∣
p]1/p

≤ ĉk,p
||ξ||∞√
Lk−1

Proof. From the definition of the prediction operator:

E
[∣∣∣Φkα̃Lk−1

k−1 (ξ)− Φkα̃k−1(ξ)
∣∣∣
p]1/p

= E
[∣∣∣α̃Lk−1

k−1 φk(ξ)− α̃k−1φk(ξ)
∣∣∣
p]1/p

= E
[∣∣∣
(
α̃
Lk−1

k−1 − α̃k−1

)
φk(ξ)

∣∣∣
p]1/p

Hence, by the assumption of the lemma:

E
[∣∣∣Φkα̃Lk−1

k−1 (ξ)− Φkα̃k−1(ξ)
∣∣∣
p]1/p

≤ ck−1,p

supζ |φk(ζ, ξ)|√
Lk−1

≤ ck−1,p

supζ,x φk(ζ, x) ||ξ||∞√
Lk−1

Which gives us the claim of the lemma with: ĉk,p = ck−1,p supζ,x φk(x, ζ) ⊓⊔
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Lemma 3.3.4 (Sampling). If, for some finite constant, ĉk,p:

E
[∣∣∣Φkα̃Lk−1

k−1 (ξ)− Φkα̃k−1(ξ)
∣∣∣
p]1/p

≤ ĉk,p
||ξ||∞√
Lk−1

Then, there exists a finite constant c̃k,p such that:

E
[∣∣∣αMk

k (ξ)− αk(ξ)
∣∣∣
p]1/p

≤ c̃k,p
||ξ||∞√
Mk

Proof. Let Gk−1 be the σ − field generated by the set of all particles until time

k−1. By a conditioning argument on Gk−1, we may view
(
Y

(i)
k

)
i≥1

as independent

samples with respective distributions
(
qk

(
Y

(i)
k , ·

))
i≥1

. Let α̈
Lk−1

k be the empirical

measure associated with the particles
(
Y

(i)
k

)
i≥1

after the re-weighting step in

equation (3.5), i.e.,

α̈
Lk−1

k =

Lk−1∑

i=1

w̃
(i)
k δ

Y
(i)
k

and define the sequence of functions hi(·) =
φk(X

(i)
k−1,·)ξ(·)

qk(X
(i)
k−1,·)

− φk(ξ)
(
X

(i)
k−1

)
and

associated measures µi(·) = qk(X
(i)
k , ·) such that µi(hi) = 0. It is clear that:

α̈
Lk−1

k (ξ)− α̃Lk−1

k φk(ξ)

α̃
Lk−1

k−1 (1)
=

Lk−1∑

i=1

w
(i)
k−1hi(Y

(i)
k )

α̃
Lk−1

k−1 (1)

Which allows us to write:

E
[∣∣∣α̈Lk−1

k (ξ)− α̃Lk−1

k φk(ξ)
∣∣∣
p]

= E



∣∣∣α̃Lk−1

k−1 (1)
∣∣∣
p

E



∣∣∣∣∣∣

Lk−1∑

i=1

w
(i)
k−1hi(Y

(i)
k )

α̃
Lk−1

k−1 (1)

∣∣∣∣∣∣

p∣∣∣∣∣∣
Gk−1






≤ E
[∣∣∣α̃Lk−1

k−1 (1)
∣∣∣
p] 2pd(p)

(∣∣∣
∣∣∣φk
qk

∣∣∣
∣∣∣
∞
||ξ||∞

)p

(√
Lk−1

)p

where the final inequality follows from an application of lemma 3.3.1. This gives

us the bound:

E
[∣∣∣α̈Lk−1

k (ξ)− α̃Lk−1

k φk(ξ)
∣∣∣
p]1/p

≤
2d(p)1/pCα̃k,pR1 ||ξ||∞√

Lk−1

Where Cαk,p is the finite constant which bounds E
[∣∣∣α̃Lk−1

k−1 (1)
∣∣∣
p]1/p

(see remark

3.3.1).

If we allow α̊Jk
k be the particle approximation to γk obtained by importance

sampling from pk then it is straightforward to verify that, for some finite constant

B̂p
k obtained by using lemma 3.3.1 once again:

E
[∣∣∣α̊Jk

k (ξ)− γk(ξ)
∣∣∣
p]1/p

≤ 2d(p)1/p
∣∣∣∣
∣∣∣∣
γk
pk

∣∣∣∣
∣∣∣∣
∞

||ξ||∞√
Jk
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And noting that αMk
k = α̊Jk

k + α̈
Lk−1

k we can apply Minkowski’s inequality to

obtain:

E
[∣∣∣αMk

k (ξ)− Φkα̃Lk
k−1

∣∣∣
p]1/p

≤ 2Cαk,Pd(p)
1/p

∣∣∣
∣∣∣φk
qk

∣∣∣
∣∣∣
∞
||ξ||∞√

Lk−1

+2d(p)1/p
∣∣∣∣
∣∣∣∣
γk
pk

∣∣∣∣
∣∣∣∣
∞

||ξ||∞√
Jk

Defining lk−1 = Lk−1/Mk and jk = Jk/Mk for convenience, we arrive at the

result of the lemma with (making use of (3.8)):

c̃k,p = 2d(p)1/pCαk,p
R1√
lk−1

+ 2d(p)1/p
R2√
jk

⊓⊔

Lemma 3.3.5 (Update). If for some finite constant c̃k,p:

E
[∣∣∣αMk

k (ξ)− αk(ξ)
∣∣∣
p]1/p

≤ c̃k,p
||ξ||∞√
Mk

Then there exists a finite constant c̄k,p such that:

E
[∣∣∣ΨkαMk

k (ξ)− α̃k(ξ)
∣∣∣
p]1/p

≤ c̄k,p
||ξ||∞√
Mk

Proof. The proof follows by expanding the norm and using Minkowski’s inequal-

ity to bound the overall norm. The individual constituents are bounded by the

assumption of the lemma.

E
[∣∣∣ΨkαMk

k (ξ)− α̃k(ξ)
∣∣∣
p]1/p

= E



∣∣∣∣∣∣
αMk
k


νkξ +

∑

z∈Zk

ψk,zξ

κk(z) + αMk
k (ψk,z)




−αk


νkξ +

∑

z∈Zk

ψk,zξ

κk(z) + αk(ψk,z)



∣∣∣∣∣∣

p


1/p

≤ E
[∣∣∣αMk

k (νkξ)− αk(νkξ)
∣∣∣
p]1/p

+

∑

z∈Zk

E

[∣∣∣∣∣α
Mk
k

(
ψk,zξ

κk(z) + αMk
k (ψk,z)

)
− αk

(
ψk,zξ

κk(z) + αk(ψk,z)

)∣∣∣∣∣

p]1/p

Noting that νk is a probability, the first term is trivially bounded by the as-

sumption of the lemma:

E
[∣∣∣αMk

k (νkξ)− αk(νkξ)
∣∣∣
p]1/p

≤ c̃k,p
||νk||∞ ||ξ||∞√

Mk
≤ c̃k,p

||ξ||∞√
Mk

In order to bound the second term a little more effort is required, consider a

single element of the summation:
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E

[∣∣∣∣∣α
Mk
k

(
ψk,zξ

κk(z) + αMk
k (ψk,z)

)
− αk

(
ψk,zξ

κk(z) + αk(ψk,z)

)∣∣∣∣∣

p]1/p

≤ E

[∣∣∣∣∣α
Mk
k

(
ψk,zξ

κk(z) + αMk
k (ψk,z)

)
− αMk

k

(
ψk,zξ

κk(z) + αk(ψk,z)

)∣∣∣∣∣

p]1/p

+

E

[∣∣∣∣α
Mk
k

(
ψk,zξ

κk(z) + αk(ψk,z)

)
− αk

(
ψk,zξ

κk(z) + αk(ψk,z)

)∣∣∣∣
p]1/p

≤ E



∣∣∣∣∣∣

αMk
k (ψk,zξ)

[(
κk(z) + αMk

k (ψk,z)
)
− (κk(z) + αk(ψk,z))

]

((
κk(z) + αMk

k (ψk,z)
))

((κk(z) + αk(ψk,z)))

∣∣∣∣∣∣

p


1/p

+

E

[∣∣∣∣α
Mk
k

(
ψk,zξ

κk(z) + αk(ψk,z)

)
− αk

(
ψk,zξ

κk(z) + αk(ψk,z)

)∣∣∣∣
p]1/p

≤ 2
E
[∣∣∣αMk

k (ψk,z)− αk(ψk,z)
∣∣∣
p]1/p

||ξ||∞
κk(z) + αk(ψk,z)

Where the final line follows from the positivity assumptions placed upon one

of the weight ratios and the likelihood function. This allows us to assert that:

∑

z∈Zk

E

[∣∣∣∣∣α
Mk
k

(
ψk,zξ

κk(z) + αMk
k (ψk,z)

)
− αk

(
ψk,zξ

κk(z) + αk(ψk,z)

)∣∣∣∣∣

p]1/p

≤ 2Zk ||ξ||∞ sup
z

E
[∣∣∣αMk

k (ψk,z)− αk(ψk,z)
∣∣∣
p]1/p

κk(z) + αk(ψk,z)

≤ 2Zk c̃k,p ||ξ||∞√
Mk

sup
z

||ψk,z||∞
κk(z) + αk(ψk,z)

Combining this with the previous result and assumption (3.9) gives the result of

the lemma with:

c̄k,p = 1 + 2Zk c̃k,p sup
z

R3

κk(z) + αk(ψk,z)

⊓⊔

Lemma 3.3.6 (Resampling). If, for some finite constant, c̄k,p:

E
[∣∣∣ΨkαMk

k (ξ)− α̃k(ξ)
∣∣∣
p]1/p

≤ c̄k,p
||ξ||∞√
Mk

and the resampling scheme is multinomial, then there exists a finite constant ck,p

such that:

E
[∣∣∣α̃Lk

k (ξ)− α̃k(ξ)
∣∣∣
p]1/p

≤ ck,p
||ξ||∞√
Lk

Proof. By Minkowski’s inequality,

E
[∣∣∣α̃Lk

k (ξ)− α̃k(ξ)
∣∣∣
p]1/p

≤ E
[∣∣∣α̃Lk

k (ξ)− Ψkα̃Mk
k (ξ)

∣∣∣
p]1/p

+ E
[∣∣∣Ψkα̃Mk

k (ξ)− α̃k(ξ)
∣∣∣
p]1/p

By the assumption of the lemma:
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E
[∣∣∣Ψkα̃Mk

k (ξ)− α̃k(ξ)
∣∣∣
p]1/p

≤ c̄k,p
||ξ||∞√
Mk

We can bound the remaining term by taking the expectation conditioned upon

the sigma algebra generated by the particle ensemble prior to resampling, noting

that the resampled particle set is iid according to the empirical distribution before

resampling:

E
[∣∣∣α̃Lk

k (ξ)− Ψkα̃Mk
k (ξ)

∣∣∣
p]1/p

≤ CDk,pCRk,p
||ξ||∞√
Lk

where CDk,p is the upper bound on E
[∣∣∣α̃Mk

k

∣∣∣
p]1/p

approximation at the resampling

stage (again, this must exist by remark 3.3.1) and CRk,p is a constant given by Del

Moral’s Lp-bound lemma, lemma 3.3.1.

Thus we have the result of the lemma with:

ck,p = CDk,pC
R
k,p + c̄k,p

√
Mk

Lk

⊓⊔

It would be convenient to establish time-uniform convergence results and the

stability of the filter with respect to its initial conditions. However, the tools pio-

neered by [34] and subsequently [100, 25] are not appropriate in the present case:

the PHD filter is not a Feynman-Kac flow and decoupling the “prediction” and

“update” steps of the filter is not straightforward due to the inherent nonlinearity

and the absence of a linear unnormalised flow. It is not obvious how to obtain

such results under realistic assumptions.

3.4 Central Limit Theorem

A number of people have published central limit theorems for SMC Methods

[41, 34, 25, 100]. As the PHD filtering equations are somewhat different to the

standard Bayesian filtering recursion, a number of significant differences need to

be addressed in this case. Firstly, the total mass of the filter is variable and un-

known rather than fixed at unity and secondly, two importance sampling steps

are required at each time. The other main result of this chapter is theorem 3.4.1

which shows that a central limit theorem holds for the SMC approximation of the

PHD filter. We adopt an inductive approach to demonstrating that a central limit

theorem applies to estimates of the integral of an arbitrary test function under the

random measure associated with the particle approximation to the PHD filter.

3.4.1 Formulation

It is convenient to write the PHD in a slightly different form to that given by

equations (3.3) and (3.4) for the purposes of considering the central limit theorem.
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It is useful to describe the evolution of the PHD filter in terms of selection and

mutation operations to allow the errors introduced at each time to be divided into

the error propagated forward from earlier times and that introduced by sampling

at the present time-step. The formulation used is similar to that employed in the

analysis of Feynman-Kac flows [34] under an interacting-process interpretation.

We introduce a potential function, Gk,αk
: E → R and its associated selection

operator Sk,αk
: E × E → R and as the selection operator which we employ

updates the measure based upon the full distribution at the previous time, we may

define the measure Ŝk,αk
(x) = αk(Sk,αk

(·, x))αk(Gk,αk
)/αk(1) which is obtained

by applying the selection operator to the measure and renormalising to correctly

reflect the evolution of the mass of the filter:

Gk,αk
(·) = νk(·) +

∑

z∈Zk

ψk,z(·)
κk(z) + αk(ψk,z)

Sk,αk
(x, y) =

αk(y)Gk,αk
(y)

αk(Gk,αk
)

Ŝk,αk
(·) = αk(·)Gk,αk

(·)

For clarity of exposition, we have assumed in this section that N particles are

propagated forward from each time step to the next and that ηkN particles are

introduced to account for spontaneous births at time k (i.e., in the notation of the

previous section, Lk = N and Jk = ηkN). The notation Nk = (1 + ηk)N is also

used for notational convenience.

The interpretation of this formulation is slightly different and perhaps more

intuitive. Update and resampling occur simultaneously and comprise the selection

step, while prediction follows as a mutation operation. Here we use αk to refer to

the predicted filter as in (3.3), and it is not necessary to make any reference to

the updated filter. We separate the spontaneous birth component of the measure

from that which depends upon the past and write the PHD recursion as:

αk(ξ) = α̂k(ξ) + α̊k(ξ)

α̂k(ξ) = Ŝk−1,αk−1
φk (ξ)

α̊k(ξ) = γk(ξ),

we note that the form of Ŝk−1,αk−1
is such that this is a recursive description.

The Particle Approximation. Within this section, the particle approximation

described previously can be restated as the following iterative procedure, algorithm

3.2. This provides an alternative view of algorithm 3.1 given in section 3.2.3, with

the additional assumption that the number of particles propagated forward at

each time step is constant, with no explicit reference to α̃k
Lk . As we are concerned

with asymptotic results the increased clarity more than compensates for the slight

reduction in generality.
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Algorithm 3.2 A reformulation of the SMC PHD.
Let the particle approximation prior to resampling at time k − 1 be of the form

α
Nk−1

k−1 =
1

N

Nk−1
X

i=1

w̃
(i)
k−1δX

(i)
k−1

Sample N particles to propagate forward via the selection operator:



Sample Y
(i)

k ∼ S
k−1,α

Nk−1
k−1

(·)
ffN

i=1

Mutate these N particles.
n

Sample X
(i)
k ∼ qk(Y

(i)
k , ·)

oN

i=1

Introduce ηkN particles to account for the possibility of births.

n

Sample X
(i)
k ∼ pk(·)

oNk

i=N+1

Define the particle approximation at time k as α
Nk
k = α̂N

k + α̊
ηkN
k where:

α̂N
k =

1

N

N
X

i=1

w̃
(i)
k δ

X
(i)
k

and α̊
ηkN
k =

1

N

Nk
X

i=N+1

w̃
(i)
k δ

X
(i)
k

and the weights are given by:

w̃
(i)
k =

8

>

>

<

>

>

:

α
Nk−1

k−1

„

G
k−1,α

Nk−1
k−1

«

φk(Y
(i)
k

,X
(i)
k

)

qk(Y
(i)
k

,X
(i)
k

)
i ∈ {1, . . . , N}

1
ηk

γk(X
(i)
k

)

pk(X
(i)
k

)
i ∈ {N + 1, . . . , Nk}

3.4.2 Variance Recursion

Theorem 3.4.1 (Central Limit Theorem). The particle approximation to the

PHD filter follows a central limit theorem with some finite variance for all contin-

uous bounded test functions ξ : E → Rd, at all times k ≥ 0:

lim
N→∞

√
N
[
αNk
k (ξ)− αk(ξ)

]
d→ N

(
0, σ2

k(ξ)
)

provided that the result holds at time 0, which it does, for example, if the filter

is initialised by obtaining samples from a normalised version of the true filter by

importance sampling and weighting them correctly.

In all cases we prove the case for scalar-valued test functions and the gener-

alisation to the vector-valued case follows directly via the Cramer-Wold device [8,

p.397].

Proof. By assumption, the result of the theorem holds at time 0. Using induction

the result can be shown to hold for all times by the sequence of lemmas, lemma

3.4.1-3.4.4, that follow.

The core of the proof is the following decomposition:
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αNk
k (ξ)− αk(ξ) = α̂Nk (ξ)− Ŝ

k−1,α
Nk−1
k−1

(
qk ×

φk
qk

)
(ξ) +

Ŝ
k−1,α

Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)− α̂k(ξ) +

α̊
(ηkN)
k (ξ)− α̊k(ξ)

Consistent with the notation defined in section 3.2.1, Ŝ
k−1,α

Nk−1
k−1

(
qk × φk

qk

)
(ξ) is

to be understood as
∫
Ŝ
k−1,α

Nk−1
k−1

(du)

∫
qk(u, dv)

φk(u, v)

qk(u, v)
ξ(v)

i.e., qk × φk
qk

defines a new transition kernel from E to E.

The first term in this decomposition accounts for errors introduced at time

k by using a particle approximation of the prediction step and this is shown to

converge to a centred normal distribution of variance V̂k(ξ) in lemma 3.4.1. The

second term describes the errors propagated forward from previous times, and is

shown to follow a central limit theorem with variance V̈k(ξ) in lemma 3.4.2. The

final term corresponds to sampling errors in the spontaneous birth components of

the filter and this is shown to follow a central limit theorem with variance V̊k(ξ)

in lemma 3.4.3.

Lemma 3.4.4 shows that the result of combining the three terms of the de-

composition is a random variable which itself follows a central limit theorem with

variance:

σ2
k(ξ) = V̂k(ξ) + V̈k(ξ) + V̊k(ξ)

which is precisely the result of the theorem for scalar test functions.

In the case of vector test functions, the result follows by the Cramer-Wold

device, applied to any linear combination of their components, and the covariance

matrix is denoted Σk(ξ) = [Σk(ξi, ξj)]. ⊓⊔

Lemma 3.4.1 (Selection-prediction Sampling Errors). The selection-prediction

sampling error (due to steps 2 and 3) at time k converges to a normally distributed

random variable of finite variance as the size of the particle ensemble tends towards

infinity:

lim
N→∞

√
N

(
α̂Nk (ξ)− Ŝ

k−1,α
Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)

)
d→ N

(
0, V̂k(ξ)

)

Proof. Consider the term under consideration:

α̂Nk (ξ)− Ŝ
k−1,α

Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)

=
1

N

N∑

i=1

(
w̃

(i)
k ξ(X

(i)
k )− Ŝ

k−1,α
Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)

)

=
1√
N

N∑

i=1

UNk,i
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where

UNk,i =

w̃
(i)
k ξ(X

(i)
k )− Ŝ

k−1,α
Nk−1
k−1

(
qk × φk

qk

)
(ξ)

√
N

Let HNk = σ

({
X

(i)
n , w̃

(i)
n

}Nn

i=1
: n = 0, . . . , k

)
be the sigma algebra generated

by the particle ensembles occurring at or before time k and further let HNk,j =

σ

(
HNk−1,

{
X

(i)
k , w̃

(i)
k

}j
i=1

)
.

It is evident that conditioned upon HNk−1,
{
Y

(i)
k , X

(i)
k

}N
i=1

are iid samples from

the product distribution S
k−1,α

Nk−1
k−1

(y)qk(y, x) and, therefore:

E
[
UNk,i

∣∣HNk,i−1

]
= E

[
UNk,i

∣∣HNk−1

]
= 0

Furthermore, conditionally, UNk,i has finite variance, which follows from assumption

(3.8) and the assumption that the observation set and the initial mass of the filter

are finite:

E
[(
UNk,i

)2]
= E

[
E
[(
UNk,i

)2∣∣∣HNk,i−1

]]

=
1

N
E

[(
w̃

(i)
k ξ(X

(i)
k )
)2
−
(
Ŝ
k−1,α

Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)

)2
]

<

2E

[(
α
Nk−1

k−1 (1) + |Zk−1|
)2
]
R2

1 ||ξ||2∞
N

<∞

Noting that, by the Lp convergence result of theorem 3.3.1 the expectation may

be bounded above uniformly in N. We have that ∀t ∈ [0, 1], ǫ > 0:

lim
N→∞

⌊Nt⌋∑

i=1

E
[(
UNk,i

)2
I|UN

k,i|>ǫ

∣∣∣HNk,i−1

]
p→ 0 (3.12)

By noting that the following convergence result holds (and this can be seen by

expanding each term and using theorem 3.3.1, noting that if two sequences of

bounded random variables converge to two finite limits, then the product of those

sequences converges to the product of their respective limits and that for nonzero

random variables the same is true of the quotient of those sequences)

α
Nk−1

k−1

(
G
k,α

Nk−1
k−1

)
α
Nk−1

k−1

(
G
k,α

Nk−1
k−1

(
φk ×

φk
qk

)
(ξ)

)
− αNk−1

k−1

(
G
k,α

Nk−1
k−1

φk (ξ)

)2

(3.13)

p→ αk−1

(
Gk,αk−1

)
αk−1

(
Gk,αk−1

(
φk ×

φk
qk

)
(ξ)

)
− αk−1

(
Gk,αk−1

φk (ξ)
)2

(3.14)

it is apparent (as (3.13) is equal to N
⌊Nt⌋ times (3.15) and (3.14) to 1

t times (3.16))

that
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⌊Nt⌋∑

k=1

E
[(
UNk,i

)2∣∣∣HNk,i−1

]
=
⌊Nt⌋
N

α
Nk−1

k−1

(
G
k−1,α

Nk−1
k−1

)2

×
[
S
k−1,α

Nk−1
k−1

(
φk ×

φk
qk

)
(ξ2)− S

k−1,α
Nk−1
k−1

(φk(ξ))
2

]

(3.15)

p→tαk−1

(
Gk−1,αk−1

)2×
[
Sk−1,αk−1

(
φk ×

φk
qk

)
(ξ2)− Sk−1,αk−1

(φk(ξ))
2

]

(3.16)

From this, it can be seen that for each N , the sequence

(
UNk,i,HNk,i

)
, 1 ≤ i ≤ N

is a square-integrable martingale difference which satisfies the Lindeberg condition

(3.12) and hence a martingale central limit theorem may be invoked (see, for

example, [140, page 543])) to show that:

lim
N→∞

√
N

(
α̂Nk (ξ)− Ŝ

k−1,α
Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)

)
d→ N

(
0, V̂k(ξ)

)

where,

V̂k(ξ) = αk−1

(
Gk−1,αk−1

)2
[
Sk−1,αk−1

(
φk ×

φk
qk

)
(ξ2)− Sk−1,αk−1

(φk(ξ))
2

]

= αk−1(Gk−1,αk−1
)Ŝk−1,αk−1

(
φk ×

φk
qk

)
(ξ2)− Ŝk−1,αk−1

(φk(ξ))
2

⊓⊔

Lemma 3.4.2 (Propagated Errors). The error resulting from propagating the

particle approximation forward rather than the true filter has an asymptotically

normal distribution with finite variance.

