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Abstract

Inference for partially observed Markov process models has been a longstanding methodolog-
ical challenge with many scientific and engineering applications. Iterated filtering algorithms
maximize the likelihood function for partially observed Markov process models by solving a
recursive sequence of filtering problems. We present new theoretical results pertaining to the
convergence of iterated filtering algorithms implemented via sequential Monte Carlo filters. This
theory complements the growing body of empirical evidence that iterated filtering algorithms
provide an effective inference strategy for scientific models that have been intractable via alter-
native methodologies.

1 Introduction

Partially observed Markov processes are of widespread importance throughout science and engineer-
ing. As such, they have been studied under various names including state space models (Durbin and
Koopman, 2001), dynamic models (West and Harrison, 1997) and hidden Markov models (Cappé
et al., 2005). Applications include ecology (Newman et al., 2008), economics (Fernández-Villaverde
and Rubrio-Ramı́rez, 2007), epidemiology (King et al., 2008), finance (Johannes et al., 2009), mete-
orology (Anderson and Collins, 2007), neuroscience (Ergun et al., 2007) and target tracking (Godsill
et al., 2007). One central and extensively studied issue is the reconstruction of unobserved com-
ponents of the Markov process from the available observations. Reconstructing the current state
of the process (i.e., determining or approximating its conditional distribution given all current and
previous observations) is known as filtering (Anderson and Moore, 1979; Arulampalam et al., 2002).
Oftentimes one also wishes to draw inferences on unknown model parameters from data; we call
these static parameters when we wish to distinguish them from the time-varying components of the
Markov process.

A successful numerical solution to the filtering problem enables evaluation of the likelihood
function and therefore brings one tantalizingly close to efficient estimation of static parameters
via likelihood-based approaches, either Bayesian or non-Bayesian. However, numerical instabilities
typically arise which have inspired a considerable literature (Kitagawa, 1998; Liu and West, 2001;
Storvik, 2002; Ionides et al., 2006; Toni et al., 2008; Polson et al., 2008). As a generalization, the
numerical complications derive from difficulties maximizing or numerically integrating a computa-
tionally intensive approximation to the likelihood function with the possible additional concern of
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Monte Carlo variability. In this article, we investigate approaches which iteratively carry out a fil-
tering procedure to explore the likelihood surface at increasingly local scales in search of a maximum
of the likelihood function. Such methodology, called iterated filtering, has been shown capable of
addressing state-of-the-art inference challenges (Ionides et al., 2006; King et al., 2008; Bretó et al.,
2009; He et al., 2009). In Section 2 we develop new theoretical results for iterated filtering. The
previous theoretical foundation for iterated filtering, presented by Ionides et al. (2006), did not
engage directly in the Monte Carlo issues relating to practical implementation of the methodology.
It is relatively easy to check that a (local) maximum has been attained, and therefore one can view
the theory of Ionides et al. (2006) as motivation for an algorithm whose capabilities were proven
by demonstration. However, the more complete theory presented here gives additional insights into
the capabilities, limitations and practical implementation of iterated filtering.

Not all estimation techniques for static parameters are based on solving the filtering problem.
Stochastic expectation-maximization and Markov Chain Monte Carlo approaches (Cappé et al.,
2005) work instead with the conditional distribution of entire trajectories of the Markov process
given the observations. Some estimation methods entirely avoid explicit computation of these con-
ditional distributions (Kendall et al., 1999; Reuman et al., 2006; Toni et al., 2008) but thereby lose
the generality and statistical efficiency of likelihood-based inference frameworks. Further discussion
of the relative merits of iterated filtering compared to other available methodology is postponed to
the discussion in Section 3. Proofs of the theorems stated in Section 2 are given in Section 4.

2 Notation and main results

Let {x(t), t ∈ T} be a Markov process taking values in R
dx (Rogers and Williams, 1994). The

time index set T ⊂ R may be an interval or a discrete set, but we are primarily concerned with
a finite subset of times t1 < t2 < · · · < tN at which x(t) is observed, together with some initial
time t0 < t1. We write x0:N = (x0, . . . , xN ) =

(
x(t0), . . . , x(tN )

)
. We correspondingly denote the

observation process by y1:N = (y1, . . . , yN ), with yn taking a value in R
dy . We assume the existence

of all required joint and conditional densities for x0:N and y1:N . These densities are supposed to
depend on an unknown parameter vector θ taking a value in R

dθ . A partially observed Markov
model may then be specified at times t0:N by an initial density f(x0 | θ), conditional transition
densities f(xn | xn−1, θ) for 1 ≤ n ≤ N , and the conditional densities of the observation process
which have the form f(yn | y1:n−1, x1:n, θ) = f(yn |xn, θ). This notation overloads f(· | ·) as a generic
density which is specified by its arguments, and suppresses the distinction between random variables
and their realizations. The generic function f gives a notationally compact representation of a
partially observed Markov model, which can be rigorously formalized. Appendix A provides further
discussion of generic function notation.

Iterated filtering involves introducing a sequence of approximations to the model f in which a
time-varying parameter process {θn, 0≤n≤N} is introduced. Specifically, equations (1–3) define
a model g for a Markov process {(xn, θn), 0≤n≤N} and observation process y1:N . Assuming
f is continuously parameterized as a function of θ, we see from (1–3) that g(x0:N , y1:N | θ, σ, τ)
approaches f(x0:N , y1:N | θ) as both σ → 0 and τ → 0.

g(xn, θn | xn−1, θn−1, θ, σ, τ) = f(xn | xn−1, θn−1)
1
σ κ

(
θn−θn−1

σ

)
, (1)

g(yn |xn, θn, θ, σ, τ) = f(yn |xn, θn), (2)

g(x0, θ0 | θ, σ, τ) = f(x0 | θ0) 1
τ κ

(
θn−θn−1

τ

)
. (3)
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Here, κ is a probability density function on R
dθ which specifies a random walk for θn. From (1), the

increments of the random walk are independent of the current state of the process xn. We suppose
that the distribution corresponding to κ has mean zero and covariance matrix Σ, so that

E[θn | θn−1, θ, σ, τ ] = θn−1, Var(θn | θn−1, θ, σ, τ) = σ2Σ, (4)

E[θ0 | θ, σ, τ ] = θ, Var(θ0 | θ, σ, τ) = τ2Σ. (5)

Reparameterization of f may be required to ensure that θ can take all values in R
dθ . In practice,

κ is typically a multivariate normal density, which must be truncated to meet condition (A4) of
Theorem 1. Previous theory for iterated filtering (Ionides et al., 2006) did not require a scale
family g(θn | θn−1, σ) = σ−1κ

(
σ−1[θn − θn−1]

)
for the time-varying distribution of θn. However,

this specification is natural and will be shown to lead to more transparent convergence conditions.
We refer to σ, τ , κ and Σ as algorithmic parameters since they play a role in the iterated filtering
algorithm but are not part of the statistical model specified by f . The choice of algorithmic
parameters may affect the numerical efficiency of iterated filtering algorithms, but does not affect
the resulting statistical conclusions.

