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Corporate defaults cluster
Joint work with F. Longstaff, S. Schaefer and I. Strebulaev
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Correlated default risk

Important applications

• Risk management of credit portfolios

– Prediction of correlated defaults and losses

– Portfolio risk measures: VaR etc.

• Optimization of credit portfolios

• Risk analysis, valuation, and hedging of portfolio credit derivatives

– Collateralized debt obligations (CDOs)
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Default timing

• Consider a portfolio of n defaultable assets

– Default stopping times τ i relative to (Ω,F ,P) and F

– Default indicators N i
t = I(τ i ≤ t)

– Vector of default indicators N = (N1, . . . , Nn)

• The portfolio default process 1n ·N counts defaults

– At the center of many applications
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Bottom-up model of default timing

• Name i defaults at intensity λi

– A martingale is given by N i −
∫ ·
0
(1−N i

s)λi
sds

– λi represents the conditional default rate: for small ∆ > 0

λi
t∆ ≈ P(i defaults during (t, t+ ∆] | Ft)

• The vector process λ = (λ1, . . . , λn) is the modeling primitive

– Component processes are correlated: diffusion, common or

correlated or feedback jumps

– Large literature

Kay Giesecke
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Model computation

• We require E(f(NT )) for T > 0 and real-valued f on {0, 1}n

– P(1n ·NT = k)

– P(τ i > t) for constituents i

• Semi-analytical transform techniques

– Limited to (one-) factor doubly-stochastic intensity models

• Monte Carlo simulation

– Larger class of intensity models

– Treatment of more complex instruments such as cash CDOs
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Simulation by time-scaling

• Widely used

– τ i has the same distribution as inf{t :
∫ t

0
λi

sds = Exp(1)}
– In practice: approximate λi on discrete-time grid, integrate,

and record the hitting time of the integrated process

• Potential problems

– Discretization may introduce bias

∗ Magnitude?

∗ Computational effort

∗ Allocation of resources

– Can be computationally burdensome (often n ≥ 100)
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Time-scaling vs. exact methods
Distribution of 1100 ·N2
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Exact and efficient simulation

• Our approach has two parts

1. Construct a time-inhomogeneous, continuous-time Markov

chain M ∈ {0, 1}n with the property that Mt = Nt in law

2. Estimate E(f(NT )) = E(f(MT )) by simulating M

– Exact: avoids intensity discretization

– Efficient: adaptive variance reduction scheme

• Powerful simulation engine applicable to many intensity models in

the literature

Kay Giesecke
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Multivariate Markovian projection

Proposition

• Let M be a Markov chain that takes values in {0, 1}n, starts at

0n, has no joint transitions in any of its components and whose

ith component has transition rate hi(·,M) where

hi(t, B) = E(λi
tI(τ i > t) |Nt = B), B ∈ {0, 1}n

Then Mt = Nt in distribution:

P(Mt = B) = P(Nt = B), B ∈ {0, 1}n

• Related univariate results in Brémaud (1980), Arnsdorf & Halperin

(2007), Cont & Minca (2008), Lopatin & Misirpashaev (2007)
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Markov counting process

• M is a Markov point process in its own filtration G

• The Markov counting process 1n ·M has G-intensity

1n · h(t,Mt) =
n−1∑
k=0

H(t, k)I(Tk ≤ t < Tk+1)

where h = (h1, . . . , hn), and (Tk) is the strictly increasing

sequence of event times of 1n ·M , and

H(t, k) = 1n · h(t,MTk
), t ≥ Tk

• Compare: original portfolio default process 1n ·N has F-intensity

n∑
i=1

λi
tI(τ i > t)
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Markov counting process

• The G inter-arrival intensities H(t, k) of the Markov counting

process 1n ·M are deterministic

• Exact simulation of arrival times of 1n ·M
– Time-scaling method based on H(t, k)

– Equivalently, inverse method based on

P(Tk+1 − Tk > s | GTk
) = exp

(∫ Tk+s

Tk

H(t, k)dt
)

– Sequential acceptance/rejection based on H(t, k)

• Exact simulation of the component Ik ∈ {1, 2, . . . , n} of M in

which the kth transition took place:

P(Ik = i | GTk−) =
hi(Tk,MTk−1)
H(Tk, k − 1)
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Variance reduction

• Interested in P(1n ·NT = k) for large k

– Need to force mimicking chain M into rare-event regime

• Selection/mutation scheme

– Evolve R copies (V r
p ) of M over grid p = 0, 1, . . . ,m under P

– At each p, select R particles by sampling with replacement

P(particle r selected) =
1
Rηp

exp
[
δ1n · (V r

p − V r
p−1)

]
where ηp = 1

R

∑R
r=1 exp[δ1n · (V r

p − V r
p−1)] and δ > 0

– Final estimator of P(1n ·NT = k) corrects for selections

η0 · · · ηm−1

R

R∑
r=1

I(1n · V r
m = k) exp (−δ1n · V r

m)
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Selection/mutation scheme

• The selection mechanism adaptively forces the mimicking Markov

chain M into the rare-event regime

– Del Moral & Garnier (2005, AAP)

– Carmona & Crepey (2009, IJTAF)

– Carmona, Fouque & Vestal (2009, FS)

– Twisting of Feynman-Kac path measures

– Well-suited to deal with different model specifications

• Mutations are generated under the reference measure P via the

exact A/R scheme

• Estimators are unbiased

• Choice of R, m and δ
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Calculating the projection

• Need hi(t, B) = E(λi
tI(τ i > t) |Nt = B) for given (λ1, . . . , λn)

