
Mean Field Simulation 
for Monte Carlo 
Integration  



MONOGRAPHS ON STATISTICS AND APPLIED PROBABILITY

General Editors

F. Bunea, V. Isham, N. Keiding, T. Louis, R. L. Smith, and H. Tong 

1. Stochastic Population Models in Ecology and Epidemiology M.S. Barlett (1960)
2. Queues D.R. Cox and W.L. Smith (1961)
3. Monte Carlo Methods J.M. Hammersley and D.C. Handscomb (1964)
4. The Statistical Analysis of Series of Events D.R. Cox and P.A.W. Lewis (1966)
5. Population Genetics W.J. Ewens (1969)
6. Probability, Statistics and Time M.S. Barlett (1975)
7. Statistical Inference S.D. Silvey (1975)
8. The Analysis of Contingency Tables B.S. Everitt (1977)
9. Multivariate Analysis in Behavioural Research A.E. Maxwell (1977)
10. Stochastic Abundance Models S. Engen (1978)
11. Some Basic Theory for Statistical Inference E.J.G. Pitman (1979)
12. Point Processes D.R. Cox and V. Isham (1980)
13. Identification of Outliers D.M. Hawkins (1980)
14. Optimal Design S.D. Silvey (1980)
15. Finite Mixture Distributions B.S. Everitt and D.J. Hand (1981)
16. Classification A.D. Gordon (1981)
17. Distribution-Free Statistical Methods, 2nd edition J.S. Maritz (1995)
18. Residuals and Influence in Regression R.D. Cook and S. Weisberg (1982)
19. Applications of Queueing Theory, 2nd edition G.F. Newell (1982)
20. Risk Theory, 3rd edition R.E. Beard, T. Pentikäinen and E. Pesonen (1984)
21. Analysis of Survival Data D.R. Cox and D. Oakes (1984)
22. An Introduction to Latent Variable Models B.S. Everitt (1984)
23. Bandit Problems D.A. Berry and B. Fristedt (1985)
24. Stochastic Modelling and Control M.H.A. Davis and R. Vinter (1985)
25. The Statistical Analysis of Composition Data J. Aitchison (1986)
26. Density Estimation for Statistics and Data Analysis B.W. Silverman (1986)
27. Regression Analysis with Applications G.B. Wetherill (1986)
28. Sequential Methods in Statistics, 3rd edition G.B. Wetherill and K.D. Glazebrook (1986)
29. Tensor Methods in Statistics P. McCullagh (1987)
30. Transformation and Weighting in Regression R.J. Carroll and D. Ruppert (1988)
31. Asymptotic Techniques for Use in Statistics O.E. Bandorff-Nielsen and D.R. Cox (1989)
32. Analysis of Binary Data, 2nd edition D.R. Cox and E.J. Snell (1989)
33. Analysis of Infectious Disease Data N.G. Becker (1989)
34. Design and Analysis of Cross-Over Trials B. Jones and M.G. Kenward (1989)
35. Empirical Bayes Methods, 2nd edition J.S. Maritz and T. Lwin (1989)
36. Symmetric Multivariate and Related Distributions K.T. Fang, S. Kotz and K.W. Ng (1990)
37. Generalized Linear Models, 2nd edition P. McCullagh and J.A. Nelder (1989)
38. Cyclic and Computer Generated Designs, 2nd edition J.A. John and E.R. Williams (1995)
39. Analog Estimation Methods in Econometrics C.F. Manski (1988)
40. Subset Selection in Regression A.J. Miller (1990)
41. Analysis of Repeated Measures M.J. Crowder and D.J. Hand (1990)
42. Statistical Reasoning with Imprecise Probabilities P. Walley (1991)
43. Generalized Additive Models T.J. Hastie and R.J. Tibshirani (1990)
44. Inspection Errors for Attributes in Quality Control N.L. Johnson, S. Kotz and X. Wu (1991)
45. The Analysis of Contingency Tables, 2nd edition B.S. Everitt (1992)



46. The Analysis of Quantal Response Data B.J.T. Morgan (1992)
47. Longitudinal Data with Serial Correlation—A State-Space Approach R.H. Jones (1993)
48. Differential Geometry and Statistics M.K. Murray and J.W. Rice (1993)
49. Markov Models and Optimization M.H.A. Davis (1993)
50. Networks and Chaos—Statistical and Probabilistic Aspects  

O.E. Barndorff-Nielsen, J.L. Jensen and W.S. Kendall (1993)
51. Number-Theoretic Methods in Statistics K.-T. Fang and Y. Wang (1994)
52. Inference and Asymptotics O.E. Barndorff-Nielsen and D.R. Cox (1994)
53. Practical Risk Theory for Actuaries C.D. Daykin, T. Pentikäinen and M. Pesonen (1994)
54. Biplots J.C. Gower and D.J. Hand (1996)
55. Predictive Inference—An Introduction S. Geisser (1993)
56. Model-Free Curve Estimation M.E. Tarter and M.D. Lock (1993)
57. An Introduction to the Bootstrap B. Efron and R.J. Tibshirani (1993)
58. Nonparametric Regression and Generalized Linear Models P.J. Green and B.W. Silverman (1994)
59. Multidimensional Scaling T.F. Cox and M.A.A. Cox (1994)
60. Kernel Smoothing M.P. Wand and M.C. Jones (1995)
61. Statistics for Long Memory Processes J. Beran (1995)
62. Nonlinear Models for Repeated Measurement Data M. Davidian and D.M. Giltinan (1995)
63. Measurement Error in Nonlinear Models R.J. Carroll, D. Rupert and L.A. Stefanski (1995)
64. Analyzing and Modeling Rank Data J.J. Marden (1995)
65. Time Series Models—In Econometrics, Finance and Other Fields  

D.R. Cox, D.V. Hinkley and O.E. Barndorff-Nielsen (1996)
66. Local Polynomial Modeling and its Applications J. Fan and I. Gijbels (1996)
67. Multivariate Dependencies—Models, Analysis and Interpretation D.R. Cox and N. Wermuth (1996)
68. Statistical Inference—Based on the Likelihood A. Azzalini (1996)
69. Bayes and Empirical Bayes Methods for Data Analysis B.P. Carlin and T.A Louis (1996)
70. Hidden Markov and Other Models for Discrete-Valued Time Series I.L. MacDonald and W. Zucchini (1997)
71. Statistical Evidence—A Likelihood Paradigm R. Royall (1997)
72. Analysis of Incomplete Multivariate Data J.L. Schafer (1997)
73. Multivariate Models and Dependence Concepts H. Joe (1997)
74. Theory of Sample Surveys M.E. Thompson (1997)
75. Retrial Queues G. Falin and J.G.C. Templeton (1997)
76. Theory of Dispersion Models B. Jørgensen (1997)
77. Mixed Poisson Processes J. Grandell (1997)
78. Variance Components Estimation—Mixed Models, Methodologies and Applications P.S.R.S. Rao (1997)
79. Bayesian Methods for Finite Population Sampling G. Meeden and M. Ghosh (1997)
80. Stochastic Geometry—Likelihood and computation  

O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. van Lieshout (1998)
81. Computer-Assisted Analysis of Mixtures and Applications—Meta-Analysis, Disease Mapping and Others  

D. Böhning (1999)
82. Classification, 2nd edition A.D. Gordon (1999)
83. Semimartingales and their Statistical Inference B.L.S. Prakasa Rao (1999)
84. Statistical Aspects of BSE and vCJD—Models for Epidemics C.A. Donnelly and N.M. Ferguson (1999)
85. Set-Indexed Martingales G. Ivanoff and E. Merzbach (2000)
86. The Theory of the Design of Experiments D.R. Cox and N. Reid (2000)
87. Complex Stochastic Systems O.E. Barndorff-Nielsen, D.R. Cox and C. Klüppelberg (2001)
88. Multidimensional Scaling, 2nd edition T.F. Cox and M.A.A. Cox (2001)
89. Algebraic Statistics—Computational Commutative Algebra in Statistics  

