| <b>Introduction</b><br>0000<br>0000000 | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b> 0000000000 |  |
|----------------------------------------|---------------------------------------|-----------------------------|--|
|                                        |                                       |                             |  |

#### Sequential Monte Carlo: Selected Methodological Applications

Adam M. Johansen

a.m.johansen@warwick.ac.uk

Warwick University Centre for Scientific Computing

| <b>Introduction</b><br>0000<br>0000000 | <b>Rare Events</b><br>0000000<br>0000 | $\frac{\mathbf{Filtering}}{00000000000000000000000000000000000$ |  |
|----------------------------------------|---------------------------------------|-----------------------------------------------------------------|--|
|                                        |                                       |                                                                 |  |



- Sequential Monte Carlo
- Applications
  - Parameter Estimation
  - Rare Event Simulation
  - Filtering of Piecewise Deterministic Processes

| Introduction    | Rare Events     | Filtering | Summary |  |
|-----------------|-----------------|-----------|---------|--|
| 0000<br>0000000 | 0000000<br>0000 |           |         |  |
|                 |                 |           |         |  |

# Background

| Introduction<br>•000<br>•000000 | <b>Rare Events</b><br>0000000<br>0000 | $\frac{\mathbf{Filtering}}{00000000000000000000000000000000000$ |  |
|---------------------------------|---------------------------------------|-----------------------------------------------------------------|--|
| Monte Carlo                     |                                       |                                                                 |  |
|                                 |                                       |                                                                 |  |

#### Estimating $\pi$



- ▶ Rain is uniform.
- Circle is inscribed in square.

• 
$$A_{\text{square}} = 4r^2$$
.

• 
$$A_{\text{circle}} = \pi r^2$$
.

$$\blacktriangleright p = \frac{A_{\text{circle}}}{A_{\text{square}}} = \frac{\pi}{4}.$$

$$\hat{\pi} = 4\frac{383}{500} = 3.06.$$

 Also obtain confidence intervals.

| <b>Introduction</b><br>0●00<br>0000000 | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>0000000000 |  |
|----------------------------------------|---------------------------------------|--------------------------------|--|
| Monte Carlo                            |                                       |                                |  |

#### The Monte Carlo Method

• Given a probability density, f,

$$I = \int_E \varphi(x) f(x) dx$$

- Simple Monte Carlo solution:

  - Sample X<sub>1</sub>,..., X<sub>N</sub> ∼ <sup>iid</sup> f.
     Estimate Î = <sup>1</sup>/<sub>N</sub> ∑<sup>n</sup><sub>i=1</sub> φ(X<sub>N</sub>).
- Justified by the law of large numbers...
- ▶ and the central limit theorem.

| Introduction<br>0000<br>000000 | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>0000000000 |  |
|--------------------------------|---------------------------------------|--------------------------------|--|
| Monte Carlo                    |                                       |                                |  |

#### Importance Sampling

▶ Given g, such that
 ▶ f(x) > 0 ⇒ g(x) > 0
 ▶ and f(x)/g(x) < ∞,</li>
 define w(x) = f(x)/g(x) and:

$$I = \int \varphi(x) f(x) dx = \int \varphi(x) w(x) g(x) dx.$$

▶ This suggests the importance sampling estimator:

► Sample 
$$X_1, \dots, X_N \stackrel{iid}{\sim} g$$
.  
► Estimate  $\hat{I} = \frac{1}{N} \sum_{i=1}^N w(X_i) \varphi(X_i)$ 

| Introduction<br>000●<br>0000000 | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b> 0000000000 |  |
|---------------------------------|---------------------------------------|-----------------------------|--|
| Monte Carlo                     |                                       |                             |  |
|                                 |                                       |                             |  |

#### Markov Chain Monte Carlo

- ▶ Typically difficult to construct a good proposal density.
- MCMC works by constructing an ergodic Markov chain of invariant distribution π, X<sub>n</sub> using it's ergodic averages:

$$\frac{1}{N}\sum_{i=1}^{N}\varphi(X_i)$$

to approach  $\mathbb{E}_{\pi}[\varphi]$ .

- ▶ Justified by ergodic theorems / central limit theorems.
- We aren't going to take this approach.

| Introduction<br>0000<br>•000000 |       | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b> 0000000000 |  |
|---------------------------------|-------|---------------------------------------|-----------------------------|--|
| Sequential Monte                | Carlo |                                       |                             |  |

#### A Motivating Example: Filtering

- Let  $X_1, \ldots$  denote the position of an object which follows Markovian dynamics.
- Let  $Y_1, \ldots$  denote a collection of observations:  $Y_i | X_i = x_i \sim g(\cdot | x_i).$
- We wish to estimate, as observations arrive,  $p(x_{1:n}|y_{1:n})$ .
- ▶ A recursion obtained from Bayes rule exists but is intractable in most cases.