We define the log likelihood function to be ℓ(θ) = log f(y1:N | θ). We write ∇ for a vector of
partial derivatives with respect to each component of θ, and ∇2 for the Hessian matrix of second
partial derivatives. A result underpinning iterated filtering is that ∇ℓ(θ) can be approximated in
terms of moments of the filtering distributions for g. Specifically, the following Theorem 1 relates
this derivative to the filtering means and prediction variances for g, defined as

θF
n = θF

n (θ, σ, τ) = E[θn | y1:n, θ, σ, τ ]

V P
n = V P

n (θ, σ, τ) = Var(θn | y1:n−1, θ, σ, τ)
(6)

for n = 1, . . . , N , with θF
0 = θ. We assume the regularity conditions (A1–A4) below, with | · |

denoting the absolute value of a vector or the largest absolute eigenvalue of a square matrix.

(A1) There is a constant C1(θ) such that 0 < f(· | ·, θ) < C1(θ) for all joint and conditional densities
of x0:N and y1:N . Additionally, C1(θ) is bounded on compact subsets of R

dθ .

(A2) f(· | ·, θ) is twice continuously differentiable with respect to θ. Further,

|∇f(yn |xn, θ)| <∞, |∇2f(yn | xn, θ)| <∞,∫ ∣∣∇f(xn+1 | xn, θ)
∣∣ dxn+1 <∞,

∫ ∣∣∇2f(xn+1 |xn, θ)
∣∣ dxn+1 <∞,

∫ ∣∣∇f(x0 | θ)
∣∣ dx0 <∞,

∫ ∣∣∇2f(x0 | θ)
∣∣ dx0 <∞,

with these bounds being uniform over all xn and yn with θ ranging over any compact subset
of R

dθ .

(A3) κ(θ) is twice continuously differentiable, with
∫
|∇2κ(θ)| dθ <∞.

(A4) There is a constant C2 with κ(θ) = 0 for |θ| ≥ C2 and κ(θ) > 0 for |θ| < C2.

The conditions (A1) and (A2) are not restrictive. Conditions (A3) and (A4) can be satisfied by
the choice of the algorithmic parameters. The assumption of a spherical support for κ in (A4) is
mathematically convenient but we believe this requirement could be relaxed to some more general
assumption of compact support.
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Theorem 1. Suppose conditions (A1–A4). Let σ be a function of τ with στ−1 → 0 as τ → 0.
Using notation from (6),

lim
τ→0

N∑

n=1

(
V P

n

)−1(
θF
n − θF

n−1

)
= ∇ℓ(θ). (7)

A proof of Theorem 1 is given in Section 4.1, based on a Taylor series expansion of g(yn | y1:n−1, θn, θ, σ, τ)
around θn = θF

n−1. Theorem 1 is based on a result of Ionides et al. (2006), however both the as-
sumptions employed and the details of the proof differ substantially from this previous work.

The quantities θF
n and V P

n in Theorem 1 do not usually have closed form, and so numerical
approximations must be made for any practical application of this result. Numerical approximation
of moments is generally more convenient than approximating derivatives, and this is the reason that
Theorem 1 may be useful. However, on might suspect that there is no “free lunch” and therefore the
numerical calculation of the left hand side of (7) should become fragile as σ and τ becomes small.
We will see that this is indeed the case, but that iterated filtering methods mitigate the difficulty to
some extent by averaging numerical error over subsequent iterations. To be concrete, we suppose
henceforth that numerical filtering will be carried out using the basic sequential Monte Carlo
(SMC) method presented as Algorithm 1. SMC provides a flexible and widely used class of filtering
algorithms, with many variants designed to improve numerical efficiency (Cappé et al., 2007).
The relatively simple SMC method in Algorithm 1 is more readily comprehended, analyzed and
implemented. It has also been found adequate for previous data analyses using iterated filtering
(Ionides et al., 2006; King et al., 2008; Bretó et al., 2009; He et al., 2009). We suspect that the
qualitative conclusions obtained here would apply to variations on Algorithm 1.

Input:

parameter vector, ψ
observations y1:N and times t0:N
generic density h(· | ·, ψ) for y1:N and an unobserved process z0:N
number of particles, J

Procedure:

1 initialize filter particles ZF
0,j ∼ h(z0 |ψ) for j in 1 : J

2 for n in 1 : N
3 for j in 1 : J draw prediction particles ZP

n,j ∼ h
(
zn | zn−1=Z

F
n−1,j, ψ

)

4 set w(n, j) = h
(
yn | zn=ZP

n,j, ψ
)

5 draw k1, . . . , kJ such that Prob(kj=i) = w(n, i)/
∑

ℓw(n, ℓ)
6 set ZF

n,j = ZP
n,kj

7 end for

Algorithm 1: A basic sequential Monte Carlo procedure for a discrete-time Markov process {zn}
with generic density function h. In the current context, zn will be either xn or (xn, θn) with h
correspondingly set to f or g respectively. The resampling in step 5 is taken to follow a multinomial
distribution to build on previous theoretical results making this assumption (Del Moral and Jacod,
2001; Crisan and Doucet, 2002). An alternative is the systematic procedure in Arulampalam et al.
(2002, Algorithm 2) which has less Monte Carlo variability; we support the use of systematic
sampling in practice and we suppose that all our results would continue to hold in such situations.

To calculate Monte Carlo estimates of the quantities in (6), we apply Algorithm 1 to the
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model g with zn = (xn, θn), ψ = (θ, σ, τ) and J particles. We write ZF
n,j =

(
XF

n,j ,Θ
F
n,j

)
and

ZP
n,j =

(
XP

n,j ,Θ
P
n,j

)
for the Monte Carlo samples from the filtering and prediction calculations in

Algorithm 1. Then, using x′ to denote the transpose of x, we define

θ̃F
n = θ̃F

n (θ, σ, τ, J) = 1
J

∑J
j=1 ΘF

n,j,

Ṽ P
n = Ṽ P

n (θ, σ, τ, J) = 1
J−1

∑J
j=1

(
ΘP

n,j − θ̃F
n−1

)(
ΘP

n,j − θ̃F
n−1

)′
.

(8)

We now present an analogue to Theorem 1 in which the filtering means and prediction variances
are replaced by their Monte Carlo counterparts. A proof of this result is given in Section 4.3.
The stochasticity in Theorem 1 is due to Monte Carlo variability, conditional on the data y1:N ,
and we write Ẽ and Ṽar to denote Monte Carlo means and variances. The Monte Carlo random
variables required to implement Algorithm 1 are presumed to be drawn independently each time
the algorithm is evaluated.

