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Background
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Monte Carlo

Estimating π

I Rain is uniform.
I Circle is inscribed

in square.
I Asquare = 4r2.
I Acircle = πr2.
I p = Acircle

Asquare
= π

4 .
I 383 of 500

“successes”.
I π̂ = 4383

500 = 3.06.
I Also obtain

confidence
intervals.
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Monte Carlo

The Monte Carlo Method

I Given a probability density, f ,

I =
∫
E
ϕ(x)f(x)dx

I Simple Monte Carlo solution:
I Sample X1, . . . , XN

iid∼ f .
I Estimate Î = 1

N

n∑
i=1

ϕ(XN ).

I Justified by the law of large numbers. . .
I and the central limit theorem.
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Monte Carlo

Importance Sampling

I Given g, such that
I f(x) > 0⇒ g(x) > 0
I and f(x)/g(x) <∞,

define w(x) = f(x)/g(x) and:

I =
∫
ϕ(x)f(x)dx =

∫
ϕ(x)w(x)g(x)dx.

I This suggests the importance sampling estimator:
I Sample X1, . . . , XN

iid∼ g.

I Estimate Î = 1
N

N∑
i=1

w(Xi)ϕ(Xi).
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Monte Carlo

Markov Chain Monte Carlo

I Typically difficult to construct a good proposal density.
I MCMC works by constructing an ergodic Markov chain of

invariant distribution π, Xn using it’s ergodic averages:

1
N

N∑
i=1

ϕ(Xi)

to approach Eπ[ϕ].
I Justified by ergodic theorems / central limit theorems.
I We aren’t going to take this approach.
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Sequential Monte Carlo

A Motivating Example: Filtering

I Let X1, . . . denote the position of an object which follows
Markovian dynamics.

I Let Y1, . . . denote a collection of observations:
Yi|Xi = xi ∼ g(·|xi).

I We wish to estimate, as observations arrive, p(x1:n|y1:n).
I A recursion obtained from Bayes rule exists but is

intractable in most cases.
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Sequential Monte Carlo

More Generally

I The problem in the previous example is really tracking a
sequence of distributions.

I Key structural property of the smoothing distributions:
increasing state spaces.

I Other problems with the same structure exist.
I Any problem of sequentially approximating a sequence of

such distributions, pn, can be addressed in the same way.
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Sequential Monte Carlo

Importance Sampling in This Setting

I Given pn(x1:n) for n = 1, 2, . . . .
I We could sample from a sequence qn(x1:n) for each n.
I Or we could let qn(x1:n) = qn(xn|x1:n−1)qn−1(x1:n) and

re-use our samples.
I The importance weights become:

wn(x1:n) ∝ pn(x1:n)
qn(x1:n)

=
pn(x1:n)

qn(xn|x1:n−1)qn−1(x1:n−1)

=
pn(x1:n)

qn(xn|x1:n−1)pn−1(x1:n−1)
wn−1(x1:n−1)
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Sequential Monte Carlo

Sequential Importance Sampling

At time 1.
For i = 1 : N , sample X

(i)
1 ∼ q1 (·).

For i = 1 : N , compute W i
1 ∝ w1

(
X

(i)
1

)
=

p1

“
X

(i)
1

”
q1
“
X

(i)
1

” .

At time n, n ≥ 2.
Sampling Step
For i = 1 : N , sample X

(i)
n ∼ qn

(
·|X(i)

n−1

)
.

Weighting Step
For i = 1 : N , compute

wn

(
X

(i)
1:n−1, X

(i)
n

)
=

pn

“
X

(i)
1:n−1,X

(i)
n

”
pn−1

“
X

(i)
1:n−1

”
qn
“
X

(i)
n

˛̨̨
X

(i)
n−1

”
and W

(i)
n ∝W (i)

n−1wn

(
X

(i)
1:n−1, X

(i)
n

)
.
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Sequential Monte Carlo

Sequential Importance Resampling

At time n, n ≥ 2.
Sampling Step
For i = 1 : N , sample X

(i)
n,n ∼ qn

(
·| X̃(i)

n−1

)
.

