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Monte Carlo calculations which rely on the statistical iteration of some operator can sometimes
lead to results in which the variance grows as the iterations pro:eed. Alternatively the variance can
be stable but the result incorrect. The effects are demonstrate9 by the Monte Carlo iteration of a
2X2 matrix and analyzed in detail for this simple case. In addition an algebraic formulation of a
full Monte Carlo calculation with many simultaneous configural:ions including a method for keeping
the number of configurations constant is given. With this formulation it is shown that the naive

sampling of the wave function and naive estimate of the eigenvalue based on the growth in the num-

ber of configurations will be stable but biased. It is made plausible that for a sufficiently large num-

ber (M) of simultaneous configurations the naive method leacls to a result which approaches the
correct one as M oo. It is shown that the correct average eigenvalue and eigenvector is a certain
weighted average defined so that it avoids the problem of the growing variance and thus becomes
more accurate as the chain is extended.

I. INTRODUCTION gM~ ——1

The Green's-function Monte Carlo method of Kalos
et al. ,

' the Monte Carlo path-integral method of Negele,
and other similar schemes rely on a statistical sampling of
an iterated wave function. This investigation was under-
taken to understand certain puzzling results observed for
large dimensional Monte Carlo problems of this type.
Often when the calculation breaks down, instead of find-
ing more and more scatter, one finds systematic deviation
from the exact result. It was not known if the problem
was that the most probable result was very different from
the average or if it was a matter of having an unknown
bias. In fact, both effects are present. The article on the
Green's-function Monte Carlo method by Kalos and
Ceperly' addresses the question but does not fully resolve
the difficulty.

These methods rely on the idea that an operator's eigen-
vector with largest eigenvalue can be found by multiply-
ing an arbitrary starting vector repeatedly by the operator.
Since these methods proceed by sampling, the scheme is
very similar to that of the Markov process because the
new sample is related through a probabilistic process to
the preceding sample. However, as we shall see there is an
important difference. Because the well-known mathemat-
ical results on Markov processes are relevant, however, we
begin by a review of those results and in particular show
how our problem does not fit exactly into that scheme.

II. DEFINITION OF A STOCHASTIC MATRIX

The theorems about Markov processes are based on the
use of a stochastic matrix. Since the physical problems
we are investigating cannot be formulated in terms of a
stochastic matrix we need to examine tjhe distinction care-
fully. A stochastic matrix is a non-negative matrix all of
whose columns add to one,

(mathemai:ics texts require g.M;& ——1 because they applyJ
the matri~ to the left rather than to the right. I prefer to
keep the probability distribution as a column matrix and

apply the probability matrix to the right). Mz is to be in-

terpreted «s follows: If a system is in state j at time t (or
at iteration n), then at time t+1 (or iteration n + 1) it will

be in state i with probability M;j. The stochastic condi-
tion [Eq. ', 1)] merely states that the total probability that
it be in soigne state i is unity.

There are several results of this definition: (1) A left
eigenvectar of M is (1,1,1, . . .) and has eigenvalue 1. (2) 1

is the ma~;imum eigenvalue. All other eigenvalues are in-
side the u:nit circle. (3) If the matrix is nondecomposable
(i.e., cannot be put in block diagonal form by row and
column permutations) then the maximum eigenvalue is
not degem. crate. These results follow from Frobenius's
theorem and the theory of Gersgoren circles.

III. MARKOV CHAINS

Suppos a system has a finite number of states j. Sup-
pose it moves from one state to another with probability
M;J as described above. The succession of states so gen-
erated is =alled a Markov chain. In particular, one must
have a finite number of states, state i can only depend on
the existing state j, and the matrix M,

&
must be stochastic

for it to be a Markov chain.
After two steps the probability is

gM;kMkj ——(M );~,
k

and after three steps, (M );J, etc. Therefore after many
steps the probability distribution will be stable and in-
dependent: of initial condition because the matrix (M );J
will be dominated by the (right) eigenvector of the highest
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eigenvalue (here assumed to be not degenerate) and we
have

P; =M,JM k Ml

(summation convention assumed). Thus p; is the proba-
bility of being at i if it started at m, but this is indepen-
dent of m after enough steps, ¹ Thus for large X,
P; =P;, where

Mq—QJ,

i.e., g; is the right eigenvector corresponding to eigen-
value 1 and which corresponds to the left eigenvector
(1,1,1, . . .).