Theorem 2. Let {σm}, {τm} and {Jm} be positive sequences with τm → 0, σmτ
−1
m → 0 and

τmJm → ∞. Define θ̃F
n,m = θ̃F

n (θ, σm, Jm) and Ṽ P
n,m = Ṽ P

n,m(θ, σm, Jm) via (8). Supposing condi-
tions (A1–A4),

lim
m→∞

Ẽ
[ N∑

n=1

(
Ṽ P

n,m

)−1(
θ̃F
n,m − θ̃F

n−1,m

)]
= ∇ℓ(θ), (9)

lim
m→∞

τ2
mJm Ṽar

( N∑

n=1

(
Ṽ P

n,m

)−1(
θ̃F
n,m − θ̃F

n−1,m

))
< ∞, (10)

with convergence being uniform for θ in compact sets.

Theorem 2 suggests that a Monte Carlo method which leans on Theorem 1 will require a
sequence of Monte Carlo sample sizes, Jm, which increases faster than τ−1

m . Otherwise, the
Monte Carlo bias in estimating θF

n − θF
n−1, which is of order τm/Jm, will eventually dominate the

information in θF
n − θF

n−1 about ∇ℓ(θ), which is of order τ2
m. Even with τmJm → ∞, we see from

(10) that the estimated derivative in (9) may have increasing Monte Carlo variability as m → ∞.
This trade-off between bias and variance is to be expected in any Monte Carlo numerical derivative,
a classic example being the Kiefer-Wolfowitz algorithm (Kiefer and Wolfowitz, 1952; Spall, 2003).
Algorithms which are designed to balance such trade-offs have been extensively studied under the
label of stochastic approximation (Kushner and Yin, 2003; Spall, 2003).

Theorem 3 gives an example of a stochastic approximation procedure, defined by the recursive
sequence θ̂m in (11). Because each step of this recursion involves an application of the filtering
procedure in Algorithm 1, we call (11) an iterated filtering algorithm. To prove the convergence
of this algorithm to a value θ̂ maximizing the log likelihood function ℓ(θ) we make the following
assumptions, which are standard sufficient conditions for stochastic approximation methods.

(B1) Define Z(t) to be a solution to dZ/dt = ∇ℓ(Z(t)). Suppose that θ̂ is an asymptotically stable
equilibrium point, meaning that (i) for every η > 0 there exists a δ(η) such that |Z(t)− θ̂| ≤ η
for all t > 0 whenever |Z(0) − θ̂| ≤ δ, and (ii) there exists a δ0 such that Z(t) → θ̂ as t→ ∞
whenever |Z(0) − θ̂| ≤ δ0.

(B2) With probability one, supm |θ̂m| <∞. Further, θ̂m falls infinitely often into a compact subset
of {Z(0) : limt→∞ Z(t) = θ̂}.
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Although neither (B1–B2) nor alternative sufficient conditions (Spall, 2003, Chapter 4) are easy to
verify, stochastic approximation methods have nevertheless been found effective in many situations.
Condition (B2) is most readily satisfied if θ̂m is constrained to a neighborhood in which θ̂ is a
unique local maximum, which gives a guarantee of local rather than global convergence. Global
convergence results have been obtained for related stochastic approximation procedures (Maryak
and Chin, 2008) but are beyond the scope of this current paper. Practical implementation issues
are discussed in Section 3 below.

Theorem 3. Let {am}, {σm}, {τm} and {Jm} be positive sequences with τm → 0, σmτ
−1
m → 0,

Jmτm → ∞, am → 0,
∑

m am = ∞ and
∑

m a2
mJ

−1
m τ−2

m < ∞. Specify a recursive sequence of

parameter estimates {θ̂m} by

θ̂m+1 = θ̂m + am

N∑

n=1

(
Ṽ P

n,m

)−1(
θ̃F
n,m − θ̃F

n−1,m

)
, (11)

where θ̃F
n,m = θ̃F

n (θ̂m, σm, Jm) and Ṽ P
n,m = Ṽ P

n,m(θ̂m, σm, Jm) are defined in (8) via an application of

Algorithm 1. Assuming conditions (A1–A4) and (B1–B2), limm→∞ θ̂m = θ̂ with probability one.

The proof of Theorem 3, given in Section 4.5, is based on applying Theorem 2 in the context
of existing results on stochastic approximation. The rate assumptions in Theorem 3 are satisfied,
for example, by am = m−1, τ2

m = m−1, σ2
m = m−(1+δ) and Jm = m(δ+1/2) for δ > 0.

3 Discussion of the theory and practice of iterated filtering

One of the attractive features of the iterated filtering algorithm in Theorem 3 is that it depends on
the unobserved Markov process only through generation of sample paths. In particular, this proce-
dure can be implemented in situations where an expression for transition densities is unavailable.
This property has been called plug-and-play (Bretó et al., 2009; He et al., 2009) since it permits
simulation code to be simply plugged into the inference procedure, enabling scientists to analyze
multiple alternative models with only minor changes to the computations involved. The iterated
filtering algorithm in Theorem 3 inherits the plug-and-play property from Algorithm 1. Alternative
implementations of iterated filtering, for example making use of computationally efficient variations
on sequential Monte Carlo (Cappé et al., 2007), do not generally possess the plug-and-play property.

Other plug-and-play methods proposed for partially observed Markov models include artificial
parameter evolution method (Liu and West, 2001), an approximate Bayesian computation (ABC)
approach (Toni et al., 2008), and simulation-based forecasting (Kendall et al., 1999). In all these
methods, statistical efficiency is sacrificed at the altar of computational convenience. For example,
the stochasticity added for the artificial parameter evolution of Liu and West (2001) dilutes the in-
fluence of the earlier observations in the time series; ABC methods work only with a low-dimensional
summary statistic of the data; non-likelihood-based methods such as least square prediction min-
imization (Kendall et al., 1999) are also generally statistically efficient. Iterated filtering, on the
other hand, has the efficiency guarantee of maximum likelihood estimation. Of course, the resulting
estimates are still subject to Monte Carlo variability due to the infeasibility of attaining the infinite
limit m→ ∞. Ultimately, the value of all such asymptotic theory is dependent on its finite sample
relevance.

