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Abstract

In this paper we address the problem of nonlinear filtering in the presence of integer uncer-
tainty. In the simulation results we show that Particle Filtering is capable of resolving integer
ambiguity in the given nonlinear setup. Motivated by these results we introduce a new Particle
Filtering algorithm that can reduce the computational complexity for a certain class of prob-
lems. In this class, it is assumed that the conditional density of the state of the system given the
observations is close to a known exponential family of densities. The proof of convergence of the
approximated density to the actual density is given, and the application for GPS positioning is
stated.

1 Introduction

GPS provides world wide positioning with acceptable accuracy, if four or more satellites are in view.
Although the satellite constellation guarantees availability of four or more satellites (sometimes even
nine) world wide, natural or man-made obstacles can easily block the satellites’ signal. To overcome
this vulnerability, one might think of integrating dead reckoning or INS with the GPS [1][2][3]. In
this case, the INS or the dead reckoning provide positioning that is adjusted by the GPS.

Using Differential GPS (DGPS) allows the user to have a more accurate measurement. In
fact, a good portion of the positioning error can be removed from the estimation. This and new
technology allow the use of the carrier phase as part of the positioning information. This can
increase the accuracy of the estimation to centimeter, or in the static case, to millimeter levels.
This can happen only if we are able to estimate the number of full cycles of the carrier phase, which
cannot be measured. This problem is called integer ambiguity resolution [4][5] [6]]7].

Although Carrier Phase DGPS (CPDGPS) allows for very accurate positioning, it is very sensi-
tive to obstacles that can block satellite signals and cycle slips. A good estimation algorithm should
be able to quickly estimate the integer ambiguity on the fly. Most of the algorithms use integer
least square methods for this [6][7][4]. In [4] a Kalman filter type of setup is used to estimate the
integer ambiguity.
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In most of the applications, integrated INS/GPS, dead reckoning/GPS, or vehicle dynam-
ics/GPS, linearization of the dynamics and the GPS observation is the main tool for estimation
[6][7][4]. It can be shown [3] that when the number of satellites is below a certain level or the
geometry of the current constellation is near singular, the linearization causes the system to be
unobservable. In this case, it is important to use a nonlinear setup for the estimation problem. In
[3] this case is studied by using an approximation for nonlinear filtering [8][9].

Except for very special cases in nonlinear settings, estimating the state given the observations
results in an infinite dimensional filter [10]. Therefore, approximation methods of finite dimension
are very appealing. The most widely used approximation filtering method is the Extended Kalman
Filter (EKF), which is a heuristic method based on the linearization of the state dynamics and
observation near the nominal path [10]. EKF is computationally simple but, the convergence of
the conditional distribution to the actual distribution is not guaranteed.

Projection Filtering (PrF) is another approximation method [11][12][13][14]. In PrF it is as-
sumed that the conditional density of the state of the system can be approximated by a member
of parametric family of densities. In this case, estimating the conditional density is equivalent to
estimating the parameter of the family. In [11][12][13] the exponential family of densities is chosen
as the parametric family. In [14] the approach is different; there a Galerkin approximation is used
for solving the Fokker-Planck equation [10].

An entirely different approach to approximate the conditional density was proposed in [8][9].
This method is based on the Monte Carlo method and is called Particle Filtering (PaF). In this
method, the particles at time #; are i.i.d. random vectors that are distributed according to the
empirical conditional distribution of the state, given the observations up to time ¢;. These parti-
cle/state vectors are used in the state equation to find the values of particles at time ¢;;;. Then
at time ¢;51, the empirical distribution is evaluated according to the values of the particles. The
new observation at time ¢;, is taken into account through Bayes’ Rule to calculate the conditional
empirical distribution, and this process can be repeated. In [8] it is proved that by a large enough
number of particles, one can get an approximate conditional distribution that is arbitrarily close
to the true conditional distribution.