IV. RELATION TO NON-NEGATIVE MATRICES

Some matrices can be "made stochastic" as follows:
A;J has left eigenvector Z; with (maximum) eigenvalue A,

and an unknown right eigenvector with eigenvalue A, .
Then, if we take the modified matrix,

1
M;) ———Z;M,JZJ

(no summation), we find that it has column sums of unity
(because g,. Z;A;J ——AZ&), and therefore M~& is stochastic.
Now we can use a stochastic iteration of M;J to find the
unknown right eigenvector of A,J.

First iterate M~J to find its right eigenvector P;,

firn (M );. .
N oo

That is,

Then by inspection, the right eigenvector of A is

requires knowledge of the very eigenvector we wish to cal-
culatet Of course approximations may be used and they
will improve the behavior by making the matrix more
nearly stochastic. However the fundamental problem
remains that the matrix is not stochastic unless the exact
eigenvector can be introduced.

VI. USING NONSTOCHASTIC MATRICES

The limitation to stochastic matrices does not need to
stop us. If the total probability of the final states is
greater than the initial, one merely takes more final con-
figurations or takes a weighted final state. In practice one
cannot tolerate either a net exponential increase or de-
crease in the number of configurations because one would
eventually have too many for any computer in one case or
none in the other. Thus some kind of weighted configura-
tion will be necessary. Because of these practical con-
siderations we will assume that a weight will be carried to
make up for the fact that the matrix is not stochastic.

Any non-negati ve matrix A,J which has nonzero
column sums can be written as a product of a stochastic
matrix and a diagonal matrix

A fJ JVfJ LUJ

where g,. Mz ——1 and toj. ——g,. A,J .
We can proceed to sample the iterate of A by deciding

on the next state using probability M;J. and multiplying
the weight carried by wJ. It is true and easily proved that
on the aUerage the result is a correct sampling of the
eigenvector of A,J. In particular if many samples are car-
ried we have many configurations defined by a state i and
a weight w. Label these configurations by the index cz

and a state can be indicated by (i,w ). Then,

Pi= g~(l ~a

(The introduction of Z; into the problem is a kind of im-
portance sampling, in fact the optimum sampling because
it produces a stochastic matrix. )

V. THE DILEMMA OF THE SYMMETRIC MATRIX

estimates the eigenvector of A,J.
To illustrate this fully we will take a particular 2X2

matrix (which has weights which are reciprocals of each
other for convenience)

5 1

(6x4)

Suppose A in the preceding problem is symmetric.
Then the left eigenvectors are identical to the right eigen-
vectors and the process of obtaining a stochastic matrix

] 6 06 4 4

X 406 4 e

1/2

5/6 &/6 5/6 &/6 &/6 &/6 &/60 e

FIG. 1. Mapping of the problem of the 2 X2 matrix, Note that each state, represented by a dot, makes a transition to another state
according to the arrows with probability attached.
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With this simplification all possible weights are of the
form (v'6/4P where n can be any integer positive or neg-
ative.

Now the final state after operating several times by the
above process is described by the integers i,n where i can
have the values (1,2) and n can have any integer value
. . ., —2, —1,0,1,2, . . . . This space can be mapped as
shown in Fig. 1. It looks a bit like a kind of distillation
column. We can begin at i =1, n =0 as marked and
proceed according to the probabilities shown. If this is
done many times the final weighted result will indeed be
the major eigenvector of the above matrix. If the final
probability is p;„then the eigenstate of the matrix (6) will

be, according to Eq. (5),

W„=(1.5)"

50

VII. DIFFICULTIES ARISE

Now the preceding is true for the average but consider:
We might guess that after many steps, the value of n in
the above problem will be normally distributed as a result
of the central limit theorem. However, we must weight
the results by ( —,)"/ =wo.