Ŝ
k−1,α

Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)− α̂k(ξ) d→ N

(
0, V̈k(ξ)

)

Proof. Direct expansion of the potential allows us to express this difference as:

Ŝ
k−1,α

Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)− α̂k(ξ)

= Ŝ
k−1,α

Nk−1
k−1

φk(ξ)− Ŝk−1,αk−1
φk(ξ)

= α
Nk−1

k−1

(
φk(ξ)G

k−1,α
Nk−1
k−1

)
− αk−1

(
φk(ξ)Gk−1,αk−1

)

= α
Nk−1

k−1 (φk(ξ)νk−1)− αk−1 (φk(ξ)νk−1) +

∑

z∈Zk−1

α
Nk−1

k−1 (∆k−1,z)− αk−1(∆k−1,z)

κk−1(z) + α
Nk−1

k−1 (ψk−1,z)
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where ∆k−1,z = ψk−1,zφk(ξ)− αk−1(ψk−1,zφk(ξ))
κk−1(z)+αk−1(ψk−1,z)ψk−1,z and the final equality can

be shown to hold by considering a single term in the summation thus:

αNk
k−1(ψk−1,zφk(ξ))

κk−1(z) + α
Nk−1

k−1 (ψk−1,z)
− αk−1(ψk−1,zφk(ξ))

κk−1(z) + αk−1(ψk−1,z)

=
1

κk−1(z) + α
Nk−1

k−1 (ψk−1,z)

[
α
Nk−1

k−1 (ψk−1,zφk(ξ))− αk−1(ψk−1,zφk(ξ))

+αk−1(ψk−1,zφk(ξ))−
κk−1(z) + α

Nk−1

k−1 (ψk−1,z)

κk−1(z) + αk−1(ψk−1,z)
αk−1(ψk−1,zφk(ξ))

]

=
1

κk−1(z) + α
Nk−1

k−1 (ψk−1,z)

[
α
Nk−1

k−1 (ψk−1,zφk(ξ))− αk−1(ψk−1,zφk(ξ))

+
αk−1(ψk−1,z)− αNk−1

k−1 (ψk−1,z)

κk−1(z) + αk−1(ψk−1,z)
αk−1(ψk−1,zφk(ξ))

]

=
α
Nk−1

k−1

(
ψk−1,zφk(ξ)− αk−1(ψk−1,zφk(ξ))ψk−1,z

κk−1(z)+αk−1(ψk−1,zφk(ξ))ψk−1,z

)

κk−1(z) + α
Nk−1

k−1 (ψk−1,z)

−
αk−1

(
ψk−1,zφk(ξ)− αk−1(ψk−1,zφk(ξ))ψk−1,z

κk−1(z)+αk−1(ψk−1,zφk(ξ))ψk−1,z

)

κk−1(z) + α
Nk−1

k−1 (ψk−1,z)

If we set

∆k−1 =
[
νkφk(ξ), ∆k−1,Zk−1,1

, . . . , ∆k−1,Zk−1,|Zk−1|

]

where Zik−1 denotes the ith element of the set Zk−1, and,

ρ
Nk−1

k−1 =

[
1,

1

κk−1(Zk−1,1) + α
Nk−1

k−1 (ψk−1,Zk−1,1
)
, . . . ,

1

κk−1(Zk−1,|Zk−1|) + α
Nk−1

k−1 (ψk−1,Zk−1,|Zk−1|
)



T

Then the quantity of interest may be written as an inner product:

〈
ρ
Nk−1

k−1 , α
Nk−1

k−1 (∆k−1)− αk−1 (∆k−1)
〉

We know from theorem 3.3.1 that ρ
Nk−1

k−1

p→ ρk−1, where

ρk−1 =

[
1,

1

κk−1(Zk−1,1) + αk−1(ψk−1,Zk−1,1
)
, . . . ,

1

κk−1(Zk−1,|Zk−1|) + αk−1(ψk−1,Zk−1,|Zk−1|
)

]T

And furthermore, we know by the induction assumption that each α
Nk−1

k−1 (∆k−1)−
αk−1 (∆k−1) is asymptotically normal with zero mean and some known variance,

Σk−1(∆k−1). By Slutzky’s theorem, therefore, the quantity of interest converges

to a normal distribution of mean zero and variance V̈k(ξ) = ρTk−1Σk−1(∆k−1)ρk−1.

⊓⊔
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Lemma 3.4.3 (Spontaneous Births). The error in the particle approximation

to the spontaneous birth element of the PHD converges to a normal distribution

with finite variance:

lim
N→∞

√
N
[
α̊ηkN
k (ξ)− α̊k(ξ)

]
d→ N

(
0, V̊k(ξ)

)

Proof.

α̊ηkN
k (ξ)− α̊k(ξ) =

γk(1)

ηkN

Nk∑

j=N+1

(
γk(X

(j)
k )

γk(1)pk(X
(j)
k )

ξ(X
(j)
k )− γk(ξ)

γk(1)

)

Of course, the particles appearing within this sum are iid according to pk and this

corresponds to γk(1) multiplied by the importance sampling estimate giving us

the standard result:

√
ηkN

[
α̊ηkN
k (ξ)− α̊k(ξ)

γk(1)

]
d→ N

(
0,Varpk

(
γk

γk(1)pk
ξ

))

which is precisely the result of the lemma with:

V̊k(ξ) =
1

ηk

[
γk

(
γk
pk
ξ2
)
− γk(ξ)2

]

⊓⊔

Lemma 3.4.4 (Combining Terms). Using the results of lemmas 3.4.1–3.4.3 it

follows that αNk
k (ξ)− αk(ξ) satisfies the central limit theorem:

lim
N→∞

√
N
(
αNk
k (ξ)− αk(ξ)

)
d→ N (0, σk(ξ))

where the asymptotic variance is given by σk(ξ) = V̂k(ξ) + V̈k(ξ) + V̊k(ξ).

Proof. The proof follows the method of [100]. The characteristic function of the

random variable of interest is

Υk(t) = E
[
exp

(
it
√
N
(
αNk
k (ξ)− αk(ξ)

))]

As the particles associated with the spontaneous birth term of the PHD are inde-

pendent of those propagated forward from the previous time we can write:

Υk(t) = E
[
exp

(
it
√
N
(
α̊ηkN
k (ξ)− α̊k(ξ)

))]

×E
[
exp

(
it
√
N
(
α̂Nk (ξ)− α̂k(ξ)

))]

The first term of this expansion is the characteristic function of a normal random

variable, so all that remains is to show that the same is true of the second term.

Using the same decomposition as above, we may write:
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E
[
exp

(
it
√
N
(
α̂Nk (ξ)− α̂k(ξ)

))]

= E




A︷ ︸︸ ︷
E

[
exp

(
it
√
N

{
α̂Nk (ξ)− Ŝ

k−1,α
Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)

})∣∣∣∣HNk−1

]

×exp

(
it
√
N

{
Ŝ
k−1,α

Nk−1
k−1

(
qk ×

φk
qk

)
(ξ)− α̂k(ξ)

})

︸ ︷︷ ︸
B




= E

[(
A− exp

(
− t

2V̂k(ξ)

2

))
B

]
+ exp

(
− t

2V̂k(ξ)

2

)
E[B]

All that remains is to show that the first term in this expansion vanishes and we

will have shown that the characteristic function of interest Υk(t) corresponds to

a Gaussian distribution as it can be expressed as the product of three Gaussian

characteristic functions. Furthermore, it must have variance equal to the sum of

the variances of the three constituent Gaussians which is exactly the result which

we wish to prove.

By the conditionally iid nature of the particles, we can write:

A = E


exp


it

N∑

j=1

UNk,j



∣∣∣∣∣∣
HNk−1


 = E

[
exp

(
itUNk,1

)∣∣HNk−1

]N

Hence:

∣∣∣∣∣A− exp

(
− t

2V̂k(ξ)

2

)∣∣∣∣∣ =

∣∣∣∣∣∣
E
[
exp

(
itUNk,1

)∣∣HNk−1

]N − exp

(
− t

2V̂k(ξ)/N

2

)N ∣∣∣∣∣∣

Using the same result as [100] (i.e. that |uN − vN | ≤ N |u− v|∀|u| ≤ 1, |v| ≤ 1) we

obtain:
∣∣∣∣∣A− exp

(
− t

2V̂k(ξ)

2

)∣∣∣∣∣ ≤ N
∣∣∣∣∣E
[
exp

(
itUNk,1

)∣∣HNk−1

]
− exp

(
− t

2V̂k(ξ)/N

2

)∣∣∣∣∣

The following decomposition can be used to show that this difference converges

to zero as N →∞:

E

[
exp

(
itUNk,1

)
− exp

(
− t

2V̂k(ξ)/N

2

)∣∣∣∣∣H
N
k−1

]

= E
[
exp

(
itUNk,1

)∣∣HNk−1

]
−
(

1−
t2(UNk,1)

2

2

)
+ (3.17)

(
1−

t2(UNk,1)
2

2

)
− exp

(
− t

2

2
E
[(
UNk,1

)2∣∣∣HNk−1

])
+ (3.18)

exp

(
− t

2

2
E
[(
UNk,1

)2∣∣∣HNk−1

])
− exp

(
− t

2V̂k(ξ)/N

2

)
(3.19)
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We now show that the product of N and the expectation of each of these terms

converges to zero. First, consider (3.17). We can represent eiy as 1+iy− y2

2 + |y|3

3! θ(y)

for some suitable function θ(y), |θ| < 1. Thus, as UNk,1 is a martingale increment:

∣∣∣∣∣E
[

exp
(
itUNk,1

)
−
(

1−
t2(UNk,1)

2

2

)∣∣∣∣∣H
N
k−1

]∣∣∣∣∣

≤ t3

6
E
[∣∣UNk,1

∣∣3
∣∣∣HNk−1

]

≤ t3

6N3/2
23 ||ξ||3∞

(
α
Nk−1

k−1 (1)R1 + |Zn−1|R1

)3

and N times the expectation of this quantity converges to zero as N →∞.

To deal with (3.18) note that 1− u ≤ exp(−u) ≤ 1− u+ u2 ∀u ≥ 0. Setting

u =
t2

2
E
[(
UNk,1

)2∣∣∣HNk−1

]

one obtains:

E

[∣∣∣∣∣

(
1−

t2(UNk,1)
2

2

)
− exp

(
− t

2

2
E
[(
UNk,1

)2∣∣∣HNk−1

])∣∣∣∣∣

∣∣∣∣∣H
N
k−1

]

≤ t4

4
E
[(
UNk,1

)2∣∣∣HNk−1

]2

≤ t4

4

1

N2
4 ||ξ||4∞

(
α
Nk−1

k−1 (1)R1 + |Zk−1|R1

)4

and once again, the expectation of N times the quantity of interest converges to

zero.

Finally, (3.19) can be shown to vanish by considering the following exponential

bound. For v ≥ u ≥ 0, we can write |e−u − e−v| ≤ |u − v| by employing the

intermediate value theorem, and this yields:
∣∣∣∣∣exp

(
− t

2

2
E
[(
UNk,1

)2∣∣∣HNk−1

])
− exp

(
− t

2V̂k(ξ)/N

2

)∣∣∣∣∣

≤ t2

2N

∣∣∣∣NE
[(
UNk,1

)2∣∣∣HNk−1

]2
− V̂k(ξ)

∣∣∣∣

which can be exploited by noting that:

NE
[(
UNk,i

)2∣∣∣HNk,i−1

]
=

[
α
Nk−1

k−1 (G
k−1,α

Nk−1
k−1

)Ŝ
k−1,α

Nk−1
k−1

(
φk ×

φk
qk

)
(ξ2)

−Ŝ
k−1,α

Nk−1
k−1

(φk(ξ))
2

]
(3.20)

V̂k(ξ) =

[
αk−1(Gk−1,αk−1

)Ŝk−1,αk−1

(
φk ×

φk
qk

)
(ξ2)

−Ŝk−1,αk−1
(φk(ξ))

2
]

(3.21)

As (3.20) converges to (3.21) in probability (cf. lemma 3.4.2) and (3.20) is

bounded above, (3.20) converges to (3.21) in L1 and the result we seek follows.

Consequently, (3.19) vanishes and we have the result of the lemma. ⊓⊔
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3.5 Dynamic Clustering with a PHD Filter

One of the principle limitations of the PHD filter is the assumption that each tar-

get generates at most one observation. For the purpose of dynamic clustering or

group tracking, it would be useful to associate large numbers of observations with

a single “target” whose parameters describing the entire group. An attempt to

generalise the PHD recursion to such a measurement model was made by Mahler

[106]. However, there is a particularly strong assumption within that derivation,

which appears to prevent the methodology from being applicable in any realis-

tic situation. An attempt is made below to obtain a more general recursion for

a first moment approximation of the dynamic clustering problem, however, no

computationally feasible algorithm is obtained.

3.5.1 Background and Formulation

To enable easy comparison with [106] we make use of broadly the same formula-

tion, however, the notation used here has been chosen to be consistent with the

remainder of this thesis.

The probability generating functional (pgfl) associated with the intensity of a

Poisson process is used to obtain the recursion. The pgfl is defined as a complex-

valued function, ξ, which acts upon a suitable class of complex-valued measurable

functions, C = {ξ : E → C : ||ξ||∞ ≤ 1} on the state space of the point process,

with the property that it completely characterises the intensity of a function. We

make use of the property described, for example, by [107]: loosely speaking, the

functional derivative of a pgfl at a point, evaluated at the unit function corresponds

to the first moment density at that point.

We seek a recursion which, analogously to Bayesian filtering, allows us to pre-

dict the state of a set of cluster parameters at a later time based upon an estimate

of the present state, combined with knowledge of the target dynamics and, fur-

thermore, to update this prediction based upon a subsequent observation. This

amounts to a variation upon equations (3.3-3.4) which are suitable for a measure-

ment model which allows each object to generate a set of observations.

As in the case of the standard PHD filter described above, we make use of the

intensity of a point process to describe our knowledge of the state of the system.

At time k, we assume we have some measure αk which contains the estimate of

this intensity at that time. We wish to predict the intensity at time k + 1 based

upon this knowledge, and this can be done by the approach described in section

3.5.2 and we denote this predicted intensity α̂k. Having obtained this prediction,

we wish to update it to take into account the set of measurements obtained at time
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k + 1 to obtain a new measure αk+1 and approaches to doing this are described

in section 3.5.3

3.5.2 The Prediction Equation

The difference between the algorithm presented here and that of [106] lies entirely

within the update step, and the prediction equation which we require is exactly

that which Mahler obtained:

α̂k(dx = d(a, u)) = αkφk(dx = d(a, u)) + γk(dx = d(a, u)), (3.22)

where, for convenience, the state is decomposed as x = (a, u) where a denotes the

size of a cluster and u describes its parameters.

This is essentially identical to the standard PHD prediction step 3.3, and each

term has a meaning analogous to that in the standard PHD filter, although in this

case the parameters are those of a cluster of objects, rather than an individual

object and the dynamic model applies to clusters rather than individual objects.

3.5.3 The Update Equation

It is convenient to use the probability generating functional approach to obtain

the recursion. We do not distinguish between functions and functionals by using

different styles of bracket as this would not be consistent with usage elsewhere in

this thesis. The pgfl of the PHD at time k+1 after prediction, but before the data

update is given by:

Ĝk(h) =

∞∑

i=0

1

i!

∫
h(x1) . . . h(xi)p̂k({x1, . . . , xi}|Z1:k)λ

i (d(x1, . . . , xi))

where p̂k is a density with respect to the unnormalized Poisson process over the

space of interest and xi = (ai, ui) contains the size and the parameters of the ith

of its points. In our case, these correspond to the parameters of one of the clusters

which is to be tracked.

At this point Mahler makes the rather strong assumption that all of the clusters

are completely correlated and hence that the joint distribution p̂k can be reduced

to the rather simple form:

p̂k(X|Z1:k) = |X|!σ|X|δx1(xi) . . . δx1(x2)ŝk(x1)

where, X =
{
x1, . . . , x|X|

}
, and,

ŝk(x1) = α̂k(x1)/α̂k(1)
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and σi is the probability that i clusters are present, assuming that the predicted

PHD is the intensity of a Poisson process from which the clusters were drawn (a

quantity for which there is, in general, no closed form expression).

Alternatively, one might suppose that the clusters are independent (completely

uncorrelated as Mahler puts it in [106]) and have identically distributed parameters

and furthermore that the number of clusters which are present are proportional

to a Poisson distribution with a parameter equal to the total mass of the PHD

estimate at the previous time-step, which we shall termNk (i.e. α̂k(dx) = Nkŝk(dx)

for some probability density ŝk).

p̂k(X|Z1:k) = exp(−Nk)
∏

x∈X

Nkŝk(x)

Making this assumption, we obtain, as desired, the pgfl of a Poisson point

process:

Ĝk(h) =
∞∑

i=0

1

i!

∫
h(x1) . . . h(xi)p̂k({x1, . . . , xi}|Z1:k)λ

i (d(x1, . . . , xi))

= exp(−Nk)
∞∑

i=0

1

i!

∫
h(x1)Nkŝk(x1) . . . h(xi)Nkŝk(xi)λ

i (d(x1, . . . , xi))

= exp(−Nk)

∞∑

i=0

1

i!

i∏

j=1

∫
h(xj)α̂k(xj)λ (dxj)

= exp

(
Nk

(∫
h(x)ŝk(dx)− 1

))

= exp (α̂k(h)−Nk)

A Taylor Expansion Approach. Having expressed Ĝk(h) = exp (α̂k(h)−Nk)

we are able to Taylor expand this expression to an order of our choosing. This

amounts to assuming that the number of clusters present is at most equal to

the order at which the expression is truncated (this can be seen by viewing the

approximation as directly truncating the sum from which the exponential was

obtained, rather than as a Taylor expansion of that exponential). In a sense, the

approach of Mahler is similar to a first order truncation here, but his approach

appears to maintain some meaningful value for the total mass of the PHD which

a first order truncation does not.

We also have, following Mahler, that the joint pgfl of the predicted state and the

observation set is given by Fk+1(g, h) = Ĝk(hθg) with θg(x = (a, u)) = exp(−a−
af(g|u)). And hence, that

δθg

δz (a, u) = af(z|u)exp(−a+af(g|u)) = af(z|u)θg(a, u).
That the numerator and denominator of the updated PHD can be expressed in

terms of functional derivatives of F evaluated at (0,1) follows from the usual

considerations and has been shown in some detail by [107]. That is, the update

equation may be written in the form:
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α̂k+1(x = (b, v)) =

(
δmFk+1

δzm . . . δz1
(0,1)

)−1 δm+1Fk+1

δ(x = (b, v))δzm . . . δz1

A First Order Expansion. The most näıve approach is to expand G to 1st order:

Ĝk(h) = exp(−Nk)(1 + α̂k(h)) +O
(
α̂k(h)

2
)

This gives us:

Fk+1(g, h) = exp(−Nk)(1 + α̂k(hθg))

And hence that:

δFk+1

δz1
(g, h) = exp(−Nk)α̂k(hf(z1|u)θg(a, u)a)

δ2Fk+1

δz2δz1
(g, h) = exp(−Nk)α̂k(hf(z1|u)f(z2|u)θg(a, u)a2)

...

δmFk+1

δzm . . . δz1
(g, h) = exp(−Nk)α̂k

(
hamθg(a, u)

m∏

i=1

f(zi|u)
)

It is simple to see that:

δm+1Fk+1

δ(x = (b, v))δzm . . . δz1
(g, h) = exp(−Nk)b

mθg(b, v)
m∏

i=1

f(zi|v)α̂k(b, v)

We then have:

α̂k+1(x = (b, v)) =

(
δmFk+1

δzm . . . δz1
(0,1)

)−1 δm+1Fk+1

δ(x = (b, v))δzm . . . δz1

=
bme−bf(zm|v) . . . f(z1|v)α̂k(b, v)
α̂k(ame−af(zm|u) . . . f(z1|u))

=
bme−bf(zm|v) . . . f(z1|v)α̂k(b, v)
α̂k(ame−af(zm|u) . . . f(z1|u))

(3.23)

A Second Order Expansion. The next order of expansion yields another special

case and gives some insight into the general result and the problems to which it

leads:

Ĝk(h) = exp(−Nk)(1 + α̂k(h) +
1

2
α̂k(h)

2) +O
(
α̂k(h)

3
)

In this case we obtain:
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Fk+1(g, h) = exp(−Nk)(1 + α̂k(hθg) +
1

2
α̂k(hθg)

2)

δFk+1

δz1
(g, h) = exp(−Nk)

δ

δz1

(
1 + α̂k(hθg) +

1

2
α̂k(hθg)

2

)

= exp(−Nk) (1 + α̂k(hθg))
δα̂k(hθg)

δz1

= exp(−Nk) (1 + α̂k(hθg))×
δ

δz1

(∫ ∫
α̂k(a, u)e

−a+af(g|u)λ (da)λ (du)

)

= exp(−Nk) (1 + α̂k(hθg))×∫ ∫
α̂k(a, u)(af(z1|u)))e−a+af(g|u)λ (da)λ (du)

= exp(−Nk) (1 + α̂k(hθg)) α̂k(aθgf(z1|u))

The functional differentiation can be carried out iteratively, and becomes pro-

gressively more cumbersome, but there is a closed form expression for the mth

derivative of the generating functional.

Lemma 3.5.1. In the case being considered here, with the pgfl obtained by trun-

cating the exponential at second order, the following holds:

δmFk+1

δzm . . . δz1
(g, 1) = exp(−Nk) {(1 + α̂k(θg))α̂k(a

mθgf(z1|u) . . . f(zm|u))+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


aiθg

∏

j∈p

f(zj |u)


 s


am−iθg

∏

j∈q

f(zj |u)








where ⌊m/2⌋ is the largest integer smaller than m/2 and P
m,i
(2) is the set of all

distinct partitions of the first m natural numbers into two partitions, one of size

i and the other of size m − i. For our purposes, this set can be thought of as

containing elements which are pairs of sets, one containing i natural numbers and

the other containing m− i natural numbers which cover {1, . . . ,m}.

Proof. The simplest approach is to use induction.

The first step is straightforward: we know that the result holds in the casem = 1

as this corresponds to the result obtained on the previous page (⌊1/2⌋ = 0).

Now, if we assume that the result holds for m we need it to hold for m + 1

as well. This is slightly more subtle than the previous step, but can be shown by

direct differentiation:
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eNk
δm+1Fk+1

δzm+1 . . . δz1
(g, 1)

=
δ

δzm+1y
{(1 + α̂k(θg))α̂k(a

mθgf(z1|u) . . . f(zm|u))+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


aiθg

∏

j∈p

f(zj |u)


 α̂k


am−iθg

∏

j∈q

f(zj |u)








= (1 + α̂k(θg))α̂k(a
m+1θgf(z1|u) . . . f(zm+1|u))+

α̂k(θgaf(zm+1|u))α̂k(amθgf(z1|u) . . . f(zm|u))+
⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


aiθg

∏

j∈p

f(zj |u)


 α̂k


am+1−iθgf(zm+1|u)

∏

j∈q

f(zj |u)


+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


ai+1θgf(zm+1|u)

∏

j∈p

f(zj |u)


 α̂k


am−iθg

∏

j∈q

f(zj |u)




What we require, in order for the recursion we seek to hold, is:

(1 + α̂k(θg))α̂k(a
m+1θgf(z1|u) . . . f(zm+1|u))+

⌊(m+1)/2⌋∑

i=1

∑

(p,q)∈P
m+1,i
(2)

α̂k


aiθg

∏

j∈p

f(zj |u)


 α̂k


am+1−iθg

∏

j∈q

f(zj |u)




= (1 + α̂k(θg))α̂k(a
m+1θgf(z1|u) . . . f(zm+1|u))+

α̂k(θgaf(zm+1|u))α̂k(amθgf(z1|u) . . . f(zm|u))+
⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


aiθg

∏

j∈p

f(zj |u)


 α̂k


am+1−iθgf(zm+1|u)

∏

j∈q

f(zj |u)


+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


ai+1θgf(zm+1|u)

∏

j∈p

f(zj |u)


 α̂k


am−iθg

∏

j∈q

f(zj |u)




The first line on either side of these equations is clearly identical and can be

removed, leaving:

⌊(m+1)/2⌋∑

i=1

∑

(p,q)∈P
m+1,i
(2)

α̂k


aiθg

∏

j∈p

f(zj |u)


 α̂k


am+1−iθg

∏

j∈q

f(zj |u)




= α̂k(θgaf(zm+1|u))α̂k(amθgf(z1|u) . . . f(zm|u))+
⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


aiθg

∏

j∈p

f(zj |u)


 α̂k


am+1−iθgf(zm+1|u)

∏

j∈q

f(zj |u)


+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


ai+1θgf(zm+1|u)

∏

j∈p

f(zj |u)


 α̂k


am−iθg

∏

j∈q

f(zj |u)



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Whilst this looks somewhat difficult to prove, it amounts to a simple truism: any

partition of {1, . . . ,m+1} into two non-empty subsets must be one of the following:

– {{m+ 1}, {1, . . . ,m}} which corresponds to the first term in the expression

– Some partition of {1, . . . ,m + 1} with m + 1 added to the first subset which

corresponds to the third term in the expression

– Some partition of {1, . . . ,m+ 1} with m+ 1 added to the second subset which

corresponds to the second term in the expression

Considering the two expressions in this way, we see immediately that the two sides

match and the lemma holds by induction. ⊓⊔

The previous lemma also gives us the result we need to obtain the other functional

derivative of the generating functional we require.

eNk
δm+1Fk+1

δ(x = (b, v))δzm . . . δz1
(g, h)

=
δ

δx = (b, v)
{(1 + α̂k(θg))α̂k(a

mθgf(z1|u) . . . f(zm|u))+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


aiθg

∏

j∈p

f(zj |u)


 α̂k


am−iθg

∏

j∈q

f(zj |u)








= α̂k(b, v)θg(b, v)α̂k (amθghf(z1|u) . . . f(zmu))+

(1 + α̂k(θgh))(b
mθg(b, v)f(z1|v) . . . f(zm|v))α̂k(b, v)+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

biθg(b, v)
∏

j∈p

f(zj |v)α̂k


am−iθgh

∏

j∈q

f(zj |u)


 α̂k(b, v)+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


aiθg(a, u)

∏

j∈p

f(zj |v)


 bm−iθg(b, v)

∏

j∈q

f(zj |v)α̂k(b, v)

Then evaluating these two expressions at g = 0, h = 1 we obtain:
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α̂k+1((b, v)) =
N
D α̂k(b, v)

N =e−bα̂k(a
me−af(z1|u) . . . f(zm|u))

+ (1 + α̂k(e
−a))bme−bf(z1|v) . . . f(zm|v)

+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

bie−b
∏

j∈p

f(zj |v)α̂k


am−ie−a

∏

j∈q

f(zj |u)




+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


aie−a

∏

j∈p

f(zj |v)


 bm−ie−b

∏

j∈q

f(zj |v)

D =(1 + α̂k(e
−a))α̂k(a

me−af(z1|u) . . . f(zm|u))+

+

⌊m/2⌋∑

i=1

∑

(p,q)∈P
m,i
(2)

α̂k


aie−a

∏

j∈p

f(zj |u)


 α̂k


am−ie−a

∏

j∈q

f(zj |u)


 .