In the cases where we have some prior information about the distribution, we may be able to do
better if we take this information into account. By better, we mean reduction in the computational
cost and increase in the convergence rate. Here we assume that the conditional distribution has
a density in an exponential family of densities, or at least stays close to it in a sense that will be
defined. Using this assumption, we replace the empirical distribution in [8] with the Maximum
Likelihood Estimate (MLE) of the distribution and obtain a convergence result in Theorems (3)
and (4).

To use nonlinear filtering methods for CPDGPS, one should be able to include the integer
ambiguity resolution in these methods. In this paper we present some simulation results which
show that PaF, with minor modifications, is capable of resolving integer uncertainties present in a
problem similar to CPDGPS. One problem of PaF is the need for large number of particles. This
problem is even more important for the cases where integer uncertainty is present. The writers are
optimistic that PaF for exponential families of distributions is more suitable for nonlinear filtering
with integer ambiguity.

In this paper, Section 2 states the nonlinear filtering problem. In Section 3 we review the results
in [11][12][13] on projection filtering. In Section 4 we explain particle filtering and we state the
results in [8][9]. In Sections 5 and 6 we introduce a new PaF algorithm and we state the main
results of this paper. In Section 7 we apply the PaF method to a nonlinear system with integer
uncertainty and we present the simulation results. In Section 8 we discuss the future research on



this subject.

2 Nonlinear Filtering, Problem Setup

Filtering problems consist of “estimating” the process {x;} (or something about it) given the
related process, {y;}, which can be observed [15]. The observation is available in an interval, i.e.,
{ys,0 < s < t} and the function of the state is estimated at time ¢. To proceed, we need to give
some structure to the concerned processes.

We assume that all stochastic processes are defined on a fixed probability space (€2, F, P), and a
finite time interval, [0, 7], on which there is defined an increasing family of o-fields, {F;,0 <t < T'}.
It is assumed that each process, {x;}, is adapted to Fy, i.e., {x;} is Fy-measurable for all t. We
assume that {x;} is a vector diffusion process of the form

t t
X = Xg —I—/ fo(xs)ds —I—/ Gy(xs)dwyg, (1)
0 0

where x; € R™, and w; € R? is a vector from an independent Brownian motion process; the second
integral is in Ito sense [16], and the function f;(-) and the matrix G(-) have the proper sizes. The
observation, y;, is a discrete time process given as follows:

Ynr = h, (an) + vn, (2)

where y,, € R%, and v,, € R is a discrete time white Gaussian noise process with zero mean and
known covariance matrix. The state dynamics and observation equation can be rewritten formally
as follows:

dx; = fi(x¢)dt + Gi(x¢)dwy, %o
Yor = hn(an) + vy

(3)

The noise processes {w;, t > 0}, and {v,, n = 0,1,---} | and the initial condition x, are
assumed independent. We use (); and R, for the covariance matrices of the processes w; and
vy, respectively. We assume that R, is invertible for all n’s. We have the following additional
assumptions [12]:

(A1) LOCAL LIPSCHITZ CONTINUITY: V x, X' € B, and t € [0,T], where B, is a ball of radius r,
we have

If:(x) — £ ()| < klx—=x|, and (4)
IGH(x)Q:GT (x) — Ge(x) QG ()| < kellx —x'].
(A2) NON-EXPLOSION: there exists k > 0 such that
XTft(x) < k(l + ||X||2), and (5)
trace(Gy(x)Q:GT (x)) < k(1 + [x]?).

Vite[0,7] and ¥V x € R™.
Under assumptions (A1) and (A2), there exists a unique solution {x;, ¢t € [0,T]} to the state
equation, and x; has finite moment of any order [12].