| Introduction     |       | Rare Events | Filtering | Summary |  |
|------------------|-------|-------------|-----------|---------|--|
| 0000             |       | 000000      |           |         |  |
| Sequential Monte | Carlo |             |           |         |  |
|                  |       |             |           |         |  |

#### More Generally

- ▶ The problem in the previous example is really tracking a sequence of distributions.
- Key structural property of the smoothing distributions: increasing state spaces.
- Other problems with the same structure exist.
- ▶ Any problem of sequentially approximating a sequence of such distributions,  $p_n$ , can be addressed in the same way.

| Introduction     |       | Rare Events     | Filtering | Summary |  |
|------------------|-------|-----------------|-----------|---------|--|
| 0000<br>000000   |       | 0000000<br>0000 |           |         |  |
| Sequential Monte | Carlo |                 |           |         |  |

#### Importance Sampling in This Setting

- Given  $p_n(x_{1:n})$  for n = 1, 2, ...
- We could sample from a sequence  $q_n(x_{1:n})$  for each n.
- Or we could let  $q_n(x_{1:n}) = q_n(x_n|x_{1:n-1})q_{n-1}(x_{1:n})$  and re-use our samples.
- ▶ The importance weights become:

$$w_n(x_{1:n}) \propto \frac{p_n(x_{1:n})}{q_n(x_{1:n})} = \frac{p_n(x_{1:n})}{q_n(x_n|x_{1:n-1})q_{n-1}(x_{1:n-1})}$$
$$= \frac{p_n(x_{1:n})}{q_n(x_n|x_{1:n-1})p_{n-1}(x_{1:n-1})} w_{n-1}(x_{1:n-1})$$

| Introduction     |       | Rare Events     | Filtering | Summary |  |
|------------------|-------|-----------------|-----------|---------|--|
| 0000<br>0000000  |       | 0000000<br>0000 |           |         |  |
| Sequential Monte | Carlo |                 |           |         |  |

#### Sequential Importance Sampling

$$\begin{array}{l} \underline{\text{At time 1.}} \\ \overline{\text{For } i = 1: N, \text{ sample } X_1^{(i)} \sim q_1\left(\cdot\right).} \\ \overline{\text{For } i = 1: N, \text{ compute } W_1^i \propto w_1\left(X_1^{(i)}\right) = \frac{p_1\left(X_1^{(i)}\right)}{q_1\left(X_1^{(i)}\right)}.} \\ \underline{\text{At time } n, n \geq 2.} \\ \overline{\text{Sampling Step}} \\ \overline{\text{For } i = 1: N, \text{ sample } X_n^{(i)} \sim q_n\left(\cdot | X_{n-1}^{(i)}\right).} \\ \underline{\text{Weighting Step}} \\ \overline{\text{For } i = 1: N, \text{ compute}} \\ w_n\left(X_{1:n-1}^{(i)}, X_n^{(i)}\right) = \frac{p_n\left(X_{1:n-1}^{(i)}, X_n^{(i)}\right)}{p_{n-1}\left(X_{1:n-1}^{(i)}\right)q_n\left(X_n^{(i)}|X_{n-1}^{(i)}\right)} \\ \mathrm{and } W_n^{(i)} \propto W_{n-1}^{(i)}w_n\left(X_{1:n-1}^{(i)}, X_n^{(i)}\right). \end{array}$$

| Introduction     |       | Rare Events | Filtering | Summary |  |
|------------------|-------|-------------|-----------|---------|--|
| 0000             |       | 000000      |           |         |  |
|                  |       | 0000        |           |         |  |
| Sequential Monte | Carlo |             |           |         |  |

#### Sequential Importance Resampling

$$\begin{split} & \underline{\text{At time } n, n \geq 2.}\\ \hline & Sampling \; Step \\ & \text{For } i = 1:N, \; \text{sample } X_{n,n}^{(i)} \sim q_n \left( \cdot | \; \widetilde{X}_{n-1}^{(i)} \right).\\ & Resampling \; Step \\ & \text{For } i = 1:N, \; \text{compute} \\ & w_n \left( \widetilde{X}_{n-1}^{(i)}, X_{n,n}^{(i)} \right) = \frac{p_n \left( \widetilde{X}_{n-1}^{(i)}, X_{n,n}^{(i)} \right)}{p_{n-1} \left( \widetilde{X}_{n-1}^{(i)} \right) q_n \left( X_{n,n}^{(i)} | \; \widetilde{X}_{n-1}^{(i)} \right)} \\ & \text{and } W_n^{(i)} = \frac{w_n \left( \widetilde{X}_{n-1}^{(i)}, X_{n,n}^{(i)} \right)}{\sum_{j=1}^N w_n \left( \widetilde{X}_{n-1}^{(j)}, X_{n,n}^{(j)} \right)}.\\ & \text{For } i = 1:N, \; \text{sample } \; \widetilde{X}_n^{(i)} \sim \sum_{j=1}^N W_n^{(j)} \delta_{\left( \widetilde{X}_{n-1}^{(j)}, X_{n,n}^{(j)} \right)} \left( dx_{1:n} \right). \end{split}$$



#### SMC Samplers

Actually, these techniques can be used to sample from *any* sequence of distributions (Del Moral et al., 2006).