• We show how to calculate hi(t, B) for a range of

– Multi-factor doubly-stochastic models λi
t = Xi

t + αi · Yt

– Multi-factor frailty models λi
t = Xi

t + E(αi · Yt | Ft)

– Self-exciting models λi
t = Xi

t + ci(t,Nt)

in terms of the transform

φ(t, u, z, Z) = E
[
exp

(
−u
∫ t

0

Zsds− zZt

)]
, Z ∈ {Xi, Y }

• This extends the reach of our exact method to most models in the

literature, and beyond
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Numerical results

Self-exciting intensity model for n = 100

• Suppose the intensities λi = Xi +
∑n

j 6=i β
ijN j

– Extends Jarrow & Yu (2001), Kusuoka (1999), Yu (2007)

– Feedback specification can be varied

– Analytical solutions not known

• Suppose the idiosyncratic factor follows the Feller diffusion

dXi
t = κi(θi −Xi

t)dt+ σi

√
Xi

tdW
i
t

where (W 1, . . . ,Wn) is a standard Brownian motion

• Parameters selected randomly (relatively high credit quality)
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Numerical results

Projection for self-exciting intensity model

• The projected intensity is given by

hi(t, B) = E(λi
tI(τ i > t) |Nt = B)

= (1−Bi)
{
− ∂zφ(t, 1, z,Xi)|z=0

φ(t, 1, 0, Xi)
+

n∑
j 6=i

βijBj

}

• The transform φ(t, u, z,Xi) is in closed form, and so is hi(t, B)

– Can add compound Poisson jumps without reducing tractability

– General affine jump diffusion dynamics

Kay Giesecke
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Numerical results

Simulation results for E((C1 − 3)+) where C1 = N1 · 1n

Method Trials Steps Bias SE RMSE Time

Exact 5,000 N/A 0 0.0239 0.0239 0.10 min

7,500 N/A 0 0.0193 0.0193 0.15

10,000 N/A 0 0.0165 0.0165 0.20

50,000 N/A 0 0.0073 0.0073 1.69

100,000 N/A 0 0.0052 0.0052 5.51

1,000,000 N/A 0 0.0016 0.0016 463.78

Time 5,000 71 0.0735 0.0246 0.0775 1842.15

Scaling 7,500 87 0.0697 0.0199 0.0725 2628.33

10,000 100 0.0174 0.0171 0.0244 3255.12
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Numerical results
Convergence of RMS errors
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Numerical results
Variance reduction for P(C1 = k), R = 10, 000 particles, m = 4

Selection/Mutation Plain Exact

k δ Particles P (C1 = k) Trials P (C1 = k) VarRatio

12 0.8 10,000 0.00162340 17,742 0.00220 10.14

13 0.85 10,000 0.00068818 18,065 0.00066 12.33

14 0.85 10,000 0.00029433 18,387 0.00027 63.88

15 1.05 10,000 0.00016310 19,032 0.00011 121.80

16 1.05 10,000 0.00006790 19,032 0.00005 236.92

17 1.15 10,000 0.00002597 19,355 0

18 1.15 10,000 0.00000970 19,355 0

19 1.15 10,000 0.00000500 19,355 0

20 1.15 10,000 0.00000203 19,355 0

21 1.15 10,000 0.00000106 19,355 0

22 1.3 10,000 0.00000039 19,677 0
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Numerical results
Probabilities P(C1 = k), R = 10, 000 particles, m = 4 selections
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Numerical results
Variance reduction for P(C1 = k), R = 1, 000 particles, m = 4

Selection/Mutation Plain Exact

k δ Particles P (C1 = k) Trials P (C1 = k) VarRatio

12 0.8 1,000 0.00156206 1,600 0.00125 14.16

13 0.85 1,000 0.00073476 1,600 0.00125 32.62

14 0.85 1,000 0.00024347 1,600 0.00188 565.20

15 1.05 1,000 0.00009063 1,726 0.00058 1562.75

16 1.05 1,000 0.00009381 1,759 0.00057 2951.99

17 1.15 1,000 0.00006339 1,790 0

18 1.15 1,000 0.00002132 1,823 0

19 1.15 1,000 0.00000972 1,887 0

20 1.15 1,000 0.00000040 1,887 0

21 1.15 1,000 0.00000078 1,918 0

22 1.3 1,000 0.00000028 1,983 0
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Numerical results
Probabilities P(C1 = k), R = 1, 000 particles, m = 4 selections
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Numerical results
Variance ratios for P(C1 = k), varying R, m = 4 selections
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Numerical results
Variance ratios for P(C1 = k), R = 1, 000 particles, varying m
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Numerical results
Probabilities P(C1 = k), R = 1, 000 particles, varying m
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Conclusions

• Exact and efficient simulation engine for portfolio credit risk

– Based on multivariate Markovian projection

– Variance reduction via selection/mutation scheme

• Broadly applicable

– Multi-factor doubly-stochastic models

– Multi-factor frailty models

– Self-exciting models

• Full portfolio and single-name functionality
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Conclusions

• Our results address a gap in the literature on intensity-based

models of portfolio credit risk

– Bassamboo & Jain (2006, WSC)

• Our results complement the simulation methods developed for

copula-based models of portfolio credit risk

– Bassamboo, Juneja & Zeevi (2008, OR)

– Chen & Glasserman (2008, OR)

– Glasserman & Li (2005, MS)

• Our results are relevant in several other application areas,

including reliability, insurance, queuing
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