G. Pistone, E. Riccomagno and H.P. Wynn (2001)
90. Analysis of Time Series Structure—SSA and Related Techniques  

N. Golyandina, V. Nekrutkin and A.A. Zhigljavsky (2001)
91. Subjective Probability Models for Lifetimes Fabio Spizzichino (2001)
92. Empirical Likelihood Art B. Owen (2001)



93. Statistics in the 21st Century Adrian E. Raftery, Martin A. Tanner, and Martin T. Wells (2001)
94. Accelerated Life Models: Modeling and Statistical Analysis  

Vilijandas Bagdonavicius and Mikhail Nikulin (2001)
95. Subset Selection in Regression, Second Edition Alan Miller (2002)
96. Topics in Modelling of Clustered Data Marc Aerts, Helena Geys, Geert Molenberghs, and Louise M. Ryan (2002)
97. Components of Variance D.R. Cox and P.J. Solomon (2002)
98. Design and Analysis of Cross-Over Trials, 2nd Edition Byron Jones and Michael G. Kenward (2003)
99. Extreme Values in Finance, Telecommunications, and the Environment  

Bärbel Finkenstädt and Holger Rootzén (2003)
100. Statistical Inference and Simulation for Spatial Point Processes  

Jesper Møller and Rasmus Plenge Waagepetersen (2004)
101. Hierarchical Modeling and Analysis for Spatial Data 

Sudipto Banerjee, Bradley P. Carlin, and Alan E. Gelfand (2004)
102. Diagnostic Checks in Time Series Wai Keung Li (2004) 
103. Stereology for Statisticians Adrian Baddeley and Eva B. Vedel Jensen (2004)
104. Gaussian Markov Random Fields: Theory and Applications Håvard Rue and Leonhard Held (2005)
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Preface

Monte Carlo integration

This book deals with the theoretical foundations and the applications of
mean field simulation models for Monte Carlo integration.

In the last three decades, this topic has become one of the most active
contact points between pure and applied probability theory, Bayesian infer-
ence, statistical machine learning, information theory, theoretical chemistry
and quantum physics, financial mathematics, signal processing, risk analysis,
and several other domains in engineering and computer sciences.

The origins of Monte Carlo simulation certainly start with the seminal
paper of N. Metropolis and S. Ulam in the late 1940s [435]. Inspired by the
interest of his colleague S.Ulam in the poker game N. Metropolis, coined, the
term “Monte Carlo Method” in reference to the “capital” of Monaco well
known as the European city for gambling.

The first systematic use of Monte Carlo integration was developed by these
physicists in the Manhattan Project of Los Alamos National Laboratory, to
compute ground state energies of Schödinger’s operators arising in thermonu-
clear ignition models. It is also not surprising that the development of these
methods goes back to these early days of computers. For a more thorough dis-
cussion on the beginnings of the Monte Carlo method, we refer to the article
by N. Metropolis [436].

As its name indicates, Monte Carlo simulation is, in the first place, one of
the largest, and most important, numerical techniques for the computer sim-
ulation of mathematical models with random ingredients. Nowadays, these
simulation methods are of current use in computational physics, physical
chemistry, and computational biology for simulating the complex behavior of
systems in high dimension. To name a few, there are turbulent fluid models,
disordered physical systems, quantum models, biological processes, population
dynamics, and more recently financial stock market exchanges. In engineering
sciences, they are also used to simulate the complex behaviors of telecommu-
nication networks, queuing processes, speech, audio, or image signals, as well
as radar and sonar sensors.

Note that in this context, the randomness reflects different sources of model
uncertainties, including unknown initial conditions, misspecified kinetic pa-
rameters, as well as the external random effects on the system. The repeated

xix
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random samples of the complex system are used for estimating some averaging
type property of some phenomenon.

Monte Carlo integration theory, including Markov chain Monte Carlo algo-
rithms (abbreviated MCMC), sequential Monte Carlo algorithms (abbreviated
SMC), and mean field interacting particle methods (abbreviated IPS) are also
used to sample complex probability distributions arising in numerical proba-
bility, and in Bayesian statistics. In this context, the random samples are used
for computing deterministic multidimensional integrals.

In other situations, stochastic algorithms are also used for solving com-
plex estimation problems, including inverse type problems, global optimization
models, posterior distributions calculations, nonlinear estimation problems, as
well as statistical learning questions (see for instance [77, 93, 163, 274, 521]).
We underline that in this situation, the randomness depends on the design of
the stochastic integration algorithm, or the random search algorithm.

In the last three decades, these extremely flexible Monte Carlo algorithms
have been developed in various forms mainly in applied probability, Bayesian
statistics, and in computational physics. Without any doubt, the most famous
MCMC algorithm is the Metropolis-Hastings model presented in the mid-
1960s by N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E.
Teller in their seminal article [437].

This rather elementary stochastic technique consists in designing a re-
versible Markov chain, with a prescribed target invariant measure, based on
sequential acceptance-rejection moves. Besides its simplicity, this stochastic
technique has been used with success in a variety of application domains. The
Metropolis-Hastings model is cited in Computing in Science and Engineer-
ing as being in the top 10 algorithms having the “greatest influence on the
development and practice of science and engineering in the 20th century.”

As explained by N. Metropolis and S. Ulam in the introduction of their
pioneering article [435], the Monte Carlo method is, “essentially, a statistical
approach to the study of differential equations, or more generally, of integro-
differential equations that occur in various branches of the natural sciences.”

In this connection, we emphasize that any evolution model in the space of
probability measures can always be interpreted as the distributions of random
states of Markov processes. This key observation is rather well known for
conventional Markov processes and related linear evolution models.

More interestingly, nonlinear evolution models in distribution spaces can
also be seen as the laws of Markov processes, but their evolution interacts in a
nonlinear way with the distribution of the random states. The random states
of these Markov chains are governed by a flow of complex probability distri-
butions with often unknown analytic solutions, or sometimes too complicated
to compute in a reasonable time. In this context, Monte Carlo and mean field
methods offer a catalog of rather simple and cheap tools to simulate and to
analyze the behavior of these complex systems.

These two observations are the stepping stones of the mean field particle
theory developed in this book.
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Mean field simulation

The theory of mean field interacting particle models had certainly started
by the mid-1960s, with the pioneering work of H.P. McKean Jr. on Markov
interpretations of a class of nonlinear parabolic partial differential equations
arising in fluid mechanics [428]. We also quote an earlier article by T.E. Harris
and H. Kahn [322], published in 1951, using mean field type and heuristic-like
splitting techniques for estimating particle transmission energies.

Since this period until the mid-1990s, these pioneering studies have been
further developed by several mathematicians; to name a few, in alphabeti-
cal order, J. Gärtner [265], C. Graham [295, 296, 297, 298, 299, 300, 301,
302, 303, 304, 305, 306], B. Jourdain [348], K. Oelschläger [450, 451, 452],
Ch. Léonard [394], S. Méléard [429, 430, 431], M. Métivier [434], S. Roelly-
Coppoletta [431], T. Shiga and H. Tanaka [516], and A.S. Sznitman [538]. Most
of these developments were centered around solving Martingale problems re-
lated to the existence of nonlinear Markov chain models, and the description
of propagation of chaos type properties of continuous time IPS models, in-
cluding McKean-Vlasov type diffusion models, reaction diffusion equations,
as well as generalized Boltzmann type interacting jump processes. Their tra-
ditional applications were essentially restricted to fluid mechanics, chemistry,
and condensed matter theory. Some of these application domains are discussed
in some detail in the series of articles [111, 112, 126, 317, 402, 128, 423]. The
book [360] provides a recent review on this class of nonlinear kinetic models.