- Given a sequence of *target* distributions,  $\eta_n$ , on  $E_n \ldots$ ,
- ► construct a synthetic sequence  $\tilde{\eta}_n$  on spaces  $\bigotimes_{n=1}^{\infty} E_p$
- ▶ by introducing Markov kernels,  $L_p$  from  $E_{p+1}$  to  $E_p$ :

$$\widetilde{\eta}_n(x_{1:n}) = \eta_n(x_n) \prod_{p=1}^{n-1} L_p(x_{p+1}, x_p),$$

- These distributions
  - ▶ have the target distributions as time marginals,
  - ▶ have the correct structure to employ SMC techniques.

| Introduction<br>0000<br>000000● |       | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>0000000000 |  |
|---------------------------------|-------|---------------------------------------|--------------------------------|--|
| Sequential Monte                | Carlo |                                       |                                |  |

#### SMC Outline

- ► Given a sample  $\{X_{1:n-1}^{(i)}\}_{i=1}^N$  targeting  $\tilde{\eta}_{n-1}$ ,
- sample  $X_n^{(i)} \sim K_n(X_{n-1}^{(i)}, \cdot),$
- ▶ calculate

$$W_n(X_{1:n}^{(i)}) = \frac{\eta_n(X_n^{(i)})L_{n-1}(X_n^{(i)}, X_{n-1}^{(i)})}{\eta_{n-1}(X_{n-1}^{(i)})K_n(X_{n-1}^{(i)}, X_n^{(i)})}.$$

- ▶ Resample, yielding:  $\{X_{1:n}^{(i)}\}_{i=1}^N$  targeting  $\tilde{\eta}_n$ .
- ▶ Hints that we'd like to use

$$L_{n-1}(x_n, x_{n-1}) = \frac{\eta_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\int \eta_{n-1}(x'_{n-1})K_n(x'_{n-1}, x_n)}$$

| <b>Introduction</b><br>0000<br>0000000 | Estimation<br>•000000000 | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>0000000000 |  |
|----------------------------------------|--------------------------|---------------------------------------|--------------------------------|--|
| Parameter Estima                       | tion in Latent Va        | ariable Models                        |                                |  |

# Parameter Estimation in Latent Variable Models

#### Joint work with Arnaud Doucet and Manuel Davy.



#### Maximum {Likelihood|a Posteriori} Estimation

- Consider a model with:
  - parameters,  $\theta$ ,
  - latent variables, x, and
  - observed data, y.
- ▶ Aim to maximise Marginal likelihood

$$p(y|\theta) = \int p(x, y|\theta) dx$$

or posterior

$$p(\theta|y) \propto \int p(x, y|\theta) p(\theta) dx.$$

- ▶ Traditional approach is Expectation-Maximisation (EM)
  - Requires objective function in closed form.
  - Susceptible to trapping in local optima.



#### A Probabilistic Approach

▶ A distribution of the form

 $\pi(\theta|y) \propto p(\theta) p(y|\theta)^{\gamma}$ 

will become concentrated, as  $\gamma \to \infty$  on the maximisers of  $p(y|\theta)$  under weak conditions (Hwang, 1980).

**Key point:** Synthetic distributions of the form:

$$\bar{\pi}_{\gamma}(\theta, x_{1:\gamma}|y) \propto p(\theta) \prod_{i=1}^{\gamma} p(x_i, y|\theta)$$

admit the marginals

 $\bar{\pi}_{\gamma}(\theta|y) \propto p(\theta)p(y|\theta)^{\gamma}.$ 



#### Maximum Likelihood via SMC

• Use a sequence of distributions  $\eta_n = \pi_{\gamma_n}$  for some  $\{\gamma_n\}$ .

▶ Has previously been suggested in an MCMC context (Doucet et al., 2002).

- ▶ Requires extremely slow "annealing".
- Separation between distributions is large.
- ▶ SMC has two main advantages:
  - Introducing bridging distributions, for  $\gamma = \lfloor \gamma \rfloor + \langle \gamma \rangle$ , of:

$$\bar{\pi}_{\gamma}(\theta, x_{1:\lfloor\gamma\rfloor+1}|y) \propto p(\theta) p(x_{\lfloor\gamma\rfloor+1}, y|\theta)^{\langle\gamma\rangle} \prod_{i=1}^{\lfloor\gamma\rfloor} p(x_i, y|\theta)$$

is straightforward.

Population of samples improves robustness.