In addition to these, we assume that the probability distribution of the state x;, given the
observation up to time t, m;(dx) = P(x; € dx|y!), where y* = {y,, i = 1,---,n, nT < t}, has a
density p; with respect to the Lebesgue measure on R". Then {p;, t > 0} satisfies the following
PDE and updating equations [12]:

%Pt = Lipt nt <t<(n+1)r, and (6)
Pnr = Cn\I/npn»r*
where
~ 0 i 1 & o U
Li(®) =— Pl 4 =
t( ) gaxz[ft ]+22JZ_1 8Xi8X]‘[at ]7

[“ij] = GtQthTa
\mxx)éexp(—fwynT—wuxx»TRn%ynr—lnxx»),

and ¢, is a normalizing factor.

Solving System (6) constitures an infinite dimensional filter [10]. This problem can be over-
come in certain special cases. In the linear Gaussian case (6) is equivalent to Kalman Filtering.
Approximation of probability densities with a parametric family of distributions, in certain cases,
has shown good results. In the next sections we review these results.

3 Projection Filtering on Exponential Families of Densities

This section is mainly a review of the results in [13]. We start this section with the definition of
the exponential family of distributions.

Definition 1 Let {c1,---,c,} be affinely independent ' scalar functions defined on R™, and assume
that the convex set

Oy = {0 R T(0) = log /emp (6" e()) dx < oo},
has nonempty interior. Then,
§={p(-.0), 0 €0}, p(x,0):=exp |07 c(x) - T(0)].
where © C Oq is open, is called an exponential family of probability densities.
We denote by S the square root of the densities of S | i.e., Si = {Vp(-,0); 6 € ©). If

p(-,0) € S, then /p(-,0) € L. Q\/ﬁ%ﬁ), i = 1,---,p make a basis for the tangent vector

space at \/p(-,0) to the space S%, i.e., the tangent space at \/p(-,6) is given by [17]:

= span St .
N N T 2V/p(~0) 09,
"e1, -+, cp} are affinely independent if for distinct points x1,Xa, - - -, Xp41, Zf;l Aic(x;) = 0 and f;rll Ai=0

implies )\1 = )\2 == )\p+1 =0



The inner product of any two basis elements is defined defined as follows

1 9p(-,9) 1 9p(-,9) _1 I 1 9p(x.0) 9p(x.0) 4
2\/})(-,6) o00; 2\/1)(',0) 80]‘ 4 p(x,a) 00; 80]‘ (8)
= 19i;(0)
It can be easily seen that ¢(0) = (gi;(0)) = (E[cic;] — Elci]E[c;]) is the Fisher information matrix
of p('7 0)
. 1 . .
Any member of Ly can be projected to the tangent space L\/m82 according to the following

projection formula

Illp: Lo DOV — L\/msé

p P
ij 1 ap(-,0) 1 op(-,0)
v — 22]223149 (9) <U, 2\/1)(-,6) 89]' >2\/p(-,0) 90,

Projection filtering seeks a solution for p; for (6) that lies in S. Of course, this solution is only

(9)

an exponential density, but we hope, by choosing the proper family, we can keep the approximation
error small (in Ly sense).
If we consider the square root of the density in (6), we get

Oype _ 1 opp 1 .
ot 2yp Ot 2Py
ﬁfpt(':a)

Define a; 9 = =275~ We assume that for all § € © and all ¢ > 0, By p){larg*} < oo, which

implies that thi((-,z)) is a vector of Ly for all # € © and all £ > 0 [12].
e,

Now assume that in equation (10), for {/p;, t > to}, starting at time n7 from the initial

condition, \/pnr = /p(+,0ns) € S3 for some 0nr € ©. Under these assumptions, the right hand
side of (10) is in Ly, which can be projected into the finite dimensional tangent vector space

(Pt (10)

LWS%. The projection filter for the exponential family, S, in the interval [n7, (n 4 1)7), is

defined as the solution of the following differential equation in the same interval:

8\/pt(-,9t) — 11, Ei‘pt('ﬁt)
8t t2\/pt(',9t)7

(11)