For challenging numerical computations, there is often a gap between available theorems and
practical techniques. A classic example of this is optimization by simulated annealing, a popular
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stochastic optimization technique (Kirkpatrick et al., 1983; Spall, 2003) which draws on physi-
cal insights from statistical mechanics and mathematical foundations from Markov chain theory.
Theoretically motivated convergence rates for simulated annealing are often too slow for practical
implementation while variations on the algorithm with less attractive theory have been found to
be effective (Ingber, 1993). Although there are substantial differences between simulated annealing
and iterated filtering (e.g. global versus local theory, exact versus stochastic objective functions),
the similarities between these two stochastic search algorithms nevertheless provide a worthwhile
comparison. To relate simulated annealing and iterated filtering, it is helpful to adopt from simu-
lated annealing an analogy whereby σm and τm are thought of as temperatures which approaching
freezing as σm → 0 and τ → 0. If the temperature cools sufficiently slowly, iterated filtering and
simulated annealing theoretically approach the maximum of their respective target functions. In
practice, quicker cooling schedules are used for simulated annealing, in which case it is more prop-
erly called simulated quenching (Ingber, 1993). Periodically increasing the the temperature, by
chaining together quenched searches, is known as simulated tempering and can lead to a reasonable
trade-off between investigating fine scale and larger scale structure of the objective function. It is
generally possible to confirm the success of an optimization procedure by running it from multiple
widely separated starting points, which makes possible post-hoc validation of the search strategy.
Our experience suggests that tempered searches are an effective technique for iterated filtering. In
addition, the rounds of quenching provide a sequence of parameter estimates which are useful for
learning about the structure of the likelihood surface.

Likelihood maximization provides not just point estimates of unknown parameters but also
confidence intervals, either through profile likelihood calculations or Hessian approximations, and
likelihood ratio tests of competing hypotheses. The interested reader is referred elsewhere for case
studies demonstrating practical implementations of iterated filtering (King et al., 2008; Bretó et al.,
2009; He et al., 2009; Ionides et al., 2006). These practical implementations did not employ the
increasing Monte Carlo sample size suggested by Theorem 3 and used a constant ratio σmτ

−1
m

rather than a sequence tending to zero. Nevertheless, they were shown to be capable of maximizing
complex likelihood surfaces to an adequate level of accuracy. Since SMC can provide an unbiased
estimate of the likelihood function (see Corollary 1 in Section 4.3) it is relatively straightforward
to confirm whether the likelihood has indeed been successfully maximized.

The incorporation of iterated filtering into the framework of stochastic approximation, which
underlies the proof of Theorem 3, suggests several avenues for further investigation. Existing mod-
ifications of stochastic approximation techniques (Spall, 2003) include: (i) averaging parameter
estimates across iterations; (ii) breaking down high-dimensional problems into a sequence of ran-
domly selected lower dimensional problems; (iii) making use of a plug-and-play estimate of second
partial derivatives. Iterated filtering, unlike generic stochastic approximation algorithms, uses the
Monte Carlo variability in Algorithm 1 to explore the parameter space R

dθ while simultaneously
evaluating an approximation to the likelihood function and its derivative. This can lead to high
numerical efficiency which is essential in situations which stretch available computational resources.
For example, iterated filtering has been able to adequately identify a maximum likelihood estimate
in a 13-dimensional space based on 50 iterations (Ionides et al., 2006), a comparable computational
burden to 50 evaluations of the likelihood function. There is undoubtedly potential to construct
hybrid procedures which combine the strength of iterated filtering—making efficient use of few
filtering operations to approach the maximum of the likelihood function—with the strengths of
other methodologies. For example, a basic Kiefer-Wolfowitz algorithm (Spall, 2003) applied to an
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unbiased SMC estimate of the likelihood function would provide a sequence of estimators which
converges to the maximum likelihood estimate with probability one, for a fixed Monte Carlo sample
size (i.e., without the requirement Jm → ∞ in Theorem 3).

The major challenge for likelihood-based inference in complex models is to identify a neighbor-
hood containing those models which are plausibly consistent with the data. Once such a region
has been identified, one then seeks to describe the likelihood surface in this neighborhood via con-
struction of point estimates, confidence intervals and profile likelihood computations. A theoretical
basis for this philosophy is Le Cam’s quadratic estimation (Le Cam and Yang, 2000), in which
the likelihood surface is approximated in a neighborhood of a

√
n-consistent estimator. Le Cam’s

ideas can be extended from quadratic approximation of the log likelihood surface to more practi-
cally attractive smooth local likelihood approximations (Ionides, 2005). These theoretical results
highlight the statistical importance of correctly capturing the features of the likelihood on the scale
of the uncertainty in the parameters. Smaller scale features in the likelihood surface, which may
be a feature of the model or arise due to numerical considerations, are a distraction from effective
inference. From this perspective, the efficient identification of plausible models which is the main
strength of iterated filtering techniques is also the key step in model-based data analysis.

4 Proofs of the theorems stated in Section 2

The following proofs rely heavily on the generic probability density functions defined in Section 2.
The reader is directed to Appendix A for a discussion on the formal use of this notation. Ad-
ditionally, φ(τ) = O

(
ψ(τ)

)
will mean that φ/ψ is bounded, and φ(τ) = o

(
ψ(τ)

)
will mean that

limτ→0 φ/ψ = 0. In Sections 4.1 and 4.2, we write ∇θ and ∇θn
for vectors of partial derivatives

with respect to the components of θ and θn respectively.

4.1 A proof of Theorem 1

Suppose inductively that |V P
n | = O(τ2) and |θF

n−1 − θ| = O(τ2), which holds for n = 1 by con-
struction. We now employ Bayes’ formula, suppressing the dependence of g on θ, σ and τ to
give

g(θn | y1:n)

g(θn | y1:n−1)
=

g(yn | y1:n−1, θn)∫
g(yn | y1:n−1, θn) g(θn | y1:n−1) dθn

(12)

=
g(yn|y1:n−1, θn= θF

n−1) + (θn− θF
n−1)

′ ∇θn
g(yn|y1:n−1, θn= θF

n−1) +R1

g(yn | y1:n−1, θn= θF
n−1) +O(τ2)

(13)

=
{

1 + (θn− θF
n−1)

′∇θn
log g(yn | y1:n−1, θn= θF

n−1)

+
R1

g(yn | y1:n−1, θn= θF
n−1)

}
×

(
1 +O(τ2)

)
. (14)

The numerator in (13) comes from a Taylor series expansion of g(yn | y1:n−1, θn) about θn = θF
n−1.

From (A1), (A2) and (A3) there is a constant C3 such that |R1| is bounded by C3|θn − θF
n−1|2/2.