#### Three Algorithms

- ▶ A generic SMC sampler can be written down directly...
- ► Easy case:
  - Sample from  $p(x_n|y, \theta_{n-1})$  and  $p(\theta_n|x_n, y)$ .
  - Weight according to  $p(y|\theta_{n-1})^{\gamma_n-\gamma_{n-1}}$ .
- ▶ General case:
  - ▶ Sample existing variables from a  $\eta_{n-1}$ -invariant kernel:

$$(\theta_n, X_{n,1:\gamma_{n-1}}) \sim \mathcal{K}_{n-1}((\theta_{n-1}, X_{n-1}), \cdot).$$

▶ Sample new variables from an arbitrary proposal:

$$X_{n,\gamma_{n-1}+1:\gamma_n} \sim q(\cdot|\theta_n).$$

- Use the composition of a time-reversal and optimal auxiliary kernel.
- ▶ Weight expression does not involve the marginal likelihood.



#### Toy Example

- Student *t*-distribution of unknown location parameter  $\theta$  with  $\nu = 0.05$ .
- Four observations are available, y = (-20, 1, 2, 3).
- Log likelihood is:

$$\log p(y|\theta) = -0.525 \sum_{i=1}^{4} \log \left( 0.05 + (y_i - \theta)^2 \right).$$

- ▶ Global maximum is at 1.997.
- ▶ Local maxima at {-19.993, 1.086, 2.906}.





#### It actually works...



| Introduction<br>0000<br>0000000 | <b>Estimation</b><br>00000000 <b>0</b> 0 | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>0000000000 |  |
|---------------------------------|------------------------------------------|---------------------------------------|--------------------------------|--|
| Parameter Estima                | ation in Latent Va                       | ariable Models                        |                                |  |

Example: Gaussian Mixture Model – MAP Estimation

- Likelihood  $p(y|x, \omega, \mu, \sigma) = \mathcal{N}(y|\mu_x, \sigma_x^2).$
- Marginal likelihood  $p(y|\omega, \mu, \sigma) = \sum_{j=1}^{3} \omega_j \mathcal{N}(y|\mu_j, \sigma_j^2).$
- ▶ Diffuse conjugate priors were employed.
- ▶ All full conditional distributions of interest are available.
- ▶ Marginal posterior can be calculated.



#### Example: GMM (Galaxy Data Set)



| <b>Introduction</b><br>0000<br>0000000 | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>0000000000 |  |
|----------------------------------------|---------------------------------------|--------------------------------|--|
|                                        |                                       |                                |  |

# Rare Event Simulation

Joint work with Pierre Del Moral and Arnaud Doucet.



#### Problem Formulation

• Consider the canonical Markov chain:

$$\left(\Omega = \prod_{t=0}^{\infty} E_t, \mathcal{F} = \prod_{t=0}^{\infty} \mathcal{F}_t, (X_t)_{t \in \mathbb{N}}, \mathbb{P}_{\mu_0}\right),\$$

► The law P<sub>µ0</sub> is defined by its finite dimensional distributions:

$$\mathbb{P}_{\mu_0} \circ X_{0:p}^{-1}(dx_{0:p}) = \mu_0(dx_0) \prod_{i=1}^p M_i(x_{i-1}, dx_i).$$

▶ We are interested in *rare events*.



#### Static Rare Events

We term the first type of rare events which we consider *static* rare events:

- The first P + 1 elements of the canonical Markov chain lie in a rare set,  $\mathcal{T}$ .
- ▶ That is, we are interested in

$$\mathbb{P}_{\mu_0}\left(x_{0:P}\in\mathcal{T}\right)$$

and

$$\mathbb{P}_{\mu_0}\left(x_{0:P} \in dx_{0:P} \mid x_{0:P} \in \mathcal{T}\right)$$

• We assume that the rare event is characterised as a level set of a suitable potential function:

$$V: \mathcal{T} \to [\hat{V}, \infty), \text{ and } V: E_{0:P} \setminus \mathcal{T} \to (-\infty, \hat{V}).$$



#### Dynamic Rare Events

The other class of rare events in which we are interested are termed *dynamic rare events*:

- A Markov process hits some rare set,  $\mathcal{T}$ , before its first entrance to some recurrent set  $\mathcal{R}$ .
- ► That is, given the stopping time  $\tau = \inf \{ p : X_p \in \mathcal{T} \cup \mathcal{R} \},$ we seek

$$\mathbb{P}_{\mu_0}\left(X_\tau\in\mathcal{T}\right)$$

and the associated conditional distribution:

$$\mathbb{P}_{\mu_0} \left( \tau = t, X_{0:t} \in dx_{0:t} | X_\tau \in \mathcal{T} \right)$$

| <b>Introduction</b><br>0000<br>0000000 |                 | <b>Rare Events</b><br>000 <b>0</b> 000<br>0000 | <b>Filtering</b><br>0000000000 |  |
|----------------------------------------|-----------------|------------------------------------------------|--------------------------------|--|
| Rare Event Simul                       | ation — Formula | tion                                           |                                |  |

#### Intuition

- Principle novelty: applying an efficient sampling technique which allows us to operate directly on the path space of the Markov chain.
- Two components to this approach:
  - ▶ Constructing a sequence of synthetic distributions
  - Applying sequential importance sampling and resampling strategies.