A General n
th Order Expansion. The obvious next step, having obtained

results for these special cases is to attempt to find a general result for arbitrary

orders of expansion. In order to make use of the relationship between one order of

expansion and the next, it is useful to make the following definitions:

F̃i(g, h) =
α̂k(θgh)

i

i!

Fi(g, h) = exp(−Nk)

i∑

j=1

F̃i

There are, actually, three regimes for each F̃i:

– m < n: fewer observations than clusters

– m = n: equal numbers of observations and clusters

– m > n: more observations than clusters.

Whilst the last of these is obviously the most important from an applications

point of view, we need to calculate iterated derivatives of F which respect to the

observation set and hence the first two of these regimes must be considered for

the purposes of obtaining a derivation, even if they are not of interest in most

applications.

Lemma 3.5.2. For m < n:

δmF̃n
δzm . . . δz1

=
m∑

i=1

F̃n−i
∑

(p1,...,pi)∈P
(m)
<i>

i∏

j=1

Apj

where some additional notation has been defined for convenience.

P
(m)
<i> is the set of all non-trivial (in the sense that all of the sets comprising the

partition containing at least one element) partitions of the first m natural numbers

into i partitions.
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AX = α̂k

(
a|X|

∏
i∈X

f(u|zi)θgh
)

for some set of natural numbers, X.

This notation can disguise the complexity of the expressions being manipulated,

but rather shortens the expressions which we need to manipulate.

Proof. Again, induction is the simplest method to obtain this result.

First consider a few simple cases:

δF̃n
δz1

=
δ

δz1

α̂k(θgh)
n

n!

=
nα̂k(θgh)

n−1

n!

δ

δz1
α̂k(θgh)

= F̃n−1A{1}

thus we have that the result holds for m = 1. To see how these entities behave,

it is useful to consider a few more special cases before progressing to the general

result.

δ2F̃n
δz2δz1

=
δ

δz2

(
δF̃n
δz1

)

=
δ

δz2

(
F̃n−1A{1}

)

= F̃n−2A{1}A{2} + F̃n−1A{1,2}

δ3F̃n
δz3δz2δz1

=
δ

δz3

(
δ2F̃n
δz2δz1

)

=
δ

δz3

(
F̃n−2A{1}A{2} + F̃n−1A{1,2}

)

= F̃n−3A{1}S{2}A{3}+

F̃n−2

(
A{1}S{2,3} +A{1,3}S{2} +A{1,2}A{3}

)
+ F̃n−1S{1,2,3}

Hence the result holds in the m = 2,m = 3 cases as well. All that remains

is to show that it holds for general m < n. As we have three particular cases at

the start of the sequence of interest, all that we actually need to prove is that the

result holds at m+ 1 if it holds at m.

Under the induction assumption:
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δm+1F̃n
δzm+1 . . . δz1

=
δ

δzm+1

(
δmF̃n

δzm . . . δz1

)

=
δ

δzm+1




m∑

i=1

F̃n−i
∑

(p1,...,pi)∈P
(m)
<i>

i∏

j=1

Apj




=
m∑

i=1


F̃n−i−1A{m+1}

∑

(p1,...,pi)∈P
(m)
<i>

i∏

j=1

Apj+

F̃n−i
∑

(p1,...,pi)∈P
(m)
<i>

i∑

k=1

Spk
S

{m+1}

∏

j 6=k

Apj




=
m∑

i=2


F̃n−iA{m+1}

∑

(p1,...,pi−1)∈P
(m)
<i−1>

i−1∏

j=1

Apj+

F̃n−i
∑

(p1,...,pi)∈P
(m)
<i>

i∑

k=1

Spk
S

{m+1}

∏

j 6=k

Apj


+

F̃n−(m+1)A{m+1}

∑

(p1,...,pm)∈P
(m)
<m>

m∏

j=1

Apj+

F̃n−1

∑

p1∈P
(m)
<1>

Ap1
S

{m+1}

=
m∑

i=2


F̃n−i

∑

(p1,...,pi)∈P
(m+1)
<i>

i∏

j=1

Apj


+

F̃n−(m+1)

m+1∏

j=1

A{j} + F̃n−1A{1,...,m+1}

Looking at the final line of this expression, which follows by noting that there

is precisely one non-trivial partition of {1, . . . ,m} into m sets and also into a

single set, as well as by using the same logic as in the m = 2 case to simplify the

expressions within the summation, we can compare the elements it contains with

those which we are expecting.

A little consideration shows that the first term, the last term and all the inter-

mediate terms match those which this lemma asserts should be the case and the

result thus holds by an induction argument. ⊓⊔

The same result clearly also holds in the n = m case, with the additional point

that F̃n−n = 1. Hence, we obtain, for this particular case:
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δnF̃n
δzn . . . δz1

=
n∑

i=1

α̂k(θgh)
n−i

(n− i)!
∑

(p1,...,pi)∈P
(n)
<i>

i∏

j=1

Apj

Lemma 3.5.3. For m ≥ n:

e
δmF̃n

δzm . . . δz1
=

n∑

i=1

α̂k(θgh)
n−i

(n− i)!
∑

(p1,...,pi)∈P
(m)
<i>

i∏

j=1

Apj (3.24)

Proof. We have the result we seek for the n = m case by the argument above.

In order to prove that it holds in generality, an induction argument requires

only that we prove that, if the result holds for m it also holds for m+ 1.

Under the induction assumption:

e
δm+1F̃n

δzm+1 . . . δz1
=

n−1∑

i=1



α̂k(θgh)

n−i−1

(n− i− 1)!

∑

(p1,...,pi)∈P
(m)
<i>

i∏

j=1

Apj


+

n∑

i=1

α̂k(θgh)
n−i

(n− i)!
∑

(p1,...,pi)inP
(m)
<i>

i∑

k=1

Apk
S

{m+1}

∏

j 6=k

Apj

A little manipulation of this result suffices to prove the lemma. ⊓⊔

In order to obtain a general result we also require an expression for the first

derivative with respect to δx of this expression. Obtaining the update equation is

simply a matter of summing the derivatives of the F̃n expressions to obtain those

of the Fn that we are really interested in, evaluating them at the appropriate

values of g and h and then taking their ratios.

In actual fact the additional derivative can be obtained from the result of this

lemma directly:

e
δm+1F̃n

δ(b, v)δzm . . . δz1

=
n∑

i=1


 δ

δ(b, v)

(
α̂k(θgh)

n−i

(n− i)!

) ∑

(p1,...,pi)∈P
(m)
<i>

i∏

j=1

Apj

+
α̂k(θgh)

n−i

(n− i)!
∑

(p1,...,pi)∈P
(m)
<i>

δ

δ(b, v)




i∏

j=1

Apj







=
n−1∑

i=1

α̂k(θgh)
n−i−1

(n− i− 1)!
θg(b, v)α̂k(b, v)

∑

(p1,...,pi)∈P
(m)
<i>

i∏

j=1

Apj+

n∑

i=1

α̂k(θgh)
n−i

(n− i)!
∑

(p1,...,pi)∈P
(m)
<i>

i∑

k=1

α̂k(b, v)θg(b, v)b
|pk|

∏

l∈pk

f(zl|v)
i∏

j 6=k

Apj

A little rearrangement yields:
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=



n−1∑

i=1

α̂k(θgh)
n−i−1

(n− i− 1)!

∑

p∈P
(m)
<i>




i∏

j=1

Apj +
α̂k(θgh)

(n− i)
i∑

k=1

b|pk|
∏

l∈pk

f(zl|v)
∏

j 6=k

Apj




+
∑

p∈P
(m)
<n>

n∑

k=1

b|pk|
∏

l∈pk

f(zl|v)
∏

j 6=k

Apj


 θg(b, v)α̂k(b, v) (3.25)

=



n−1∑

i=1

α̂k(θgh)
n−i−1

(n− i− 1)!

∑

p∈P
(m)
<i>




i∑

k=1

∏

j 6=k

Apj


Apk

+
α̂k(θgh)

(n− i) b
|pk|

∏

l∈pk

f(zl|v)






+
∑

p∈P
(m)
<n>

n∑

k=1

b|pk|
∏

l∈pk

f(zl|v)
∏

j 6=k

Apj


 θg(b, v)α̂k(b, v) (3.26)

Theorem 3.5.1. General Form of the PHD Update Equation If we truncate the
exponential form of the generating function at an order N, we obtain as the PHD
update equation:

αk+1(b, v) =

0

B

@

N
X

n=1

n
X

i=1

α̂k(e−a)n−i

(n− i)!
X

(p1,...,pi)∈P
(m)
<i>

i
Y

j=1

Āpj

1

C

A

−1

×

0

B

@

N
X

n=1

n−1
X

i=1

α̂k(e−a)n−i−1

(n− i− 1)!

X

p∈P
(m)
<i>

0

@

i
X

k=1

Y

j 6=k

Āpj

0

@Āpk
+
α̂k(e−a)

(n− i) b
|pk|

Y

l∈pk

f(zl|v)

1

A

1

A

+
X

p∈P
(m)
<n>

n
X

k=1

b|pk|
Y

l∈pk

f(zl|v)
Y

j 6=k

Āpj

1

C

A
e−bα̂k(b, v)

where m = |Zk+1| and

ĀZ = α̂k

(
e−a

∏

z∈Z

(af(z|u))
)

Proof. We know that:

αk+1(b, v) =

(
δmFN (0,1)

δzm . . . δz1

)−1 δm+1FN (0,1)

δ(b, v)δzm . . . δz1

=

(
N∑

n=1

δmF̃n(0,1)

δzm . . . δz1

)−1 N∑

n=1

δm+1F̃n(0,1)

δ(b, v)δzm . . . δz1

By direct substitution into equation 3.24 we have:

δmF̃n
δzm . . . δz1

(0,1) =
n∑

i=1

α̂k(e
−a)n−i

(n− i)!
∑

(p1,...,pi)∈P
(m)
<i>

i∏

j=1

α̂k


e−a

∏

kinpj

(af(zk|u))




(3.27)

and by equation 3.26 we have as an expression for e times the numerator:
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

n−1∑

i=1

α̂k(e
−a)n−i−1

(n− i− 1)!

∑

p∈P
(m)
<i>




i∑

k=1

∏

j 6=k

Āpj


Āpk

+
α̂k(e

−a)

(n− i) b
|pk|

∏

l∈pk

f(zl|v)






+
∑

p∈P
(m)
<n>

n∑

k=1

b|pk|
∏

l∈pk

f(zl|v)
∏

j 6=k

Āpj


 e−bα̂k(b, v)

combining these, we obtain:

αk+1(b, v) =

0

B

@

N
X

n=1

n
X

i=1

α̂k(e−a)n−i

(n− i)!
X

(p1,...,pi)∈P
(m)
<i>

i
Y

j=1

Āpj

1

C

A

−1

×

0

B

@

N
X

n=1

n−1
X

i=1

α̂k(e−a)n−i−1

(n− i− 1)!

X

p∈P
(m)
<i>

0

@

i
X

k=1

Y

j 6=k

Āpj

0

@Āpk
+
α̂k(e−a)

(n− i) b
|pk|

Y

l∈pk

f(zl|v)

1

A

1

A

+
X

p∈P
(m)
<n>

n
X

k=1

b|pk|
Y

l∈pk

f(zl|v)
Y

j 6=k

Āpj

1

C

A
e−bα̂k(b, v)

⊓⊔

3.5.4 Approaches to Computation

It is immediately apparent that the expressions obtained in the previous section

do not produce reasonable computable estimators, and it is not obvious how to

approximate them in a computationally tractable manner.

There are a number of possibilities for using a PHD-filter type approach to

perform dynamic clustering / cluster tracking.

1. Cluster first and then track: rather than attempting to perform both steps

simultaneously, perform a clustering at each time step to obtain an estimate

of the cluster parameters and then, using the cluster parameters as a set of

meta-observations, the PHD filter could be used to track these parameters.

2. Track first and then cluster. Similar in spirit to the first approach, this method

would involve tracking the observation set using the PHD filter and then at-

tempting to estimate the cluster parameters from the PHD.

3. Modify the approach to track each cluster separately in some sense. One way

of achieving this is discussed in more depth below.

The first two of these approaches seem unlikely to be particularly interesting –

they each involve the computation of a batch clustering at each time step and

whilst an estimate can be obtained from the clustering at the previous time step,

this seems likely to be cumbersome as well as being limited by the performance of

both the PHD and a separate clustering algorithm.

The third approach seems more likely to be interesting, although it poses quite

a number of theoretical difficulties.
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The major problem with the approach proposed in [106] is that it makes the as-

sumption that there are some unknown number of clusters which all have identical

parameters in order to derive the update equation.

The update described in equation 3.23 is somewhat limited in that it amounts

to explicitly making the assumption that there exists a single cluster. The obvious

approach to obtaining a tractable clustering PHD which permits clusters which

have disjoint supports2 is to limit the set of observations considered when calcu-

lating the update for each point in the PHD to those within the main part of

the region of support of the cluster with the parameters described by that point.

Although this seems rather heuristic, it may be possible to obtain some reasonable

properties in this way.

The first step of this approach is to define a region in the observation space

which will include the majority of points which are associated with a given cluster

type. This is related to the concept of gating which is widely used in the multiple-

target tracking community (see, for example, [5]). The most intuitive approach

to doing this would appear to be to select the region of minimal volume which

encloses some fraction (say 99 %) of the likelihood associated with a cluster with

the parameters described by a cluster with parameters x. This amounts to making

use of the region enclosed by one of the minimal volume multivariate quantiles of

[51].

Q(x; t) = arg inf



λ(A) :

∫

A

g(z|x)λdz > t



 (3.28)

Where t ∈ (0, 1) is some threshold and g(z|x) is the likelihood function. Us-

ing an approximation of the type described here, the update equation becomes

something of the form:

α<t>k+1 (b, v) =

b|Zk+1
T

Q(v;t)|e−b
∏

z∈Zk+1

(
f(z|v)IQ(v;t)(z) + (1− IQ(x;t)(z))

)
α̂k(b, v)

∫
a|Zk+1

T

Q(u;t)|e−a
∏

z∈Zk+1

(
f(z|u)IQ(u;t)(z) + (1− IQ(u;t)(z))

)
α̂k(da, du)

(3.29)

Having obtained an expression of this sort for the update equation, a straight-

forward modification of the particle approach to obtaining an approximation of

the standard PHD filter described in [147] provides an obvious way to implement

the algorithm. Indeed, preliminary experiments suggest that such an approach is

viable and perform as one would expect. However, the algorithm seems not to be

2 As well, of course, as those with overlapping supports.
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sufficiently interesting that more rigorous experimentation would be justified at

this stage.

Obvious Deficiencies of the Proposed Approximation Scheme.

It is a heuristic with little theoretical justification. This is largely true, and al-

though there are a number of factors which motivate an approximation of this

sort, it does not seem likely to be widely useful. The most obvious concern is

that it is likely to be extremely difficult to obtain convergence results for the

approximation.

Some motivation comes from the fact that in the limit of extremely well sepa-

rated clusters one might wish to run separate tracking algorithms for each cluster,

and other than the fact that a simple particle approximation to this scheme allows

for resampling to redistribute particles between separated clusters, that is exactly

what this approach amounts to doing. Another benefit is that it prevents the

problem obtained with Mahler’s methodology in which points tend to be dragged

towards the centre of distinct clusters in the update stage, and has a “natural”

method for considering only those points which are reasonably associated with a

given cluster when calculating the intensity for particular cluster parameters.

Interpretation of the total mass α̂k+1(1) is unclear. Considering the form of the

expression it is obvious that, if there is a single “compact” cluster then the total

mass of the filter must be exactly one, as the update equation gives an expression

which clearly corresponds to a probability density. Indeed, if there are N well-

spaced, “compact” clusters then the total mass must be exactly N as those parts

of D which are not within the support of a given cluster do not contribute to the

denominator of the updated D and hence each cluster amounts to a probability

density.

As clusters become “close together” in the sense that the Q(x; t) regions as-

sociated with points within each cluster begin to overlap there is a tendency to

reduce this value somewhat as the denominator for x in the support of each cluster

is increased due to intensity within the other cluster. This is, approximately at

least, exactly the behaviour which is desired.

Problems with interpretation and behaviour for poorly separated clusters. This

could potentially be a problem, but it is a pathology of the approach suggested in

[106] and it is always difficult to deal with poorly separated clusters.

Computationally Intensive for an Approximation. If there are M observations and

N particles are used to obtain an approximation to the update equation then

the worst case performance appears to be O
(
(MN)2

)
which, whilst not ideal, is

tractable for problems of a reasonable scale on modern hardware. Cleverer ap-

proximation schemes may reduce the complexity somewhat.
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3.5.5 Further Issues

Other concerns which could be raised about existing work on the PHD filter, which

it would be nice to address include the following:

1. There is the assumption that all observations are generated by a cluster ele-

ment; this precludes the possibility of clutter. This is unfortunate as the 1st

moment interpretation would make including two different types of cluster,

one for clutter and one for true clusters of interest rather cumbersome and

difficult to interpret, particularly as the real distribution would ideally have

precisely one clutter class.

2. Set integrals correspond to integrals with respect to unnormalized Poisson

processes. To allow the densities to be specified in a cleaner fashion it would

be nicer to use a normalised form of this expression.

3. It would be nice to relax the assumption that the distribution of the number

of points attributable to each cluster at each time step should follow a Poisson

distribution.

3.6 Summary

We have presented almost sure, and Lp convergence results for the SMC imple-

mentation of the PHD filter under very reasonable conditions. A central limit

theorem has also been shown to hold, and an asymptotic variance expression ob-

tained. These are interesting theoretical results, and should reassure practitioners

that the method is sound.

An attempt was made at generalising the methodology to the group tracking

and dynamic clustering problem as previous attempts at doing so have suffered

from serious deficiencies. No practical algorithm was obtained, and this provides

another example of an attempt at generalising the PHD filter to systems other

than that for which it was first derived meeting with little success. It seems likely

that the PHD approach will meet with limited success outside the domain in which

it was first proposed.
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4. Marginal Parameter Estimation via SMC
“On the other hand, it is impossible for a cube to be written as a sum of

two cubes or a fourth power to be written as a sum of two fourth powers

or, in general, for any number which is a power greater than the second

to be written as a sum of two like powers. I have a truly marvelous

demonstration of this proposition which this margin is too narrow to

contain.”

– Pierre de Fermat

A short version of the work presented in this chapter was published as [87], and a

longer version is in preparation.

4.1 Introduction

Maximum Likelihood (ML) parameter estimation is a well established technique

which is widely employed for obtaining point estimates of the parameters of prob-

abilistic models; within a Bayesian framework Maximum a Posteriori (MAP) esti-

mation fulfills a very similar role. Although there is a marked preference for the use

of posterior means within much of the Bayesian literature, in situations in which

the parameters are not identifiable this does not always make sense as the poste-

rior means of all exchangeable parameters is, of course, the same [16]. Although

it is often possible to adopt approaches such as re-ordering of the parameters and

imposing identifiability constraints to allow the use of such approach, there do

exist situations in which MAP estimation may be preferred. Furthermore, within

a non-Bayesian context, the MAP estimator has an interpretation as a penalised

maximum likelihood estimator, which can be applied to systems within unbounded

likelihood functions [74].

4.1.1 Problem Formulation

The situation in which we are interested is that in which one has some likelihood

function p(y, z|θ) in which (y, z) ∈ Y ×Z for observed data y and latent variables

(often called “hidden data”), z. This joint likelihood is known, but as z is not

observed, the marginal likelihood,

p(y|θ) =

∫
p(y, z|θ)dz, (4.1)

is the quantity of interest. As this integral is generally not tractable, it is not

straightforward to maximise it with respect to the parameters to obtain the
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(marginal) maximum likelihood (ML) estimator:

θ̂ML = argmax
θ∈Θ

p(y|θ). (4.2)

4.1.2 Notation

It is convenient at this stage to remind the reader of certain aspects of the notation

used below. Given a real quantity, x ∈ R, we define the floor, ceiling and remainder

of x as:

⌊x⌋ , sup{y ∈ Z : y ≤ x},

⌈x⌉ , inf{y ∈ Z : y ≥ x},

and x♯ , x− ⌊x⌋.

The following notations are used to describe various probability distributions:

Ber (p) describes the Bernoulli distribution with success probability p, Di (α)

the Dirichlet distribution with parameter vector α, N
(
µ, σ2

)
describes a nor-

mal of mean µ and variance σ2, Ga (α, β) a gamma distribution of shape α

and rate β, IG (α, β) the inverse gamma distribution associated with Ga (α, β),

Logistic (µ, s) the logistic distribution with location µ and scale s and KS refers

to the Kolmogorov-Smirnov distribution.

With some abuse of notation, we assume throughout this chapter that all

measures admit a density with respect to some dominating measure, λ and use

the same notation to refer to that density and the measure itself, i.e. π(dx) =

π(x)λ(dx) with the understanding that π(x) = dπ
dλ (x).

4.1.3 Previous Approaches

When the marginal likelihood p(y|θ) can be evaluated, the classical approach to

problems of this sort is the Expectation Maximisation (EM) algorithm [42], which

is a numerically well-behaved algorithm. For complex models, p(y|θ) cannot be

computed analytically and typically the expectation step of the EM algorithm

cannot be performed in closed-form either. In such scenarios, Monte Carlo variants

of EM have been proposed – including Stochastic EM (SEM), Monte Carlo EM

(MCEM) and stochastic approximation Stochastic Approximation EM (SAEM).

See [130] for a comparative summary of these approaches. Note that all of these

approaches are susceptible to trapping in local modes.

An alternative approach related to Simulated Annealing (SA) is to build a

sequence of distributions which concentrates itself on the set of maxima of the

likelihood. Let p(θ) be an instrumental prior distribution whose support includes

the ML estimate then the distributions,
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pML
γ (θ|y) ∝ p (θ) p(y|θ)γ , (4.3)

concentrate themselves on the set of ML estimates as γ → ∞. Indeed asymptot-

ically the contribution from this instrumental prior vanishes as shown in section

4.2.2. The term p(θ) is only present to ensure that the distributions
{
pML
γ (θ|y)

}

are integrable – it may be omitted in those instances in which this is already the

case. To sample from these distributions, one would like to use MCMC methods.

Unfortunately, this is impossible whenever p(y|θ) is not known pointwise up to a

normalizing constant.

To circumvent this problem, it has been proposed in [49] (in a MAP, rather

than ML, setting) to build a sequence of artificial distributions known up to a nor-

malizing constant, which admit as a marginal distribution the target distribution

pML
γ (θ|y) for an integer power γ greater than one. A similar scheme was subse-

quently proposed by [81, 55] in the ML setting. This is achieved by simulating a

number of replicates of the missing data where one defines,

pγ(θ, z1:γ |y) ∝ p(θ)
γ∏

i=1

p(Y = y, Z = zi|θ), (4.4)

with zi:j = (zi, ..., zj). Indeed it is easy to check that:

∫
pγ(θ, z1:γ |y)dz1:γ = pML

γ (θ|y).

The approach of [49], termed State Augmentation for Marginal Estimation (SAME),

is to construct an inhomogeneous Markov chain which produces samples from a

sequence of such distributions for increasing values of γ. Just as in SA, this concen-

trates the mass on the set of global maxima of p(y|θ) as γ becomes large. Another

approach proposed by [81] is to construct a homogeneous Markov chain whose in-

variant distribution corresponds to such a distribution for a predetermined value of

γ. It can be theoretically established that these methods converge asymptotically

towards the set of estimates of interest if γ grows slowly enough to ∞. However

in practice, these approaches suffer from two major weaknesses. First, they allow

only integer values for γ. Second, unless a very slow annealing schedule is used,

the MCMC chain tends to become trapped in local modes.

We note that a specialised version of this approach intended for Bayesian op-

timal design was also proposed [116] and, following the publication of the work

presented here, an SMC version of this has also been suggested [99].

We propose another approach to sampling from pγ(θ, z1:γ |y). We sample from

this sequence of distributions using SMC. SMC methods have been used primarily

to solve optimal filtering problems in signal processing and statistics. They are

used here in a completely different framework which requires extensions of the
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methodology described further below. Broadly speaking, the distributions of in-

terest are approximated by a collection of random samples termed particles which

evolve over time using sampling and resampling mechanisms. The population of

samples employed by this method makes it much less prone to trapping in lo-

cal maxima, and the framework naturally allows for the introduction of bridging

densities between target distributions, say, pγ(θ, z1:γ |y) and pγ+1(θ, z1:γ+1|y) for

some integer γ – something which is essential to obtain good results in cases with

sharply peaked target distributions.

At first glance, the algorithm appears very close to mutation-selection schemes

employed in the genetic algorithms literature. However, there are two major dif-

ferences with these algorithms. First, they require the function being maximized

to be known pointwise, whereas we do not. Second, convergence results for our

method follow straightforwardly from general results on Feynman-Kac flows [34].