This assertion is reasoned formally as Lemma 3 in Section 4.2. The denominator of (13) then
follows from applying this expansion to the integral in (12) by observing that E[θn | y1:n−1] = θF

n−1
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and, from the induction hypothesis, E
[
|θn − θF

n−1|2 | y1:n−1

]
= O(τ2). We now calculate

θF
n − θF

n−1 = E[θn− θF
n−1 | y1:n]

=

∫
(θn− θF

n−1) g(θn | y1:n) dθn (15)

= V P
n ∇θn

log g(yn | y1:n−1, θn= θF
n−1) + o(τ2) (16)

= V P
n ∇θ log f(yn | y1:n−1, θ) + o(τ2). (17)

Equation (16) follows from (15) using (14) and (A4). Equation (17) follows from (16) via Lemma 1
in Section 4.2 below. The inductive assumption on θF

n is then justified by (17). A similar argument
gives

V P
n+1 = Var(θn+1 | y1:n) = Var(θn | y1:n) + σ2Σ

= E[(θn− θF
n )(θn− θF

n )′ | y1:n] + σ2Σ

= E[(θn− θF
n−1)(θn− θF

n−1)
′ | y1:n] − (θF

n − θF
n−1)(θ

F
n − θF

n−1)
′ + σ2Σ (18)

= V P
n + σ2Σ + o(τ2), (19)

where (19) follows from (18) via (14) and (17) together with the induction hypothesis on V P
n .

Equation (19) in turn justifies this hypothesis. Multiplying (17) through by (V P
n )−1 and then

summing over n gives (7), completing the proof of Theorem 1.

4.2 Additional details on the proof of Theorem 1

The passage from (16) to (17) may appear natural, given the smoothly parameterized sequence of
approximations by which g approaches f . However, there is in fact some subtlety which explains
the necessity of the two approximation parameters σ and τ with στ−1 → 0. If the variability of
g(θ1:n | θ0, σ, τ) is small compared to the variability of g(θ0 | θ, σ, τ) then, heuristically, one expects
g(θ0:n−1 | y1:n, θn, θ, σ, τ) to be concentrated around θn in the limit as τ → 0. Lemma 1 takes
advantage of a formalization of this limit. However, the issue may be of minor relevance in practice
because one expects that g(θn−k:n−1 | y1:n, θn) will indeed be concentrated around θn when k≪n
even if σ is not small compared to τ . Under typical mixing conditions, the distribution of yn given
y1:n−1, θ0:n, θ, σ depends only weakly on θ0:(n−k−1) unless k is small. Introducing mixing conditions
typically improves the theoretical properties of filtering procedures (e.g., Crisan and Doucet, 2002).
We conjecture that one could achieve a result similar to Lemma 1 for a constant ratio στ−1 in a
limit with some appropriate mixing properties, though investigating such scenarios is outside the
scope of this article.

Lemma 1. Suppose the conditions (A2) and (A4). In the limit as τ → 0,

∇θn
log g(yn | y1:n−1, θn= θ+ cτ, θ, σ, τ) = ∇θ log f(yn | y1:n−1, θ) + o(1) (20)

uniformly over 0 ≤ c < C2 − δ for any δ > 0. In particular, (20) holds for θn = θF
n−1.

Proof. We suppress the dependence of g on θ, σ and τ . Adopting the notation that {θ0:n = ψ}
means {θk = ψ, 0 ≤ k ≤ n}, it follows from (A2) and (A4) that

log g(yn | y1:n−1, θn= θ+ cτ) = log g(yn | y1:n−1, θ0:n = θ+ cτ) +O(σ)

= log f(yn | y1:n−1, θ= θ+ cτ) +O(σ), (21)
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with the term O(σ) being uniform over sets of values of c bounded away from C2. Further details
on this step are provided in Appendix C. We then calculate

∇θn
log g(yn | θn= θ+ cτ, y1:n−1)

= lim
δ→0

δ−1
{

log g(yn | θn= θ+ cτ + δ, y1:n−1) − log g(yn | θn= θ+ cτ, y1:n−1)
}

= lim
δ→0

δ−1
{

log f(yn | y1:n−1, θ+ cτ + δ) − log f(yn | y1:n−1, θ+ cτ) +R2

}

where R2 is O(σ), uniformly in δ as long as δ is small compared to τ . Setting δ = δ(τ) with
δτ−1 → 0 and σδ−1 → 0, it follows that

∇θn
log g(yn | y1:n−1, θn= θ + cτ)

= ∇θ log f(yn | y1:n−1, θ= θ + cτ) +O(σ/δ) + o(1) (22)

= ∇θ log f(yn | y1:n−1, θ) + o(1). (23)

To justify (23) it is necessary to notice that the term o(1) in (22) depends only on δ and not on
σ or τ . The uniformity of (23) over c allows one to choose c = c(τ) = (θF

n − θ)/τ , completing the
proof of Lemma 1.

We now proceed to derive the uniform bound on ∇2
θn
g(yn|y1:n−1, θn) required to bound R1 in

(13). To prove this result, stated as Lemma 3, we present a bound on ∇θn
g(yn|y1:n−1, θn) and

then argue that the method can be extended to the second derivative at the expense of additional
routine algebra. By contrast, a bound on ∇θn

g(yn|y1:n−1, θn) can be obtained more directly from
Lemma 1, but this approach does not generalize to the second derivative unless σ = o(τ2).

Lemma 2. (A1–A4) implies ∇θn
g(y1:n, θn | θ, σ, τ) =

∑n
i=1

(
Ui + Vi

)
+ V0 +W0 where

Ui =

∫ [
∇θf(yi |xi, θi)

]
g(y1:i−1, yi+1:n, x0:n, θ0:n | θ, σ, τ) dx0:n dθ0:n−1,

Vi =

∫ [
∇θf(xi | xi−1, θi−1)

]
g(yi:n, xi+1:n |xi, θ0:n, θ, σ, τ)

g(y1:i−1, x1:i−1 | θ0:n, θ, σ, τ)g(θ0:n | θ, σ, τ) dx0:n dθ0:n−1

V0 =

∫ [
∇θf(x0 | θ0)

]
g(y1:n, x1:n |x0, θ0:n, θ, σ, τ)g(θ0:n | θ, σ, τ) dx0:n dθ0:n−1,

W0 = ∇θ g(y1:n, θn | θ, σ, τ).

Proof. Integrating g(y1:n, x0:n, θ0:n | θ, σ, τ) over x0:n and θ0:n−1 and passing ∇θn
through the re-

sulting integral gives ∇θn
g(y1:n, θn | θ, σ, τ) = Un + Tn for

Ti =

∫ n∏

j=1

f(yj |xj, θj)f(xj |xj−1, θj−1)f(x0 | θ0) ×
[
∇θi

κ

(
θi − θi−1

σ

)]

× 1

σn

∏

j 6=i

κ

(
θj − θj−1

σ

)
× 1

τ
κ

(
θ0 − θ

τ

)
dx0:n dθ0:n−1. (24)

Noticing that ∇θi
κ
(
[θi − θi−1]/σ

)
= −∇θi−1

κ
(
[θi − θi−1]/σ

)
and applying integration by parts

to (24) one finds that Ti = Vi + Ui−1 + Ti−1 for 2 ≤ i ≤ n. A very similar calculation gives
T1 = V1 + V0 +W0, completing the proof of Lemma 2.
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Lemma 3. Supposing (A1–A4), it follows that ∇2
θn
g(yn | y1:n−1, θn, θ, σ, τ) is uniformly bounded

for σ and τ in a neighborhood of zero, over compact regions of θ with |θn − θ| < cτ for 0 < c < C2.