#### Static Rare Events: Our Approach

- ▶ Initialise by sampling from the law of the Markov chain.
- ▶ Iteratively obtain samples from a sequence of distributions which moves "smoothly" towards the target.
- Proposed sequence of distributions:

$$\eta_n(dx_{0:P}) \propto \mathbb{P}_{\mu_0}(dx_{0:P})g_{n/T}(x_{0:P})$$
$$g_\theta(x_{0:P}) = \left(1 + \exp\left(-\alpha(\theta)\left(V(x_{0:P}) - \hat{V}\right)\right)\right)^{-1}$$

 Estimate the normalising constant of the final distribution and correct via importance sampling.



#### Path Sampling [See $\star\star$ or Gelman and Meng, 1998]

• Given a sequence of densities  $p(x|\theta) = q(x|\theta)/z(\theta)$ :

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log z(\theta) = \mathbb{E}_{\theta}\left[\frac{\mathrm{d}}{\mathrm{d}\theta}\log q(\cdot|\theta)\right] \tag{(\star)}$$

where the expectation is taken with respect to  $p(\cdot|\theta)$ .

► Consequently, we obtain:

$$\log\left(\frac{z(1)}{z(0)}\right) = \int_0^1 \mathbb{E}_{\theta}\left[\frac{\mathrm{d}}{\mathrm{d}\theta}\log q(\cdot|\theta)\right]$$

 In our case, we use our particle system to approximate both integrals. 
 Introduction
 Estimation
 Rare Events
 Filtering
 Summary
 References

 0000
 00000000
 000000000
 000000000
 0

 Rare Event Simulation
 Formulation
 Filtering
 Summary
 References

Approximate the path sampling identity to estimate the normalising constant:

$$\hat{Z}_{1} = \frac{1}{2} \exp\left[\sum_{n=1}^{T} \left(\alpha(n/T) - \alpha((n-1)/T)\right) \frac{\hat{E}_{n-1} + \hat{E}_{n}}{2}\right]$$
$$\hat{E}_{n} = \frac{\sum_{j=1}^{N} W_{n}^{(j)} \frac{V\left(X_{n}^{(j)}\right) - \hat{V}}{1 + \exp\left(\alpha_{n}\left(V\left(X_{n}^{(j)}\right) - \hat{V}\right)\right)}}{\sum_{j=1}^{N} W_{n}^{(j)}}$$

Estimate the rare event probability:

$$p^{\star} = \hat{Z}_{1} \frac{\sum_{j=1}^{N} W_{T}^{(j)} \left(1 + \exp(\alpha(1)(V\left(X_{T}^{(j)}\right) - \hat{V}))\right) \mathbb{I}_{(\hat{V},\infty]} \left(V\left(X_{T}^{(j)}\right)\right)}{\sum_{j=1}^{N} W_{T}^{(j)}}.$$



#### Example: Gaussian Random Walk

- A toy example:  $M_t(R_{t-1}, R_t) = \mathcal{N}(R_t | R_{t-1}, 1).$
- $\blacktriangleright \ \mathcal{T} = \mathbb{R}^P \times [\hat{V}, \infty).$
- Proposal kernel:

$$K_n(X_{n-1}, X_n) = \sum_{j=-S}^{S} \alpha_{n+1}(X_{n-1}, X_n) \prod_{i=1}^{P} \delta_{X_{n-1,i}+ij\delta}(X_{n,i}),$$

where the weighting of individual moves is given by

$$\alpha_n(X_{n-1}, X_n) \propto \eta_n(X_n).$$

- ▶ Linear annealing schedule.
- ▶ Number of distributions  $T \propto \hat{V}^{3/2}$  (T=2500 when  $\hat{V} = 25$ ).

| <b>Introduction</b><br>0000<br>0000000 |               | <b>Rare Events</b><br>0000000<br>0●00 | <b>Filtering</b><br>0000000000 |  |
|----------------------------------------|---------------|---------------------------------------|--------------------------------|--|
| Example: Gaussia                       | n Random Walk |                                       |                                |  |













| <b>Introduction</b><br>0000<br>0000000 | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b> |  |
|----------------------------------------|---------------------------------------|------------------|--|
|                                        |                                       |                  |  |

## Filtering of Piecewise Deterministic Processes Joint work with Nick Whiteley and Simon Godsill.

| <b>Introduction</b><br>0000<br>0000000 |           | <b>Rare Events</b><br>0000000<br>0000 | Filtering<br>•000000000 |  |
|----------------------------------------|-----------|---------------------------------------|-------------------------|--|
| Filtering of PD I                      | Processes |                                       |                         |  |