Resampling Step
For i = 1 : N , compute

wn

(
X̃

(i)
n−1, X

(i)
n,n

)
=

pn

“ eX(i)
n−1,X

(i)
n,n

”
pn−1

“ eX(i)
n−1

”
qn
“
X

(i)
n,n

˛̨̨ eX(i)
n−1

”
and W

(i)
n =

wn

“ eX(i)
n−1,X

(i)
n,n

”
PN

j=1 wn

“ eX(j)
n−1,X

(j)
n,n

” .

For i = 1 : N , sample X̃
(i)
n ∼

∑N
j=1W

(j)
n δ“ eX(j)

n−1,X
(j)
n,n

” (dx1:n) .

12



Introduction Estimation Rare Events Filtering Summary References

Sequential Monte Carlo

SMC Samplers

Actually, these techniques can be used to sample from any
sequence of distributions (Del Moral et al., 2006).

I Given a sequence of target distributions, ηn, on En . . . ,

I construct a synthetic sequence η̃n on spaces
n⊗
p=1

Ep

I by introducing Markov kernels, Lp from Ep+1 to Ep:

η̃n(x1:n) = ηn(xn)
n−1∏
p=1

Lp (xp+1, xp) ,

I These distributions
I have the target distributions as time marginals,
I have the correct structure to employ SMC techniques.
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Sequential Monte Carlo

SMC Outline

I Given a sample {X(i)
1:n−1}Ni=1 targeting η̃n−1,

I sample X(i)
n ∼ Kn(X(i)

n−1, ·),
I calculate

Wn(X(i)
1:n) =

ηn(X(i)
n )Ln−1(X(i)

n , X
(i)
n−1)

ηn−1(X(i)
n−1)Kn(X(i)

n−1, X
(i)
n )

.

I Resample, yielding: {X(i)
1:n}Ni=1 targeting η̃n.

I Hints that we’d like to use

Ln−1(xn, xn−1) =
ηn−1(xn−1)Kn(xn−1, xn)∫
ηn−1(x′n−1)Kn(x′n−1, xn)

.
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Parameter Estimation in Latent Variable Models

Parameter Estimation in

Latent Variable Models
Joint work with Arnaud Doucet and Manuel Davy.
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Parameter Estimation in Latent Variable Models

Maximum {Likelihood|a Posteriori} Estimation

I Consider a model with:
I parameters, θ,
I latent variables, x, and
I observed data, y.

I Aim to maximise Marginal likelihood

p(y|θ) =
∫
p(x, y|θ)dx

or posterior

p(θ|y) ∝
∫
p(x, y|θ)p(θ)dx.

I Traditional approach is Expectation-Maximisation (EM)
I Requires objective function in closed form.
I Susceptible to trapping in local optima.
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Parameter Estimation in Latent Variable Models

A Probabilistic Approach

I A distribution of the form

π(θ|y) ∝ p(θ)p(y|θ)γ

will become concentrated, as γ →∞ on the maximisers of
p(y|θ) under weak conditions (Hwang, 1980).

I Key point: Synthetic distributions of the form:

π̄γ(θ, x1:γ |y) ∝ p(θ)
γ∏
i=1

p(xi, y|θ)

admit the marginals

π̄γ(θ|y) ∝ p(θ)p(y|θ)γ .
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Parameter Estimation in Latent Variable Models

Maximum Likelihood via SMC

I Use a sequence of distributions ηn = πγn for some {γn}.
I Has previously been suggested in an MCMC context

(Doucet et al., 2002).
I Requires extremely slow “annealing”.
I Separation between distributions is large.

I SMC has two main advantages:
I Introducing bridging distributions, for γ = bγc+ 〈γ〉, of:

π̄γ(θ, x1:bγc+1|y) ∝ p(θ)p(xbγc+1, y|θ)〈γ〉
bγc∏
i=1

p(xi, y|θ)

is straightforward.
I Population of samples improves robustness.
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Parameter Estimation in Latent Variable Models

Three Algorithms

I A generic SMC sampler can be written down directly. . .
I Easy case:

I Sample from p(xn|y, θn−1) and p(θn|xn, y).
I Weight according to p(y|θn−1)γn−γn−1 .