Proof. From (A1–A4) it follows that U1, . . . , Un, V0, . . . , Vn and W0 in Lemma 2 are O(τ−1) and
therefore that ∇θn

g(y1:n, θn | θ, σ, τ) = O(τ−1). Suppressing dependence on θ, σ and τ to write

∇θn
g(yn | y1:n−1, θn) =

g(y1:n−1, θn)∇θn
g(y1:n, θn) − g(y1:n, θn)∇θn

g(y1:n−1, θn)

[g(y1:n−1, θn)]2

and observing that C4 τ
−1 < g(y1:n, θn | θ, σ, τ) < C5 τ

−1 for some positive constants C4 and C5, we
find ∇θn

g(yn | y1:n−1, θn, θ, σ, τ) = O(1). This argument can be routinely extended to the second
derivative, completing the proof of Lemma 3.

4.3 A proof of Theorem 2

Let un,m = (θF
n,m − θF

n−1,m)/τm and vn,m = V P
n,m/τ

2
m. The corresponding Monte Carlo estimates

of these quantities are ũn,m = (θ̃F
n,m − θ̃F

n−1,m)/τm and ṽn,m = Ṽ P
n,m/τ

2
m. We claim that there are

constants C6, . . . , C9 with∣∣ Ẽ
[
ũn,m − un,m

] ∣∣ ≤ C6/Jm

∣∣ Ẽ
[
ṽn,m − vn,m

] ∣∣ ≤ C7/Jm (25)

Ẽ
[
|ũn,m − un,m|2

]
≤ C8/Jm Ẽ

[
|ṽn,m − vn,m|2

]
≤ C9/Jm (26)

uniformly for θ in any compact set. Previous bounds similar to (25,26) have been given for a fixed
model as the Monte Carlo sample size Jm increases, for example by Del Moral and Jacod (2001);
Del Moral (2004, Section 11.8.4); Crisan and Doucet (2002). The complication in (25,26) is that
the model is varying with σm and τm. However, the uniform bound on ũn,m and ṽn,m, together with
the continuity of g(· | ·, σ, τ) as a function of σ and τ , is enough to show that a convergence result
for fixed models (Crisan and Doucet, 2002, Theorem 2) applies uniformly in this context. Further
details of this argument are deferred to Section 4.4. Carrying out a Taylor series expansion, we
find

ṽ−1
n,mũn,m = v−1

n,mun,m + v−1
n,m(ũn,m − un,m)

−v−1
n,m(ṽn,m − vn,m)v−1

n,mũn,m +R3 (27)

where |R3| < C10(|ũn,m − un,m|2 + |ṽn,m − vn,m|2) for some constant C10. The existence of such a
C10 is guaranteed since the determinant of vn,m is bounded away from zero. Taking expectations
of both sides of (27) and applying (25,26) gives

∣∣Ẽ[ṽ−1
n,mũn,m] − v−1

n,mun,m

∣∣ ≤ C11/Jm. (28)

Another Taylor series expansion,

ṽ−1
n,mũn,m = v−1

n,mun,m +R4 (29)

with |R4| < C12(|ũn,m − un,m| + |ṽn,m − vn,m|) implies

Ṽar(ṽ−1
n,mũn,m) ≤ C13/Jm. (30)

Putting together (28) and (30), we see that

Ẽ
[(
Ṽ P

n,m

)−1
(θ̃F

n,m − θ̃F
n−1,m)

]
=

(
V P

n,m

)−1
(θF

n,m − θF
n−1,m) +O

(
1/(σmJm)

)

Ṽar
[(
Ṽ P

n,m

)−1
(θ̃F

n,m − θ̃F
n−1,m)

]
= O

(
1/(σ2

mJm)
)
.

Theorem 2 then follows via the assumed continuity with respect to θ.
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4.4 Justification of the sequential Monte Carlo bounds in Section 4.3

We draw on the general theory of sequential Monte Carlo by Crisan and Doucet (2002) and
Del Moral and Jacod (2001). For completeness, and to help the reader translate these results
into the current context and notation, we have included the following two theorem statements.

Theorem 4. (Crisan and Doucet, 2002) Let h(· | ·, θ) be a generic density for an unobserved
Markov process z0:N with observations y1:N and parameter vector θ. Define ZF

n,j via applying
Algorithm 1 to h(· | ·, θ) with J particles. Assume that h(yn | zn, θ) is bounded as a function of zn.
For any ϕ : R

dz → R, denote the filtered mean of ϕ(zn) and its Monte Carlo estimate by

ϕF
n =

∫
ϕ(zn)h(zn | y1:n, θ) dzn, ϕ̃F

n =
1

J

J∑

j=1

ϕ
(
ZF

n,j

)
. (31)

There is a C14 independent of J such that

Ẽ
[
(ϕ̃F

n − ϕF
n )2

]
≤ C14 supx |ϕ(x)|2

J
. (32)

Specifically, C14 can be written as a linear function of 1 and ηn,1, . . . , ηn,n defined as

ηn,i =

n∏

k=n−i+1

(
supzk

h(yk | zk, θ)
h(yk | y1:k−1, θ)

)2

. (33)

Theorem 5. (Del Moral and Jacod, 2001) As in Theorem 4, let h(· | ·, θ) be a generic density
for an unobserved Markov process z0:N with observations y1:N and parameter vector θ. Let ϕ :
R

dz → R be a bounded function, with ϕF
n and ϕ̃F

n specified in (31). Define the un-normalized
filtered mean ϕU

n and its Monte Carlo estimate ϕ̃U
n by

ϕU
n = ϕF

n

n∏

k=1

h(yk | y1:k−1, θ), ϕ̃U
n = ϕ̃F

n

n∏

k=1

1

J

J∑

j=1

w(k, j). (34)

where w(k, j) is computed in Step 4 of Algorithm 1 when evaluating ϕF
n . Then

Ẽ[ϕ̃U
n ] = ϕU

n , (35)

Ẽ
[(
ϕ̃U

n − ϕU
n )2

]
≤ (n+ 1) supx |ϕ(x)|2

J

n∏

k=1

supzk
h(yk | zk, θ)2. (36)

Corollary 1. Setting ϕ(z) = 1 in (34) we see that 1U
N =

∏N
k=1 h(yk | y1:k−1, θ). Suppressing the

dependence on y1:N , we write 1U
N = L(θ), the likelihood function for h. Correspondingly, one can

write 1̃U
N = L̃(θ). It follows from (35) that the Monte Carlo likelihood L̃(θ) is an unbiased estimate

of L(θ).