#### Motivation: Observing a Manoeuvering Object

- ▶ For  $t \in \mathbb{R}_0^+$ , consider object with position  $s_t$ , velocity  $v_t$ and acceleration  $a_t$
- Summarise state by  $\zeta_t = (s_t, v_t, a_t)$
- From initial condition  $\zeta_0$ , state evolves until random time  $\tau_1$ , at which acceleration jumps to a new random value, yielding  $\zeta_{\tau_1}$
- From  $\zeta_{\tau_1}$ , evolution until  $\tau_2$ , state becomes  $\zeta_{\tau_2}$ , etc.
- ▶ Observation times,  $(t_n)_{n \in \mathbb{N}}$ , at each  $t_n$  a noisy measurement of the object's position is made

| <b>Introduction</b><br>0000<br>0000000 |           | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>0000000000 |  |
|----------------------------------------|-----------|---------------------------------------|--------------------------------|--|
| Filtering of PD I                      | Processes |                                       |                                |  |



| <b>Introduction</b><br>0000<br>0000000 |           | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>000000000 |  |
|----------------------------------------|-----------|---------------------------------------|-------------------------------|--|
| Filtering of PD 1                      | Processes |                                       |                               |  |

#### An Abstract Formulation

▶ Pair Markov chain  $(\tau_j, \theta_j)_{j \in \mathbb{N}}, \tau_j \in \mathbb{R}^+, \theta_j \in \Theta$ 

$$p(d(\tau_j, \theta_j) | \tau_{j-1}, \theta_{j-1}) = q(d\theta_j | \theta_{j-1}, \tau_j, \tau_{j-1}) f(d\tau_j | \tau_{j-1}),$$

- Count the jumps  $\nu_t := \sum_j \mathbb{I}_{[\tau_j \leq t]}$
- ► Deterministic evolution function  $F : \mathbb{R}_0^+ \times \Theta \to \Theta$ , s.t.  $\forall \theta \in \Theta$ ,

$$F(0,\theta) = \theta$$

• Signal process  $(\zeta_t)_{t \in \mathbb{R}^+_0}$ ,

$$\zeta_t := F(t - \tau_{\nu_t}, \theta_{\nu_t})$$

| <b>Introduction</b><br>0000<br>0000000 |  | $\begin{array}{c} \mathbf{Rare \ Events} \\ \texttt{0000000} \\ \texttt{0000} \\ \texttt{0000} \end{array}$ | Filtering<br>000000000 |  |  |  |  |
|----------------------------------------|--|-------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| Filtering of PD Processes              |  |                                                                                                             |                        |  |  |  |  |
|                                        |  |                                                                                                             |                        |  |  |  |  |

## Filtering 1

- ▶ This describes a Piecewise Deterministic Process.
- ▶ It's partially observed via observations  $(Y_n)_{n \in \mathbb{N}}$ , e.g.,

$$Y_n = G(\zeta_{t_n}) + V_n$$

and likelihood function  $g_n(y_n|\zeta_{t_n})$ 

- ► Filtering: given observations,  $y_{1:n}$ , estimate  $\zeta_{t_n}$ .
- ► How can we approximate  $p(\zeta_{t_n}|y_{1:n}), p(\zeta_{t_{n+1}}|y_{1:n+1}), \dots$ ?

| Introduction<br>0000<br>0000000 |          | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>0000 <b>0</b> 00000 |  |
|---------------------------------|----------|---------------------------------------|-----------------------------------------|--|
| Filtering of PD F               | rocesses |                                       |                                         |  |

#### Filtering 2

• Sequence of spaces  $(E_n)_{n \in \mathbb{N}}$ ,

$$E_n = \bigoplus_{k=0}^{\infty} \{k\} \times \mathbb{T}_{n,k} \times \Theta^{k+1},$$

$$\mathbb{T}_{n,k} = \{ \tau_{1:k} : 0 < \tau_1 < \tau_2 < \dots < \tau_k \le t_n \}.$$

► Define  $k_n := \nu_{t_n}$  and  $X_n = (\zeta_0, k_n, \tau_{1:k_n}, \theta_{1:k_n}) \in E_n$ 

▶ Sequence of posterior distributions  $(\eta_n)_{n \in \mathbb{N}}$ 

$$\eta_n(x_n) \propto q(\zeta_0) \prod_{j=1}^{k_n} f(\tau_j | \tau_{j-1}) q(\theta_j | \theta_{j-1}, \tau_j, \tau_{j-1})$$
$$\times \prod_{p=1}^n g_p(y_p | \zeta_{t_p}) S(\tau_{k_n}, t_n)$$

| Introduction<br>0000<br>0000000 |          | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>0000000000 |  |
|---------------------------------|----------|---------------------------------------|--------------------------------|--|
| Filtering of PD P               | rocesses |                                       |                                |  |
|                                 |          |                                       |                                |  |