Therefore after N steps we expect

(a)

I IL

0
I(

p(n, ij

50

p;„-C;exp[ A(n ——no;} /X], (8)

where no;, A, and C; are constants. Then,

n 1nwo
P, ~ gp, .„e (9)

y ( e N a e N a/2
)

I /2 /t/ M (10)

where

(lnmo)

(=1.526 for our case). Here N is the iteration number
and M the total number of samples followed. It is clear
that the variance increases exponentially with the itera-
tions and only decreases by the usual 1/~M with a large
number of samples. The error will actually go through a
minimum as a function of N. At first the error will de-
crease because the iteration eliminates components of al-
ternate eigenvectors but eventually the error will grow be-

Now we find that although P;„(8)spreads out like ~&,
the rnaxirnum of the summand in (9) moves out like N
and thus samples the tails of the distributions (tails which
in fact probably do not obey the central limit theorem).
Calculated probabilities are shown in Fig. 2. Indeed they
behave as described above.

Using the assumption in Eqs. (8) and (9} we calculate
the variance of P and we find

-30 -20 -10 0 10 20 30 40 50

FIG. 2. (a) Probability distribution for the outcome of the
procedure i)lustrated in Fig. 1 after 50 iterations. (b) The result
of multiplying the weight shown in (c) by the probabilities in (a).
Note that the peak is much farther out in (b) than in (a). In
fact, the peaks in (b) are separated from the peaks of (a) by an
amount proportional to N the number of steps while the width
of (a) is proportional to v N. As a result, the most probable
answer does not equal the average answer and the variance
grows as N gets larger.

cause of the peculiar increase in the variance. This
behavior is illustrated in Fig. 3. The estimate of the wave
function and its error will behave as

Ce Na

y, =(",y', +C, e "'y,'+ . )+-.
M

where e is the ratio of the largest and next largest
eigenvalu(;s and e characterizes the exponential spread in
variance. Although not mathematically related to the
idea of th asymptotic series, the error is similar in that it
first decreases systematically as N increases and then in-
creases chaotically beyond some optimum N. The
minimum error then depends on M as

M —[ctl(a+ b, )]/2
9

or in other words like M ~ where 0&P& —,. Little is
gained in proceeding further than would be necessary to
achieve convergence of the iterated vector to the eigenvec-
tor in an exact scheme.
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Fi . l. Plotted is the angle (() =tan '(X2/X, ), whereexam le of the iteration of the problem shown in Fig. . o e i
Il

n are the various states in e c a'd h t t in the chain. Shown are the exact result,X =~~ 5; (mo), where e runs over all steps in the chain an j, h t t in e c a'

as a result ofi l results when 512 samples were followed and averaged. Note that as a result ocalculated by matrix multiplication, and the statistical results w en samp e
the increasing variance t e ca cu a ionh 1 l t n becomes less reliable with higher iterations.

VIII. THE WEIGHTED AVERAGE

(12a)

where m" indicates the m appearing on the nth iteration
(i.e., w"=w;(„)),and where

Once one knows how many steps are necessary for the
convergence of an exact iteration of the matrix one can
keep a product of that many weights rather than continu-
ing to mu ip y mlt l ore and more weights together. Io t is
way the variance can be controlled while the quantity in

question can be averaged by taking a large series of steps.
For example, the eigenvalue is then given by

A(L)= g w"G„' ' g G„
n=l n=l

L
G(L) g n —i (12b)

In other words, 6„' ' is the product of the previous L
weights, where L is assumed large enough for conver-
gence of the matrix problem. The eigenvector is given by

fl lI

where P;„is the probabiliey of occupation of the state i on
the nth iteration.

An example can be given based on the 2X2 matrix of
Sec. VII. We consider several L values and look at the
average eigenvalue and its variance ass a function of I..