4.2 An SMC Sampler Approach

4.2.1 Methodology

We will consider the use of the sampling methodology described in the previous

section for marginal ML estimation – noting that the method can be easily adapted

to Bayesian marginal MAP setting by considering a slightly different sequence of

target distributions. We also note that such an approach, with suitably diffuse

priors has an interpretation as a penalised maximum likelihood approach in non-

Bayesian settings, and can be meaningfully applied to systems with unbounded

likelihoods, unlike direct maximum likelihood estimation. The target distribution

which we propose as generally admissible for this task is (where we have supressed

the dependence of these distributions upon the observed data, which is assumed

fixed, for convenience):

πt(θ, z1:⌈γt⌉) ∝ p(θ)p(z⌈γt⌉|θ)γt
♯
⌊γt⌋∏

i=1

p(zi|θ). (4.5)

This additional term allows us to introduce a sequence with non-integer ele-

ments, whilst having the same form as (4.4). Clearly, we have πt(θ, z1:⌈γt⌉|y) =

pγt(θ, z1:γt |y) for any integer γt. Again, an increasing sequence (γt)t≥1 is required,

corresponding in some sense to the annealing schedule of SA. To simplify notation

we will denote Z
(i)
t,1:⌈γt⌉

– the values of z1:⌈γt⌉ simulated at time t for the ith particle

– by Z
(i)
t .

We propose obtaining weighted sets of samples from distributions of the form

of (4.5) with a monotonically increasing sequence {γt}Tt=1, by employing an SMC

sampler. Algorithm 4.1 describes the general framework which we propose. In
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order to make use of this framework, it is necessary to specify an initial importance

distribution, ν, as well as forward and backward transition kernels (Kt and Lt) for

each step of the algorithm. To that end, we now go on to describe two particular

cases of this algorithm – one which is applicable to a limited, but common class

of models and another which is much more widely applicable.

Algorithm 4.1 A general SMC algorithm for MML estimation.
Initialisation: t = 1:

Sample,
n“

θ
(i)
1 , Z

(i)
1

”oN

i=1
independently from ν(·).

Calculate importance weights W
(i)
1 ∝ π1(θ

(i)
1 ,Z

(i)
1 )

ν(θ
(i)
1 ,Z

(i)
1 )

.

for t = 2 to T do

if ESS < Threshold, then

resample.

end if

Sample,
n“

θ
(i)
t , Z

(i)
t

”oN

i=1
such that

“

θ
(i)
t , Z

(i)
t

”

∼ Kt

““

θ
(i)
t−1, Z

(i)
t−1

”

, ·
”

.

Set importance weights,
W

(i)
t

W
(i)
t−1

∝ πt(θ
(i)
t ,Z

(i)
t )Lt−1

““

θ
(i)
t ,Z

(i)
t

”

,
“

θ
(i)
t−1,Z

(i)
t−1

””

πt−1(θ
(i)
t−1,Z

(i)
t−1)Kt

““

θ
(i)
t−1,Z

(i)
t−1

”

,
“

θ
(i)
t ,Z

(i)
t

”” .

end for

Initially, it is interesting to consider an analytically convenient special case,

which leads to a particularly elegant algorithm, 4.2, below. When we are able

to sample from particular conditional distributions, and evaluate the marginal

likelihood pointwise, it is possible to evaluate the optimal auxiliary kernels as

given by (2.25).

Algorithm 4.2 A special case SMC algorithm for MML estimation.
Initialisation: t = 1:

Sample,
n

θ̃
(i)
1

oN

i=1
independently from ν(·).

Calculate importance weights W̃
(i)
1 ∝ π1(θ̃

(i)
1 )

ν(θ̃
(i)
1 )

.

if ESS < Threshold, then

Resample
n

θ
(i)
1

oN

i=1
∼PN

j=1 W̃
(j)
1 δ

θ̃
(j)
1

(·) and set
n

W
(i)
1 = 1/N

oN

i=1
.

else

Let
n

θ
(i)
1 ,W

(i)
1

oN

i=1
=

n

θ̃
(i)
1 , W̃

(i)
1

oN

i=1
.

end if

Sample,
n

Z
(i)
1

oN

i=1
from the conditional distribution p(Z

(i)
1 |θ(i)1 ).

for t = 2 to T do

Sample,
n

θ̃
(i)
t

oN

i=1
such that θ̃

(i)
t ∼ πt(·|Z(i)

t−1).

Calculate importance weights: W̃
(i)
t ∝W (i)

t−1p(y|θ̃(i)t )γt−γt−1 .

if ESS < Threshold, then

Resample
n

θ
(i)
t

oN

i=1
∼PN

j=1 W̃
(j)
t δ

θ̃
(j)
t

(·) and set
n

W
(i)
t = 1/N

oN

i=1
.

else

Let
n

θ
(i)
t ,W

(i)
t

oN

i=1
=

n

θ̃
(i)
t , W̃

(i)
t

oN

i=1
.

end if

Sample Z
(i)

t,1:⌈γt⌉
∼ πt(Z

(i)
t |θ(i)t ).

end for
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This algorithm fits directly into the framework of algorithm 4.1 making use of

an auxiliary kernel which combines a time-reversal Markov kernel for those ele-

ments which were present at the previous time step, and an “optimal” component

for those elements which are newly generated,

Lt−1(θt, Zt; θt−1, Zt−1) =
πt−1(θt−1, Zt−1)Kt(θt−1, Zt−1; θt, Zt)

πt−1(θt, Zt,1:⌊γt⌋)πt(Z⌊γt⌋+1:⌈γt⌉|θt)
,

which leads to the weight expression Wt = πt(θt)/πt−1(θt). This has a convenient

interpretation as a resample-move algorithm [63, 64] on a state space of fixed

dimension which allows for a simpler theoretical analysis. Essentially, one simply

considers the sampling of the auxiliary variables to be a way to employ a kernel

defined on Θ by Kt(θt−1, θt) =
∫
πt(θt|zt)πt(zt|θt−1)dzt and everything follows

directly.

Finally, we present a generic form of the algorithm which can be applied to a

broad class of problems, although it will often be less efficient to use this generic

formulation than to construct a dedicated sampler for a particular class of prob-

lems. We assume that a collection of Markov kernels (Kt)t≥1 with invariant dis-

tributions corresponding to (πt)t≥1 is available, using these as a component of the

proposal kernels allows the evaluation of the optimal auxiliary kernel. That is, we

set,

Lt−1(θt, zt; θt−1, zt−1) =
πt−1(θt−1, zt−1)Kt(θt−1, zt−1; θt, zt)

πt−1Kt(θt, zt)

=
πt−1(θt, zt)K(θt−1, zt−1; θt, Zt,1:⌊γt−1⌋)

πt−1(θt, Z1:⌊γt−1⌋)
.

We assume that good importance distributions for the conditional probability

of the variables being marginalised can be sampled from and evaluated, q(·|θ),
and, if the annealing schedule is to include non-integer inverse temperatures, then

we have appropriate importance distributions for distributions proportional to

p(z|θ)α, α ∈ (0, 1), which we denote qα(z|θ). We remark that this is not the most

general possible approach, but is one which should work acceptably for a broad

class of problems. It is also possible to incorporate MCMC moves into the al-

gorithm, using the associated time-reversal kernel as the auxiliary kernel if the

optimal form cannot be obtained, in order to assist mixing if required although

this has not been necessary with the examples considered here.

There are a number of possible estimators associated with these algorithms.

When the marginal likelihood cannot readily be evaluated, we recommend that

the estimate is taken to be the first moment of the empirical distribution induced

by the final particle ensemble; this may be justified by the asymptotic (in the

inverse temperature) normality of the target distribution (see, for example, [130,
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Algorithm 4.3 A generic SMC algorithm for MML estimation.
Initialisation: t = 1:

Sample,
n“

θ
(i)
1 , Z

(i)
1

”oN

i=1
independently from ν(·).

Calculate importance weights W
(i)
1 ∝ π1(θ

(i)
1 ,Z

(i)
1 )

ν(θ
(i)
1 ,Z

(i)
1 )

.

for t = 2 to T do

if ESS < Threshold, then

resample.

end if

Sample,
n“

θ
(i)
t , Z

(i)
t

”oN

i=1
such that

“

θ
(i)
t , Z

(i)

t,1:⌊γt−1⌋

”

∼ Kt−1

“

θ
(i)
t−1, Z

(i)
t−1; ·

”

, for j =

⌊γt−1⌋+ 1 to ⌊γt⌋, Z(i)
t,j ∼ q(·|θ

(i)
t ) and Z

(i)

t,⌈γt⌉
∼ qγt−⌊γt⌋(·|θ

(i)
t )

Set importance weights:
W

(i)
t

W
(i)
t−1

∝
⌊γt⌋
Q

j=⌊γt−1⌋+1

p(y,Z
(i)
j

|θ(i))p(y,Z
(i)
⌈γt⌉

|θ(i))γt−⌊γt⌋

q(Z
(i)
j

|θ(i))qγt−⌊γt⌋
(Z

(i)
γt

|θ(i))

end for

p. 203]). This is the approach which we took in section 4.3. In those cases in which

the cheap evaluation of the marginal likelihood (or posterior, where appropriate)

is possible it would also be possible to choose the parameters associated with the

particle with the largest value of this likelihood, although there seems to be little

advantage in doing so, except perhaps for systems in which multiple global optima

exist and are simultaneously explored by the particle set.

4.2.2 Convergence

In order to demonstrate that the estimates obtained by the algorithms proposed in

section 4.2.1 converge to the maximum likelihood estimator there are two elements

which need to be proved. First, it is necessary to demonstrate that the mean of

the sequence of the target distributions converges to the maximum likelihood

estimator in question; secondly, it is necessary to demonstrate that the particle

system estimate of this quantity converges to its true value. In the interests of

simplicity, we consider only the case in which the parameter space is some subset

of Rn, i.e. Θ ⊂ Rn. We denote the set of maximum likelihood estimates:

ΘML ,

{
θ : p(y|θ) = sup

θ′∈Θ
p(y|θ′)

}
.

As a preliminary, we demonstrate that under very weak conditions, the maxima

of the synthetic distribution 4.5 coincide with those of the likelihood function.

Theorem 4.2.1. Provided that the likelihood is bounded above and the following

conditions hold:

inf
θ∈ΘML

p(θ) = α > 0,

and sup
θ′∈Θ

p(θ) <∞,

we have the following result:
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∀θ ∈ ΘML, θ
′ ∈ Θ \ΘML : lim

γ→∞
πγ(θ)− πγ(θ′) > 0

Proof. Take some θ′ ∈ Θ \ ΘML and any θML ∈ ΘML; let β = p(θ′) < ∞ and

ǫ = p(y|θML) − p(y|θ′) > 0 where positivity follows from the fact that θ′ is not a

member of the set of maximum likelihood estimators. Here, we have:

πγ(θML)

πγ(θ′)
≥ α

β
(1 + ǫ)γ ,

which exceeds unity providing that:

γ >
log (β/α)

log(1 + ǫ)
.

For every ǫ > 0, there exists some γ < ∞ such that this condition holds, and

hence we have the result of the theorem. ⊓⊔

Convergence to the ML Estimate. We begin by demonstrating that the dis-

tribution 4.3 concentrates itself, as γ ↑ ∞, on the set of maximum likelihood

estimates under some weak assumptions. The following assumptions are sufficient

to obtain the result which we require:

Assumption 1. p(θ) and p(y|θ) are α-Lipschitz continuous in θ for some α > 0,

and furthermore both log (p(θ)) ∈ C3(Rn) and log p(y|θ) ∈ C3(Rn).

Assumption 2. ΘML is a non-empty, countable set which is nowhere dense; p(θ)

is assumed to be bounded above and to be non-zero on the points of ΘML; and

p(y|θ) is assumed to be bounded above.

Assumption 3. The dominating measure has no mass at the points of the set of

maximum likelihood solutions, λ ({t : t ∈ ΘML}) = 0. In practice, this is ensured

by assumption 2 and 5; if one wishes to relax assumption 5 then this explicit

assumption is required.

Assumption 4. There exists a non-empty level set of p(y|θ) which is compact. For

some k < sup p(y|θ), {θ : p(y|θ) ≥ k} is compact.

Intuitively, these assumptions amount to requiring that there are not too many

parameter values for which the maximum of the likelihood is obtained, the density

is reasonably well behaved in terms of continuity properties and the support of

the measure is compact if we are able to neglect the tails. These assumptions are

very reasonable considering the problem at hand. However, verifying assumption

1 could be problematic in general as one does not typically have an analytic

expression for p(y|θ).
We make the following assumption, which is somewhat stronger than that

which is required in order to simplify the presentation without unduly restricting

the applicability of our result:
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Assumption 5. The dominating measure with respect to which πγ admits a dis-

tribution is the Lebesgue measure on Rn, denoted λ(dx).

Theorem 4.2.2. Under assumptions 1 to 5 the measure of interest converges to

a distribution which is singular on the points of maximum likelihood, weighted by

the Jacobian of the transformation implied by its density with respect to Lebesgue

measure:

lim
γ→∞

πγ(dt) ∝
∑

θml∈ΘML

α(θml)δθml
(dt), (4.6)

α(θml) = det

[
− ∂2 log p(y|θ)

∂θm∂θn

∣∣∣∣
θ=θml

]−1/2

(4.7)

Proof. Writing πγ,ϑ(θ) ∝ exp
(
ϑ
[
log(p(θ)1/γ) + log(p(y|θ))

])
noting that we have

πγ = πγ,ϑ|ϑ=γ , assumptions 1 to 5 are sufficient to ensure that conditions (A1) to

(A5) of [80, Theorem 2.1] hold for all γ, and so:

lim
ϑ→∞

πγ,ϑ(dt) ∝
∑

θml∈ΘML

αγ(θml)δθml
(dt)

αγ(θml) = det


−

∂2
[

1
γ log p(θ) + log p(y|θ)

]

∂θm∂θn

∣∣∣∣∣∣
θ=θml



−1/2

the result follows directly by taking the limit as γ →∞. ⊓⊔

Convergence of the Particle System. Having demonstrated that our target

distribution converges to the set of maximum likelihood estimates, we now wish to

determine the circumstances under which the empirical measure associated with

the interacting particle systems proposed in section 4.2.1 converges to that target

distribution. It is convenient throughout this section to use the symbol xt to refer

to the full set of variables sampled at time t, i.e. xt = {θt, zt,1:γt}.
As a starting point, we note that under suitable conditions the following central

limit theorem holds [37]:

Theorem 4.2.3 (Del Moral et al.). Under the weak integrability conditions given

in [34, Chapter 9, p300–306] and [25, Theorem 4], the following central limit ap-

plies for all 2 ≤ t, providing that multinomial resampling is applied after every

iteration:

lim
N→∞

√
N
[
πNt (ψ)− πt(ψ)

] d→ N
(
0, σt(ψ)2

)
(4.8)

where πNt denotes the empirical measure associated with a system of N particles

at time t, ψ is a sufficiently regular test function (see [25] for details) and the

variance may be expressed as:
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σt(ψ)2 =

∫
π̃t(x1)

2

ν(x1)

(∫
ψ(xt)π̃t(xt|x1)− Eπt(ψ)

)2

dx1+

t−1∑

i=1

∫
(π̃t(xk)Lk−1(xk, xk−1))

2

πk−1(xk−1)Kk(xk−1, xk)

(∫
ψ(xt)π̃t(xt|xk)dxt − Eπt(ψ)

)2

dxk−1:k+

∫
(πt(xt)Lt−1(xt, xt−1))

2

πt−1(xt−1)Kt(xt−1, xt)
(ψ(xt)− Eπt(ψ))2 dxt−1:t (4.9)

where we have defined the following distributions for notational convenience:

π̃t(xk) =

∫
π̃n(x1:t)dx1:k−1.k+1:t

π̃t(xn|xk) =

∫
π̃n(x1:t)dx1:k−1.k+1:t−1/π̃t(xk).

Finally, we present a stability result for the particle system. Under some strong

assumptions it is possible to bound the variance expression 4.9 by a finite quantity

at all finite times. This bound tends to infinity as the number of iterations does,

but it is clearly far from tight and much work remains to be done on the stability

of such systems. We present this result more as a proof of concept than as a

practically applicable stability argument. For convenience and clarity, we consider

only cases in which the annealing schedule takes integer values commencing from

unity, although there should be no difficulty in generalising the result.

Assumption 6. The instrumental prior, the complete likelihood and the condi-

tional distribution of the latent variables admit a density which is bounded above

and below:

0 < ǫθ ≤ p(θ) ≤ ǫ−1
θ < ∞,

0 < ǫy ≤ p(y|z, θ) ≤ ǫ−1
y < ∞,

0 < ǫz ≤ p(z|θ) ≤ ǫ−1
z < ∞.

Assumption 7. The kernel, K employed to increase sample diversity in algorithm

4.3 admits a density which is bounded above and below1, as does the proposal

distribution used to sample latent variables:

0 < Kk ≤ Kk ≤ Kk < ∞,

0 < δk ≤ qk ≤ δ−1
k < ∞,

and the initial sampling distribution has the same property:

0 < δ1 ≤ ν ≤ δ−1
1 <∞.

Theorem 4.2.4. If we employ algorithm 4.3 and assumptions 6 and 7 hold, in

addition to those required by theorem 4.2.3, then the asymptotic variance given

1 In practice, this condition is unlikely to be satisfied – the Metropolis-Hastings kernel which is

typically employed for this purpose does not admit a density.
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by expression 4.9 is finite for all 2 ≤ t < ∞ and is bounded by the following

expression:

σt(ψ)2 ≤K2

K2

(
δ1δ

2(γ2−1)
2 ǫθǫ

2
yǫz

)−1
+

t−1∑

k=1

t−1∏

i=k−1

[
Ki+1

Ki+1

δ
−2(γi+1−γi)
i+1

]
(ǫθǫ

2γk
y ǫγk

z Kkδ
γk−γk−1

k )−1 osc(ψ)2+

(
ǫθǫ

2γt
y ǫγt

z δ
γt−γt−1

t Kt

)−1
osc(ψ)2,

where osc(ψ) , sup
x,x′
|ψ(x)− ψ(x′)|.

Proof. The proof employs lemmas 4.2.1 to 4.2.3 which follow this theorem.

The first term in the variance expression is bounded directly by lemma 4.2.2.

Considering the term:

∫
(π̃t(xk)Lk−1(xk, xk−1))

2

πk−1(xk−1)Kk(xk−1, xk)

(∫
ψ(xt)π̃t(xt|xk)dxt − Eπt(ψ)

)2

dxk−1:k

=

∫
π̃t(xk)Lk−1(xk, xk−1)

πk−1(xk−1)Kk(xk−1, xk)

(∫
ψ(xt)π̃t(xt|xk)dxt − Eπt(ψ)

)2

π̃t(xk)Lk−1(xk, xk−1)dxk−1:k

≤
t−1∏

i=k−1

[
Ki+1

Ki+1

δ
−2(γi+1−γi)
i+1

]
(ǫθǫ

2γk
y ǫγk

z Kkδ
γk−γk−1

k )−1×

∫ (∫
ψ(xt)π̃t(xt|xk)dxt − Eπt(ψ)

)2

π̃t(xk)Lk−1(xk, xk−1)dxk−1:k,

where the final line follows by lemma 4.2.3. It is then apparent that we may bound

this term by:

t−1∏

i=k−1

[
Ki+1

Ki+1

δ
−2(γi+1−γi)
i+1

]
(ǫθǫ

2γk
y ǫγk

z Kkδ
γk−γk−1

k )−1 osc(ψ)2.

The final term in the variance expression is bounded by:

(
ǫθǫ

2γt
y ǫγt

z δ
γt−γt−1

t Kt

)−1
osc(ψ)2,

by very similar arguments.

⊓⊔

Lemma 4.2.1. Under assumption 6 we may bound the normalising constant as-

sociated with the target distributions:

Zk =

∫
p(θk)

γk∏

l=1

p(zk,l|θk)p(y|zk,l, θk)dθkdzk

≤
∫
p(θk)

γk∏

l=1

p(zk,l|θk)ǫ−1
y dθkdzk ≤ ǫ−γk

y ,

and similarly: Zk ≥
∫
p(θk)

γk∏

l=1

p(zk,l|θk)ǫydθkdzk ≥ ǫγk
y .

.
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Lemma 4.2.2. The following bound applies under assumptions 6 and 7:

π̃t(x1)

ν(x1)
≤K2

K2

(
δ1δ

2(γ2−1)
2 ǫθǫ

2
yǫz

)−1
.

Proof. The result follows directly from the assumptions:

π̃t(x1)

ν(x1)
=

∫
dx2:nπn(xn)

n−1∏
j=1

Lj(xj+1, xJ)

ν(x1)

≤ sup
x2

L1(x2, x1)

ν(x1)

= sup
x2

π1(x1)K2(x1, x2)

π1K2(x2)ν(x1)

≤ (δ1ǫθǫ
2
yǫz)

−1K2

K2

δ
−2(γ2−1)
2

⊓⊔

Lemma 4.2.3. Under assumption 6 and 7 we may bound the following ratio of

densities:

π̃t(xk)Lk−1(xk, xk−1)

πk−1(xk−1)Kk(xk−1, xk)
≤

t−1∏

i=k−1

[
Ki+1

Ki+1

δ
−2(γi+1−γi)
i+1

]
(ǫθǫ

2γk
y ǫγk

z Kkδ
γk−γk−1

k )−1

Proof.

π̃t(xk)Lk−1(xk, xk−1)

πk−1(xk−1)Kk(xk−1, xk)
=

∫
dxt:k+1πt(xt)

t−1∏
i=k

Li(xi+1, xi)Lk−1(xk, xk−1)

πk−1(xk−1)Kk(xk−1, xk)

=

∫
dxt:k+1πt(xt)

t−1∏
i=k−1

[
πi(xi)Ki+1(xi,xi+1)

πiKi+1(xi+1)

]

πk−1(xk−1)Kk(xk−1, xk)

=

∫
dxt:k+1

t∏
i=k−1

πi(xi)
t−1∏
i=k−1

[
Ki+1(xi,xi+1)
πiKi+1(xi+1)

]

πk−1(xk−1)Kk(xk−1, xk)
.

Noting that we may bound the terms in the second product,

Ki+1(xi, xi+1)

πiKi+1(xi+1)
≤ sup

xi,x′i

Ki+1(xi, xi+1)

Ki+1(x′i, xi+1)

≤ Ki+1

Ki+1

δ
−2(γi+1−γi)
i+1 ,

we obtain:
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π̃t(xk)Lk−1(xk, xk−1)

πk−1(xk−1)Kk(xk−1, xk)
≤

∫
dxt:k+1

t∏
i=k−1

πi(xi)
t−1∏
i=k−1

[
Ki+1

Ki+1
δ
−2(γi+1−γi)
i+1

]

πk−1(xk−1)Kk(xk−1, xk)

=
t−1∏

i=k−1

[
Ki+1

Ki+1

δ
−2(γi+1−γi)
i+1

]
πk−1(xk−1)πk(xk)

πk−1(xk−1)Kk(xk−1, xk)

=
t−1∏

i=k−1

[
Ki+1

Ki+1

δ
−2(γi+1−γi)
i+1

]
πk(xk)

Kk(xk−1, xk)
.

Now, we may bound the final term:

πk(xk)

Kk(xk−1, xk)
=

p(θk)
γk∏
l=1

p(zk,l|θk)p(y|zk,l, θk)/Zk

Kk
(
xk−1, xk \ zk,γk−1+1:γk

) γk∏
l=γk−1+1

qk(zk,l|θk)

≤ (ǫθǫ
γk
y ǫ

γk
z Kkδ

γk−γk−1

k Zk)−1

≤ (ǫθǫ
2γk
y ǫγk

z Kkδ
γk−γk−1

k )−1

where the final line follows from lemma 4.2.1 and this gives us the result of the

lemma. ⊓⊔

4.3 Examples and Results

To demonstrate the effectiveness of the proposed algorithms, and to allow com-

parison with other techniques, we now show results on a simple toy example and

a number of challenging models. We begin with a one dimensional example in

section 4.3.1, followed by a Gaussian mixture model in section 4.3.2, a non-linear

non-Gaussian state space model which is widely used in financial modelling in

section 4.3.3 and finally an auxiliary variable formulation of the logistic regression

problem in section 4.3.4.

For the purpose of comparing algorithms on an equal footing, it is necessary

to employ some measure of computational complexity. In the interests of simplic-

ity we note that almost all of the computational cost associated with each of the

algorithms considered here come from either sampling the latent variables or de-

termining their expectation. In fact, evaluating the parameters of the distributions

from which they are sampled or the expressions from which their expectations may

be obtained is by far the largest cost. We introduce the quantity χ defined as the

total number of complete replicates of the latent variable vector which needs to

be simulated or estimated in one complete run of an algorithm (note that in the

case of SAME and the SMC algorithm, this figure depends upon the annealing
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schedule as well as the final temperature and the number of particles in the SMC

case).

4.3.1 Toy Example
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Toy Example: Log Marginal Likelihood

Fig. 4.1. The log marginal likelihood of the toy example of section 4.3.1.