#### SMC Filtering

- ► Recall  $X_n = (\zeta_0, k_n, \tau_{1:k_n}, \theta_{1:k_n})$  specifies a path  $(\zeta_t)_{t \in [0,t_n]}$
- If forward kernel  $K_n$  only alters the recent components of  $x_{n-1}$  and adds new jumps/parameters in  $E_n \setminus E_{n-1}$ , online operation is possible

$$p(d\zeta_{t_n}|y_{1:n}) \approx \sum_{i=1}^N W_n^{(i)} \delta_{F(t_n - \tau_{k_n}^{(i)}, \theta_{k_n}^{(i)})}(d\zeta_{t_n})$$

A mixture proposal

$$K_n(x_{n-1}, x_n) = \sum_m \alpha_{n,m}(x_{n-1}) K_{n,m}(x_{n-1}, x_n),$$

| <b>Introduction</b><br>0000<br>0000000 |          | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b><br>000000 <b>0</b> 000 |  |
|----------------------------------------|----------|---------------------------------------|-----------------------------------------|--|
| Filtering of PD P                      | rocesses |                                       |                                         |  |
|                                        |          |                                       |                                         |  |

### SMC Filtering

- When  $K_n$  corresponds to extending  $x_{n-1}$  into  $E_n$  by sampling from the prior, obtain the algorithm of (Godsill et al., 2007).
- This is inefficient as involves propagating multiple copies of particles after resampling
- A more efficient strategy is to propose births and to perturb the most recent jump time/parameter,  $(\tau_k, \theta_k)$
- ► To minimize the variance the importance weights, we would like to draw from  $\eta_n(\tau_k, \theta_k | x_{n-1} \setminus (\tau_k, \theta_k))$ , or sensible approximations thereof.

| <b>Introduction</b><br>0000<br>0000000 |  | <b>Rare Events</b><br>0000000<br>0000 | Filtering<br>000000000000 |  |  |  |
|----------------------------------------|--|---------------------------------------|---------------------------|--|--|--|
| Filtering of PD Processes              |  |                                       |                           |  |  |  |



| Introduction<br>0000<br>0000000 |                         | <b>Rare Events</b><br>0000000<br>0000 | Filtering<br>00000000●0 |                     |           |
|---------------------------------|-------------------------|---------------------------------------|-------------------------|---------------------|-----------|
| Filtering of PD                 | Processes               |                                       |                         |                     |           |
| N                               | Godsill et<br>RMSE / km | al. 2007<br>CPU / s                   | Whiteley<br>RMSE / k    | et al. 200<br>m CPU | )7<br>/ s |
|                                 | /                       | /                                     | /                       |                     | /         |

| 1 V  | RIVISE / KIII | $\mathbf{OFU} / \mathbf{S}$ | RIVISE / KIII | $\mathbf{OFU} / \mathbf{S}$ |
|------|---------------|-----------------------------|---------------|-----------------------------|
| 50   | 42.62         | 0.24                        | 0.88          | 1.32                        |
| 100  | 33.49         | 0.49                        | 0.66          | 2.62                        |
| 250  | 22.89         | 1.23                        | 0.54          | 6.56                        |
| 500  | 17.26         | 2.42                        | 0.51          | 12.98                       |
| 1000 | 12.68         | 5.00                        | 0.50          | 26.07                       |
| 2500 | 6.18          | 13.20                       | 0.49          | 67.32                       |
| 5000 | 3.52          | 28.79                       | 0.48          | 142.84                      |

Root mean square filtering error and CPU time, over 200 runs.



| Introduction<br>0000<br>0000000 |          | <b>Rare Events</b><br>0000000<br>0000 | Filtering<br>000000000● |  |
|---------------------------------|----------|---------------------------------------|-------------------------|--|
| Filtering of PD P               | rocesses |                                       |                         |  |
|                                 |          |                                       |                         |  |

#### Convergence

- ▶ This framework allows us to analyse algorithm of Godsill et al. 2007
- ▶  $\mu_n(\varphi) := \int \varphi(\zeta_{t_n}) p(d\zeta_{t_n}|y_{1:n})$  and  $\mu_n^N(\varphi)$  the corresponding SMC approximation
- ▶ Under standard regularity conditions

$$\sqrt{N}(\mu_n^N(\varphi) - \mu_n(\varphi)) \Rightarrow \mathcal{N}(0, \sigma_n^2(\varphi))$$

▶ Under rather strong assumptions\*

$$\mathbb{E}\left[|\mu_n^N(\varphi) - \mu_n(\varphi)|^p\right]^{1/p} \le \frac{c_p(\varphi)}{\sqrt{N}}$$