Some intuition arising from Theorem 5 is that the bias in using the Monte Carlo estimate ϕ̃F
n for

ϕF
n arises due to the nonlinearity of the normalization procedure. From (35), we see that ϕ̃U

n is an
unbiased estimate of ϕU

n . Defining the unit function 1(x) = 1, it also follows that 1̃U
n is an unbiased

estimate of 1U
n . However, ϕ̃F

n = ϕ̃U
n

/
1̃U

n is generally a biased estimate of ϕF
n = ϕU

n

/
1U

n . The
un-normalized filtered mean in Theorem 5 is not usually a quantity of direct interest (Corollary 1
being an exception). However, Theorem 5 is necessary to justify (37) and (38) below.
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The bound in terms of (33) was not explicitly mentioned by Crisan and Doucet (2002) but is a
direct consequence of their proof (see Appendix B). The uniform bound in (26) then follows from
the observation that ηk in (33) is continuous as a function of σ in the context of Theorem 2. To show
that (25) follows from (26) we follow the approach of Del Moral and Jacod (2001, Equation 3.3.14).
Noting that ϕF

n = ϕU
n

/
1U

n and ϕ̃F
n = ϕ̃U

n

/
1̃U

n , Theorem 5 implies the identity

Ẽ[ϕ̃F
n − ϕF

n ] = Ẽ
[
(ϕ̃F

n − ϕF
n )

(
1 − 1̃U

n (1)

1U
n (1)

)]
. (37)

Applying the Cauchy-Schwarz inequality, together with (32) and (36), gives

∣∣ Ẽ[ϕ̃F
n − ϕF

n ]
∣∣ ≤ C15

supx |ϕ(x)|
J

. (38)

The uniform bound in (25) follows from the observation that the bounding constants in (32) and
(36) are continuous as a function of σ in the context of Theorem 2.

4.5 A proof of Theorem 3

Theorem 3 follows directly from a general stochastic approximation result, presented as Theorem 6
below. In the context of Theorem 3, conditions (B5) and (B6) of Theorem 6 hold from Theorem 2
and the remaining assumptions of Theorem 6 hold by hypothesis.

Theorem 6. Let ℓ(θ) be a continuously differentiable function R
dθ → R and let {Dm(θ),m ≥ 1} be

a sequence of independent Monte Carlo estimators of the vector of partial derivatives ∇ℓ(θ). Define
a sequence {θ̂m} recursively by θ̂m+1 = θ̂m + amDm(θ̂m). Assume (B1–B2) of Section 2 together
with the following conditions:

(B4) am > 0, am → 0,
∑

m am = ∞.

(B5)
∑

m a2
m sup|θ|<r Ṽar

(
Dm(θ)

)
<∞ for every r > 0.

(B6) limm→∞ sup|θ|<r

∣∣Ẽ[Dm(θ)] −∇ℓ(θ)
∣∣ = 0 for every r > 0.

Then θ̂m converges to θ̂ = arg max ℓ(θ) with probability one.

Theorem 6 is a special case of Theorem 2.3.1 of Kushner and Clark (1978). The most laborious
step in deducing Theorem 6 from Kushner and Clark (1978) is to check that (B1–B6) imply that,
for all ǫ > 0,

lim
n→∞

P
[
sup
j≥1

∣∣∣
n+j∑

m=n

am

{
Dm(θ̂m) − Ẽ[Dm(θ̂m) | θ̂m]

}∣∣∣ ≥ ǫ
]

= 0, (39)

which in turn implies condition A2.2.4 of Kushner and Clark (1978). To show (39), we define
ξm = Dm(θ̂m) − Ẽ[Dm(θ̂m) | θ̂m] and

ξk
m =

{
ξm if |θ̂m| ≤ k

0 if |θ̂m| > k
. (40)

Define processes {Mn
j =

∑n+j
m=n amξm, j ≥ 0} and {Mn,k

j =
∑n+j

m=n amξ
k
m, j ≥ 0} for each k and n.

These processes are martingales with respect to the filtration defined by the Monte Carlo stochas-
ticity. From the Doob-Kolmogorov martingale inequality (e.g., Grimmett and Stirzaker, 1992),

P
[
sup

j
|Mn,k

j | ≥ ǫ
]
≤ 1

ǫ2

∞∑

m=n

a2
m sup

|θ|<k
Ṽar

(
Dm(θ)

)
. (41)
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Define events Fn = {supj |Mn
j | ≥ ǫ} and Fn,k = {supj |Mn,k

j | ≥ ǫ}. It follows from (B5) and (41)
that limn→∞ P{Fn,k} = 0 for each k. In light of the non-divergence assumed in (B2), this implies
limn→∞ P{Fn} = 0 which is exactly (39).

To expand on this final assertion, let Ω = {supm |θ̂m| < ∞} and Ωk = {supm |θ̂m| < k}.
Assumption (B2) implies that P (Ω) = 1. Since the sequence of events {Ωk} is increasing up to Ω,
we have limk→∞ P (Ωk) = P (Ω) = 1. Now observe that Ωk ∩ Fn,j = Ωk ∩ Fn for all j ≥ k, as there

is no truncation of the sequence {ξj
m,m = 1, 2, . . . } for outcomes in Ωk when j ≥ k. Then,

lim
n→∞

P [Fn] ≤ lim
n→∞

P [Fn ∩ Ωk] + 1 − P [Ωk]

= lim
n→∞

P [Fn,k ∩ Ωk] + 1 − P [Ωk]

≤ lim
n→∞

P [Fn,k] + 1 − P [Ωk]

= 1 − P [Ωk].

Since k can be chosen to make 1 − P [Ωk] arbitrarily small, it follows that limn→∞ P [Fn] = 0.

A Formalizing the use of generic functions via overloading

A partially observed Markov model was specified by a generic probability density functions g(· | ·).
This was used to describe all joint and conditional distributions, with the argument to g(· | ·)
specifying the density in question. For example,

g(yn | y1:n−1, θn) (42)

gives the distribution of yn given y1:n−1 and θn. This notation has advantages that it is self-
documenting and one does not have to define additional notation for the density of every new
quantity that is brought into consideration. Ensuring that the notation results in correct mathe-
matics requires some amount of care for the following two reasons: (i) we do not distinguish between
random variables and their realizations; (ii) the meaning of a function should not usually depend
on the name of the argument supplied, so f(x) and f(y) should correspond to the same function f
evaluated at x or y respectively.