Since the mid-1990s, there has been a virtual explosion in the use of mean
field IPS methods as a powerful tool in real-word applications of Monte Carlo
simulation in information theory, engineering sciences, numerical physics, and
statistical machine learning problems. These sophisticated population type
IPS algorithms are also ideally suited to parallel and distributed environment
computation [65, 269, 272, 403]. As a result, over the past few years the popu-
larity of these computationally intensive methods has dramatically increased
thanks to the availability of cheap and powerful computers. These advanced
Monte Carlo integration theories offer nowadays a complementary tool, and
a powerful alternative to many standard deterministic function-based projec-
tions and deterministic grid-based algorithms, often restricted to low dimen-
sional spaces and linear evolution models.

In contrast to traditional MCMC techniques (including Gibbs sampling
techniques [270], which are a particular instance of Metropolis-Hasting mod-
els), another central advantage of these mean field IPS models is the fact that
their precision parameter is not related to some stationary target measure,
nor of some burning time period, but only to the size of the population. This
precision parameter is more directly related to the computational power of
parallel computers on which we are running the IPS algorithms.

In the last two decades, the numerical solving of concrete and complex non-
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linear filtering problems, the computation of complex posterior Bayesian dis-
tribution, as well as the numerical solving of optimization problems in evolu-
tionary computing, has been revolutionized by this new class of mean field IPS
samplers [93, 163, 161, 186, 222, 513, 547]. Nowadays, their range of applica-
tion is extending from the traditional fluid mechanics modeling towards a vari-
ety of nonlinear estimation problems arising in several scientific disciplines; to
name a few, with some reference pointers: Advanced signal processing and non-
linear filtering [104, 151, 161, 154, 163, 225, 222, 223, 288, 366, 364], Bayesian
analysis and information theory [93, 133, 163, 165, 222, 252, 403], queueing
networks [33, 296, 297, 299, 300, 301], control theory [373, 337, 338, 575], com-
binatorial counting and evolutionary computing [7, 163, 186, 513, 547], image
processing [8, 150, 251, 476], data mining [490], molecular and polymer simula-
tion [163, 186, 309], rare events analysis [125, 122, 163, 175, 176, 282], quantum
Monte Carlo methods [16, 91, 175, 176, 326, 433, 498], as well as evolutionary
algorithms and interacting agent models [82, 157, 286, 327, 513, 547].

Applications on nonlinear filtering problems arising in turbulent fluid me-
chanics and weather forecasting predictions can also be found in the series
of articles by Ch. Baehr and his co-authors [25, 26, 28, 29, 390, 487, 537].
More recent applications of mean field IPS models to spatial point pro-
cesses, and multiple object filtering theory can be found in the series of ar-
ticles [101, 102, 103, 137, 221, 459, 460, 461, 510, 564, 565, 566, 567]. These
spatial point processes, and related estimation problems occur in a wide vari-
ety of scientific disciplines, such as environmental models, including forestry
and plant ecology modeling, as well as biology and epidemiology, seismol-
ogy, materials science, astronomy, queuing theory, and many others. For a
detailed discussion on these applications areas we refer the reader to the book
of D. Stoyan, W. Kendall, and J. Mecke [532] and the more recent books of
P.J. Diggle [218] and A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D.
Stoyan [24].

The use of mean field IPS models in mathematical finance is more recent.
For instance, using the rare event interpretation of particle methods, R. Car-
mona, J. P. Fouque, and D. Vestal proposed in [98] an interacting particle
algorithm for the computation of the probabilities of simultaneous defaults in
large credit portfolios. These developments for credit risk computation were
then improved in the recent developments by R. Carmona and S. Crépey [95]
and by the author and F. Patras in [187]. Following the particle filtering ap-
proach which is already widely used to estimate hidden Markov models, V.
Genon-Catalot, T. Jeantheau, and C. Laredo [271] introduced particle meth-
ods for the estimation of stochastic volatility models.

More generally, this approach has been applied for filtering nonlinear and
non-Gaussian Models by R. Casarin [106], R. Casarin, and C. Trecroci [107].
More recently, M. S. Johannes, N. G. Polson, and J.R. Stroud [345] used
a similar approach for filtering latent variables such as the jump times and
sizes in jump diffusion price models. Particle techniques can also be used
in financial mathematics to design stochastic optimization algorithms. This
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version of particle schemes was used by S. Ben Hamida and R. Cont in [47] for
providing a new calibration algorithm allowing for the existence of multiple
global minima. Finally, in [196, 197], interacting particle methods were used
to estimate backward conditional expectations for American option pricing.

For a more thorough discussion on the use of mean field methods in math-
ematical finance, we refer the reader to the review article [96], in the book [97].

As their name indicates, branching and interacting particle systems are of
course directly related to individual based population dynamics models arising
in biology and natural evolution theory. A detailed discussion on these topics
can be found in the articles [56, 108, 110, 315, 313, 314, 442, 445, 446, 455],
and references therein.

In this connection, I also quote the more recent and rapidly developing
mean field games theory introduced in the mid-2000s by J.M. Lasry and P.L.
Lions in the series of pioneering articles [381, 382, 383, 384]. In this context,
fluid particles are replaced by agents or companies that interact mutually in
competitive social-economic environments so that to find optimal interacting
strategies w.r.t. some reward function.

Applications of game theory with multiple agents systems in biology,
economics, and finance are also discussed in the more recent studies by
V. Kolokoltsov and his co-authors [361, 362, 363], in the series of arti-
cles [9, 48, 83, 84, 376, 395, 449, 548], the ones by P.E. Caines, M. Huang, and
R.P. Malhamé [329, 330, 331, 332, 333, 334, 335], as well as in the pioneering
article by R. J. Aumann [23]. Finite difference computational methods for solv-
ing mean field games Hamilton-Jacobi nonlinear equations can also be found
in the recent article by Y. Achdou, F. Camilli, and I. Capuzzo Dolcetta [4].

For a more detailed account on this new branch of games theory, I refer
to the seminal Bachelier lecture notes given in 2007-2008 by P.L. Lions at the
Collège de France [401], as well as the series of articles [287, 329, 426] and
references therein.

A need for interdisciplinary research

As attested by the rich literature of mean field simulation theory, many re-
searchers from different disciplines have contributed to the development of this
field. However, the communication between these different scientific domains
often requires substantial efforts, and often a pretty longer time frame to ac-
quire domain specific languages so as to understand the recent developments
in these fields. As a result, the communication between different scientific
domains is often very limited, and many mean field simulation methods de-
veloped in some domains have been rediscovered later by others researchers
from different scientific fields. For instance, mean field Feynman-Kac mod-
els are also known under a great many names and guises. In physics, engi-
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neering sciences, as well as in Bayesian statistical analysis, the same inter-
acting jump mean field model is known under several lively buzzwords; to
name a few: pruning [403, 549], branching selection [170, 286, 484, 569], re-
juvenation [8, 134, 275, 336, 490], condensation [339], look-ahead and pilot
exploration resampling [263, 403, 405], Resampled Monte Carlo and RMC-
methods [556], subset simulation [20, 21, 22, 396, 399], Rao-Blackwellized
particle filters [280, 444, 457], spawning [138], cloning [310, 500, 501, 502],
go-with-the-winner [7, 310], resampling [324, 522, 408], rejection and weight-
ing [403], survival of the fittest [138], splitting [121, 124, 282], bootstrap-
ping [43, 289, 290, 409], replenish [316, 408], enrichment [54, 336, 262, 374],
and many other botanical names.