We also assume that h,(x) in equation (2) is time invariant, i.e., h,(x) h(x), and the

components of h(x), h'(x), and ||h(x)||3_, are linear combinations of ¢;(x), i =1,---, p.
1 p p
LGl = Y Mex) and BEx) = Y M@, k=1, d (12)
i=1 i=1

where ||x||4 = VT Ax. Then if v,, is stationary with the covariance matrix R, = R, the likelihood
function W, (n) can be written as follows:

U (x) = exp(SH(ya, R "ynr)) exp(5H (D (x) R 'h(x)) + (v, R~ 'h(x)))
d p p
= An €xXp <_ z';l )\?CZ(X) + Z (Z Afzzﬂr)cl(x)> )

k=1 i=1

(13)

where z,,, = yZTR’l, and A, is a constant depending on y,,. Therefore the coefficient ¥, (x), is
a member of exponential family of distributions. This family is closed under multiplication. Using
all of these facts, we can present the following theorem [12]:



Theorem 1 For system (3), where w, is a Brownian motion process with covariance Q; and v; is a
white Gaussian noise with covariance R, we assume (A1) and (A2) to be true. We also assume that

p p E* _’6
SR = 3 M), Bhx) = 32 Meix), for k = 1---.d, and Eyo)l I < 00, ¥0 €

O, Vt > 0. Then for all 0 € O, and all t > 0, ngp—("a) is a vector on the exponential manifold

V p('70)
S2.

The projection filter density, p)' = p;(-,0;) is described by

(M

Ope(,0¢) Lipe(-,0t)
ot - 6t2\/ p(’gi) ’
pTLT('agnT) = Cn\Ijn(ynT)pnT* ('79717'*) ;

nt <t < (n+1)r

and the projection filter parameter satisfies the following combined differential and stochastic dif-
ference equations:

9(0:)d0; = Ey{Lc}dt, nt <t<(n+ 1),
Onr = Onr- — 23+ Ty A2l
where . 5 o 52
L= ; fi 0x; + 2 i;_:l ai’ Oxidx;’
and Ny = (X}, .- ,)\;]T, i=0,---,d, and zF is the kth component of 21 = R 'y,

From now on we use Ey and Ej( ) interchangeably.

As can be seen from the result of the theorem, the calculation of the conditional probability
density is reduced to the calculation of the parameter of the exponential family. But still, solving
the differential equation in the theorem is not an easy task. At each moment ¢(6;) and Ep,{Lic}
need to be calculated. This requires a heavy computational load. In this paper, we introduce a
Monte Carlo method to calculate the parameter of the exponential family with a more affordable
computational load.

Although the PrF gives a better solution than EKF, there is no known error bound with which
we can compare the distance between the real distribution and the distribution given by the PrF.
In the next section we review PaF as an alternative to optimal nonlinear filtering.

4 Particle Filtering
Consider either the continuous dynamics and discrete observation in (3) or the discrete case,

Xn+1 = fn(xn) + Gn(xn)wna X0

Yn = hn(xn) + Vp. (14)

We assume that in both cases, the initial distribution for xq is given. The propagation of the
conditional density, at least conceptualy, can be expressed as follows [10]:

e Step 1 . Initialization:
pom(xo\}’o) = p(xo).



e Step 2 . Diffusion:
Pusi Geni11 V) = [ pni %), , (ol V)b,

where YV, = {y1,¥2, -, ¥n}-

e Step 3 . Bayes’ rule update:

p(YTL—l—l ‘Xn+1)pn+1‘n (Xn+1 |yn)
fp(YnJrl ‘Xn+1)pn+1\n (Xn41|Vn)dxn 11

pn+1\n+1 (Xn+1 ‘yn+1) —

e Step4. . n<+ n+1;go to Step (2).