\*which include:  $(\zeta_{t_n})_{n \in \mathbb{N}}$  is uniformly ergodic Markov, likelihood bounded above and away from zero uniformly in time

| Introduction<br>0000<br>0000000 | <b>Rare Events</b><br>0000000<br>0000 | <b>Filtering</b> 0000000000 | Summary |  |
|---------------------------------|---------------------------------------|-----------------------------|---------|--|
|                                 |                                       |                             |         |  |

## Summary

# Introduction Estimation Rare Events Filtering Summary References 0000 000000000 000000000 0000000000 0 0 0000 0000 0000 000000000 0 0

## SMCTC: C++ Template Class for SMC Algorithms

- Implementing SMC algorithms in C/C++ isn't hard.
- ▶ Software for implementing general SMC algorithms.
- ► C++ element largely confined to the library.
- ► Available (under a GPL-3 license from)

www2.warwick.ac.uk/fac/sci/statistics/staff/ academic/johansen/smctc/

or type "smctc" into google.

- ▶ Example code includes estimation of Gaussian tail probabilities using the method described here.
- ▶ Particle filters can also be implemented easily.



#### In Conclusion

- Monte Carlo Methods have uses beyond the calculation of posterior means.
- ▶ SMC provides a viable alternative to MCMC.
- ▶ SMC is effective at:
  - ▶ ML and MAP estimation;
  - rare event estimation;
  - ▶ filtering outside the standard particle filtering framework.
  - ► ...
  - Other published applications include: approximate Bayesian computation, Bayesian estimation in GLMMs, options pricing and estimation in partially observed marked point processes.
- ▶ A huge amount of work remains to be done...

| <b>Introduction</b><br>0000<br>0000000 | <b>Rare Events</b><br>0000000<br>0000 | $\frac{\mathbf{Filtering}}{00000000000000000000000000000000000$ | $\mathbf{References}$ |
|----------------------------------------|---------------------------------------|-----------------------------------------------------------------|-----------------------|
|                                        |                                       |                                                                 |                       |

#### References

- P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo methods for Bayesian Computation. In *Bayesian Statistics 8*. Oxford University Press, 2006.
- [2] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society B, 63(3):411-436, 2006.
- [3] A. Doucet, S. J. Godsill, and C. P. Robert. Marginal maximum a posteriori estimation using Markov chain Monte Carlo. *Statistics and Computing*, 12:77–84, 2002.
- [4] A. Gelman and X.-L. Meng. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. *Statistical Science*, 13(2):163-185, 1998.
- S. J. Godsill, J. Vermaak, K.-F. Ng, and J.-F. Li. Models and algorithms for tracking of manoeuvring objects using variable rate particle filters. *Proceedings of IEEE*, 95(5): 925–952, 2007.
- [6] C.-R. Hwang. Laplace's method revisited: Weak convergence of probability measures. The Annals of Probability, 8(6):1177-1182, December 1980.
- [7] A. M. Johansen. SMCTC: Sequential Monte Carlo in C++. Research Report 08:16, University of Bristol, Department of Mathematics – Statistics Group, University Walk, Bristol, BS8 1TW, UK, July 2008.
- [8] A. M. Johansen, P. Del Moral, and A. Doucet. Sequential Monte Carlo samplers for rare events. In Proceedings of the 6th International Workshop on Rare Event Simulation, pages 256-267, Bamberg, Germany, October 2006.
- [9] A. M. Johansen, A. Doucet, and M. Davy. Particle methods for maximum likelihood parameter estimation in latent variable models. *Statistics and Computing*, 18(1):47–57, March 2008.
- [10] N. Whiteley, A. M. Johansen, and S. Godsill. Efficient Monte Carlo filtering for discretely observed jumping processes. In *Proceedings of IEEE Statistical Signal Processing Workshop*, pages 89–93, Madison, WI, USA, August 26th–29th 2007. IEEE.
- [11] N. Whiteley, A. M. Johansen, and S. Godsill. Monte Carlo filtering of piecewise-deterministic processes. In revision., 2008.



#### Path Sampling Identity

Given a probability density,  $p(x|\theta) = q(x|\theta)/z(\theta)$ :

$$\begin{split} \frac{\partial}{\partial \theta} \log z(\theta) &= \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} z(\theta) \\ &= \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} \int q(x|\theta) dx \\ &= \int \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} q(x|\theta) dx \qquad (\star\star) \\ &= \int \frac{p(x|\theta)}{q(x|\theta)} \frac{\partial}{\partial \theta} q(x|\theta) dx \\ &= \int p(x|\theta) \frac{\partial}{\partial \theta} \log q(x|\theta) dx = \mathbb{E}_{p(\cdot|\theta)} \left[ \frac{\partial}{\partial \theta} \log q(x|\theta) \right] \end{split}$$

wherever  $\star\star$  is permissible. Back to  $\star.$