On the other hand, many lines of applied research seem to be developing
in a blind way, with at least no visible connections with mathematical sides
of the field. As a result, in applied science literature some mean field IPS
models are presented as natural heuristic-like algorithms, without a single
performance analysis, nor a discussion on the robustness and the stability of
the algorithms.

In the reverse angle, there exists an avenue of mathematical open research
problems related to the mathematical analysis of mean field IPS models. Re-
searchers in mathematical statistics, as well as in pure and applied probability,
must be aware of ongoing research in some more applied scientific domains.
I believe that interdisciplinary research is one of the key factors to develop
innovative research in applied mathematics, and in more applied sciences.

It is therefore essential to have a unified and rigorous mathematical treat-
ment so that researchers in applied mathematics, and scientists from different
application domains, can learn from one field to another. This book tries to
fill the gap with providing a unifying mathematical framework, and a self-
contained and up-to-date treatment, on mean field simulation techniques for
Monte Carlo integration. I hope it will initiate more discussions between differ-
ent application domains and help theoretical probabilist researchers, applied
statisticians, biologists, statistical physicists, and computer scientists to better
work across their own disciplinary boundaries.

On the other hand, besides the fact that there exists an extensive number
of books on simulation and conventional Monte Carlo methods, and Markov
chain Monte Carlo techniques, very few studies are related to the founda-
tions and the application of mean field simulation theory. To guide the reader
we name a few reference texbooks on these conventional Monte Carlo simu-
lations. The series of books by E.H.L. Aarts and J.H.M. Korst [1, 2], R.Y.
Rubinstein [503, 504, 505, 506], and G. Pflug [471] discuss simulation and
randomized techniques to combinatorial optimization, and related problems
in operation research. The books by W.R. Gilks, S. Richardson, and D.J.
Spiegelhalter [276], the one by B. D. Ripley [491], and the one by C.P. Robert
and G. Casella [493] are more centered around conventional Monte Carlo
methods, and MCMC techniques with applications in Bayesian inference.

The books by G. Fishman [256], as well as the one by S. Asmussen and
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P.W. Glynn [18], discuss standard stochastic algorithms including discretiza-
tion techniques of diffusions, Metropolis-Hasting techniques, and Gibbs sam-
plers, with several applications in operation research, queueing processes, and
mathematical finance. The book by P. Glasserman [284] contains more prac-
tically oriented discussions on the applications of Monte Carlo methods in
mathematical finance. Rare event Monte Carlo simulation using importance
sampling techniques are discussed in the book by J.A. Bucklew [85]. The book
by O. Cappé, E. Moulines, and T. Rydèn [93], as well as the book [222] edited
by A. Doucet, J.F.G. de Freitas, and N.J. Gordon, are centered around ap-
plications of sequential Monte Carlo type methods to Bayesian statistics, and
hidden Markov chain problems.

In this connection, the present book can be considered as a continuation of
the monograph [163] and lecture notes [161] edited in 2000, and the more re-
cent survey article [161, 186], dedicated to Feynman-Kac type models. These
studies also discuss continuous time models, and uniform concentration in-
equalities. In the present volume, we present a more recent unifying mean
field theory that applies to a variety of discrete generation IPS algorithms,
including McKean-Vlasov type models, branching and interacting jump pro-
cesses, as well as Feynman-Kac models, and their extended versions arising in
multiple object nonlinear filtering, and stochastic optimal stopping problems.

I have also collected a series of new deeper studies on general evolution
equations taking values in the space of nonnegative measures, as well as new
exponential concentration properties of mean field models. Researchers and
applied mathematicians will also find a collection of modern stochastic pertur-
bations techniques, based on backward semigroup methods, and second order
Taylor’s type expansions in distribution spaces. Last, but not least, the unify-
ing treatment presented in this book sheds some new light on interesting links
between physical, engineering, statistical, and mathematical domains which
may appear disconnected at first glance. I hope that this unifying point of
view will help to develop fruitfully this field further.

Use and interpretations of mean field models

I have written this book in the desire that post-graduate students, re-
searchers in probability and statistics, as well as practitioners will use it.

To accomplish this difficult task, I have tried to illustrate the use of mean
field simulation theory in a systematic and accessible way, across a wide range
of illustrations presented through models with increasing complexity in a va-
riety of application areas. The illustrations I have chosen are very often at the
crossroad of several seemingly disconnected scientific disciplines, including bi-
ology, physics, engineering sciences, probability, and statistics.

In this connection, I emphasize that most of the mean field IPS algorithms
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I have discussed in this book are mathematically identical, but their interpre-
tations strongly depend on the different application domains they are thought.
Furthermore, different ways of interpreting a given mean field particle tech-
nique often guide researchers’ and development engineers’ intuition to design
and to analyze a variety of consistent mean field stochastic algorithms for
solving concrete estimation problems. This variety of interpretations is one of
the threads that guide the development of this book, with constant interplays
between the theory and the applications.

In fluid mechanics, and computational physics, mean field particle models
represent the physical evolution of different kinds of macroscopic quantities
interacting with the distribution of microscopic variables. These stochastic
models includes physical systems such as gases, macroscopic fluid models,
and other molecular chaotic systems. One central modeling idea is often to
neglect second order fluctuation terms in complex systems so that to reduce
the model to a closed nonlinear evolution equation in distribution spaces (see
for instance [126, 526], and references therein). The mean field limit of these
particle models represents the evolution of these physical quantities. They are
often described by nonlinear integro-differential equations.

In computational biology and population dynamic theory, the mathemat-
ical description of mean field genetic type adaptive populations, and related
spatial branching processes, is expressed in terms of birth and death and com-
petitive selection type processes, as well as mutation transitions of individuals,
also termed particles. The state space of these evolution models depends on
the application domain. In genealogical evolution models, the ancestral line
of individuals evolves in the space of random trajectories. In genetic popula-
tion models, individuals are encoded by strings in finite or Euclidian product
spaces. Traditionally, these strings represent the chromosomes or the geno-
types of the genome. The mutation transitions represent the biological random
changes of individuals. The selection process is associated with fitness func-
tions that evaluate the adaptation level of individuals. In this context, the
mean field limit of the particle models is sometimes called the infinite popu-
lation model. For finite state space models, these evolutions are described by
deterministic dynamical systems in some simplex. In more general situations,
the limiting evolution belongs to the class of measure valued equations.

In computer sciences, mean field genetic type IPS algorithms (abbreviated
GA) are also used as random search heuristics that mimic the process of evo-
lution to generate useful solutions to complex optimization problems. In this
context, the individuals represent candidate solutions in a problem depen-
dent state space; and the mutation transition is analogous to the biological
mutation so as to increase the variability and the diversity of the population
of solutions. The selection process is associated with some fitness functions
that evaluate the quality of a solution w.r.t. some criteria that depend on the
problem at hand. In this context, the limiting mean field model is often given
by some Boltzmann-Gibbs measures associated with some fitness potential
functions.
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In advanced signal processing as well as in statistical machine learning
theory, mean field IPS evolution models are also termed Sequential Monte
Carlo samplers. As their name indicates, the aim of these methodologies is to
sample from a sequence of probability distributions with an increasing com-
plexity on general state spaces, including excursion spaces in rare event level
splitting models, transition state spaces in sequential importance sampling
models, and path space models in filtering and smoothing problems. In sig-
nal processing these evolution algorithms are also called particle filters. In
this context, the mutation-selection transitions are often expressed in terms
of a prediction step, and the updating of the particle population scheme. In
this case, the limiting mean field model coincides with the evolution of con-
ditional distributions of some random process w.r.t. some conditioning event.
For linear-Gaussian models, the optimal filter is given by Gaussian conditional
distributions, with conditional means and error covariance matrices computed
using the celebrated Kalman filter recursions. In this context, these evolution
equations can also be interpreted as McKean-Vlasov diffusion type models.
The resulting mean field model coincides with the Ensemble Kalman Filters
(abbreviated EKF) currently used in meteorological forecasting and data as-
similation problems.