The conditional density given by the above steps is exact, but in general it can be viewed as
an infinite dimensional filter, thus, not implementable. PaF, in brief, is an approximation method
that mimics the above calculations with a finite number of operations using Monte Carlo method.
The procedure for Paf is as follows [18][8]:

Algorithm 1 Particle Filtering
e Step 1. Initialization

o Sample x{,- -+, X(I)V, N i.i.d. random wvectors with the distribution Py(x).

Step 2 . Diffusion

1 N

o Find X} ,1, -+, XX, from the given x\,---, xN using the dynamics rules:

dx; = fi(x¢)dt + Gy(x¢)dwy, nT <t < (n+1)r
or
Xpt1 = (xn) + Gr(Xn)va.

Step 3 . Find the empirical distribution

1 N
Pn+1\n :NZ

Step 4 . Use Bayes Rule

N
v 2 g (%) Unaa(x)

N WJ: ntl
Pn+1\n+1(x) = N ] ]
1 ~ ~
N 21 55(]“( %H) : ‘I’n+1(XZz+1)
J= "
e Step 5 . Resample
o Sample x), .1, -, xN; according to P +1‘n+1( X)

Step 6 . n < n—+1; go to Step (2).



where dy(w) = 1 if w = v and 0 otherwise.

It is customary to call x),- - -, xév particles. In the next few lines, we try to explain in words
the evolution of these particles using the above algorithm.

Let x.,---, ifzv be the distinct particles at time n before incorporating the observation at
time n. The probability of each particle is %, and it is uniformly distributed. After using the
observations, the conditional probability of each particle changes. Some will have small, and some
large probabilities. Therefore, in the process of resampling, it is very likely that some particles will
never be used and instead some other particles (with high probabilities) will be sampled more than
once. Therefore, after resampling, some particles have repeated versions, but in the diffusion phase
they go through different paths and at the end of the diffusion phase, it is very likely, we would
have N distinct particles. This automatically makes the approximation one of better resolution in
the areas where the probability is higher.

In [8] it is proved under some conditions that

“|

for every bounded Borel test function, f(-).

One problem in using PaF method is the computational cost. Specially for high dimensional
system, getting reasonable accuracy means using a large N, which causes heavy computation. In
the next section, we propose a method that can reduce the number of particles for a certain class
of problems.

b S s - Epn(f(X))D — 0 (15)

N —

5 Particle Filtering for Exponential Families of Densities

In the previous sections, we saw two approximation methods for nonlinear filtering. In the PaF
method, we saw that the conditional distribution is approximated by the empirical distribution.
In most cases, the actual conditional distribution is smooth, unlike the empirical distribution. It
seems that if, before hand, we know some properties about the distribution, we can do better
in performance than just using the empirical distribution. In the following, we assume that the
conditional density lies in a parametric family of densities. We will see that with this assumption,
we can show the convergence of the approximated density to the actual one. Forcing the density
to lie in a parametric family induces some error to the estimate of the density, but we hope to find
the proper family that results in an acceptable error.

In this section, after introducing our algorithm, we present some convergence results, and after
that, we compare our method with the methods introduced in the previous sections.

For System (3), we assume that the probability density of x;, given the observation, is in a
family of exponential densities S. This assumption is rather strong. We will drop this assumption
later, and we will only assume that there exists a known family of densities that approximates the
real density well, i.e., with acceptable accuracy.

With this assumption, the proposed algorithm is as follows:

Algorithm 2 Particle Filtering for an Exponential Family of Densities.

e Step 1 . Initialization

o Sample x},- -+, x(])V, N i.i.d. random wvariable with the densities, po(x).



Step 2 . Diffusion

1 N

o Find X141, -+, XN, from the given xL,---, x, using the dynamics rule:

dx; = ft(Xt)dt + Gt(xt)dwt, 1T <t< ('L + 1)7'

Step 3. Find the MLE of 0,11 given Xp1s s 5{711\7Jrl [19]

N

2 _ T (o0 -
9n+1 = arg mgxgexp(g c(xn—l—l) T(e))

Step 4 . Use Bayes Rule

exp(?ﬁ_ﬁ(x) - T(?n+1))\yn+l(x)
[ exp(021e(x) = T(Bs1)) W (x)dx

pn+1\n+1(xu 9n+1) =

Step 5 . Resample
o Sample x3, 1, -+, x); according to pyiqn41(x, Oni1).
e Step 6. n <+ n+1; go to Step (2).