I General case:
I Sample existing variables from a ηn−1-invariant kernel:

(θn, Xn,1:γn−1) ∼ Kn−1((θn−1, Xn−1), ·).

I Sample new variables from an arbitrary proposal:

Xn,γn−1+1:γn
∼ q(·|θn).

I Use the composition of a time-reversal and optimal
auxiliary kernel.

I Weight expression does not involve the marginal likelihood.
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Parameter Estimation in Latent Variable Models

Toy Example

I Student t-distribution of unknown location parameter θ
with ν = 0.05.

I Four observations are available, y = (−20, 1, 2, 3).
I Log likelihood is:

log p(y|θ) = −0.525
4∑
i=1

log
(
0.05 + (yi − θ)2

)
.

I Global maximum is at 1.997.
I Local maxima at {−19.993, 1.086, 2.906}.
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Parameter Estimation in Latent Variable Models

It actually works. . .
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Parameter Estimation in Latent Variable Models

Example: Gaussian Mixture Model – MAP Estimation

I Likelihood p(y|x, ω, µ, σ) = N (y|µx, σ2
x).

I Marginal likelihood p(y|ω, µ, σ) =
3∑
j=1

ωjN (y|µj , σ2
j ).

I Diffuse conjugate priors were employed.
I All full conditional distributions of interest are available.
I Marginal posterior can be calculated.
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Parameter Estimation in Latent Variable Models

Example: GMM (Galaxy Data Set)
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Rare Event Simulation
Joint work with Pierre Del Moral and Arnaud Doucet.
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Rare Event Simulation — Formulation

Problem Formulation

I Consider the canonical Markov chain:(
Ω =

∞∏
t=0

Et,F =
∞∏
t=0

Ft, (Xt)t∈N,Pµ0

)
,

I The law Pµ0 is defined by its finite dimensional
distributions:

Pµ0 ◦X−1
0:p (dx0:p) = µ0(dx0)

p∏
i=1

Mi(xi−1, dxi).

I We are interested in rare events.
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Rare Event Simulation — Formulation

Static Rare Events
We term the first type of rare events which we consider static
rare events:

I The first P + 1 elements of the canonical Markov chain lie
in a rare set, T .

I That is, we are interested in

Pµ0 (x0:P ∈ T )

and
Pµ0 (x0:P ∈ dx0:P |x0:P ∈ T )

I We assume that the rare event is characterised as a level
set of a suitable potential function:

V : T → [V̂ ,∞), and V : E0:P \ T → (−∞, V̂ ).
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Rare Event Simulation — Formulation

Dynamic Rare Events

The other class of rare events in which we are interested are
termed dynamic rare events:

I A Markov process hits some rare set, T , before its first
entrance to some recurrent set R.

I That is, given the stopping time τ = inf {p : Xp ∈ T ∪R},
we seek

Pµ0 (Xτ ∈ T )

and the associated conditional distribution:

Pµ0 (τ = t,X0:t ∈ dx0:t|Xτ ∈ T )
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Rare Event Simulation — Formulation

Intuition

I Principle novelty: applying an efficient sampling technique
which allows us to operate directly on the path space of the
Markov chain.

I Two components to this approach:
I Constructing a sequence of synthetic distributions
I Applying sequential importance sampling and resampling

strategies.
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Rare Event Simulation — Formulation

Static Rare Events: Our Approach

I Initialise by sampling from the law of the Markov chain.
I Iteratively obtain samples from a sequence of distributions

which moves “smoothly” towards the target.
I Proposed sequence of distributions:

ηn(dx0:P ) ∝ Pµ0(dx0:P )gn/T (x0:P )

gθ(x0:P ) =
(

1 + exp
(
−α(θ)

(
V (x0:P )− V̂

)))−1

I Estimate the normalising constant of the final distribution
and correct via importance sampling.