We consider first a toy example in one dimension for which we borrow ex-

ample 1 of [55]. The model consists of a student t-distribution of unknown loca-

tion parameter θ with 0.05 degrees of freedom. Four observations are available,

y = (−20, 1, 2, 3). The logarithm of the marginal likelihood in this instance is given

by:

log p(y|θ) = −0.525
4∑

i=1

log
(
0.05 + (yi − θ)2

)

which is not susceptible to analytic maximisation. However, global the maximum

is known to be located at 1.997, and local maxima exist at {−19.993, 1.086, 2.906}
as illustrated in figure 4.1. We can complete this model by considering the student

t-distribution as a scale-mixture of Gaussians and associating a latent precision

parameter Zi with each observation. The log likelihood is then:

log p(y, z|θ) = −
4∑

i=1

[
0.475 log zi + 0.025zi + 0.5zi(yi − θ)2

]

In the interest of simplicity, we make use of a linear temperature scale, γt = t,

which takes only integer values. We are able to evaluate the marginal likelihood

function pointwise, and can sample from the conditional distributions:



4.3 Examples and Results 89

N T Mean Std. Dev. Min Max

50 15 1.992 0.014 1.95 2.03

100 15 1.997 0.013 1.97 2.04

20 30 1.958 0.177 1.09 2.04

50 30 1.997 0.008 1.98 2.01

100 30 1.997 0.007 1.98 2.01

20 60 1.998 0.015 1.91 2.02

50 60 1.997 0.005 1.99 2.01

Table 4.1. Simulation results for the toy problem. Each line summarises 50 simulations with N

particles and final temperature T . Only one simulation failed to find the correct mode.

πt(z1:γt |θ, y) =

γt∏

i=1

Ga
(
zi

∣∣∣∣0.525, 0.025 +
(yi − θ)2

2

)
, (4.10)

πt(θ|z1:γt) ∝ N
(
θ
∣∣∣µ(θ)
t , Σ

(θ)
t

)
, (4.11)

where the parameters,

Σ
(θ)
t =




t∑

i=1

4∑

j=1

zi,j



−1

=


1/Σ

(θ)
t−1 +

4∑

j=1

zt,j



−1

, (4.12)

µ
(θ)
t = Σ

(θ)
t

t∑

i=1

yT zi = Σ
(µ)
t

(
µ

(θ)
t−1/Σ

(θ)
t−1 + yT zt

)
, (4.13)

may be obtained recursively. Consequently, one can make use of algorithm 4.2 to

solve this problem. We use an instrumental uniform [−50, 50] prior distribution

over θ. Some simulation results are given in table 4.1. The estimate is taken to

be the first moment of the empirical distribution induced by the final particle

ensemble.

4.3.2 A Finite Gaussian Mixture Model

To allow comparison with other techniques, and to illustrate the strength of the

method proposed here in avoiding local maxima, we consider a finite Gaussian

Mixture model. A set of observations {yi}Pi=1 is assumed to consist of P iid samples

from a distribution of the form:

p(yi|π, µσ2) =

S∑

s=1

πs ×N
(
yi|µs, σ2

s

)
(4.14)

where 0 < πs < 1;
S∑
s=1

πs = 1 are the weights of each mixture component and

{µs, σ2
s}Ss=1 is the set of their means and variances. As is usual with such mixtures,

it is convenient to introduce auxiliary allocation variables, Zi which allow us to

assign each observation to one of the mixture components, then we may write the

distribution in the form:

p(yi|π, µ, σ2, Zi = zi) = N
(
yi|µzi , σ

2
zi

)
, p(Zi = zi) = πzi .
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It is both well known and somewhat obvious, that the maximum likelihood

estimate of all parameters of this model is not well defined as the likelihood is not

bounded. However, the inclusion of prior distributions over the parameters has a

bounding effect and makes MAP estimation possible [131]. We consequently show

the results of all algorithms adapted for MAP estimation by inclusion of diffuse

priors, which are as follows:

π ∼ Di (χ)

σ2
i ∼ IG

(
λi + 3

2
,
βi
2

)

µi|σ2
i ∼ N

(
αi, σ

2
i /λi

)

It is straightforward to adjust our algorithm 4.2 to deal with the MAP, rather

than ML case. For this application it is possible to sample from all of the necessary

distributions and to evaluate the marginal posterior pointwise and so we employ

such an algorithm.

At iteration t of the algorithm, for particle i we sample the parameter esti-

mates, conditioned upon the previous values of the latent variables according to

the conditional distributions:

π ← Di
(
γt(χ− 1) + 1 + n(⌊γt⌋) + γt

♯∆n(⌈γt⌉)
)
,

σ2
i ← IG (Ai, Bi)

µi|σ2
i ← N

(
γtλiαi + y (⌊γt⌋)i + γt

♯∆y (⌈γt⌉)i
γtλi + n (⌊γt⌋)i + γt♯∆n (⌈γt⌉)i

,
σ2
i

γtλi + n (⌊γt⌋)i γt♯∆n (⌈γt⌉)i

)

where we have defined the following quantities for convenience:

n (i)j =
i∑

l=1

P∑

p=1

Ij(Zl,p) ∆n (i)j = n (i)j − n (i− 1)j

y (i)j =
i∑

l=1

P∑

p=1

Ij(Zl,p)yj ∆y (i)j = y (i)j − y ((i− 1))j

y2 (i)j =
i∑

l=1

P∑

p=1

Ij(Zl,p)y
2
j ∆y2 (i)j = y2 (i)j − y2 (i− 1)j ,

and the parameters for the inverse gamma distribution from which the variances

are sampled from are:

Ai =
γt(λi + 1) + n (⌊γt⌋)i + γt

♯∆n (⌈γt⌉)i
2

+ 1

Bi =
1

2

(
γt(βi + λiα

2
i ) + y2 (⌊γ2⌋)i + γt

♯∆y2 (⌈γt⌉)i−
⌊γt⌋∑

g=1

(∆y (g)i + λiαi)
2

λi +∆n (g)i
− γt♯

(∆y (⌈γt⌉)i + λiαi)
2

λi +∆n (⌈γt⌉)i



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Then we sample all of the allocation variables from the appropriate distribu-

tions, noting that this is equivalent to augmenting them with the new values and

applying an MCMC move to those persisting from earlier iterations.

Simulated Data. We present results first from data simulated according to the

model. 100 data were simulated from a distribution of the form of 4.14, with

parameters π = [0.2, 0.3, 0.5], µ = [0, 2, 3] and σ =
[
1, 1

4 ,
1
16

]
. The same simulated

data set was used for all runs, and the log posterior density of the generating

parameters was -155.87. Results for the SMC algorithm are shown in table 4.2

and for the other algorithms in table 4.3 – two different initialisation strategies

were used for these algorithms, that described as “Prior” in which a parameter

set was sampled from the prior distributions, and “Hull” in which the variances

were set to unity, the mixture weights to one third and the means were sampled

uniformly from the convex hull of the observations.

Two annealing schedules were used for the SAME algorithm, one, denoted

SAME (6), involved keeping the number of replicates of the augmentation data

fixed to 1 for the first half of the iterations and then increasing linearly to a final

maximum value of 6; the other, denoted SAME (50), keeping it fixed to one for

the first 250 iterations, and then increasing linearly to 50. The annealing schedule

for the SMC algorithm was of the form γt = Aebt for suitable constants to make

γ1 = 0.01 and γT = 6. This is motivated by the intuition that when γ is small, the

effect of increasing it by some amount ∆γ is to change its form somewhat more

than would be the case for a substantially larger value of γ. Varying the forms of

the annealing schedules did not appear to substantially affect the results.

N T χ Mean Std. Dev. Min Max

25 25 1325 -154.39 0.55 -155.76 -153.64

25 50 2125 -153.88 0.13 -154.18 -153.59

50 50 4250 -153.80 0.08 -153.93 -153.64

100 50 8500 -153.74 0.07 -153.91 -153.59

250 50 21250 -153.70 0.07 -153.90 -153.54

1000 50 85000 -153.64 0.04 -153.71 -153.57

100 100 20300 -153.73 0.08 -153.92 -153.61

Table 4.2. Mean and standard deviation of final log posterior estimated by 50 runs of the SMC

Algorithm on simulated data from a finite Gaussian mixture with varying numbers of particles,

N , and intermediate distributions, T .

Galaxy Data. We also applied these algorithms, with the same parameters to

the galaxy data of [133]. This data set consists of the velocities of 82 galaxies, and

it has been suggested that it consists of a mixture of between 3 and 7 distinct

components – for example, see [134] and [52]. For our purposes we have estimated

the parameters of a 3 component Gaussian mixture model from which we assume
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Algorithm Init. T χ Mean Std. Dev. Min Max

EM Prior 500 500 -169.79 8.50 -181.16 -160.70

EM Hull 500 500 -158.06 3.23 -166.39 -153.85

EM Prior 5000 5000 -168.24 8.41 -181.02 -153.83

EM Hull 5000 5000 -157.73 3.83 -165.81 -153.83

SAME(6) Prior 4250 8755 -155.45 0.82 -157.56 -154.06

SAME(6) Hull 4250 8755 -155.32 0.87 -157.35 -154.03

SAME(50) Prior 4250 112522 -154.91 0.81 -156.22 -153.94

SAME(50) Hull 4250 112522 -155.05 0.82 -156.11 -153.98

Table 4.3. Performance of the EM and SAME Algorithm on simulated data from a finite Gaus-

sian mixture. Means and standard deviations of the log posterior of the final estimates of 50 runs

of each algorithm are shown.

the data was drawn. Results for the SMC algorithm are shown in table 4.4 and

for the other algorithms in table 4.5.

N T χ Mean Std. Dev. Min Max

25 25 1325 -44.21 0.13 -44.60 -43.96

50 25 2650 -44.18 0.10 -44.48 -43.95

25 50 2125 -44.14 0.10 -44.32 -43.92

50 50 4250 -44.07 0.07 -44.22 -43.96

100 50 8500 -44.05 0.06 -44.18 -43.94

250 50 21250 -44.00 0.05 -44.10 -43.91

1000 50 85000 -43.96 0.03 -44.02 -43.92

100 100 20300 -44.03 0.05 -44.15 -43.94

Table 4.4. Mean and standard deviation of final log posterior estimated by 50 runs of the SMC

Algorithm on the galaxy dataset of [133] from a finite Gaussian mixture with varying numbers

of particles, N , and intermediate distributions, T .

Algorithm Init. T χ Mean Std. Dev. Min Max

EM Hull 500 500 -46.54 2.92 -54.12 -44.32

EM Hull 5000 5000 -46.91 3.00 -56.68 -44.34

SAME(6) Hull 4250 8755 -45.18 0.54 -46.61 -44.17

SAME(50) Hull 4250 112522 -44.93 0.21 -45.52 -44.47

Table 4.5. Performance of the EM and SAME Algorithm on the galaxy data of [133] from a

finite Gaussian mixture. Means and standard deviations of the log posterior of the final estimates

of 50 runs of each algorithm are shown.

Discussion. The results obtained from the simulated data experiments illustrate

that EM is prone to becoming trapped in local modes, which is supported by the

results obtained on the real data – even at greater computational costs it is not able

to perform as well as the SA-related algorithms. In contrast, both the SAME and

SMC algorithms do much better – and it is clear that, for given computational cost,

the SAME algorithm does not perform as well as the population-based method

proposed here.



4.3 Examples and Results 93

We note that precisely the same moves were used for the SAME algorithm and

the SMC algorithm.

4.3.3 Stochastic Volatility

We take this more complex example from [81]. We consider the following model:

Zi = α+ δZi−1 + σuui Z1 ∼ N
(
µ0, σ

2
0

)

Yi = exp

(
Zi
2

)
ǫi

where ui and ǫi are uncorrelated standard normal random variables, and θ =

(α, δ, σu). The marginal likelihood of interest p(θ|y) is available only as a high

dimensional integral over the latent variables, Z and this integral cannot be com-

puted.

In this case we are unable to use algorithm 4.2, and employ a variant of al-

gorithm 4.3. The serial nature of the observation sequence suggests introducing

blocks of the latent variable at each time, rather than replicating the entire set

at each iteration. This is motivated by the same considerations as the previously

discussed sequence of distributions, but makes use of the structure of this partic-

ular model. Thus, at time t, given a set of M observations, we have a sample of

Mγt volatilities, ⌊γt⌋ complete sets and M(γt − ⌊γt⌋) which comprises a partial

estimate of another replicate. That is, we use target distributions of the form:

pt(α, δ, σ, zt) ∝p (α, δ, σ)

⌊γt⌋∏

i=1

p (y, zt,i|α, δ, σ) p
(
y1:M(γt−⌊γt⌋), z

1:M(γt−⌊γt⌋)
t,i

∣∣∣α, δ, σ
)
,

where z
1:M(γt−⌊γt⌋)
t,i denotes the first γt − ⌊γt⌋ volatilities of the ith replicate at

iteration t.

Making use of diffuse conjugate prior distributions2 for θ ensures that the prior

distributions are rapidly “forgotten”, leading to a maximum likelihood estimate.

Our sampling strategy at each time is to sample (α, δ) from their joint conditional

distribution, then to sample σ from a Gibbs sampling kernel before proposing new

volatilities using a Kalman-smoother as the proposal distribution.

Simulated Data. We consider a sequence of 500 observations generated from

a stochastic volatility model with parameter values of α = −0.363, δ = 0.95

and σ = 0.26 (suggested by [81] as being consistent with empirical estimates for

financial equity return time series). A linear annealing schedule increasing from

4/T to 4 in T steps was employed.

2 i.e. uniform over the (−1, 1) stability domain for δ, standard normal for α and square-root

inverse gamma with parameters α = 1, β = 0.1 for σ.
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N T γT α δ σ

1,000 250 4 −0.45± 0.19 0.939± 0.026 0.36± 0.09

1,000 500 4 −0.59± 0.27 0.919± 0.037 0.43± 0.11

1,000 1,000 4 −0.21± 0.02 0.973± 0.003 0.25± 0.02

5,000 250 4 −0.33± 0.06 0.954± 0.008 0.31± 0.04

Table 4.6. SMC Sampler results for simulated stochastic volatility data with generating pa-

rameters of δ = 0.95, α = −0.363 and σ = 0.26, estimates were obtained over 50 runs of each

configuration.

Discussion. This is a difficult problem and it has not proved straightforward to

find competitive approaches for ML point estimation in this problem – although

it may be of interest to consider a MCEM approach using MCMC to perform

the E-step. Although using simulated data provides knowledge of the generating

parameter, it is not obvious what the correct answer is: as we are unable to eval-

uate the marginal likelihood in this case, we cannot compare its value given the

generating parameters and those estimated by the algorithm. Pragmatically, one

might expect the generating parameters to be close to the ML estimate given a

reasonably large amount of data. Looking at the estimates shown in table 4.6,

reasonable values for the persistence parameter δ are more readily obtained than

the other parameters. The mean reversion parameter, α is strongly negatively cor-

related with δ and this is reflected in the particle set which is produced by the

algorithm and indeed the final estimates. Estimating the variance parameter, σ is

the most difficult problem as this is closely related to the particular sequences of

latent variables which are considered.

The algorithm proposed here is able to obtain estimates of all three parameters

which appear reasonable given knowledge of the generating parameters, but a sub-

stantial computational cost is attached to obtaining those estimates. In practice,

better performance would be obtained by applying MCMC moves to the previously

estimates volatilities in order to provide better mixing properties. Applying such

moves, at least at the beginning of the sampling, might lead to substantially im-

proved performance even at a given computational cost and the trade-off between

the increased computational cost and improved mixing related to the application

of such moves is something which requires investigation in SMC in general.

4.3.4 Bayesian Logistic Regression

As a final example, we consider the auxiliary variable formulation of Bayesian

logistic regression proposed by [79]. As usual we are interested in estimating β

given a set of noisy observations {yi}ni=1 and exactly known covariates {xi}ni=1

given the model:
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yi ∼ Ber
(
g−1(ηi)

)

ηi = xi · β

β ∼ N (b, v) ,

where in our case the link function is taken to be the logit function (log(p/(1−p)))
allowing us to formulate the problem via appropriate auxiliary variables as:

yi = I(0,∞](zi)

zi = xi · β + ǫi ǫi ∼ N (0, λi)

λi = (2ψi)
2 ψi ∼ KS

βi ∼ N (b, v) ,

where ǫi has the form of a scale mixture of normals with a marginal logistic

distribution [2].

We treat β as a parameter to be estimated, and {λi, zi}ni=1 as latent variables to

be marginalised. In this instance we can sample everything from the appropriate

conditional distributions. In the integer γ case, the distribution over λi is non-

standard, but straightforward to sample from using the techniques suggested in

[79] – and the others are simply:

β|z, λ, y ∼ N (B, V )

zi|β, xi, yi ∼




Logistic (βxi, 1) I(0,∞](zi) if yi = 1

Logistic (βxi, 1) I[−∞,0](zi) otherwise.

Rejection sampling could be used to permit non-integer γ. The parameters of the

normal distribution over β are given by,

V =


γtv−1 +

n∑

i=1

xix
T
i




γt∑

g=1

λ−1
gi





−1

B = V


γtv−1b+

n∑

i=1

xi

γt∑

g=1

zgi
λgi


 .

We then weight the particles according to algorithm 4.2, which is straightforward

as the marginal posterior is simply:

p (β| y) =
n∏

i=1

[
I0(yi) + eβ·xiI1(yi)

1 + eβ·xi

]
N (β |b, v ) .

It is well known that standard optimisation techniques can perform well for lo-

gistic regression as the marginal posterior can be evaluated exactly. [114] considers

eight such techniques and advocates the use of conjugate gradient or quasi-Newton

methods. Our attempt to compare our algorithm with the conjugate gradient ap-

proach which [114] suggests was frustrated by its poor convergence if initialised

outside a neighbourhood of a good solution.
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Real Data. We consider the data used in section 3.1 of [21], which corresponds

to 200 eight dimensional vectors describing various characteristics related, it is

supposed, to the probability that a female spouse will form part of the work force.

Table 4.7 summarises the results obtained by the SMC algorithm with various

numbers of intermediate distributions and particles, always with a final value of

γT = 10; and table 4.8 the results obtained by applying the SAME algorithm

with various final temperatures. Figure 4.2 compares their performance at various

computational costs. Again, a linear annealing schedule was employed.

Discussion. It is interesting to note that those cases in which too few parti-

cles/intermediate distributions were used to allow an adequate characterisation of

the density, the median likelihoods lie very close to the best answer found in any

circumstances. In these cases the failure mode is clearly the trapping of the entire

particle set in a sub-optimal local mode, as one would expect in an annealing type

algorithm with too fast an annealing schedule.

N T χ/1, 000 Mean Std. Dev. Min Median Max

500 50 137.5 -116.69 22.40 -265.26 -112.29 -112.29

1000 50 275.0 -113.27 4.32 -138.02 -112.29 -112.29

50 100 27.5 -116.51 24.92 -286.32 -112.30 -112.29

100 100 55.0 -113.92 7.71 -161.11 -112.30 -112.29

250 100 137.5 -112.29 0.002 -112.30 -112.29 -112.29

500 100 275.0 -112.29 0.001 -112.29 -112.29 -112.29

1000 100 550.0 -112.29 0.001 -112.29 -112.29 -112.29

25 200 27.5 -112.32 0.018 -112.39 -112.32 -112.30

50 200 55.0 -112.30 0.008 -112.33 -112.30 -112.29

100 200 110.0 -112.30 0.004 -112.31 -112.30 -112.29

Table 4.7. SMC performance on the data set of [21]. These are the results from 50 independent

runs of the algorithm.

T γT χ/1, 000 Mean Std. Dev. Min Median Max

10,000 10 55.0 -112.74 0.267 -113.84 -112.68 -112.38

25,000 10 137.5 -112.69 0.250 -112.65 -112.41 -112.41

50,000 10 275.0 -112.76 0.195 -113.56 -112.68 -112.42

1,000 50 27.5 -120.24 55.61 -505.60 -112.37 -112.31

1,200 50 33.0 -112.36 0.026 -112.41 -112.36 -112.31

1,500 50 41.2 -112.38 0.043 -112.48 -112.37 -112.31

2,000 50 55.0 -112.37 0.042 -112.49 -112.36 -112.31

10,000 50 275.0 -112.37 0.040 -112.48 -112.38 -112.32

1,000 100 55.0 -112.33 0.022 -112.39 -112.33 -112.30

5,000 100 275.0 -112.33 0.021 -112.39 -112.33 -112.29

Table 4.8. SAME performance on the data set of [21]. These are the results from 50 independent

runs of the algorithm.
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Fig. 4.2. Estimated log marginal likelihood vs. computational cost for the SMC and SAME

algorithms. Error-bars denote the standard deviation, and points the mean, over 50 independent

runs of each algorithm.

As is illustrated in figure 4.2, at a given computational cost, the SMC algorithm

proposed above outperforms the SAME algorithm. It is not straightforward to

verify that the algorithm has found the true global mode. However, the fact that

the best performance found at ever increasing computational costs are the same

lends some weight to the hypothesis that this is in a neighbourhood of either a

global maximum, or an extremely attractive local maximum.

4.4 Summary

We have presented a collection of novel, population-based annealing algorithms

for obtaining marginal parameter estimates within latent variable models. After a

demsontration of the convergence of the proposed estimator under certain condi-

tions, these algorithms were applied to three challenging problems, and performed

well – on the examples presented here, they outperformed standard techniques at

comparable computational costs.
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5. Rare Event Simulation via SMC
“There are trivial truths, and there are great truths. The opposite of a

trivial truth is plainly false. The opposite of a great truth is also true.”

– Neils Bohr

A short version of this chapter was presented as [89] and an extended version is

in preparation [88].

5.1 Introduction

The problem of estimating rare event probabilities has attracted a great deal of

attention in recent times – see, for example, the reviews provided by [57, 69, 139].

Here we propose novel algorithms which are applicable to two types of rare events,

both of which are defined in terms of the canonical Markov chain:
(
Ω =

∞∏

n=0

En,F =
∞∏

n=0

Fn, (Xn)n∈N,Pη0

)
,

where the law Pη0 is defined by its finite dimensional distributions:

Pη0 ◦X−1
0:N (dx0:N ) = η0(dx0)

N∏

i=1

Mi(xi−1, dxi).

In the first instance we consider static rare events, which correspond to the

probability that the trajectory of the Markov chain over a particular, deterministic

time interval lies in some set, T ⊂
P∏
p=0

Ep, which is rare, Pη0 (X0:P ∈ T ) << 1.

This technique, which is described in section 5.3, is applicable to problems such

as those considered by [40].

In section 5.4 we consider what we term dynamic rare events, and these cor-

respond to the probability that a homogeneous Markov chain on a space (E,F)

enters some rare set, T ⊂ E, before it next enters some recurrent set, R; i.e.

Pη0 (Xτ ∈ T ) where the stopping time is defined through τ = inf {t : Xt ∈ R ∪ T }.
We note that the recurrence of R is required only to makke the stopping time τ

almost surely finite, and that we assume that R∩T = ∅. This corresponds to the

classes of problems considered by Repetititive Simulation Trials After Reaching
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Thresholds (RESTART) (see [57] for a review), multi-level splitting [69] and the

approaches of [17, 18].

In both instances, we define a sequence of distributions over the path space of

these Markov chains – which in the dynamic case is clearly a trans-dimensional

distribution in the sense that the dimension of the state of interest is a random

variable: see [75]. The first of these distributions corresponds to the law of the

Markov chain (up to a stopping time in the dynamic case, and a deterministic

time in the static case) and subsequent distributions are distorted according to

a sequence of potentials which ultimately cause the distributions to concentrate

their mass on the rare events of interest. This allows us to estimate probabilities

and related quantities via sequential Monte Carlo. This iterative approach makes

it possible to obtain weighted samples with weights of low variance from the target

distribution from which it would otherwise be extremely difficult to sample.

This approach dramatically ameliorates the sample diversity relative to that

of the samples obtained by methods which iteratively extend the path and apply

importance resampling, which inevitably leads to degeneracy at the beginning of

the path [40]. Furthermore, as noted by [4], if the transition kernel of the Markov

chain admits heavy tails, then rare events are likely to be driven by single large

shocks rather than an accumulation of small ones and, consequently, working on

the path space is likely to produce much better results in such settings.

5.2 Classical and Recent Approaches

We begin with a survey of elementary techniques which can be applied to the rare

event estimation problem, and attempt to illustrate why these techniques are not

universally suitable, or require a large amount of application specific adjustment

to obtain good results.

5.2.1 General

Initially, we consider the two obvious approaches to rare event estimation by Monte

Carlo methods, highlighting the deficiencies of these approaches.

Crude Monte Carlo. The crude Monte Carlo approach can be used to estimate

the probability of an event simply by sampling many evolutions of the system and

using as an estimator the probability of that event under the empirical measure

induced by those samples. That is, given some measure, π, sample a large collection

of random variables, {Xi}Ni=1 from that measure and the probability of an event

T is simply:

p̂MC (T ) ,
1

N

N∑

i=1

IT (Xi).
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Unfortunately, although the expected number of samples hitting the rare set is

clearly Nπ(T ), the variance of the number is Nπ(T )(1 − π(T )) (which can be

seen by considering the number of times that the rare set is reached as a binomial

random variable with success probability π(T )) and the ratio of the standard

deviation to the mean is consequently
√

1−π(T )
Nπ(T ) which for extremely rare events

is approximately
√

1
Nπ(T ) which can be extremely large, even for large N . With

1/π(T ) samples, the standard deviation of the estimator is equal to its mean and

for many rare events of interest, even this modest requirement would necessitate

the use of a billion or more samples. This is clearly not a practical approach.

Importance Sampling. It is theoretically possible to make use of any distribu-

tion, µ, with respect to which π is absolutely continuous to obtain estimates whilst

increasing the number of occurrences of the rare events using the usual importance

sampling identity, given N samples from µ, {Xi}Ni=1 we have the estimator

p̂IS (T ) ,
1

N

N∑

i=1

dπ

dµ
(Xi)IT (Xi).