1.08 -I
I

1.06,'.- L = 0 {EXACT)

1.04 '

0 10 20 30 40 50
L

FIG. 4. A plot of the "eigenvalues A,(L) for the &&

'

phe 2&&2 matrix problem o ec.f S . VII. Note that they drift from the value for gu);p;
s the result. The numerical calcula-t eventuall the error term exponential in L dominates t e resu . eto the correct value as L increases, but that eventua y e

b in error statistics. The errors are exaggeratedrated 20000 times. It was repeated five times to o tain error s a
'

tion was a single configuration iterate
nters is also artly a result of correlations.to make them more visi e u e a

' 'bl b t th pparent consistency of the error centers is a so pa y a
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For L =0 (i.e., just averaging w s without weight) we ob-
tain the result

W = WiPi

which mil:ht be termed the "condensation matrix. "
The process of reconfiguring is represented by the

operator

where p; is the eigenvector of the stochastic part of the
matrix. For the matrix of Sec. VII, iV=1.06145 while
the true eigenvalue is A, =1.10517. Therefore as L in-
creases we expect the average defined by Eqs. (12) to
change. It should approach the correct value for large L.
That is A,(0)=w = 1.061 45, while for large L,
A,(L)~1.10517. At the same time we expect the variance
to increase exponentially as L becomes large. Figure 4 il-
lustrates this behavior. There a single Markov chain is
followed. The chain is generated from the matrix of Sec.
VII. The eigenvalues are determined by averages of the
form (12a) where N=20000. The process was repeated
five times to obtain an average and standard deviation for
the quantities A.(L). Notice that the curve approaches the
true eigenvalue for all L's larger than Lo, the number of
steps needed to converge to the correct eigenvalue by actu-
al matrix multiplication as shown by the dashed line in

Fig. 4.

'pM

P p i. stochastic,
—1

n;~P~~ w; n&p(
——Wp)

where

(16a)

(16b}

which will be called the "reconfiguration matrix. " Opera-
tionally this stochastic reconfiguration matrix, Pap, is de-
fined by dividing the interval (0,1] into subintervals for
each configuration in proportion to their weight; then
configurai:ions to be used in the next iteration are selected
by the sutintervals in which M random numbers fall.

With these definitions the following facts are easily
shown:

IX. CARRYING MANY CONFIGURATIONS
SIMULTANEOUSLY

18'p= —(wp +wp + . . +wp ) . (17)

ia =~ia/+ ~ia2+ +~iaM (14)

In practice one quickly finds that the idea of carrying
weights and taking the sample according to the stochastic
part of the true matrix does not work well because of the
preceding difficulties. A very intuitive approach is to ap-
ply the above procedure to several configurations, and
then with probability proportional to the weights, to select
the same number of new configurations. Variants of this
are also possible; for example, several applications of the
procedure can occur before reconfiguration and indeed
reconfiguration itself can proceed in different ways which
have different variances. Sometimes "reconfiguration" is
done by changing a trial eigenvalue which is factored
from the problem. ' We will analyze one method as an ex-
ample.

Assume the matrix to be iterated, B;J-, is symmetric and
non-negative. It can be factored into a stochastic and di-
agonal part

Bij=Qij Wj

where tUJ = +,. 8,&. and g,. a;J ——1. We will follow M con-
figurations simultaneously and therefore the product
space

~=
l ~ l a2 . . . ~M I

must be considered. Here o;i,o.2, etc., cover the same
space as i,j, etc. Therefore if the original space has di-
rnension N the product space has dimension X

To condense the product space into the original space
one asks how many of the numbers o. ]

. o,M are equal to
i and this gives the estimate of the ith component of the
vector in the reduced space.

This process is represented by the nonsquare matrix

We define a stochastic matrix in the product space as

~ap==aa p a p, a p1 l 2 I M

Then in addition we have

nial ap =aiJ nJ p .

(18}

(19)

[Note that A and a are square matrices while n is not.
Equation&; of the form (19} are treated in Gantmacher.
In particular, nonzero n implies equality of some eigen-
values of A and a.]