To generate Xrlz+1’ s X711V+17 a Gibbs sampler can be used [20]. This brings an extra computational
cost, which should be taken into account when choosing Algorithm 2 over Algorithm 1.

It is constructive to discuss the structure of the ML estimator. We are going to use this structure
for the proof of convergence.

Let x!,---, X be the value of the particles, right before the measurement at time n. The

MLE of 6,,, 6,,, satisfies the first order necessary condition

N .
¢j(Xp,) — N i) expre®)dx _
i=1 [ exp(0c(x))dx
Therefore, we get
1 Y .
=Y () = B (), for j=1,,p 1)

1

<
Il

where from now on, by Ey(u(x)) we mean the expectation of u(x) under the probability density
p(x,0). Equation (16) suggests that the sample average of ¢;(x) and its probabilistic average,
evaluated at én, should be equal. Therefore, the MLE of 6 is the solution to the system of equations
in (16). Let F;(0) be as follows:

1 ci(x) exp(#Tc(x))dx ,
1510) = 7 2 eln) - : }(eip(epT(c(x)()d)zz A

For simplicity we drop the index n from 6,,. It is easy to see that

OF;
a9,

= Bplei(x)e; (%)) — Bolei(x)) Eglcs(x)):



This shows that (—gTIf;)iyj = g(0), where g(0) is the Fisher information matrix of the exponential
density at 6, and, by assumption positive definite. Therefore (16) is the necessary and sufficient
condition for optimality.

In the next few pages, we prove the convergence of the MLE of 6, 0, to 6, in the mean square
sense. This results in the convergence of the density in the weak sense.

In each iteration the proposed algorithm starts from the density pj, (x¢|ly"), t = Tn, where 6;

is the best estimate 6; according to the algorithm. After a full iteration the algorithm yields ét+1
which is the best estimate of 6;11. The error in ét+1 is a combination of the series of possible
errors for which we want to find the upper bound. The first source of error is the error in 6; which
will propagate even if no other error is considered. The other source comes from the fact that in
each iteration new particles are resampled based on the estimated density which is different from
the actual density. Finally the last source of error comes from the discretization of the stochastic
dynamics of the system. We want to emphasize that here, we assume that the density of v, is
stationary and Gaussian, and exp(—%(ym —h(x,7))' R (ynr — h(x,7))) lies in the family of the
densities. Therefore, no other error is added to the estimate because of the Bayes correction.

We recall the following fact [19]:

Fact 1 For the family of densities S with probability density p(x,0) = exp(6”c(x) — Y (0)), assume
that the Fisher information matriz g(0) = (E(c;i(x)cj(x)) — E(ci(x))E(cj(x)))i,; is positive definite.
This implies that the likelihood function

1(0) = 67'C(x) — Y(0),

is strictly concave. Also if ¢1(x),---,¢y(x), the components of c(x), are affinely independent almost
everywhere, then for the system of equations

¢j(x) = Eglc; (x)], j=1-p,

if a solution exists®, it is unique. In addition ifx,---, xx are N i.i.d. random variables distributed
according to fo(x) = exp(67c(x) — Y(0)), then the MLE of 0, Oy, has the following property:

. N
On = arg mgax [T p(xi,6)
=1

VN@Oy —0) ~ N(0,97'()).