It is well known (see, for example, [130]) that the optimal importance distribution,

µ, is given by:

µ(dx) =
π(dx)IT (x)

π(IT )
,

and as the function whose expectation is being calculated is positive, samples

from this distribution would yield an unbiased estimator of zero variance (see, for

example [48]). As usual, it is impossible to use the optimal importance distribution

as its normalising constant corresponds to precisely the quantity which is to be

estimated.

Developing good importance distributions which provide low variance estima-

tors can be a difficult and application-specific problem, which usually involves

either an analysis of the physical or mathematical system underlying the problem,

or a more formal approach, such as a large deviations analysis.

The Cross-Entropy Method. A closely related approached, which has been

termed the cross-entropy method is essentially a scheme for adaptively construct-

ing a sequence of distributions which provide increasingly good importance sam-

pling proposal distributions for the estimation of the rare event of interest. The

approach was first proposed in [137] and more recent tutorials provide a clear ex-

planation [33, 138]. It applies to rare events which may be described as the level

set of a suitable potential function1.

1 It has recently been proposed that the method can be extended to a number of settings,

including several which do not involve rare event simulation but this is beyond the scope of

this thesis.
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The approach which is taken is, in brief, as follows. Given the rare event of

interest, a parametric family of importance sampling distributions if first proposed.

It is important that this family is sufficiently flexible that there exists a suitable

set of parameter values which will provide good importance distributions for the

rare event of interest. Starting with some arbitrary parameter value, one then

samples a collection of points from some initial distribution and then selects only

those samples which exceed the 1 − ρ quantile of the potential function under

the empirical distribution induced by the sample (i.e. take the proportion ρ of the

samples which have the highest values of the potential function). Using the selected

particles, one finds the parameter value which minimises the cross-entropy between

the optimal importance function for estimating the probability of exceeding the

level set of the potential function implied by the 1−ρ quantile found above, and a

sampling distribution within the parametric family which was selected previously.

This is done by using the importance sampling estimate of the integral provided by

the empirical measure associated with the selected sample points. This procedure

is carried out iteratively until the 1 − ρ quantile which is found either ceases to

increase of reaches that associated with the rare event of interest.

The choice of cross-entropy as the distance measure is a pragmatic one mo-

tivated by computational considerations. In practice, one wishes to minimise the

estimator variance but this operation is not computationally tractable and there

are a broad range of problems in which the cross-entropy can be minimised ana-

lytically.

There has been much interest in this method, which is able to produce good

solutions to moderately complex problems with a reasonable computational cost.

5.2.2 Static Rare Event Simulation

In this section we briefly summarise some rare event simulation techniques from

the literature intended to handle the static case described above.

Genealogical Interacting Particle Systems. A method is proposed in [40] to

make use of interacting particle systems with a Feynman-Kac interpretation to

obtain samples which are biased towards the rare set of interest. This approach is

essentially a technique for performing importance sampling in an almost automatic

fashion.

The approach consists of defining a potential function, V : E → R, on the state

space of a homogeneous Markov chain, which describes the rare event in the sense

that either rare trajectories tend to have large values of this function at every step

in the Markov chain (which in the case of rare events characterised by the sum of

light tailed distributions being large, for example, seems very reasonable), or that
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the increase in this potential function from one state in the chain to the next tends

to be large. Feynman-Kac potentials are then defined which correspond to either

G
(β)
n (x0:n) = exp(βV (xn)) or G

(α)
n (x0:n) = exp (α [V (xn)− V (xn−1)]), where α

and β are tuning parameters which determine how rare the generated trajectories

are likely to become.

Trajectories of the system are then simulated via algorithm 5.1 – which deals

with the second type of Feynman-Kac potential; that which is recommended in the

original paper, and that which is used for comparative purposes in later sections.

We remark that the presentation here follows that in the original paper, including

the simulation of an additional set of random variables {X(i)
−1}Ni=1. This is done

for mathematical convenience in the analysis of the algorithm as it allows the

use of the same recursion and potential function at every step in the algorithm;

in practice, of course, there would be no advantage in actually simulating this

set of random variables and making use of them could only increase the Monte

Carlo variance of the estimator. The simulations below do not employ such a set

of random variables. Similarly, the selection step as described corresponds to the

application of multinomial resampling – which simplifies analysis of the algorithm

but increases the Monte Carlo variance; the use of stratified resampling is always

preferred in practice.

This seems like a sensible approach, and one which is likely to perform well in

a number of situations. In section 5.3.3 we detail the principal differences between

this technique and the one which we propose, algorithm 5.3. We remark that,

unlike algorithm 5.3, this approach is only suitable for estimating the probability

that the final state of the Markov chain lies in a particular rare set. Whilst it

might be possible to adapt this approach to estimating rare event probabilities

which depend upon the full path in some instances, it seems implausible that

good performance could be obtained in general.

5.2.3 Dynamic Rare Event Simulation

Several techniques have recently been developed specifically for simulating dy-

namic rare events, we summarise these approaches here.

Multi-Level Splitting and RESTART. Multi-level splitting and RESTART

refer to the same class of techniques – which were originally proposed in the 1950s

and subsequently rediscovered on a number of occasions; see [69] and references

therein. The hybrid subset method which has been recently proposed in the field

of mechanical engineering [22, 23] appears to be another rediscovery of this ap-

proach. A number of techniques which are being developed in the physics and

chemistry literature (see, [1] for an example of three) are similarly, based upon
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Algorithm 5.1 An interacting particle system for static rare event estimation.
Initialise the particle ensemble:

for i = 1 to N do

Sample X
(i)
−1 ∼ η0 and X̂

(i)
0 ∼ η0.

end for

for p = 0 to P do

Estimate the normalising constant of the importance distribution:

ẐN
p =

1

N

N
X

i=1

exp
“

α
h

V (X̂(i)
p )− V (X

(i)
p−1)

i”

Apply a selection step (termed resampling in the SMC literature) according to the potential.

for i = 1 to N do

X(i)
p ∼ 1

NẐN
p

N
X

j=1

exp
“

α
h

V (X̂(j)
p )− V (X

(j)
p−1

i”

δ
X̂

(j)
p

(·)

end for

Apply a mutation step. for i = 1 to N do

X̂
(i)
p+1 ∼Mp+1(X

(i)
p , ·)

end for

end for

The rare event probability can be estimated as:

P̂ IPS(XP ∈ T ) =

P−1
Y

p=0

ẐN
p ×

1

N

N
X

i=1

IT

“

X̂P

”

exactly the techniques described here. These examples of unnecessarily duplicated

effort perhaps show the importance of communication between methodologists and

applications specialists!

The principle behind splitting approaches to dynamic rare event simulation is

to produce a decreasing sequence of sets, and simulate a large number of particle

trajectories under the dynamic of the system. Whenever one of these particles

reaches a set which is “rarer” than any it has entered before, it is duplicated and

the weight associated with each “child” particle is set to half of that of its parent.

Particles are killed whenever they hit the recurrent set. This approach is reviewed

in [69, 57], along with many variations.

Variants of these approaches are numerous, but all are based upon a decom-

position of the rare event into a product of conditional events. Given a rare set

T and a recurrent set R, a decreasing sequence of sets, T1 ⊃ T2 ⊃ · · · ⊃ TT = T
is constructed, along with the associated stopping times τi = inf {t : Xt ∈ Ti ∪R}
(which are almost surely finite by the recurrence of R) and the following decom-

position of the rare event probability is used:

P (Xτt ∈ Tt) =
t∏

s=1

P
(
Xτs ∈ Ts|Xτs−1 ∈ Ts−1

)
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with the conventions that τ0 = 0 and T0 = E. The algorithm estimates each of

these probabilities via a mean field approximation, propagating a number of paths

until they hit each set, and then resampling by replicating those paths which did

not return to the recurrent set whilst simultaneously estimating the conditional

probability as the fraction of paths which survived this stage. i.e. commencing

from a set of N paths which hit Ts−1, {X(i)

0:τ
(i)
s−1

}Ni=1, each path is extended by

sampling from the law of the Markov chain until it hits either Ts or R. It is then

possible to estimate:

P
(
Xτs ∈ Ts|Xτs−1 ∈ Ts−1

)
≈ 1

N

N∑

i=1

ITs

(
X(i)
τs

)

and sample (with replacement) N paths from those which successfully hit Ts for

use in the next iteration2.

Adaptive Multi-level Splitting (AMS). A recent variation of the splitting

type method was proposed by [18]. In order to avoid one of the principle difficulties

with this approach, that of selecting the sequence of nested sets, an adaptive

approach was proposed.

Only the one dimensional, continuous time case with continuous sample paths

in a state space E = R was considered. The approach was to simulate a collection

of paths until they hit R, determine the point closest to the rare set reached by

each path. Having done so, find the largest of these distances, d⋆, obtained by at

least some number k of successful paths, and estimate the probability of hitting

that set before the recurrent set as S/N . Starting from d⋆, sample N paths until

they hit R and repeat this process until T is reached.

Although it was suggested by [18] that the generalisation to more complex

problems should be straightforward, it does not seem clear that this is the case for

discrete time processes or continuous time processes with potentially discontinuous

sample paths even in one dimension – or indeed for continuous time processes

which cannot be simulated exactly: if it is possible to reach a point closer to the rare

set than some state x⋆ without passing through that state then the conditioning

argument does not appear to hold, and this seems particularly difficult to deal

with in multi-dimensional state spaces. It seems likely that these problems will

be overcome to a greater or lesser extent in the fullness of time and that this

approach will become a valuable tool in the estimation of rare event probabilities

and perhaps in other areas of adaptive importance sampling.

2 This is what [57] describes as fixed effort RESTART; in the fixed splitting form, the number

of paths is random with a fixed number of replicates of each successful path being propagated

forward.
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Algorithm 5.2 Adaptive multi-level splitting for dynamic rare event estimation
1: Initialise the particle set by sampling from the law of the Markov chain until stopping time

χ, at which they hit the recurrent set R.

2: Set the iteration count, T = 0.

3: for i = 1 to N do

4: Sample X
(i)

0:χ(i) ∼ Pη0(·) where χ(i) = inf
n

t : X
(i)
t ∈ R

o

5: Calculate S(i) = sup
n

V (X
(i)
t ) : t ≤ χ(i)

o

, the best state reached by each path.

6: end for

7: Let K be the set of indices of the k particles with the largest associated values of S(i):

i.e. ∀i ∈ K, j /∈ K : S(i) ≥ S(j).

8: Let q = inf
i∈K

S(i).

9: if V (q) ≥ V̂ then

10: Estimate the rare event probability using:

p̂AMS = r

„

k

N

«T

where r denotes the fraction of the current set of particles which hits the rare set.

11: else

12: for i = 1 to N do

13: if i /∈ K then

14: Let X
(i)
0 = V −1(q) and sample the rest of the path according to the law of the

Markov chain until the recurrent set is hit.

15: else

16: Let s(i) = inf{t : X
(i)
t = S(i)}. Let X(i) = X

(i)

s(i):χ(i) , χ
(i) = χ(i) − s(i).

17: end if

18: Calculate S(i) = sup
n

V (X
(i)
t ) : t ≤ χ(i)

o

, the best state reached by each path.

19: end for

20: Increment T and goto step 7.

21: end if
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The one dimensional algorithm applied to a general space in which a function

V : E → R increases towards the rare set and has the property that V (x) ≥
V̂ ⇐⇒ x ∈ T is shown in algorithm 5.2.

Genealogical Interacting Particle Systems. An interacting particle system

interpretation of a Feynman-Kac flow has been proposed as a generic solution to

this problem [17]. In some sense, this approach is essentially the same as some

variants of the multi-level splitting algorithm provided with a rigorous theoretical

interpretation. Casting the approach into a Feynman-Kac form allows a wealth of

recently obtained theoretical results [34] to be applied.

Again, a decreasing sequence of sets which concentrates itself upon the rare

set of interest is employed. In this case a multi-level Feynman-Kac interpretation

is required with one level corresponding to a skeleton of stopping times and a

lower level corresponding to the path from one set to the next. The algorithm

amounts to sampling a particle approximation to a Feynman-Kac flow in which

the state at time t corresponds to a realisation of a Markov chain which begins in

Tt and finishes when it first enters either Tt+1 or R. A zero-one potential function

is applied at each iteration to kill those paths which return to R. The normalising

constant of the flow when the particle set reaches T corresponds to the rare event

probability of interest.

5.3 Static Rare Event Estimation

In order to solve the problem of computing, for deterministic P , Pη0 (X0:P ∈ T ),

we propose employing a SMC sampling approach. We remark that this class of

problems includes those cases in which we wish to determine whether some prop-

erty of a collection of iid variables fulfill a condition which is rarely satisfied, as

well as a wide range of cases involving properties of Markov chains.

The approach which we propose is to employ a sequence of intermediate dis-

tributions which move smoothly from the “simple” distribution Pη0 ◦X−1
0:P to the

target distribution Pη0 ◦X−1
0:P (·|X0:P ∈ T ) and to obtain samples from these dis-

tributions using SMC methods. This approach has an interpretation as a mean

field approximation to a Feynman-Kac flow in distribution space, and many the-

oretical results – including a central limit theorem – are consequently available

[34]; stability has been established in a slightly different setting by [82] and work

is ongoing to extend those results.

By operating directly upon the path space, we gain a number of advantages. It

provides more flexibility in constructing the importance distribution than methods

which consider only the time marginals, and allows us to take complex correlations
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into account. Later, we will show that it also allows us to consider the dynamic

case, which is normally treated as a stopping time problem, in terms of trans-

dimensional inference.

We can, of course, cast the probability of interest as the expectation of an

indicator function over the rare set, and the conditional distribution of interest in

a similar form as:

Pη0 (X0:P ∈ T ) = Eη0 [IT (X0:P )] ,

Pη0 (dx0:p |X0:P ∈ T ) =
Pη0 (dx0:p ∩ T )

Eη0 [IT (X0:P )]
.

We concern ourselves with those cases in which the rare set of interest can

be characterised by some measurable function, V : E0:P → R, which has the

properties that:

V : T → [V̂ ,∞),

V : E0:P \ T → (−∞, V̂ ).

In this case, it makes sense to consider a sequence of distributions defined by a

potential function which is proportional to their Radon-Nikodým derivative with

respect to the law of the Markov chain, namely:

gθ(x0:p) =
(
1 + exp

(
−α(θ)

(
V (x0:P )− V̂

)))−1

where α(θ) : [0, 1] → R+ is a differentiable monotonically-increasing function

such that α(0) = 0 and α(1) is sufficiently large that this potential function

approaches the indicator function on the rare set as we move through the sequence

of distributions defined by this potential function at the parameter values θ ∈
{t/T : t ∈ {0, 1, . . . , T}}.

Let
{
πt(dx0:P ) ∝ Pη0(dx0:P )gt/T (x0:P )

}T
t=0

be the sequence of distributions

which we use. The SMC samplers framework allows us to obtain a set of sam-

ples from each of these distributions in turn via a sequential importance sampling

and resampling strategy. Note that each of these distributions is over the first

P + 1 elements of a Markov chain: they are defined upon a common space.

In order to estimate the expectation which we seek, we make use of the identity:

Eη0 [IT (X0:P )] =

∫
πT (dx0:P )

[
Z1

g1(x0:P )
IT (x0:P )

]
,

where Zθ = π0(gθ) and use the particle approximation of the right hand side of this

expression. Similarly, the subset of particles representing samples from πT which

hit the rare set can be interpreted as samples from the conditional distribution of

interest.

We use the notation (Y
(i)
t )Ni=1 to describe the particle set at time t and Y

(i,j)
t

to describe the jth state in the Markov chain described by particle i at time t. We
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further use Y
(i,−p)
t to refer to every state in the Markov chain described by particle

i at time t except the pth, and similarly, Y
(i,−p)
t ∪ Y ′ ,

(
Y

(i,0:p−1)
t , Y ′, Y

(i,p+1:P )
t

)
,

i.e., it refers to the Markov chain described by the same particle, with the pth state

of the Markov chain replaced by some quantity Y ′.

5.3.1 Path Sampling Approximation

The estimation of the normalising constant associated with our potential function

can be achieved by a Monte Carlo approximation to the path sampling formulation

given by [58]. Given a parameter θ such that a potential function gθ(x) allows a

smooth transition from a reference distribution to a distribution of interest as

some parameter increases from zero to one, one can estimate the logarithm of the

ratio of their normalising constants via an integral relationship.

In our case, we can describe our sequence of distributions in precisely this form

via a discrete sequence of intermediate distributions parameterised by a sequence

of values of θ:

d log gθ
dθ

(x) =
(V (x)− V̂ )

exp(α(θ)(V (x)− V̂ )) + 1

dα

dθ

⇒ log

(
Zt/T

Z0

)
=

∫ t/T

0
Eθ

[
(V (·)− V̂ )

exp(α(θ)(V (·)− V̂ )) + 1

]
dα

dθ
dθ

=

∫ α(t/T )

0
E α′

α(1)

[
(V (·)− V̂ )

exp(α′(V (·)− V̂ )) + 1

]
dα′,

where Eθ is used to denote the expectation under the distribution associated with

the potential function at the specified value of its parameter.

The SMC sampler provides us with a set of weighted particles obtained from

a sequence of distributions suitable for approximating this integral. At a series

of values of θ ∈ [0, 1] we can obtain an estimate of the expectation within the

integral via the usual importance sampling estimator, and this integral can then

be approximated via a trapezoidal integration. As we know that Z0 = 0.5 we

are then able to estimate the normalising constant of the final distribution and

subsequently use an importance sampling estimator to obtain the probability of

hitting the rare set.

Some theoretical justification for the intuition that the path sampling approach

is likely to lead to lower variance estimators is provided in appendix A.1 in which

two approaches are compared for a very particular case. More general results are

being investigated. Similarly, appendix A.2 illustrates the improvement in variance

which can be obtained by using this approach, rather than simple Monte Carlo,

again in a particular case.
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Algorithm 5.3 An SMC algorithm for static rare events.
At t = 0.

for i = 1 to N do

Sample Y
(i)
0 ∼ ν for some importance distribution ν.

Set W
(i)
0 ∝ π0(Y

(i)
0 )

ν(Y
(i)
0 )

such that
PN

j=1W
(j)
0 = 1.

end for

for t = 1 to T do

if ESS < threshold then resample
n

W
(i)
t−1, Y

(i)
t−1

oN

i=1
using stratified resampling [13] to

obtain
n

Ŵ
(i)
t−1, Ŷ

(i)
t−1

oN

i=1
else let

n

Ŵ
(i)
t−1, Ŷ

(i)
t−1

oN

i=1
=

n

W
(i)
t−1, Y

(i)
t−1

oN

i=1
.

If desired, apply a Markov kernel, K̃t−1 of invariant distribution πt−1 to improve sample

diversity, for each particle, sample Ỹ
(i)

t−1 ∼ K̃t−1(Ŷ
(i)

t−1, ·).
Otherwise, let

n

Ỹ
(i)

t−1

oN

i=1
=

n

Ŷ
(i)

t−1

oN

i=1
.

for i = 1 to N do

Sample Y
(i)

t ∼ Kt(Ỹ
(i)

t−1, ·).
Weight W

(i)
t ∝ Ŵ (i)

t−1

πt(Y
(i)
t )Lt−1(Y

(i)
t ,Ỹ

(i)
t−1)

πt−1(Ỹ
(i)
t−1)Kt(Ỹ

(i)
t−1,Y

(i)
t )

with
PN

j=1W
(j)
t = 1.

end for

end for

Approximate the path sampling identity to estimate the normalising constant:

Ẑ1 =
1

2
exp

"

T
X

t=1

(α(t/T )− α((t− 1)/T ))
Êt−1 + Êt

2

#

Êt =

PN
j=1W

(j)
t

V
“

Y
(j)
t

”

−V̂

1+exp
“

αt

“

V
“

Y
(j)
t

”

−V̂
””

PN
j=1W

(j)
t

Estimate the rare event probability using importance sampling:

p⋆ = Ẑ1

PN
j=1W

(j)
T

“

1 + exp(α(1)(V
“

Y
(j)

T

”

− V̂ ))
”

I(V̂ ,∞]

“

V
“

Y
(j)

T

””

PN
j=1W

(j)
T

.
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5.3.2 Density Estimation

Algorithm 5.3 provides pointwise estimates of the probabilities of rare events; one

can use importance sampling to obtain estimates of the probabilities of similar

events. In certain applications, one is actually interested in the estimation of the

pdf itself. We remark that the algorithm presented here can be easily adapted

to this task, and propose a number of possible approaches to doing so. The one

which is recommended, and which is likely to perform well in general (at least

when the pdf is that of a one dimensional variable) is described first. We then

go on to describe a number of alternatives which might be preferred in particular

circumstances.

Historical process estimation. This approach makes use of all of the samples

obtained by the algorithm. The following explanation describes an approach to

the estimation of a one dimensional pdf . The generalisation to the multivariate

case is straightforward, although it becomes more difficult to accurately describe

the particle localisation.

Assume that we wish to estimate the pdf of a function f : E0:P → R and have

a set of points, R, at which an estimate is required (typically a grid of some sort

in a region of interest). Assume that it is possible to describe the region in which

the particles are located at each time step and that R̄t ⊂ R is the set of points

from R which lie inside this region at time t.

The examples presented below allow us to provide a number of definite exam-

ples. We note that in the pdf estimation cases described here, the function V itself

(that is the terminal position of the Markov chain in the Gaussian tail case and the

length of the polarisation vector in the PMD case) was the function of interest and

this set was taken to be the interval between the 1st decile and the 9th decile of the

particle set at the time sorted appropriately i.e. If Ȳt is the set of particles at time

t sorted such that V (Y
(i)
t ) ≤ V (Y

(i+1)
t ) then R̄t = R ∩

[
V (Ȳ⌊0.1N⌋), V (Ȳ⌈0.9N⌉)

]
.

Let ∆ denote the width of a window which is used to estimate the pdf at

a point, ideally, this should be sufficiently small that the pdf is close to linear

across regions of this width and large enough that a reasonable number of particles

typically lie within ranges of this size.

In order to obtain an estimate of the PDF, we first attempt to obtain estimates,

for each r ∈ R, of the probabilities:
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pt(r) = Pη0

(
f(Y0) ∈

[
r − δ

2
, r +

δ

2

])

= E0

[
I[r− δ

2
,r+ δ

2
](f(Y0))

]

= Eα(t/T )
α(1)

[
I[r− δ

2
,r+ δ

2
](f(Y0))

dπ0

dπt
(Yt)

]
.

At time t, each of these may be estimated using the particle set at that time, by:

p̂t(r) =
N∑

i=1

Wt,iI[r−∆
2
,r+∆

2
](f(Yt,i))

d̂π0

dπt
(Yt,i)

=
N∑

i=1

Wt,iI[r−∆
2
,r+∆

2
](f(Yt,i))Ẑt/gt/T (Yt,i),

where Ẑt is the path sampling estimator of the normalising constant of the dis-

tribution πt(dx) ∝ gt/T (x)π0(dx). At every point r, taking the mean of all of

the individual estimators which were obtained from the region of support of the

particle set at the appropriate time yields:

p̂(r) =

T∑
t=1

p̂t(r)IR̄t
(r)

T∑
t=1

IR̄t
(r)

.

For sufficiently small ∆, under suitably continuity conditions, this provides us with

the density estimate which we seek.

Importance Sampling. The methodology described here provides, for a given

potential function threshold value, a collection of weighted samples from a dis-

tribution function close to the product of an indicator function on the associated

level set of the indicator function and the original distribution function, we are

able to make use of those samples as samples from an importance distribution

and by re-weighting them appropriately. Hence, we may use them to estimate a

pdf with reasonable accuracy in a region with potential bounded below by the

threshold value.

Whilst this approach is intuitively appealing due to its simplicity of implemen-

tation, it seems unlikely that it will ever be an efficient way to perform density

estimation.

Dedicated SMC Sampler Density Estimation. In situations in which one is

generally interested in estimating the pdf of some complicated random variable

over a particular set of interest, say S, a set of pointwise evaluations of the pdf

distributed approximately uniformly over that set would seem to be the ideal
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tool3. In those cases in which it is not possible to obtain such by direct means,

one method which could be employed, and should be applicable fairly generally is

to make use of the SMC samplers framework to progress via a smooth sequence of

intermediate distributions from the law of the random variable to a distribution

which is uniform over S and elsewhere zero. This would be an efficient method for

density estimation within the SMC samplers framework.

Smooth Particle Filter Approaches. In the case where the state space of the

Markov Chain is R, and no Metropolis moves are employed, we could in principle

perform one simulation for an arbitrary threshold, replacing the resampling step

with a smoothed form just as in [124]. By observing the changing rare event

probability of exceeding the threshold as a function of threshold we can obtain

the cdf of the distribution.

5.3.3 Comparison with the IPS Approach

The method presented in [40] performed well in the applications described therein.

Näıvely, one would expect it to require less computational time than the method

described above which involves resampling on the path space of the Markov chain

of interest and requires the introduction of intermediate distributions. However,

there are other factors which suggest that the method described here can perform

better in various senses in many circumstances. The following are all factors which

should be considered:

– Although the SMC samplers approach described above involves more complex

sampling and a number of intermediate distributions, it can obtain good results

with many fewer particles.