30



Introduction Estimation Rare Events Filtering Summary References

Rare Event Simulation — Formulation

Path Sampling [See ?? or Gelman and Meng, 1998]

I Given a sequence of densities p(x|θ) = q(x|θ)/z(θ):

d
dθ

log z(θ) = Eθ
[

d
dθ

log q(·|θ)
]

(?)

where the expectation is taken with respect to p(·|θ).
I Consequently, we obtain:

log
(
z(1)
z(0)

)
=
∫ 1

0
Eθ
[

d
dθ

log q(·|θ)
]

I In our case, we use our particle system to approximate both
integrals.
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Rare Event Simulation — Formulation

Approximate the path sampling identity to estimate the
normalising constant:

Ẑ1 =
1
2

exp

[
T∑
n=1

(α(n/T )− α((n− 1)/T ))
Ên−1 + Ên

2

]

Ên =

N∑
j=1

W
(j)
n

V
“
X

(j)
n

”
−V̂

1+exp
“
αn

“
V
“
X

(j)
n

”
−V̂
””

N∑
j=1

W
(j)
n

Estimate the rare event probability:

p? = Ẑ1

N∑
j=1

W
(j)
T

(
1 + exp(α(1)(V

(
X

(j)
T

)
− V̂ ))

)
I(V̂ ,∞]

(
V
(
X

(j)
T

))
N∑
j=1

W
(j)
T

.
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Example: Gaussian Random Walk

Example: Gaussian Random Walk

I A toy example: Mt(Rt−1, Rt) = N (Rt|Rt−1, 1).
I T = RP × [V̂ ,∞).
I Proposal kernel:

Kn(Xn−1, Xn) =
S∑

j=−S
αn+1(Xn−1, Xn)

P∏
i=1

δXn−1,i+ijδ(Xn,i),

where the weighting of individual moves is given by

αn(Xn−1, Xn) ∝ ηn(Xn).

I Linear annealing schedule.
I Number of distributions T ∝ V̂ 3/2 (T=2500 when V̂ = 25).
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Example: Gaussian Random Walk
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Example: Gaussian Random Walk
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Example: Gaussian Random Walk
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Filtering of Piecewise

Deterministic Processes
Joint work with Nick Whiteley and Simon Godsill.
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Filtering of PD Processes

Motivation: Observing a Manoeuvering Object

I For t ∈ R+
0 , consider object with position st, velocity vt

and acceleration at

I Summarise state by ζt = (st, vt, at)
I From initial condition ζ0, state evolves until random time
τ1, at which acceleration jumps to a new random value,
yielding ζτ1

I From ζτ1 , evolution until τ2, state becomes ζτ2 , etc.
I Observation times, (tn)n∈N, at each tn a noisy

measurement of the object’s position is made
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Filtering of PD Processes
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Filtering of PD Processes

An Abstract Formulation

I Pair Markov chain (τj , θj)j∈N, τj ∈ R+, θj ∈ Θ

p(d(τj , θj)|τj−1, θj−1) = q(dθj |θj−1, τj , τj−1)f(dτj |τj−1),

I Count the jumps νt :=
∑

j I[τj≤t]
I Deterministic evolution function F : R+

0 ×Θ→ Θ, s.t.
∀θ ∈ Θ,

F (0, θ) = θ

I Signal process (ζt)t∈R+
0

,

ζt := F (t− τνt , θνt)
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Filtering of PD Processes

Filtering 1

I This describes a Piecewise Deterministic Process.
I It’s partially observed via observations (Yn)n∈N, e.g.,

Yn = G(ζtn) + Vn

and likelihood function gn(yn|ζtn)
I Filtering: given observations, y1:n, estimate ζtn .
I How can we approximate p(ζtn |y1:n), p(ζtn+1 |y1:n+1), ... ?
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Filtering of PD Processes

Filtering 2

I Sequence of spaces (En)n∈N,

En =
∞⊎
k=0

{k} × Tn,k ×Θk+1,

Tn,k = {τ1:k : 0 < τ1 < τ2 < ... < τk ≤ tn}.
I Define kn := νtn and Xn = (ζ0, kn, τ1:kn , θ1:kn) ∈ En
I Sequence of posterior distributions (ηn)n∈N

ηn(xn) ∝q(ζ0)
kn∏
j=1

f(τj |τj−1)q(θj |θj−1, τj , τj−1)

×
n∏
p=1

gp(yp|ζtp)S(τkn , tn)
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Filtering of PD Processes