In physics and molecular chemistry, mean field IPS evolution models are
used to simulate quantum systems to estimate ground state energies of a
many-body Schödinger evolution equation. In this context, the individuals
are termed walkers to avoid confusion with the physical particle based mod-
els. These walkers evolve in the set of electronic or macromolecular configura-
tions. These evolution stochastic models belong to the class of Quantum and
Diffusion Monte Carlo methods (abbreviated QMC and DMC). These Monte
Carlo methods are designed to approximate the path space integrals in many-
dimensional state spaces. Here again these mean field genetic type techniques
are based on a mutation and a selection style transition. During the muta-
tion transition, the walkers evolve randomly and independently in a potential
energy landscape on particle configurations. The selection process is associ-
ated with a fitness function that reflects the particle absorption in an energy
well. In this context, the limiting mean field equation can be interpreted as a
normalized Schrödinger type equation. The long time behavior of these non-
linear semigroups is related to top eigenvalues and ground state energies of
Schrödinger’s operators.

In probability theory, mean field IPS models can be interpreted into two
ways. Firstly, the particle scheme can be seen as a step by step projection of
the solution of an evolution equation in distribution spaces, into the space of
empirical measures. More precisely, the empirical measures associated with a
mean field IPS model evolve as a Markov chain in reduced finite dimensional
state spaces. In contrast to conventional MCMC models based on the long time
behavior of a single stochastic process, the mean field IPS Markov chain model
is associated with a population of particles evolving in product state spaces. In
this sense, mean field particle methods can be seen as a stochastic linearization
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of nonlinear equations. The second interpretation of these models relies on
an original stochastic perturbation theory of nonlinear evolution equations
in distribution spaces. More precisely, the local sampling transitions of the
population of individuals induce some local sampling error, mainly because
the transition of each individual depends on the occupation measure of the
systems. In this context, the occupation measures of the IPS model evolve as
the limiting equation, up to these local sampling errors.

A unifying theoretical framework

Most of the book is devoted to the applications of mean field theory to
the analysis of discrete generation and nonlinear evolution equations in dis-
tribution spaces. Most of the models come from discrete time approximations
of continuous time measure valued processes. Because of the importance of
continuous time models in physical, finance, and biological modeling, as well
as in other branches of applied mathematics, several parts of this book are
concerned with the deep connections between discrete time models measure
valued processes and their continuous time version, including linear and non-
linear integro-differential equations.

Our mathematical base strongly differs from the traditional convergence to
equilibrium properties of conventional Markov chain Monte Carlo techniques.
In addition, in contrast with traditional Monte Carlo samplers, mean field IPS
models are not based on statistically independent particles, so that the law
of large numbers cannot be used directly to analyze the performance of these
interacting particle samplers.

The analysis of continuous time interacting particle systems developed
in the last decades has been mainly centered around propagation of chaos
properties, or asymptotic theorems, with very little information on the long
time behavior of these particle models and on their exponential concentration
properties.

To the best of my knowledge, the first studies on discrete generation mean
field particle models, uniform quantitative estimates w.r.t. the time parameter,
and their applications to nonlinear filtering problems and genetic type particle
algorithms were started in the mid-1990s in [151, 152], as well as in the series
of articles [154, 198, 169, 170]. In the last two decades, these studies have
been further developed in various theoretical and more applied directions. For
a detailed discussion on these developments, with a detailed bibliography, I
refer to [161, 163, 186], and references therein. In this connection, I apologize
in advance for any possible errors or omissions due to the lack of accurate
information.

While exploring the convergence analysis of discrete generation mean field
models, the reader will encounter a great variety of mathematical techniques,
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including nonlinear semigroup techniques in distribution spaces, interacting
empirical process theory, exponential concentration inequalities, uniform con-
vergence estimates w.r.t. the time horizon, as well as functional fluctuation
theorems. These connections are remarkable in the sense that every proba-
bilistic question related to the convergence analysis of IPS models requires to
combine several mathematical techniques. For instance, the uniform exponen-
tial concentration inequalities developed in this book are the conjunction of
backward nonlinear semigroup techniques, Taylor’s type first order expansions
in distribution spaces, Lm-mean error estimates, and Orlicz norm analysis or
Laplace estimates.

Uniform quantitative Lm-mean error bounds, and uniform concentration
estimates w.r.t. the time horizon rely on the stability properties of the limiting
nonlinear semigroup. These connections between the long time behavior of
mean field particle models and the stability properties of the limiting flow of
measures are not new. We refer the reader to the articles [161, 163, 169, 170,
160, 182] published in the early 2000s in the context of Feynman-Kac models,
and the more recent studies [166, 186] for more general classes of mean field
models.

The analysis of discrete generation genetic type particle models is also
deeply connected to several remarkable mathematical objects including com-
plete ancestral trees models, historical and genealogical processes, partially ob-
served branching processes, particle free energies, as well as backward Markov
particle models. A large part of the book combines semigroup techniques with
a stochastic perturbation analysis to study the convergence of interacting par-
ticle algorithms in very general contexts. I have developed, as systematically
as I can, the application of this stochastic theory to applied models in numer-
ical physics, dynamical population theory, signal processing, control systems,
information theory, as well as in statistical machine learning research.

The mean field theory developed in this book also offers a rigorous and
unifying framework to analyze the convergence of numerous heuristic-like al-
gorithms currently used in physics, statistics, and engineering. It applies to
any problem which can be translated in terms of nonlinear measure valued
evolution equations.

At a first reading, the frustration some practitioners may get when ana-
lyzing abstract and general nonlinear evolution models in distribution state
spaces will be rapidly released, since their mean field interacting particle ap-
proximations provide instantly a collection of powerful Monte Carlo simulation
tools for the numerical solution of the problem at hand. Several illustrations of
this mean field theory are provided in the context of McKean-Vlasov diffusion
type models, Feynman-Kac distribution flows, as well as spatial branching
evolution models, probability hypothesis density equations, and association
tree based models arising in multiple object nonlinear filtering problems.

I also emphasize that the present book does not give a full complete treat-
ment of the convergence analysis of mean field IPS models. To name a few
missing topics, we do not discuss increasing and strong propagation of chaos
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properties, and we say nothing on Berry-Esseen theorems and asymptotic
large deviation principles. In the context of Feynman-Kac models, the reader
interested in these topics is recommended to consult the monograph [163], and
references therein. To the best of our knowledge the fluctuation, and the large
deviation analysis, of the intensity measure particle models and some of the
extended Feynman-Kac models discussed in this book are still open research
problems.

While some continuous time models are discussed in the first opening chap-
ter, Chapter 2, and in Chapter 5, I did not hesitate to concentrate most of
the exposition to discrete time models. The reasons are threefold:

Firstly, in the opening chapter I will discuss general state space Markov
chain models that encapsulate without further work continuous time Markov
processes by considering path spaces or excursion type continuous time mod-
els. The analysis of discrete time models only requires a smaller prerequisite
on Markov chains, while the study of continuous time models would have
required a different and specific knowledge on Markov infinitesimal genera-
tors and their stochastic analysis. In this opening chapter, I underline some
connections between discrete generation and mean field IPS simulation and
the numerical solving of nonlinear integro-differential equations. A more de-
tailed and complete presentation of these continuous time models and their
stochastic analysis techniques would have been too much digression.