– As observed in [4], extreme values in the sums of random variables with light-

tailed distributions are predominantly the result of a large number of moderately

extreme values within the terms of that sum, but in the heavy-tailed case it is

much more likely for a single extreme value within the sum to lead to the extreme

behaviour overall. In principle the framework proposed above should be able to

operate within both regimes. One might expect the method described within

[40] to have difficulty, in practice, as it applies a weighting at every time step

which depends upon the present terminal and penultimate states of the Markov

chain. Consequently, after a few time steps only those chains which have moved

towards a reasonably large value of the potential function will remain, whilst

3 It is clearly possible to envisage situations in which the set of interest and the law of the

random variable are sufficiently complex that it is not straightforward to simply establish a

grid and evaluate the analytically known pdf over that set, and we shall assume that these

are the situations in which Monte Carlo density estimates are of interest.
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the true distribution is (in the homogeneous case, at least) equally likely to have

a single extreme value at any point in the chain.

– The algorithm described above works directly upon the path space of the Markov

chain of interest and should lead to a good description of the distribution over

this space. However, the algorithm of [40] works on the state space of the Markov

chain and one would expect the frequent resampling involved to lead to degen-

eracy in the path space (see figure 5.2 for an illustration of this effect).

– The value of the constant α within the method of [40] must be large enough to

push a substantial part of the particle set to the rare set, but not so large that

it eliminates the particles which hit the less rare parts of that set. In contrast,

the construction of our potential function is such that the terminal value of α

must be large enough, but no problems should occur if it is much larger than

the minimum value needed to push part of the particle set into the rare set.

– In the case of [40] the number of particles required for reasonable estimation is

related to the rarity of the event to be estimated as it requires that the true

one-step transition kernel produces moves at each individual time-step which

are sufficiently extreme that a sum of the most extreme values found at each

individual time-step hits the rare set. This essentially prevents the algorithm

from being used with extremely rare events as a prohibitive number of particles

would be required.

Of course, the SMC sampler approach also suffers from certain limitations and

the following factors should also be considered:

– The independence of the potential function and the threshold has the advantage

that the IPS approach can provide estimates of the probability of lying in the

rare set at each point in the evolution of the Markov chain, although this will

only be accurate within the region in which a reasonable number of particles

have hit the rare set.

– Inspection of the final particle paths provides a straightforward way to verify

that a reasonable number of particles have hit the rare set and that the rare set

is reasonably well covered by particles in the case of the IPS approach, whilst

this cannot be determined straightforwardly in the SMC case. However, this

diagnostic is of limited value as it is not straightforward to verify that all paths

to the rare set are well represented in this way without detailed knowledge of

the evolution of the chain.

– Although the dependence upon the rarity of the event is more subtle in the SMC

case, there is still an increasing computational cost associated with estimating

progressively rare events. As events become rarer, it will become increasingly

difficult to move smoothly from the initial distribution to the target, and this
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will necessitate the introduction of an increasing number of intermediate distri-

butions.

5.3.4 Examples

We now provide a number of examples of algorithm 5.3, together with a comparison

to the IPS algorithm of [40] and crude Monte Carlo as appropriate. We begin with

a simple Gaussian random walk which allows us to demonstrate the accuracy of

the approach, before moving on to the optical problem studied by [40]. Finally,

we demonstrate a slightly different use of the algorithm to obtain approximate

solutions to counting problems.

A Toy Example: The Gaussian Random Walk. It is useful to consider a

simple example for which it is possible to obtain analytic results for the rare event

probability. The tails of a Gaussian distribution serve well in this context, and we

borrow the example of [40]. We consider a homogeneous Markov chain defined on

(R,B(R)) for which the initial distribution is a standard Gaussian distribution and

each kernel is a standard Gaussian distribution centred on the previous position:

η0(dx) = N (dx; 0, 1) ∀n > 0 : Mn(x, dy) = N (dy;x, 1) .

The function V (x0:P ) , xP corresponds to a canonical coordinate operator and

the rare set T , EP×[V̂ ,∞) is simply a Gaussian tail probability: the distribution

of XP is simply N (0, P + 1) as the sum of P + 1 iid standard Gaussian random

variables.

Sampling from π0 is trivial. We employ an importance kernel which moves

position i of the chain by ijδ where j is a random variable sampled from a dis-

tribution which makes the probability of proposing each possible change from a

grid proportional to the associated target probability, and δ is an arbitrary scale

parameter. The operator, Oχ, defined by OχY (i)
t =

(
Y

(i,p)
t + pχ

)P
p=0

, where χ is

interpreted as a parameter, is used for notational convenience. This forward kernel

can be written as:

Kt(Y
(i)
t−1, Y

(i)
t ) =

S∑

j=−S

wt(Y
(i)
t−1, Y

(i)
t )δ

OδjY
(i)
t−1

(Y
(i)
t ),

where the probability of each of the possible moves is given by

wt(Y
(i)
t−1, Y

(i)
t ) =

πt(Yt)∑S
j=−S πt(OδjY

(i)
t−1)

.

This leads to the following optimal auxiliary kernel (2.25):

Lt−1(Y
(i)
t , Y

(i)
t−1) =

πt−1(Y
(i)
t−1)

S∑
j=−S

wt(Y
(i)
t−1, Y

(i)
t )δ

OδjY
(i)
t−1

(Y
(i)
t )

S∑
j=−S

πt−1(O−δjY
(i)
t )wt(O−δjY

(i)
t , Yt)

.
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The incremental importance weight is consequently:

Wt(Y
(i)
t−1, Y

(i)
t ) =

πt(Y
(i)
t )

S∑
j=−S

πt(O−δjY
(i)
t )wt(O−δjY

(i)
t , Y

(i)
t )δ

OδjY
(i)
t−1

(Y
(i)
t )

.
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Fig. 5.1. The results shown in table 5.1 and 5.2. Numbers in brackets denote the size of the

particle set. The error-bars indicate the estimator standard deviation.

Threshold, V̂ True log probability SMC Mean SMC Variance k T

5 -2.32 -2.30 0.016 2 333

10 -5.32 -5.30 0.028 4 667

15 -9.83 -9.81 0.026 6 1000

20 -15.93 -15.94 0.113 10 2000

25 -23.64 -23.83 0.059 12.5 2500

30 -33.00 -33.08 0.106 14 3500

9
√

15 ≈ 34.9 -43.63 -43.61 0.133 12 3600

10
√

15 ≈ 38.7 -53.23 -53.20 0.142 11.5 4000

Table 5.1. Means and variances of the estimates produced by 10 runs of the proposed algorithm

using 100 particles at each threshold value for the Gaussian random walk example.

As the calculation of the integrals involved in the incremental weight expression

tend to be analytically intractable in general, we have made use of a discrete grid of

proposal distributions as proposed by [123]. This naturally impedes the exploration

of the sample space. Consequently, we make use of a Metropolis-Hastings kernel

of the correct invariant distribution at each time step (whether resampling has

occurred, in which case this also helps to prevent sample impoverishment, or not).
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Threshold, V̂ True IPS(1,000) IPS(20,000)

Mean Variance Mean Variance

5 -2.32 -2.28 0.008 -2.174 0.003

10 -5.32 -5.27 0.016 -5.320 0.003

15 -9.83 -9.81 0.086 -9.887 0.003

20 -15.93 -16.00 0.224 -15.92 0.004

25 -23.64 -23.38 2.510 -23.40 0.143

30 - 33.00 -29.33 [9] - -32.02 [5] 0.209

Table 5.2. Results of 10 runs of the algorithm of [40] with 1,000 particles and 20,000 particles,

respectively. Numbers in square brackets indicate the number of runs which failed to hit the rare

set at all.

We make use of a linear schedule α(θ) = kθ and show the results of our approach

(using a chain of length 15, a grid spacing of δt = 0.025 and S = 12 in the sampling

kernel) in table 5.1. For the purposes of comparison, we also implemented the

algorithm of [40] and show its performance in table 5.2. The performance of both

algorithms is illustrated by figure 5.1, and figure 5.2 illustrates the diversity of the

samples obtained by the different approaches.

Intermediate Distributions. One obvious requirement when using this method

to estimate rare event probabilities is the specification of the number and spacing

of intermediate distributions and what final distribution to use. In the framework

provided here, that amounts to deciding on a sequence of values of α(θt), with

the terminal value of this sequence providing the terminal distribution. This is

done indirectly by selecting a functional form for α and a sequence of values of θt

between 0 and 1. Without loss of generality, we may assume that θt = t/T and

transfer all of the freedom to the function α. In general this is not completely

trivial, but should be no more arduous than the selection of an annealing sched-

ule in SA or the choice of sequences of sets in multi-level splitting and related

algorithms.

In the case of the homogeneous Markov chain with Gaussian increments that

we have been considering in this section, some straightforward analysis suggests

itself – we note that this is not intended to provide any more than some loose

guidelines motivated by those properties of the sequence of distributions that

seem desirable. If we first consider the case in which a linear sequence of values is

used, α(θt) = kt for some constant k, we are essentially left with two questions:

how many distributions are required and what should be the value of k.

In this case, as in many others, it is straightforward to check the estimates

generated against existing known results (by choosing an event which is much less

rare than that of interest and estimating the probability by crude Monte Carlo,

if necessary). This allows the verification of the results produced with particular

values of k and numbers of intermediate distributions. Having done this, all that
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Fig. 5.2. A pair of typical plots of the path-space values of the terminal estimates of the two

algorithms applied to the Gaussian tail probability estimation problem. Note that the IPS plot

shows the 187 particles (from 20,000) which exceeded 25 in element 15, and suffers from substan-

tial degeneracy in the earlier states, whilst the SMC samplers plot shows all of the 100 particles

which were used.
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remains is determining how the number of distributions and the spacing between

them should depend upon the threshold value being considered. However, caution

must always be used when attempting to project results from simple situations

to more complex ones, and there is some danger inherent in this approach: it is

always possible that the behaviour in more complex problems will be qualitatively

different to that in simple, easy to analyse examples.

Number of Distributions. When considering a number of different runs of the algo-

rithm with different threshold values, it would be preferable to arrange for roughly

the same proportion of the particle set to be pushed into the rare regime in each

case. Essentially, our aim is to keep constant the ratio of the product of the true

density and the potential function at some distance ǫ past the threshold value, to

that at the origin, for different threshold values, V̂ :

1 + e−α(1)(0−V̂ )

1 + e−α(1)ǫ
exp(−(V̂ + ǫσ)2) = −k′

for some constant k′. Upon taking logarithms and neglecting lower order terms,

this leads fairly rapidly to the conclusion that α(1) ∝ V̂ .

Spacing of Distributions. Consider the rate of change of the potential function

with α, evaluated at XP = 0 for simplicity. If V̂ denotes the threshold value, then

we have:

dG

dt

∣∣∣∣
XP =0

= −kV̂ eα(θt)V̂

(
1 + eα(θt)V̂

)2

and when near the origin, we would assume that α(θt)V̂ is still small, suggesting

that we want k ∝ V̂ −1 if we are going to have the same rate of motion of the

distribution, in some sense, for all thresholds.

This leads to θt ∝ V̂ −1 and α(1) ∝ V̂ which would suggest that the number

of distributions required scales as V̂ 2. However, in practice this does not appear

to be necessary and these considerations are, to say the least, extremely rough

guidelines.

A Physical Example: Polarisation Mode Dispersion. As a more realistic

example, we consider the so-called “outage” probability due to polarisation mode

dispersion (PMD) in single-mode optical fibres. This problem has recently been

considered by a number of sources, including [9, 40, 56] who obtained good results

with their methods. The advantage of the SMC samplers framework when ap-

plied to this problem is predominantly that it is able to obtain estimates of much

smaller rare event probabilities than the methods which have been proposed in

the literature, although it requires more knowledge on the part of the user than

the method of [40].
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We have a sequence of rotation vectors, rn which evolve according to the equa-

tion:

rn = R(θn, φn)rn−1 +
1

2
Ω(θn)

where φn is a random variable distributed uniformly on the interval [−π, π] and

θn is a random variable taking values in [−π, π] such that cos(θn) is uniformly dis-

tributed on [−1, 1], sn = sgn(θn) is uniformly distributed on {−1,+1}, the vector

Ω(θ) = (cos(θ), sin(θ), 0) and R(θ, φ) is the matrix which describes a rotation of

φ about axis Ω(θ).

It is convenient for our purposes to consider this as a Markov chain on the 6

dimensional space En = R3×[0, 2π]×[−1, 1]×{−1,+1}, where Xn = {rn, φn, cn =

cos(θn), sn = sgn(θn)}. We assume that r0 = (0, 0, 0) (This corresponds to the

simulation performed in [9] – the “squares” in figure 2 therein) and then the finite

dimensional distributions are given by:

P ·X−1
0:n(r0:n, θ1:n, c1:n, s1:n) = δ(0,0,0)(r0)

n∏

i=1

1

8π

[
δR(θi,si cos−1(ci))ri−1+Ω(θi)/2(ri)

]

As {rn} can be obtained deterministically from {φn, cn, sn} we shall henceforth

think of the distribution as a three dimensional one over just these variables.

The magnitude of r is termed the differential group delay (DGD) and this is the

quantity of interest.

One option for a proposal distribution is an update move, which does not adjust

the state associated with a particle at all, but does correct the particle weights to

account for the change in distribution from one time step to the next. This has an

incremental weight equal to the ratio of the densities of the distribution at time t

to that at time t− 1. A priori this would lead rapidly to sample degeneracy, and

so we also apply a Markov kernel of the correct invariant distribution to maintain

sample diversity. We employed a Metropolis-Hastings kernel with a proposal which

randomly selects two indices uniformly between 1 and n and proposes replacing

the φ and c values between those two indices with values drawn from the uniform

distribution over [−π, π] × [−1, 1]. This proposal is then accepted with the usual

Metropolis acceptance probability. Results of the approach proposed here and that

of [40] are illustrated in figure 5.3.

We now highlight the importance of carefully designing proposal kernels. It

is important to develop approaches which improve the distribution of particles,

without dramatically increasing the computational cost. Otherwise, one may as

well use a simple update move followed by a MCMC move of the correct invariant

distribution with a much large particle set.

There is a temptation to propose a state adjustment move which selects an

index from the discrete uniform distribution and proposes a grid based set of
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Fig. 5.3. The pdf estimates obtained with the SMC samplers methodology and the IPS approach

of [40]. The SMC Sampler used N = 100, T = 8, 000, c = 250. The IPS used N = 20, 000, α = 1

and N = 20, 000, α = 3, respectively. The example contains sixteen segments, each of length 0.5

in random orientations.

changes to the value of {θ, c, s} before updating the value of r at all subsequent

positions in the chain. If we implement such a move together with the optimal

reverse kernel then the calculation becomes extremely expensive.

Another is to approximate the optimal situation and make use of a mixture of

distinct moves with equal probability of selection, each of which has an associated

optimal reverse kernel, and then make use of the computationally preferable ap-

proximation suggested in [37]. If we do this then we obtain as a proposal kernel

for p selected from the discrete random distribution over 1, . . . , P :

Kp
t (Yt−1, Yt) =

S∑

j=−S

R∑

k=−R

wpt (Yt−1, Yt)δφp
t−1+jδφ

(φpt )δcpt +jδc(c
p
t+1)

where the individual move weights wpt are chosen to be proportional to the density

at time t. This leads to an incremental weight of:

W p
t =

πt(Yt)
S∑

j=−S

R∑
k=−R

πt−1(Y
p
t ∪ {φpt + jδθ, c

p
t + kδc})wpt (Y p

t ∪ {φpt + jδφ, c
p
t + kδc}, Yt)

However, the computational cost of making such moves is still quite substantial,

largely due to the need to recompute the sequence of polarisation vectors for each

set of angles under consideration, and the performance is not significantly better

than that obtained with update moves and MCMC steps alone.
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A Computer Science Example: Counting Problems. Counting the number

of solutions to combinatorial constraint satisfaction problems is one of the classic

problems of computer science – see, for example, [86]. Indeed, the sorting problem

can be mapped to the problem of counting the number of items in the list to be

sorted which appear before or after each of the other items in the list [96, page 75].

One such problem is determining the number of unique combinations of objects of

known sizes which will fit into a knapsack of a particular capacity. In its simplest

form, the problem is this one: given a vector, a, of n object sizes and a knapsack

of capacity b we wish to estimate the number of different combinations of objects

which will fit within the knapsack, which corresponds to the number of unique

0− 1 vectors x for which the following inequality is satisfied:

a · x =
P∑

i=1

aixi ≤ b. (5.1)

As observed by [101] the approximate solution of this problem can be cast as a

rare event problem4. If one can determine the probability of a random vector sam-

pled uniformly from the vertices of the P -dimensional unit hypercube satisfying

the inequality, then the number of such valid vectors is 2P times that probability.

We define V (x) := −a · x such that inequality (5.1) can clearly be expressed5

as V (x) ≥ − (b+ mini6=j |ai − aj |). This approach turns the “rare” sets of interest

into the level sets of our function and leads to a sequence of distributions which

decreasing mass in states which violate the inequality. More precisely, we define

the sequence of distributions from which we wish to sample as:

πt(x) ∝
[
1 + exp

(
α

(
t

T

)(
a · x− b−min

i6=j
|ai − aj |

))]−1

.

It is trivial to sample from π0 which is simply the uniform distribution over the

vertices of the n-dimensional unit hypercube, and providing that T is sufficiently

large, the discrepancy between successive distributions defined in this will be small.

An obvious choice of move is an adjustment move which selects one element of

the state vector and proposes a value of 0 or 1 with probabilities proportional to

the probability of the resulting state under the current distribution, so the forward

kernel is:

4 Although the event of a particular set of objects fitting into the knapsack need not be a

particularly rare one in some configurations, that does not pose any particular problems for

the methodology described here.
5 In the interest of symmetry, it seems preferable to use a threshold on the potential function

which lies between the largest possible set of items which fits in the knapsack and the smallest

possible set which is too large; one approach would be to use a threshold of b̂ = b+mini6=j |ai−
aj | rather than b directly.
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Kt(Y
(i)
t−1, Y

(i)
t ) =

1

P

P∑

p=1

δ
Y

(i,−p)
t−1

(
Y

(i,−p)
t

) [
wpi0 δ0(Y

(i,p)
t ) + wpi1 δ1(Y

(i,p)
t )

]

with

wpiy ∝ πt
(
Y

(i,−p)
t−1 ∪ y

)
.

This has the following optimal backward kernel (2.25) associated with it:

Lt−1(Y
(i)
t , Y

(i)
t−1) =

πt−1(Y
(i)
t−1)

P∑
p=1

δ
Y

(i,−p)
t−1

(
Y

(i,−p)
t

) [
wpi0 δ0(Y

(i,p)
t ) + wpi1 δ1(Y

(i,p)
t )

]

P∑
p=1

∑
y∈{0,1}

πt−1

(
Y

(i,−p)
t ∪ y

) ,

leading to the weight expression:

Wt(Y
(i)
t−1, Y

(i)
t ) =

Pπt(Y
(i)
t )

P∑
p=1

∑
y∈{0,1}

wpyπt−1

(
Y

(i,−p)
t ∪ y

) .

This is essentially a random scan Gibbs sampler kernel, with an associated im-

portance weight to compensate for the fact that the particles available from the

previous time step are distributed according to πt−1 rather than πt.

Results are shown in table 5.3 for a = (1, 2, . . . , 20) for knapsacks with capac-

ities of 2,10 and 75; for comparison at similar computational cost (using 100,000

samples in total, compared with 80,000 for the SMC algorithm with 100 particles

and 800 intermediate distributions) crude Monte Carlo simulation gave, over 50

runs, answers of 2.7263 with variance 30.562 and 44.040 with variance 453.27 in

the two less rare instances. The logarithms of these means are -12.87 and -10.08,

respectively, but many runs failed to produce any satisfactory solutions and a di-

rect comparison is not possible due to the enormous variance. The true values

for the thresholds given here were -12.764, -10.102 and -1.9756, respectively. Al-

though a comparison with the approach of [101] would be possible, this is a much

more challenging problem than that considered there in which a = (1, . . . , 4) and

a threshold of b = 3 was employed.

N Runs Threshold: b+ 0.5 Mean Variance

100 50 2.5 -12.889 0.04727

100 50 10.5 -10.214 0.03647

100 50 75.5 -2.0413 0.00501

1000 5 2.5 -12.811 0.04805

1000 5 10.5 -10.207 0.00652

1000 5 75.5 -2.0026 0.00027

Table 5.3. SMC results for the counting problem of section 5.3.4 obtained using a linear schedule

for α increasing from 0 to 1 over 800 steps. Estimates are of the log probabilities.

As a complement to the conclusion of the PMD example, we now show that,

in this instance, simply using update and MCMC moves leads to rather poorer
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performance than making use of a well designed SMC sampler proposal. We employ

an update move, which does not adjust the state associated with a particle at all,

but does correct the particle weights to account for the change in distribution from

one time step to the next. This has incremental weight equal to the ratio of the

densities of the distribution at time t to that at time t− 1. We utilise an MCMC

proposal after every iteration, consisting of a symmetric transition kernel in which

two indices are selected randomly in the vector and all elements lying between

those two points (cyclically, in that if the second vector is smaller than the first

then all points outside that range are considered) are replaced with samples from

a Ber (0.5) distribution, and the proposal is subsequently accepted with the usual

Metropolis-Hastings acceptance ratio. The results of this approach, and of using

a combination of adjustment and update moves is shown in table 5.4.

N Runs Threshold: b+ 0.5 p1 Mean Variance

100 50 2.5 1.0 -12.889 0.04727

100 50 2.5 0.5 -13.039 0.09726

100 50 2.5 0.0 -13.361 0.66333

100 50 10.5 1.0 -10.214 0.03647

100 50 75.5 1.0 -2.0413 0.00501

1000 5 2.5 1.0 -12.811 0.04805

1000 5 2.5 0.5 -12.890 0.04566

1000 5 2.5 0.0 -12.806 0.24853

1000 5 10.5 1.0 -10.207 0.00652

1000 5 75.5 1.0 -2.0026 0.00027

Table 5.4. Further results, again using a linear schedule for α. p1 represents the probability that

a random scan adjustment move, rather than update move is applied at each time. Again, results

correspond to log probabilities.

By way of a conclusion of this point, we note that the random scan Gibbs

sampler, which was proposed above, could equally well have been employed as a

deterministic scan Gibbs sampler, with different elements of the vector update at

each time. This naturally simplifies the calculation of the importance weights and

leads to a kernel of the form:

Kt(Yt−1, Yt) = δ
Y

(1:p−1,p+1:n)
t−1

(
Y

(1:p−1,p+1:n)
t

) [
wp0δ0(Y

(p)
t ) + wp1δ1(Y

(p)
t )

]

with

wpi ∝ πt
((
Y

(1:p−1)
t−1 , i, Y

(p+1:n)
t−1

))

and p , (t mod n) + 1. Leading to the incremental weight expression:

wt(Yt−1, Yt) =
πt(Yt+1)

∑
y∈{0,1}w

p
yπt−1

((
Y

(1:p−1)
t , y, Y

(p+1:n)
t

))

The results of employing this proposal are illustrated in table 5.5. In this case

we consider using twice as many intermediate distributions, illustrate that this
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can produce a substantial improvement when dealing with proposal distributions

which mix less well. This provides a demonstration that using a proposal distri-

bution which explores the space more slowly but which allows for much faster

evaluation of the importance weights can lead to better performance at a given

computational cost.

N Runs T Threshold, b+ 0.5 Mean Variance

100 50 800 2.5 -12.978 0.04834

100 50 1600 2.5 -12.846 0.02258

100 50 800 10.5 -10.250 0.02661

100 50 1600 10.5 -10.173 0.01243

Table 5.5. Some results obtained using a linear schedule for α and a deterministic scan adjust-

ment move. We show results with both 800 and 1600 intermediate distributions.

5.4 Dynamic Rare Event Estimation

Here we illustrate that it is possible to employ our approach for solving the same

class of problem as the various multi-level splitting algorithms. We employ a

Feynman-Kac formulation which is very different to that used by [17]: in our

case the flow is entirely synthetic, whereas the evolution of the flow is fundamen-

tally related to the dynamical structure of the chain of interest in the previously

proposed algorithm.

Consider the space on which the paths of interest (i.e. those starting in the

support of η0 and then evolving according to the law of the Markov chain until

they hit R∪ T ) exist:

F =
∞⋃

i=2

{i} × supp(η0)× (E \ (R∪ T ))i−2 ×R ∪ T ,

where, for notational convenience, we assume that the support of the initial dis-

tribution does not include either the rare set nor the recurrent set – supp(η0) ∩
(R∪ T ) = ∅. It becomes apparent from this representation that this is actually a

trans-dimensional estimation problem, as follows:

P (Xτ ∈ T ) =
∞∑

p=2

∫
P (dx0:p) IT (xp)

p−1∏

s=0

IE\(R∪T )(xs).