SMC Filtering

I Recall Xn = (ζ0, kn, τ1:kn , θ1:kn) specifies a path (ζt)t∈[0,tn]

I If forward kernel Kn only alters the recent components of
xn−1 and adds new jumps/parameters in En \ En−1, online
operation is possible

p(dζtn |y1:n) ≈
N∑
i=1

W (i)
n δ

F (tn−τ (i)
kn
,θ

(i)
kn

)
(dζtn)

I A mixture proposal

Kn(xn−1, xn) =
∑
m

αn,m(xn−1)Kn,m(xn−1, xn),
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Filtering of PD Processes

SMC Filtering

I When Kn corresponds to extending xn−1 into En by
sampling from the prior, obtain the algorithm of (Godsill et
al., 2007).

I This is inefficient as involves propagating multiple copies of
particles after resampling

I A more efficient strategy is to propose births and to
perturb the most recent jump time/parameter, (τk, θk)

I To minimize the variance the importance weights, we
would like to draw from ηn(τk, θk|xn−1 \ (τk, θk)), or
sensible approximations thereof.
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Filtering of PD Processes

0 5 10 15 20 25 30 35
−15

−10

−5

0

5

10

15

20

25

30

sx/km

sy /k
m

45



Introduction Estimation Rare Events Filtering Summary References

Filtering of PD Processes

Godsill et al. 2007 Whiteley et al. 2007
N RMSE / km CPU / s RMSE / km CPU / s
50 42.62 0.24 0.88 1.32
100 33.49 0.49 0.66 2.62
250 22.89 1.23 0.54 6.56
500 17.26 2.42 0.51 12.98
1000 12.68 5.00 0.50 26.07
2500 6.18 13.20 0.49 67.32
5000 3.52 28.79 0.48 142.84
Root mean square filtering error and CPU time, over 200 runs.
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Filtering of PD Processes

Convergence

I This framework allows us to analyse algorithm of Godsill et
al. 2007

I µn(ϕ) :=
∫
ϕ(ζtn)p(dζtn |y1:n) and µNn (ϕ) the corresponding

SMC approximation
I Under standard regularity conditions

√
N(µNn (ϕ)− µn(ϕ))⇒ N (0, σ2

n(ϕ))

I Under rather strong assumptions*

E
[
|µNn (ϕ)− µn(ϕ)|p

]1/p ≤ cp(ϕ)√
N

*which include: (ζtn)n∈N is uniformly ergodic Markov, likelihood
bounded above and away from zero uniformly in time
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Summary
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SMCTC: C++ Template Class for SMC Algorithms

I Implementing SMC algorithms in C/C++ isn’t hard.

I Software for implementing general SMC algorithms.
I C++ element largely confined to the library.
I Available (under a GPL-3 license from)

www2.warwick.ac.uk/fac/sci/statistics/staff/
academic/johansen/smctc/

or type “smctc” into google.
I Example code includes estimation of Gaussian tail

probabilities using the method described here.
I Particle filters can also be implemented easily.
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In Conclusion

I Monte Carlo Methods have uses beyond the calculation of
posterior means.

I SMC provides a viable alternative to MCMC.
I SMC is effective at:

I ML and MAP estimation;
I rare event estimation;
I filtering outside the standard particle filtering framework.
I . . .
I Other published applications include: approximate Bayesian

computation, Bayesian estimation in GLMMs, options
pricing and estimation in partially observed marked point
processes.

I A huge amount of work remains to be done. . .
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Justification of path sampling identity

Path Sampling Identity

Given a probability density, p(x|θ) = q(x|θ)/z(θ):

∂

∂θ
log z(θ) =

1
z(θ)

∂

∂θ
z(θ)

=
1
z(θ)

∂

∂θ

∫
q(x|θ)dx

=
∫

1
z(θ)

∂

∂θ
q(x|θ)dx (??)

=
∫
p(x|θ)
q(x|θ)

∂

∂θ
q(x|θ)dx

=
∫
p(x|θ) ∂

∂θ
log q(x|θ)dx = Ep(·|θ)

[
∂

∂θ
log q(x|θ)

]
wherever ?? is permissible. Back to ?.
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