The interested reader in continuous time models is recommended to consult
the series of articles [295, 302, 303, 428, 429, 430, 451, 452, 538] and the
more recent studies [57, 109, 295, 349, 418]. Interacting jumps processes and
McKean-Vlasov diffusions are also discussed in the book [360] and the series of
articles [161, 173, 176, 178, 498]. Uniform propagations of chaos for interacting
Langevin type diffusions can also be found in the recent study [200]. For a
discussion on sequential Monte Carlo continuous time particle models, we also
refer the reader to the articles by A. Eberle, and his co-authors [237, 238, 239].

Uniform propagation of chaos for continuous time mean-field collision and
jump-diffusion particle models can also be found in the more recent stud-
ies [440, 441]. The quantitative analysis developed in these studies is restricted
to weak propagation of chaos estimates. It involves rather complex stochastic
and functional analysis, but it also relies on backward semigroup expansions
entering the stability properties of the limiting model, as the ones developed
in [161, 163, 169, 170, 160, 182] in the early 2000s, and in the more recent
studies [166, 186]. In this connection, an important research project is to ex-
tend the analysis developed in [440, 441] to obtain some useful quantitative
uniform concentration inequalities for continuous time mean field, collision
and interacting jump-diffusion models w.r.t. the time horizon.

The second reason is that, apart from some mathematical technicalities,
the study of continuous time models often follows the same intuitions and the
same semigroup analysis of discrete time models. On the other hand, to the
best of my knowledge, various nonasymptotic convergence estimates developed
in this book, such uniform concentration inequalities w.r.t. the time horizon,
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the convergence analysis at the level of the empirical process, as well as the
analysis of backward Feynman-Kac particle models, remain nowadays open
problems for continuous time mean field models.

Our third reason comes from two major practical and theoretical issues.
Firstly, to get some feasible computer implementation of mean field IPS al-
gorithms, continuous time models require introduction of additional levels of
approximation. On the other hand, it is well known that at any time dis-
cretization schemes induce an additional and separate bias in the resulting
discrete generation particle algorithm (see for instance [155] in the context of
nonlinear filtering models).

Last, but not least, the convergence analysis of time discretization schemes
is also based on different mathematical tools, with specific stochastic analysis
techniques. In this connection, it is also well known that some techniques used
to analyze continuous time models, such as the spectral analysis of Langevin
type reversible diffusions, fail to describe the convergence properties of their
discrete time versions.

A contents guide

One central theme of this book will be the applications of mean field
simulation theory to the mathematical and numerical analysis of nonlinear
evolution equations in distribution spaces.

To whet the appetite and to guide the different classes of users, the opening
chapters, Chapter 1, and Chapter 2, provide an overview of the main topics
that will be treated in greater detail in the further development of this book,
with precise reference pointers to the corresponding chapters and sections.

These two chapters should not be skipped since they contain a detailed
exposition of the mean field IPS models, and their limiting measure valued
processes discussed in this book. To support this work, we also discuss some
high points of the book, with a collection of selected convergence estimates,
including contraction properties of nonlinear semigroups, nonasymptotic vari-
ance theorems, and uniform concentration inequalities.

Our basis is the theory of Markov processes. Discrete, and continuous time,
Markov processes play a central role in the analysis of linear, and nonlinear
evolution equations, taking values in the space probability measures. In this
context, these evolution models in distribution spaces can always be inter-
preted as the distribution of the random states of a Markov process. In this
interpretation, the theory of Markov processes offers a natural way to solve
these measure valued equations, by simulating repeated samples of the random
paths of the stochastic process. To provide a development of the area perti-
nent to each reader’s specific interests, in the opening chapter, Chapter 1, we
start with a rather detailed discussion on different classes of measure valued
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evolution models, and their linear, and nonlinear, Markov chain interpretation
models.

In order to have a concrete basis for the further development of the book,
in Chapter 2, we illustrate the mathematical models with a variety of McKean-
Vlasov diffusion type models, and Feynman-Kac models, with concrete exam-
ples arising in particle physics, biology, dynamic population and branching
processes, signal processing, Bayesian inference, information theory, statisti-
cal machine learning, molecular dynamics simulation, risk analysis, and rare
event simulations.

In Chapter 3, we introduce the reader to Feynman-Kac models and their
application domains, including spatial branching processes, particle absorp-
tion evolutions, nonlinear filtering, hidden Markov chain models, as well as
sensitivity measure models arising in risk analysis, as well as in mathematical
finance. We also provide some discussions on path space models, including
terminal time conditioning principles and Markov chain bridge models.

It is assumed that the interpretation of mean field Feynman-Kac models
strongly depends on the application area. Each interpretation is also a source
of inspiration for researchers and development engineers to design stochastic
particle algorithms equipped with some tuning parameters, adaptive particle
criteria, and coarse grained techniques. To guide the reader’s intuition, in
Chapter 4, we present four equivalent particle interpretations of the Feynman-
Kac mean field IPS models; namely the branching process interpretation and
related genetic type algorithms (abbreviated GA), the sequential Monte Carlo
methodology (abbreviated SMC), the interacting Markov chain Monte Carlo
sampler (abbreviated i-MCMC), and the more abstract mean field interacting
particle system interpretation (abbreviated IPS).

From the mathematical perspective, we recall that these four interpretation
models are, of course, equivalent. Nevertheless, these different interpretations
offer complementary perspectives that can be used to design and to analyze
more sophisticated particle algorithms. These new classes of IPS models often
combine branching techniques, genealogical tree samplers, forward-backward
sampling, island type coarse graining models, adaptive MCMC methodologies,
and adaptive selection type models [11, 186, 227, 279, 280]. More sophisticated
mean field IPS algorithms include adaptive resampling rules [60, 158, 159], as
well as particle MCMC strategies [11], particle SMC techniques and interact-
ing Kalman filters [12, 132, 163, 225, 253, 444, 457], approximate Bayesian
computation style methods [36, 154, 155, 156], adaptive temperature sched-
ules [279, 280, 511], and convolution particle algorithms [497, 558].

We also emphasize that McKean-Vlasov diffusion type models can be also
combined with mean field Feynman-Kac type models. This sophisticated class
of mean field IPS filtering models has been used with success to solve nonlinear
filtering problems arising in turbulent fluid mechanics and weather forecasting
predictions [25, 26, 28, 29, 390, 487, 537]. Related, but different classes of
coarse grained and branching type mean field IPS models are also discussed
in the series of articles [135, 144, 161, 186].
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In Chapter 5, we discuss some connections between discrete generation
Feynman-Kac models and their continuous time version. We briefly recall
some basic facts about Markov processes and their infinitesimal generators.
For a more rigorous and detailed treatment, we refer to the reference textbooks
on stochastic calculus [355, 375, 454, 488]. We also use these stochastic model-
ing techniques to design McKean jump type interpretations of Feynman-Kac
models, and mean field particle interpretations of continuous time McKean
models, in terms of infinitesimal generators.

Chapter 6 focuses on nonlinear evolution of intensity measure models aris-
ing in spatial branching processes and multiple object filtering theory. The
analysis and the computation of these nonlinear equations are much more in-
volved than the traditional single object nonlinear filtering equations. Because
of their importance in practice, we have chosen to present a detailed derivation
of these conditional density models. Of course these conditional density filters
are not exact; they are based on some Poisson hypothesis at every updating
step. The solving of the optimal filter associated with a spatial branching sig-
nal requires computing all the possible combinatorial structures between the
branching particles and their noisy observations.