Finally we come to the following result: If

Al apP'py 8'yZy ———A,Za

using the summation convention, then defining

yi =niaZa ~

we find that

(20)

(21)

afJ WJ PJ Ay) (22)

This is ea,sily proved by applying n; from the left to Eq.
(20) usin~; Eqs. (18) and (19) together with the definition
Eq. (21).

In other words the result means that the solution of the
larger pre)blem (which is written as a product of a stochas-
tic matri:~ AapPp& and a weight W&) leads via the con-
densation matrix n; to the solution of the desired prob-
lern, a;Jv)j. Furthermore, it seems intuitive that this
larger problem suffers less from the difficulties of diver-
gence of the variance.

X. THE LIMIT OF LARGE M

If the weight 8'& in Eq. (20) is omitted then one
iterates the stochastic combination



J. H. HETHERINGTON 30

and the limiting probability Q, which solves the result-

ing equation

A pPprQr =Q

which will eventually develop. Nore that the eigenvalue is
unity because the matrix is stochastic.

Now since Eq. (23) differs from the exact equation (20)
by the omission of the factor kVz we expect the maximum
eigenvector of (23) to be smaller in the region of large 8'&
than the eigenvector of Eq. (20). Therefore we can expect
that the average weight 8'z for a solution will be too
small. As the number M of configurations is increased
the average g WzZz should gradually increase from

below and reach the limit A. .
Proceeding as in the proof above and multiplying Eq.

(23) by n;~ on the left, one obtains s=0 s=0
(28a)

configurations communicate in the sense that reconfigura-
tion takes place after every iteration. Lo ——1/ln(AO/A, ~),
i.e., Lo is the number of iterations needed to eliminate (by
factor of e) the effects of the next significant eigenvector.
L is the number of factors of 8'included in the weighting
of averages. X is the total number of iterations. Sis the
number of terms in the averages.

In the Monte Carlo iteration of an operator which does
not preserve the number of configurations (is not stochas-
tic) where several (M) configurations are kept, we make
the following statements.

(a) We are always left with a problem which is not sto-
chastic in detail. Therefore the best measure of, say, the
eigenvalue is to use the weighted average derived in Sec.
VIII,

—1

Q,J.N)Ilj~lY~ Q~ =n)~Q~ (24.) where

X
W +8 1 2 +Af

on the average this expression is symmetric under inter-
change of the a; and we have

N~
8'

We define P;:n; Q —and tt;= n; 8' '—
Q . Then if we

write

p —1

pl n/ O' Q——

=(6J,+6~,+ . - )

(28b)

Here 8'" is the average weight as in Eq. (17) occurring on
the nth iteration. The average given by Kalos and Ceper-
ly (Eq. 4.68 of Ref. 1) is not the same as this one but in
fact is somewhere between this value and the unweighted
value.

Figure 5 illustrates application of Eqs. (28) to a ten-
dimensional coupled harmonic oscillator problem. The
matrix iterated is e ~ e ~ . The factor e ~ is stochas-
tic while the factor e ~ is the diagonal weight matrix. P

X Q (25)

0.290

If the a's in Q are uncorrelated to order I /M, the g are
related to the P by

0.285—
O.2828

O.280—

l+uJO
1

M
(26)

Then one can say that if Q solves Eq. (23) then PJ solves
O.270

a;Jwj[1+toJO(M ')]PJ =A.P~ . (27)

Since (27) is a matrix problem which differs only by a
part proportional to 1/M from the exact problem, we
have in (27) a stochastic matrix the iteration of which
leads to a result differing from the desired result by terms
proportional to 1/M. It must be noted that this result de-

pends on the assumption about the degree of correlatiorj
of the configurations in Q and therefore cannot be con-
sidered proven. Some numerical experiments have indi-

cated the same result, however.