An equally adaptable notation, which is more explicit but cumbersome to the point of being
unusable, involves rewriting (42) as

gYn|Y1:n−1,Θn
(yn | y1:n−1, θn). (43)

The map from (42) onto (43) is an instance of function overloading, which for the current purposes
is synonymous with the technical term function polymorphism in computer languages (Strachey,
2000). To define a polymorphic function, which takes different functional forms depending on
the arguments, one must label the arguments with types. We suppose that yn has type Yn, and
similarly θn has type Θn, etcetera. The overloaded function g(· | ·) in (42) then looks to the type of
its arguments when it is evaluated via (43). Suppose that we wish to evaluate (42) at θ∗n = θn + ǫn.
We can achieve this by writing g(yn | y1:n−1, θ

∗
n) if it is considered clear that θ∗n should possess the

same type as θn, namely Θn. We also interpret g(yn | y1:n−1, θn= θ∗n) as an explicit instruction to
evaluate g(yn | y1:n−1, θ

∗
n) with θ∗n being assigned the type of θn.

The arguments for and against overloading in (42) are essentially the same as those in com-
puter languages. Overloading has a potential for conceptual clarity and conciseness which must
be weighed against the potential cost in terms of errors arising from incorrect applications of the
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typing rules. Overloading is fundamental to object oriented computer programming, and notation
such as (42) has similarly been found useful for working with dynamic models. The formalization
of (42) in terms of function overloading enables more confident use of this convenient notation.

B Some additional details on Theorem 4

Here, we seek to support our assertion in the statement of Theorem 4 that the proof in Crisan and
Doucet (2002) implies the constant C14 in equation (32) can be written as a linear function of 1
and ηn,1, . . . , ηn,n defined as

ηn,i =

n∏

k=n−i+1

(
supzk

h(yk | zk, θ)
h(yk | y1:k−1, θ)

)2

.

Below, we use the notation of Crisan and Doucet (2002) and a reader wishing to follow our argument
is advised to have a copy of this article at hand. Crisan and Doucet (2002, Section V) introduced
the following recursion:

cn|n =
(√

C +
√
c̃n|n

)2
(44)

c̃n|n = 4cn|n−1

( ||h||n
h(yn|y1:n−1, θ)

)2
(45)

cn|n−1 =
(
1 +

√
cn−1|n−1

)2
(46)

where ||h||n = supzn
h(yn|zn, θ). Here, C is a constant that depends on the resampling procedure

but not on the number of particles J . The constant C14 in equation (32) corresponds to cn|n. Now,
(44–46) can be reformulated by routine algebra as

cn|n ≤ K1 +K2 c̃n|n (47)

c̃n|n ≤ K3 qn cn|n−1 (48)

cn|n−1 ≤ K4 +K5 cn−1|n−1 (49)

where qn = ||h||2n
[
h(yn|y1:n−1, θ)

]−2
and K1, . . . ,K5 are constants which do not depend on h, θ,

y1:N or J . Putting (48) and (49) into (47),

cn|n ≤ K1 +K2K3qncn|n−1

≤ K1 +K2K3K4qn +K2K3K5qncn−1|n−1. (50)

Since ηn,i = qnηn−1,i for i < n, and ηn,n = qn, the required assertion follows from (50).

C Some additional details on the proof of Lemma 1

We wish to show the validity of the assertion that

log g(yn | y1:n−1, θn= θ + cτ) = log g(yn | y1:n−1, θ0:n= θ + cτ) +O(σ). (51)

We will instead show that

g(yn | y1:n−1, θn= θ + cτ) = g(yn | y1:n−1, θ0:n= θ + cτ) +O(σ), (52)
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from which (51) follows since g is bounded away from zero on compact sets. Begin by defining

I = g(yn | y1:n−1, θn= θ + cτ)

=

∫
g(yn | y1:n−1, θ0:n−1, θn= θ + cτ) g(θ0:n−1 | θn= θ + cτ, y1:n) dθ0:n−1. (53)

Now a Taylor expansion gives

g(yn | y1:n−1, θ0:n−1, θn= θ + cτ) = A+B, (54)

where

A = g(yn | y1:n−1, θ0:n= θ + cτ)

B = (θ0:n−1 − θ − cτ)′∇θ0:n−1
g(yn | y1:n−1, θn= θ + cτ, θ∗0:n−1)

for some θ∗0:n−1 satisfying
θ0:n−1 ≤ θ∗0:n−1 ≤ θ + cτ. (55)

Here, it is understood that θ∗0:n−1 ≤ θ+cτ means θ∗k ≤ θ+cτ componentwise for each 0 ≤ k ≤ n−1.
Putting (54) into (53),

I =

∫
(A+B) g(θ0:n−1 | θn= θ + cτ, y1:n) dθ0:n−1.

Since A does not depend on θ0:n−1, and g(.|.) is a density, we find that

I = A+

∫
B g(θ0:n−1 | θn= θ + cτ, y1:n) dθ0:n−1. (56)

To show (51), it therefore suffices to argue that the second term of (56) is O(σ). For θ∗0:n−1 restricted
to a compact subset of R

dθ , (A2) guarantees the existence of a C16 such that

|∇θ0:n−1
g(yn|y1:n−1, θn= θ + cτ, θ∗0:n−1, x1:n)| < C16.

Therefore,

∇θ0:n−1
g(yn|y1:n−1, θn = θ + cτ, θ∗0:n−1)

=

∫
∇θ0:n−1

g(yn | y1:n−1, θn= θ+cτ, θ∗0:n−1, x1:n) g(x1:n | y1:n−1, θn= θ+cτ, θ∗0:n−1) dx1:n

≤ C16 (57)

since g(.|.) integrates to 1. Using (57), we expand the second term of (56) to give
∫
B g(θ0:n−1 | θn= θ + cτ, y1:n) dθ0:n−1

=

∫
(θ0:n−1 − θ − cτ)′∇θ0:n−1

g(yn | y1:n−1, θn= θ+cτ, θ∗0:n−1)g(θ0:n−1 | θn= θ+cτ, y1:n) dθ0:n−1

≤ C16

∫
(θ0:n−1 − θ − cτ)′g(θ0:n−1|θn = θ + cτ, y1:n) dθ0:n−1

= C16

{
E[θ0:n−1|θn = θ + cτ ] − θ − cτ

}
(58)

= O(σ). (59)

(59) follows from (58) by (A4), completing our demonstration of (51).
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Cappé, O., S. Godsill, and E. Moulines (2007, May). An overview of existing methods and recent
advances in sequential Monte Carlo. Proceedings of the IEEE 95 (5), 899–924.
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