The second part of this book is dedicated to applications of the mean field
IPS theory to two main scientific disciplines: namely, particle absorption type
models arising in quantum physics and chemistry; and filtering and optimal
control problems arising in advanced signal processing and stochastic optimal
control. These two application areas are discussed, respectively, in Chapter 7
and in Chapter 8. Some application domains related to statistical machine
learning, signal processing, and rare event simulation are also discussed in the
first two opening chapters of the book, Chapter 1, and Chapter 2. The list of
applications discussed in this book is by no means exhaustive. It only reflects
some scientific interests of the author.

Chapter 9 is an intermediate as well as a pedagogical step towards the
refined stochastic analysis of mean field particle models developed in the fur-
ther development of the book, dedicated to the theoretical analysis of this
class of models. We hope the rather elementary mathematical material pre-
sented in this opening chapter will help to make the more advanced stochastic
analysis developed in the final part of the book more accessible to theoreti-
cians and practitioners both. This chapter focuses on Feynman-Kac particle
models. More general classes of particle models arising in fluid mechanics,
spatial branching theory, and multiple object filtering literature are discussed
in Chapter 10, as well as in Chapter 13.

Our main goals are to analyze in some more detail the theoretical struc-
ture of mean field interpretations of the Feynman-Kac models. This opening
chapter, on the theoretical analysis of mean field models, does not pretend to
have strong leanings towards applications. Our aim was just to provide some
basic elements on the foundations of mean field IPS models in the context of
Feynman-Kac measures. The applied value of Feynman-Kac particle models
has already been illustrated in some details in Chapter 1, as well as in Chap-
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ter 7, and in Chapter 8, through a series of problems arising in rare event
simulation, particle absorption models, advanced signal processing, stochastic
optimization, financial mathematics, and optimal control problems.

In Chapter 10, we investigate the convergence analysis of a general and
abstract class of mean field IPS model. We begin with a formal description of
mean field IPS models associated with Markov-McKean interpretation models
of nonlinear measure valued equations in the space of probability measures.
Then, we present some rather weak regularity properties that allow devel-
opment of stochastic perturbation techniques and a first order fluctuation
analysis of mean field IPS models. We also present several illustrations, in-
cluding Feynman-Kac models, interacting jump processes, simplified McKean
models of gases, Gaussian mean field models, as well as generalized McKean-
Vlasov type models with interacting jumps. Most of the material presented
in this chapter is taken from the article [166]. Related approaches to the
analysis of general mean field particle models can be found in the series of
articles [144, 152, 168].

Chapter 11 is dedicated to the theory of empirical processes and measure
concentration theory. These techniques are one of the most powerful math-
ematical tools to analyze the deviations of particle Monte Carlo algorithms.
In the last two decades, these mathematical techniques have become some of
the most important steps forward in infinite dimensional stochastic analysis
and advanced machine learning techniques, as well as in the development of
statistical nonasymptotic theory.

For an overview of these subjects, we refer the reader to the seminal books
of D. Pollard [480], one of A.N. Van der Vaart and J.A. Wellner [559], and
the remarkable articles by E. Giné [277], M. Ledoux [391], and M. Tala-
grand [542, 543, 544], and the article by R. Adamczak [6]. In this chapter,
we have collected some more or less well known stochastic techniques for an-
alyzing the concentration properties of empirical processes associated with
independent random sequences on a measurable state space. We also present
stochastic perturbation techniques for analyzing exponential concentration
properties of functional empirical processes. Our stochastic analysis combines
Orlicz’s norm techniques, Kintchine’s type inequalities, maximal inequalities,
as well as Laplace-Cramèr-Chernov estimation methods.

Most of the mathematical material presented in this chapter is taken from
a couple of articles [166, 186]. We also refer the reader to a couple of articles by
the author, with M. Ledoux [160] and S. Tindel [199], for complementary ma-
terial related to fluctuations, and Donsker’s type theorems, and Berry-Esseen
type inequalities for genetic type mean field models. Moderate deviations for
general mean field models can also be found in the article of the author, with
S. Hu and L.M. Wu [174].

Chapter 12 and Chapter 13 are concerned with the semigroup structure,
and the weak regularity properties of Feynman-Kac distribution flows, and
their extended version discussed in Chapter 6. Chapter 14 is dedicated to
the convergence analysis of the particle density profiles associated. It covers
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Feynman-Kac particle models, and their extended version discussed in Chap-
ter 6, as well as more general classes of mean field particle models.

This chapter presents some key first order Taylor’s type decompositions in
distribution spaces, which are the progenitors for our other results. Further
details on the origins and the applications on these expansions and their use
in the bias and the fluctuation analysis of Feynman-Kac particle models can
be found in [151, 161, 163, 169, 186].

In Chapter 15, we focus on genealogical tree based particle models. We
present some equivalence principles that allow application without further
work of most of the results presented in Chapter 14 dedicated to the stochastic
analysis of particle density profiles.

The last two chapters of the book, Chapter 16 and Chapter 17, are dedi-
cated to the convergence analysis of particle free energy models and backward
particle Markov chains.

Lecture courses on advanced Monte Carlo methods

The format of the book is intended to serve three different audiences: re-
searchers in pure and applied probability, who might be interested in special-
izing in mean field particle models; researchers in statistical machine learning,
statistical physics, and computer sciences, who are interested in the founda-
tions and the performance analysis of advanced mean field particle Monte
Carlo methods; and post-graduate students in probability and statistics, who
want to learn about mean field particle models and Monte Carlo simulation.

I assume that the reader has some familiarity with basic facts of Probability
theory and Markov processes. The prerequisite texts in probability theory for
understanding most of the mathematical material presented in this volume are
the books by P. Billingsley [53], and the one by A. N. Shiryaev [518], as well
as the book by S. N. Ethier and T. G. Kurtz [375], dedicated to continuous
time Markov processes.

The material in this book can serve as a basis for different types of ad-
vanced courses in pure and applied probability. To this end, I have chosen to
discuss several classes of mean field models with an increasing level of complex-
ity, starting from the conventional McKean-Vlasov diffusion type models, and
Feynman-Kac distribution flows, to more general classes of backward particle
Markov models, interacting jump type models, and abstract evolution equa-
tions in the space of nonnegative measures.

The mathematical analysis developed in this book is also presented with
increasing degrees of refinements, starting from simple inductive proofs of Lm-
mean error estimates, to more sophisticated functional fluctuations theorems,
and exponential concentration inequalities expressed in terms of the bias and
the variance of mean field approximation schemes.
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To make the lecture easier, I did not try to avoid repetitions, and any
chapter starts with an introduction connecting the results developed in earlier
parts with the current analysis. On the other hand, with a very few exceptions,
I gave my best to give a self-contained presentation with detailed proofs.

The first type of lectures, geared towards applications of mean field particle
methods to Bayesian statistics, numerical physics, and signal processing, could
be centered around one of the two opening chapters, and one on selected
application domains, among the ones developed in the second part of the
book.

The second type, geared towards applications of Feynman-Kac IPS models,
could be centered around the Feynman-Kac modeling techniques presented in
Chapter 3, and their four probabilistic interpretations discussed in Chapter 4.

The third type, geared towards applications of mean field particle methods
to biology and dynamic population models, could also be centered around the
material related to spatial branching processes and multiple object filtering
problems presented in Chapter 2 and in Chapter 6.

There is also enough material to cover a course in signal processing
on Kalman type filters, including quenched and annealed filters, forward-
backward filters, interacting Kalman filters, and ensemble Kalman filters de-
veloped in Section 8.2 and in Section 8.3.