XI. DISCUSSIQN

The discussion will be less cumbersome if several quan-
tities are defined here: M is the number of simultaneous
configurations which are treated. It is assumed that these

O.265
0 10 15 20 25 30

FIG. 5. Ten one-dimensional harmonic oscillators on a ring

with nearest-neighbor coupling. The calculation was repeated
four times and the average and expected error of the average of
the four calculations are shown. Each calculation was carried
out with 30 configurations ( M =30) and 2000 iterations.
Shown is the eigenvalue A, (L) as a function of L. The exact
value is within 1 to 2 standard deviations of the expected error
after L —10. Note that the error bars expand and the value

A,(L) wanders increasingly with larger L. Convergence is more

rapid than would be expected from the lowest even excited state,
but slower than from the even excited state based on the highest
frequency mode as shown by the two exponential curves.
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is taken small enough that little effect is expected from
the noncommutivity of T and V.

(b) The wave function should be similarly weighted,

S

One exp cts from Eq. (29) that the number of simul-

taneous configurations M, needed for a successful statisti-
cal performance, is proportional to a constant times Lo
and therefcre is manageable for many problems.

s=0

(c) If L =N then averages will diverge with S as the
iteration proceeds (see Sec. VII).

(d) As M is increased the stochastic part of the pro-

cedure approximates more closely the actual problem (see

Sec. X).
(e) There are contributions to the error in this estimate

of the following form:

I /Lo — L
SM

' 1/2

+C)

' 1/2

exp
2L 2 L
M M

B —exp —B
1/2

(29)

Here, C~, Cz, Cq, and B are constants. The first term is
due to the incomplete elimination of effects of other
eigenvectors of the exact problem in the soution of the
stochastic part, A ~P~&, of Eq. (20). The first term also
has the factor I/M as suggested in Sec. IX. The second
term is a simple statistical term which is inversely propor-
tional to the square root of the total number of contribut-
ing terms in the average. The influence of the correlation
between successive terms in the average has been
represented by the v L factor. The third term is due to
the increasing variance as a result of keeping a long prod-
uct of varying factors. It differs from Eq. (10) by the fac-
tor (L/S) '~ and by the assumption that the statistical
fluctuation in the logarithm of the 8"s is proportional to
I/v M. The factor (L/S) '~ results from the averaging
over many correlated terms. Note that the first term in
(29) is not statistical in nature and therefore cannot be
averaged out but can only be removed by increasing M or
L, or both. The third term is, for sufficiently large L /M,
exponential in character and will eventually dominate if
L/M is large enough. Therefore for given M and S we
expect that increasing L will at first decrease the error be-

cause of a decrease in the systematic error of the first
term but that the error will eventually increase chaotically
because of the third term.

XII. CONCLUSIONS

Iteration of a matrix operator applied to a sampling of
a vector is a Markov chain provided the matrix is stochas-
tic. The rriatrix operators which lead to the ground state
of a Hami:Itonian are not stochastic. For this reason the
number of configurations in the sample will either grow
or decay as a result of iteration. Practical considerations
then require that some method be adopted to control the
number of configurations. Algebraic formulation of one
method of control makes it possible to show that the
overall problem in the product space of all configurations
is also not stochastic. For this reason the growth factor in

the number of configurations is not the eigenvalue of the
operator.

Consider'ation of the general problem of iteration of
nonstochastic matrices yields the correct form for the
eigenvalue. It involves a product of such growth factors
and therefore a variance which would be uncontrolled if
too many factors were used. The error in the eigenvalue is
shown to go through a minimum as a function of the
number L of these factors somewhat in analogy with an

asymptotic series. The solution of the stochastic part of
the problem approaches the correct solution of the prob-
lem as the number of configurations increases. As a re-

sult the systematic part of the error in the eigenvalue or
other quantities will be reduced when the number of con-
figurations is increased.

The advantages of the use of the weighted average are
that the error can be caused to be nonbiased and that the
size of a problem solvable in a given computer memory
can be increased because one does not need to depend sole-

ly on the 1/M reduction of the bias caused by the nonsto-
chastic nature of the problem. Furthermore, analysis of
the quantities calculated as functions of the number of
factors in the weights as in Fig. 5 gives important infor-
mation about both the systematic and random errors.
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