In common with many techniques for solving this problem, we employ a de-

creasing sequence of sets which concentrate themselves on the rare set of interest:

T = TT ⊂ TT−1 . . . T2 ⊂ T1. Our approach differs slightly in that we endeavour

to arrange these sets such that the majority of paths reaching Tt before R also

reach Tt+1 before R. That is, the sets are somehow closer together than is usually
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Algorithm 5.4 An SMC algorithm for dynamic rare event simulation.

t = 1. Initialise an ensemble of N weighted particle: for i = 1 to N do sample Y
(i)
1 from the law

of the Markov chain until it hits either T1 or R, at stopping time τ
(i)
1 ; set W

(i)
1 = IT1

„

X
(i)

τ
(i)
1

«

.

end for

for t = 2 to T do

Resample, to obtain { 1
N
, Ŷ

(i)
t−1}Ni=1. If desired, apply a Markov kernel (typically a reversible-

jump kernel which may include dimension-changing moves [73]), K̃t−1 of invariant distribu-

tion πt−1: for each path-particle sample Ỹ
(i)

t−1 ∼ K̃t−1(Ŷ
(i)

t−1, ·). Otherwise, let
n

Ỹ
(i)

t−1

oN

i=1
=

n

Ŷ
(i)

t−1

oN

i=1
.

Propose a revised estimate for each path-particle from the proposal kernel Kt, which should

correspond to extending the path if necessary until it hits either Tt or R, and reweight the

particle ensemble using W
(i)
t = ITt

“

X
τ
(i)
t

”

(for convenience we assume that Kt is the law

of the Markov chain conditioned upon hitting TT−1 before R).

end for

We can now estimate the quantity of interest: p⋆ =
T
Q

t=1

Ẑt with Zt = 1
N

N
P

i=1

W
(i)
t .

the case with splitting approaches. For simplicity we construct a sequence of dis-

tributions which place all of their mass on one of these sets, although it is easy

to envisage situations in which potential functions more like that employed in the

static case could produce better results. We define our synthetic distributions as:

πt(X1:τt) = P (X1:τt |Xτt ∈ Tt) = P (X1:τt , Xτt ∈ Tt) /Zt

with the stopping times τt = inf{t : Xt ∈ Tt ∪ R} and the normalising constant

Zt = P (Xτt ∈ Tt).
As in the static case, providing that we are able to obtain samples from this

sequence of distributions, we can obtain an estimate of the ratio of normalising

constants. Using such a zero-one valued potential function makes it impossible

to employ the path sampling identity of [58] as the logarithm of the potential

function no longer has a well defined derivative. However, we may still obtain an

estimate of the ratio of normalising constants by the more näıve approach of taking

the product of the particle system estimates of the ratio of normalising constants

from one time step to the next. We could also employ a smooth potential function

to allow us to employ the path sampling approach.

Algorithm 5.4 provides a fairly general framework for rare event probability

estimation. However, in full generality, one might wish to consider situations in

which the proposal kernels, {Kt} are able to modify that part of the path which has

been proposed thus far in addition to extending it. This is trivial to accomplish,

and simply leads to a slightly more complex weight expression. In the interests of

clarity we present only the simpler case here.
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5.4.1 Example

Consider a simple random walk over the integers, starting from X0 = 0, defined

by transition kernel:

M(xn, xn+1) = (1− p)δxn−1(xn+1) + pδxn+1(xn+1)

Defining R = (−∞,−a] and T = [b,∞) for two integers, −a < 0 < b, it is trivial

to see that Xτ ∈ {−a, b} and it is straightforward to verify that

Pη0(Xτ ∈ T ) =





a
a+b if p = 1

2

1−
“

1−p
p

”a

1−
“

1−p
p

”a+b otherwise

As an illustration, consider the case where p < 0.5, with a = 1 and b =

10. Table 5.6 summarises the results of 100 runs of the SMC algorithm using

ten intermediate distributions and various numbers of particles. In all cases, the

proposal distribution Kt corresponds to extending the path until it hits either

Tt = [t,∞) or R.

N p = 0.1 p = 0.2

Mean S.D. Mean S.D.

100 2.71× 10−10 2.76× 10−10 6.86× 10−7 5.10× 10−7

500 2.36× 10−10 0.98× 10−10 6.82× 10−7 1.86× 10−7

2000 2.55× 10−10 0.58× 10−10 7.29× 10−7 0.92× 10−7

5000 2.53× 10−10 0.38× 10−10 7.17× 10−7 0.50× 10−7

Table 5.6. Simulation results for the simple random walk example with p = 0.1 and p = 0.2, and

in both cases a = 1 and b = 10. The true values are 2.55× 10−10 and 7.15× 10−7, respectively.

5.5 Summary

We have presented two novel algorithms for estimating the probability of rare

events and the distribution of Markov chains conditioned upon the occurrence

of such events. Examples are presented which illustrate the effectiveness of these

algorithms in a number of applications. Work is ongoing in both the theoretical

analysis and methodological development of these algorithms.

Particularly in the dynamic rare event estimation case, the approach which

has been initiated here requires a great deal more investigation. In particular,

methodological developments determining which sequence of distributions it makes

sense to use in this context and how proposal distributions should be designed

warrants a great deal of further work. The algorithm presented here provides little
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more than a re-interpretation of multi-level splitting as a SMC sampler, but the

flexibility of this sampling scheme makes it possible to apply much more general

sampling strategies.

Methodologically, we are interested in determining how to select the sequence

of distributions to be employed, whether this can be done adaptively (perhaps

in a manner similar to [18]), and how the competing demands on computational

power of using a large number of particles and using a large number of interme-

diate distributions can be best balanced; theoretically, it would be interesting to

establish reasonable conditions under which the particle system is stable, as well

as to determine computable bounds upon the variance and bias associated with

the SMC algorithms presented above (we note that the bias may be controlled

by combining results for trapezoidal integration [130] and Feynman-Kac formulae

[39]) and the variance by using the techniques pioneered by [34].

Although we have not performed a theoretical analysis of the algorithms pre-

sented here, it is possible to establish a broad range of theoretical results by the

application of the techniques pioneered in [34]. Noting that we can obtain a cen-

tral limit theorem using these techniques, and that it will have the form presented

in [37], it is clear that the asymptotic variance of the estimates produced by the

algorithms presented here will be closely related to the mixing properties of the

proposal kernels used to move around the space.
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“And so we beat on, boats against the current, borne back ceaselessly into

the past.”

– F. Scott Fitzgerald, “The Great Gatsby”

This thesis was concerned with SMC methods of a non-standard character. These

fall into two categories: those which use interacting particle systems to approx-

imate non-linear flows which do not admit a Feynman-Kac representation and

those in which a more usual Feynman-Kac representation is available but the in-

tention is to perform some inference which does not resemble filtering, prediction

or smoothing.

6.1 Contributions

This thesis has included contributions to some areas of the theory of SMC, together

with some applications of those methods for illustrative purposes.

In chapter 3 an asymptotic analysis of the SMC approximation of the PHD

filter was conducted. It has been shown that under weak assumptions the integral

of all bounded test functions under the empirical measure associated with the par-

ticle approximation converges almost surely to their values under the exact filter,

and, under similar conditions, a central limit theorem holds, with a variance as

given in section 3.4. It should be noted that, whilst this provides some theoret-

ical justification for the particle approximation if one accepts the validity of the

PHD recursion itself, it provides no information about the accuracy of the PHD

recursion or how it relates to the optimal filter on the full multiple object space.

Chapter 4 presents a novel algorithm for marginal parameter estimation us-

ing SMC techniques. After convergence results, illustrating that the algorithm

converges to the maximisers of the likelihood (or posterior) under appropriate

regularity conditions, applications to a number of particular cases are presented.

It is shown that the algorithm outperforms a number of competing techniques,

at comparable computational cost, when applied to a finite mixture model. Good

performance is also observed from applications to logistic regression and stochastic

volatility modelling.
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In chapter 5 a framework for the estimation of rare event probabilities and ap-

proximate counting problems was proposed and illustrated with several examples.

Two broad classes of rare events are considered: whether a finite section of the

trajectory of a (potentially inhomogeneous) Markov chain lies within a particular

set of small measure, and whether a homogeneous Markov chain hits a particular

set before its first entry to some recurrent set. Algorithms for the estimation of

both types of rare event probability, as well as the pdf are provided. In the first

case, several examples are considered and comparisons to competing techniques

are presented. The second category is presented together with a simple example,

but work remains to be done in this area.

6.2 Future Directions

Considering direct extensions of the work presented in this thesis, a number of

potentially interesting areas for further research exist.

Concerning the PHD filter, it would be interesting to generalise the methodol-

ogy in a number of directions – particularly allowing higher order moments to be

considered. Preliminary work in this direction has shown that it is non-trivial to

do so whilst obtaining a computationally tractable algorithm.

The marginal estimation algorithm is reasonably self-contained; further theo-

retical results would be of interest – particularly regarding stability of the asymp-

totic variance under weaker conditions than those used here – and the application

of this approach to such problems as Bayesian optimal design could be of interest.

The work presented in chapter 5 admits numerous possible avenues of inquiry:

strategies for deciding upon the balance between the number of particles and the

number of intermediate distributions used are needed, as are methods for designing

sensible proposal kernels; theoretically, various rates of convergence and stability

results would be of interest, particularly, the restrictions upon the annealing sched-

ule which are required to guarantee convergence would be interesting. Clearly, the

dynamic rare event simulation work is far from exhausted; we have not yet begun

to address the problems which will occur when attempting to design sensible pro-

posal kernels for complex problems or to conduct a thorough theoretical analysis

of the asymptotic properties of the estimator.

Concurrent with the work presented in this thesis, a number of developments

have been made in the field of sequential Monte Carlo and population based sam-

pling techniques – particularly theoretical and methodological results. Further

work remains to be done in these directions, and is perhaps of more interest than

direct extensions or applications of the work presented within this thesis. Of par-

ticular interest are the stratified SMC technique [83], some work on population-
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based RJMCMC methods [84, 85] and various techniques for the construction of

self-interacting Markov chains with desired invariant distributions. Further de-

velopments of population-based sampling techniques over the coming years will

hopefully lead to more versatile sampling strategies with faster convergence to the

distributions of interest.

6.3 Summary

This thesis has developed novel SMC techniques and gone some way towards

illustrating the versatility of such methods. The use of population-based Monte

Carlo techniques depending upon sequential importance sampling and resampling

to solve general sampling problems is an as yet under-developed technique, and one

which shows great promise for the future. Although much remains to be done, and

many questions remain unanswered, it is apparent that intelligent implementation

of SMC algorithms can address a wide variety of problems.
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A. Rare Event Simulation via SMC

A.1 Comparison of path sampling with the näıve method

For simplicity we consider only some simple Gaussian measures defined upon R .

In this case we consider estimating the normalising constant of a distribution

π1(λ (dx)) = 1
Z1
g1(x)π0(λ (dx)) ∝ g1(x)π0(λ (dx)) = f1(x) where π0(λ (dx)) =

N
(
λ (dx) ;µ, σ2

)
and g1(x) = exp(αx) is a potential function. This is, of course,

equivalent to estimating the ratio of normalising constants, but in this case we

have the luxury of knowing that Z0 = 1.

Näıve Importance Sampling. Perhaps the simplest approach is to obtain N

iid samples, {Xi}Ni=1 from π0 and use the following relationship to estimate Z1:

π0

(
df1

dπ0

)
= π0

(
Z1

dπ1

dπ0

)

= π1 (Z1) = Z1,

which suggests the näıve importance sampling (IS) estimator,

ẐIS1 =
1

N

N∑

i=1

f1(Xi)

π0(Xi)
. (A.1)

It is clear that this estimator is consistent:

E
(
ẐIS1

)
= π0

(
df1

dπ0

)
= Z1,

and the variance is given by:

Var
(
ẐIS1

)
=

1

N

[
π0

([
df1

dπ0

]2
)
− Z2

1

]

=
1

N
Z2

1

[
π1

(
dπ1

dπ0

)
− 1

]
.

The measure π1 is a Gaussian with mean µ + σ2α and the same variance as the

original measure. Thus, the variance expression is:
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Var
(
ẐIS1

)
=

1

N

[
exp

(
1

2
α2σ2 + αµ

)]2
[∫ ∞

−∞

N
(
x;µ+ σ2α, σ2

)2

N (x;µ, σ2)
λ (dx)− 1

]

=
1

N

[
exp

(
1

2
α2σ2 + αµ

)]2
[
exp

((
µ+ σ2α− µ

)2

σ2

)
− 1

]
.

This gives us as the variance of the importance sampling estimator:

Var
(
ẐIS1

)
=

1

N
exp

(
α2σ2 + 2αµ

) [
exp(α2σ2)− 1

]
. (A.2)

In order to compare this expression with those obtained from path sampling it

is convenient to obtain an estimate for Var
(
log(ẐIS1 )

)
, which can be done by the

delta-method [8, p. 368].

Var
(
log(ẐIS1 )

)
≈

[
d logZIS1

dZIS1

]2

EZIS
1

Var
(
ẐIS1

)

=
1

N

[
1

Z1

]2

Var
(
ẐIS1

)

=
1

N

[
exp(α2σ2)− 1

]
. (A.3)

The result follows from the consistency of the estimator of ẐIS1 and the above

results.

Approximate Path Sampling via Importance Sampling. We use a Monte

Carlo approximation of [58] to obtain an alternative estimator of logZ1 which

shall be denoted by l̂ogZ1

PS(IS)
.

The standard path sampling formula tells us that given a parameterised form,

qθ selected such that q0 = π0 and q1 = g1 then:

logZ1 =

∫ 1

0
E

[
d log q(·|θ)

dθ

∣∣∣∣
θ=θ′

]
dθ′.

Our approach is to discretise the integral over θ by evaluating it at a set of T

points located at θt1=0 < θt2 < · · · < θtT−1 < θtT = 1 The expectation can then

be evaluated at each of these values of theta via a Monte Carlo approach. In our

case, we consider estimating each of these expectations by importance sampling

using π0 as the importance distribution. Thus we have:

l̂ogZ1

PS(IS)
=

1

T

T∑

t=1

⌊N/T ⌋∑

n=1

d log qθ
dθ

∣∣∣∣
θ=θt

(Xt,n)Wt,n

where the random variables Xt,n are all iid samples from π0 and the importance

weights Wt,n are estimated according to:

Wt,n =
qθ(Xt,n)/π0(Xt,n)

∑⌊N/T ⌋
m=1 qθ(Xt,m)/π0(Xt,m)

.

However, as this estimator is biased and the ratio of two correlated estimators, it

is not trivial to obtain an analytic expression for the variance of this estimator.
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Path Sampling without Importance Sampling. If, instead, we assume that

we are able to obtain samples from πθ ∝ qθ then we are free to use the alternative

estimator:

l̂ogZ1

PS(S)
=

1

T ⌊N/T ⌋
T∑

t=1

⌊N/T ⌋∑

n=1

d log qθ
dθ

∣∣∣∣
θ=θt

(Xt,n),

where, the random variables Xt,n are all independent samples from πθt .

Using the independence of the random variables, the variance of this expression

can be decomposed as:

Var

(
l̂ogZ1

PS(S)
)

=
1

T 2

T∑

t=1

Var


 1

⌊N/T ⌋

⌊N/T ⌋∑

n=1

d log qθ
dθ

∣∣∣∣
θ=θt

(Xt,n)




=
1

(⌊N/T ⌋T )2

T∑

t=1

⌊N/T ⌋∑

n=1

Var

(
d log qθ

dθ

∣∣∣∣
θ=θt

(Xt,n)

)
.

In our particular case, we know that d log qθ
dθ

∣∣∣
θ=θt

(X) = αX, which allows us to

obtain a closed form expression for this variance under these simplifying assump-

tions. This leads us to the following expression:

Var

(
l̂ogZ1

PS(S)
)

=
α2

(⌊N/T ⌋T )2

T∑

t=1

⌊N/T ⌋∑

n=1

Var (X)

=
α2σ2

⌊N/T ⌋T ,

which follows from the fact that the variance expression proves to be independent

of t and all of {Xt,n}⌊N/T ⌋n=1 are identically distributed for a given t.

Importance Sampling with Intermediate Distributions. Using the same

formulation as previously used for the path sampling framework, it is possible to

consider the following importance sampling estimator of the normalising constant

of interest, where the Xt,n are independently drawn from πθt−1 :

ẐISS1 =
T∏

t=1

1

⌊N/T ⌋

⌊N/T ⌋∑

n=1

qθt(Xt,n)

qθt−1(Xt,n)
.

To compare the variance of this estimator with that obtained from path sam-

pling it is useful to obtain the logarithm of this estimator and to consider its

variance via the delta method. This also allows us to consider the variances of the

individual likelihood ratios and sum them.

By precisely the same arguments as in the näıve importance sampling section

we can write the variance of any one of these importance ratios as:

Var
(
log ẐISS1

)
=

T∑

t=1

Var


log


 1

⌊N/T ⌋

⌊N/T ⌋∑

n=1

qθt(Xt,n)

qθt−1(Xt,n)




 .
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It is clear that:

Var


 1

⌊N/T ⌋

⌊N/T ⌋∑

n=1

qθt(Xt,n)

qθt−1(Xt,n)


 =

1

⌊N/T ⌋

(
Zθt

Zθt−1

)2(
πθt

(
dπθt

dπθt−1

)
− 1

)
,

and we know that:

πθt

(
dπθt

dπθt−1

)
=

∫ (
N
(
x;µ+ αθtσ

2, σ2
))2

N (x;µ+ αθt−1σ2, σ2)
λ (dx)

= eα(θt−θt−1)σ2
.

Hence:

Var


 1

⌊N/T ⌋

⌊N/T ⌋∑

n=1

qθt(Xt,n)

qθt−1(Xt,n)


 =

1

⌊N/T ⌋

(
Zθt

Zθt−1

)2 (
eα

2(θt−θt−1)2σ2 − 1
)
,

and employing the delta method again, we have:

Var


log


 1

⌊N/T ⌋

⌊N/T ⌋∑

n=1

qθt(Xt,n)

qθt−1(Xt,n)




 =

(
eα

2(θt−θt−1)2σ2 − 1
)

⌊N/T ⌋

Var
(
log ẐISS1

)
=

∑T
t=1

(
eα

2(θt−θt−1)2σ2 − 1
)

⌊N/T ⌋ .

If we assume that θt = t/T then we obtain the homogeneous result:

Var
(
log ẐISS1

)
=

∑T
t=1

(
e

α2σ2

T2 − 1

)

⌊N/T ⌋ . (A.4)

Comparison. We present in figure A.1 the variance of 100 repetitions of three of

the estimators described above with a total number of particles ranging from 100

to 100,000 spaced in equal logarithmic increments. Figure A.2 shows the absolute

difference between the mean of each of these sets of 100 estimates and the true

value (50). This illustrates that the importance sampling from the prior approach

is doomed to fail in cases where the mass of the prior and the target distribu-

tion are substantially differently distributed. It also shows that the path sampling

approaches introduced above perform significantly better than the näıve methods.

It is instructive to consider the theoretical relationship between the variance of

the two estimators which do perform adequately. If we consider sampling exactly

from a sequence of intermediate distributions, then the variance of the importance

sampling estimator is:

Var
(
log ẐISS1

)
=

∑T
t=1

(
e

α2σ2

T2 − 1

)

⌊N/T ⌋

whilst that of the equivalent path sampling estimator is
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Fig. A.1. Variance of four estimators used to determine the normalising constant of a distribution

proportional toN (x; 0, 1) exp(10x) estimated from 50 applications of each estimator. Dashed lines

correspond to the theoretical values where appropriate. The theoretical variance of the näıve IS

estimator is enormous. This hasn’t been realised here because it is due to extremely rare samples

with tremendously large weights which were not, in fact, produced in any of these samples – it

would not be useful to include the theoretical variance of this estimator.
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Fig. A.2. Absolute error of four estimators used to determine the normalising constant of a

distribution proportional to N (x; 0, 1) exp(10x) estimated from the mean of 50 applications. For

the purpose of comparison, the true value of log(Z1) is 50.
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Var

(
l̂ogZ1

PS(S)
)

=
α2σ2

⌊N/T ⌋T .

We can see that:

Var
(
log ẐISS1

)

Var

(
l̂ogZ1

PS(S)
) =

PT
t=1

 

e
α2σ2

T2 −1

!

⌊N/T ⌋

α2σ2

⌊N/T ⌋T

=
T 2

α2σ2

(
e

α2σ2

T2 − 1

)

=

(
T

ασ

)2 ∞∑

i=1

1

i!

(ασ
T

)2i

≥ 1 +
1

2

(ασ
T

)2
,

hence the path-sampling estimator dominates the equivalent direct importance

sampling estimator in this framework.

A.2 Variance of a Special Case

In order to illustrate the advantages of the methods proposed here over the crude

Monte Carlo approach, it is useful to consider a particularly simple special case.

Let πk(dxk) = 1
Zk

ITk
(xk) and let the proposal kernel be simplyKk(xk−1, dxk) =

πk(dxk). Further, assume that we are able to use the time-reversal Markov Kernel

for the backward case, giving:

Lk−1(xk, xk−1) =
πk(xk−1)Kk(xk−1, xk)

πk(xk)
= πk(xk−1).

In this case we obtain, using π̃k for the full extended space distribution of the

SMC sampler:

π̃n(xk) =

∫
πn(xn)

n−1∏

j=k

Lj(xj+1, xj)dxk+1:n = πk+1(xk).

The näıve estimator of the ratio of normalising constants obeys the following

central limit theorem [37]:

Theorem A.2.1 (Del Moral et al.). The näıve estimate of the normalising

constant obeys the following central limit theorem.

limN→∞

√
N
(
log Ẑn

Z1
− log Zn

Z1

)
d→ N

(
0, σ2

SMC,n

)
,

where
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σ2
SMC,n =

∫
π̃n(x1)

2

η1(x1)
dxn−1:n − 1 (A.5)

+
n−1∑

k=2

(∫
(π̃k(xk)Lk−1(xk, xk−1))

2

πk−1(xk−1)Kk(xk−1, xk)
dxk−1:k − 1

)
(A.6)

+

∫
(πn(xn)Ln−1(xn, xn−1))

2

πn−1(xn−1)Kn(xn−1, xn)
dxn−1:n − 1. (A.7)

In our special case, assuming that η1 = π1, we can straightforwardly evaluate

each of the terms in this expression, obtaining for A.5:
∫
π̃n(x1)

2

η1(x1)
dxn−1:n − 1 =

∫
π2(x1)

2

π1(x1)
dx1 − 1

=
Z1

Z2
2

∫
IT2(x1)/IT1(x1)dx1 − 1

=
Z1

Z2
− 1,

and for each term in the summation of A.6 we have:
∫

(π̃k(xk)Lk−1(xk, xk−1))
2

πk−1(xk−1)Kk(xk−1, xk)
dxk−1:k − 1 =

∫
(πk+1(xk)πk(xk−1))

2

πk−1(xk−1)πk(xk)
dxk−1:k − 1

=
Zk−1Zk
Z2
k+1Z

2
k

∫
ITk+1

(xk)ITk
(xk−1)dxk−1:k − 1

=
Zk−1Zk
Zk+1Zk

− 1 =
Zk−1

Zk+1
− 1.

Finally, we obtain for A.7:

∫
(πn(xn)Ln−1(xn, xn−1))

2

πn−1(xn−1)Kn(xn−1, xn)
dxn−1:n − 1 =

∫
(πn(xn)πn(xn−1))

2

πn−1(xn−1)πn(xn)
dxn−1:n − 1

=

∫
πn(xn)πn(xn−1)

2

πn−1(xn−1)
dxn−1:n − 1

=
Zn−1

Z2
n

∫
ITn(xn−1)/ITn−1(xn−1)dxn−1 − 1

=
Zn−1

Zn
− 1.

Combining all of these, we see that the asymptotic variance can be expressed as:

σ2
SMC,n =

Z1

Z2
+
n−1∑

k=2

Zk−1

Zk+1
+
Zn−1

Zn
− n.

The variance of Ẑn
Z1

can be obtained from that of log Ẑn
Z1

via the delta method:

Var

(
Ẑn
Z1

)
≈


 ∂ Ẑn

Z1

∂ log Ẑn
Z1




2

log Zn
Z1

Var

(
log

Ẑn
Z1

)

=

(
Zn
Z1

)2 1

N
σ2
SMC,n.

The variance of crude Monte Carlo estimates obtained from N ×n samples drawn

from π1 will be Zn/Z1(1− Zn/Z1)/Nn.
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It is convenient to further simplify things at this stage by assuming that

Zi−1/Zi = η with η = n
√
Z1/Zn. In this case,

√
Var

(
Ẑn
Z1

)

Zn/Z1
=

√
η +

∑−1
k=2 η

2 + η − n
N

<

√
n (η2 − 1)

N

=

√
n

N

√(
Z1

Zn

) 2
n

− 1

=

√
n

N

√
Z1

Zn

2
n

√

1− Zn
Z1

2/n

<

√
n

N
n

√
Z1

Zn
.

If we consider the ratio of this bound to the variance of the crude Monte Carlo

estimator, we obtain:

√
n
N

n

√
Z1
Zn

Zn/Z1(1− Zn/Z1)/Nn
= n

(
Z1

Zn

) 2−n
2n
(

1− Zn
Z1

)−1/2

.

As shown in figure A.3, the SMC estimator dominates the näıve approach

in terms of variance – excluding a very small number of configurations of the

SMC system in which an unrealistic number (fewer than 3, say) intermediate

distributions are employed.
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Fig. A.3. The log of the ratio of the variance bound of the SMC estimator to the variance of

crude Monte Carlo for various numbers of intermediate distributions and event probabilities. As

would be expected, for very rare events, with a reasonable number of intermediate distributions

the method dramatically outperforms the crude Monte Carlo counterpart.



No. Even now I can’t altogether believe that any of this has really happened. . .

Christopher Isherwood, “Goodbye to Berlin”