More theoretical types of courses could cover one selected application area
and the stability properties of Feynman-Kac semigroups and their extended
version developed in Chapter 13. A semester-long course could cover the sta-
bility properties of nonlinear semigroups and the theoretical aspects of mean
field particle models developed in the last part of the book.

More specialized theoretical courses on advanced signal processing would
cover multi-object nonlinear filtering models, the derivation of the probability
hypothesis density equations, their stability properties, and data association
tree models (Section 6.3 and Chapter 13).

There is also enough material to support three other sequences of math-
ematical courses. These lectures could cover the concentration properties of
general classes of mean field particle models (Chapter 1 and Chapter 10),
concentration inequalities of Feynman-Kac particle algorithms (Chapter 14,
Chapter 15, Chapter 16, and Chapter 17), and the concentration analysis of
extended Feynman-Kac particle schemes (Chapter 6, Section 14.7, and Sec-
tion 14.8).
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(1902), tome II (1905), Réédition, Jean Gabay, Paris (1987).

[59] V. S. Borkar. Controlled diffusion processes. Probability Surveys, vol. 2,
pp. 213-244 (2005).

[60] L. Bornn, P. Jacob, P. Del Moral, and A. Doucet. An adaptive in-
teracting Wang-Landau algorithm for automatic density exploration.
arXiv:1109.3829v2 [stat.CO] ArXiv April. 2012 [33p] . To appear in Jour-
nal of Computational and Graphical Statistics (2013).

[61] M. Bossy and D. Talay. A stochastic particle method for some one-
dimensional nonlinear PDE. Mathematics and Computer in Simulation,
vol. 38, pp. 43–50 (1995).

[62] M. Bossy and D. Talay. Convergence rate for the approximation of the
limit law of weakly interacting particles: application to the Burgers equa-
tion. Ann. Appl.Probab., vol. 6, pp. 818–861 (1996).

[63] M. Bossy and D. Talay. A stochastic particle method for the McKean-
Vlasov and the Burgers equation. Mathematics of Computation. vol. 66,
no. 217, pp. 157–192 (1997).



536 Bibliography

[64] B. Bouchard and X. Warin. Monte-Carlo valorisation of American op-
tions: facts and new algorithms to improve existing methods. Numerical
Methods in Finance, Springer (2011).
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gence of Island particle models, Preprint (2012).

[228] P. Dupuis and H. Wang. Importance sampling for Jackson networks.
Queueing Systems, vol. 62, pp. 113–157 (2009).

[229] P. Dupuis, K. Leder, and H. Wang. Importance sampling for weighted-
serve-the-longest-queue, Math. of Operations Research, vol. 34, pp. 642–
660 (2009).

[230] P. Dupuis, K. Leder, and H. Wang. Large deviations and importance
sampling for a tandem network with slow-down. QUESTA, vol. 57, pp.
71–83 (2007).

[231] P. Dupuis, K. Leder, and H. Wang. Importance sampling for sums of
random variables with regularly varying tails. ACM Trans. on Modelling
and Computer Simulation, vol. 17, pp. 1–21 (2007).

[232] P. Dupuis, D. Sezer, and H. Wang. Dynamic importance sampling for
queueing networks. Annals of Applied Probability, vol. 17, pp. 1306–1346
(2007).

[233] P. Dupuis and H. Wang. Sub-solutions of an Isaacs equation and efficient
schemes for importance sampling. Mathematics of Operations Research,
vol. 32, pp. 1–35 (2007).

[234] P. Dupuis and H. Wang. Optimal stopping with random intervention
times. Adv. Applied Probability, vol. 34, pp.1–17 (2002).

[235] P. Dupuis and H. Wang. On the convergence from discrete to continuous
time in an optimal stopping problem. Annals of Applied Probability, vol.
15, pp. 1339–1366 (2005).

[236] P. Dybvig. Distributional analysis of portfolio choice. The Journal of
Business, vol. 61, no. 3, pp. 369–393 (1988).

[237] A. Eberle and C. Marinelli. Quantitative approximations of evolving
probability measures and sequential MCMC methods. Probability Theory
and Related Fields, pp. 1–37 (2008).

[238] A. Eberle and C. Marinelli. Stability of nonlinear flows of probability
measures related to sequential MCMC methods. ESAIM: Proceedings,
vol. 19, pp. 22–31 (2007).



Bibliography 549

[239] A. Eberle and C. Marinelli. Lp estimates for Feynman-Kac propaga-
tors with time-dependent reference measures. Journal of mathematical
analysis and applications, vol. 365, no. 1, pp. 120–134. (2010).

[240] A. Economou. Generalized product-form stationary distributions for
Markov chains in random environments with queueing applications. Adv.
in Appl. Probab., vol. 37, no. 1, pp. 185–211 (2005).

[241] D. Egloff. Monte Carlo algorithms for optimal stopping and statistical
learning. Annals of Applied Probability, 15, pp. 1–37 (2005).

[242] D. Egloff, M. Kohler, and N. Todorovic. A dynamic look-ahead Monte
Carlo algorithm for pricing Bermudan options. Ann. Appl. Probab., 17,
pp. 1138–1171 (2007).

[243] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differ-
ential equations in finance. Mathematical Finance, vol. 7, no. 1, pp. 1–71
(1997).

[244] M. Ellouze, J.P. Gauchi, and J.C. Augustin. Global sensitivity analysis
applied to a contamination assessment model of Listeria monocytogenes
in cold smoked salmon at consumption. Risk Anal., vol. 30, pp. 841–852
(2010).

[245] M. Ellouze, J.P. Gauchi, and J.C. Augustin. Use of global sensitivity
analysis in quantitative microbial risk assessment: application to the eval-
uation of a biological time temperature integrator as a quality and safety
indicator for cold smoked salmon. Food Microbiol., vol. 28, no. 4, pp 755–
769 (2011).

[246] M. El Makrini, B. Jourdain and T. Lelièvre. Diffusion Monte Carlo
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pp. 111–174 (2004).

[372] A. Kohatsu-Higa and S. Ogawa. Weak rate of convergence for an Euler
scheme of Nonlinear SDE’s. InMonte Carlo Methods and Its Applications,
vol. 3, pp. 327–345 (1997).



Bibliography 559

[373] V. N. Kolokoltsov and V. P. Maslov. Idempotent Analysis and Its Ap-
plications, vol. 401 of Mathematics and its Applications with an appendix
by P. Del Moral on Maslov optimization theory. Kluwer Academic Pub-
lishers Group, Dordrecht (1997).

[374] K. Kremer and K. Binder. Monte Carlo simulation of lattice models for
macromolecules. Computer Physics Reports, vol. 7, no. 6, pp. 259–310
(1988).

[375] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and
Convergence, Wiley Series Probability & Statistics (1986).

[376] A. Lachapelle, J. Salomon, and G. Turinici. Computation of mean field
equilibria in economics. Mathematical Models and Methods in Applied
Sciences, vol. 20, no. 4, pp. 567–588 (2010).

[377] T. Laffargue, K. D. Nguyen Thu Lam, J. Kurchan, and J. Tailleur. Large
deviations of Lyapunov exponents. ArXiv 1302.6254 (2013).

[378] L. D. Landau, E. M. Lifshitz. Course of theoretical physics. Physical
kinetics, E. M. Lifshitz and L. P. Pitaevskii eds. vol. 10, Oxford, Pergamon
(1981).

[379] O.E. Lanford and D. Ruelle. Observables at infinity and states with
short range correlations in statistical mechanics. Comm. Math. Physics,
vol. 13, pp. 194–215 (1969).

[380] J. M. Laskry and P. L. Lions. Contrôle stochastique avec informations
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