Using this fact, it is easy to see that
. 2 1 .
E HGN — HH =W trace(g ' (0)),

therefore, when N —3 oo, Oy —> 6 in the m.s. sense. On the other hand, Oy is the solution
o (16). Using the strong law of large numbers [22], when N — oo the LHS in (16) goes to
Ey(cj(x)), j =1,--+,p, with probability one. In other words, the solution to (16) when the LHS
is the exact Fy(cj(x)), j = 1,---,p, gives the exact solution for §. Using this argument, one
can expect that by finding a good estimate of the left hand side of (16), a good estimate of 6 is
accessible. In each iteration of the algorithm presented in this section the estimate of the LHS of

*In [21] it is shown that if N > p, the solution exists almost surely.
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(16) is found by using the Monte Carlo method and the approximate solution for the stochastic
differential equation (3).

To approximate the solution to the stochastic differential equation (3), we employ the method
used in [23]. In the following, we review this method briefly. The stochastic differential equation
in (3) can be rewritten as follows:

q
dx; = £y (x¢) dt + Y _ g} (x;) duwy, (17)

r=1

where g/ (-) is the ¥ column of the matrix Gy(-), and w} is the r* component of w;. We introduce
the operators

B o\ 1 noo
Lu = (a* (f 5) +§Zzzgigjaxiaxj)

n
where (a , 8%) => a4 81. Then, the approximate solution for the SDE can be written as follows:
i=1

g g
Xp+1 = Xp+ 21 95, Eph? + i h + 21 '21 (Arg"),, & h+ 18)
r= r=14i= 18
g 3 )
%r; (Lg" + Arf)tk §phz + (Lf)tk hTa

where h is the step size and the coefficients gj , fi,, (Aigr)tk, etc., are computed at the point

(tk, Xi), and the sets of random variables &, f,ir are independent for distinct & and can, for each k,
be modeled as follows:

U PP | o -1 i<y
i Zgied N ied - ’ :
¢ = 366 gmiidh, w={ i3]
and ¢ and ¢/ are independent random variables satisfying
B = BE = BE =0, B¢ =1, Bt =3,

E¢; = EC =0, EG =(j=1.

In particular, & can be modeled by the law P (£ =0) = %, P (f = \/g) =P (5 = f\/g) =
¢; can be modeled by P ({ = —1) = P (¢ =1) = 3.
Definition 2 We say that a function u(-) belongs to the class F, written as u € F, if we can find
constants, k > 0, and k, such that for all x € R", the following inequality holds:

lu(x)[| < & (1 + [Ix]]").

If a function u(x,s) depends not only on x € R", but also on a parameter s € S, then we say that
u(x, s) belongs to F ( with respect to the variable x) if the inequality holds uniformly in s € S.

11



The following theorem summarizes the weak approximation results for (18)[23].

Theorem 2 Suppose (A1) from Section (2), and suppose that the functions £(-), g" (), r=1,--+,q
together with the partial derivatives of sufficiently high order, belong to class F. Also, suppose that
the functions N;g", Lg", A.f, and Lf grow at most as a linear function in ||x||. Then, if the
function u(-) and all its derivatives up to order 6 belong to class F, the approzimation (18) has the
order of accuracy 2, in the sense of weak approzimation, i.e.,

1B (x0,x, (1)) — Bu (o, (t)) | < KR, ty € [0, T,

where K is a constant and Xox,(-) and Xox, () are the ezact and approzimate solutions for the
stochastic differential equation, respectively.

The Monte Carlo approximation of Eu (xg x, (fx)) brings another error term. The combination of
these errors can be expressed as follows:

N
1B (x0.x, () — & 3w (R0 (8)) | <

=1
[Bu (x0,x, (k) = Bu (Xo.x, (t6)) | + [1Eu (ko x, (1) — 5

M=

u (R0 () |

=1

If the variance of u (X x, (tx)) is bounded, we have

!

k
N1/2°

N
E||Eu (x0.x, (1)) Zu (0. (1)) || < K12 + (19)

z:l

where K and k' are constants and A is the step size for the approximation of the solution of the
stochastic differential equation.

The next lemma relates the approximate solution to the stochastic differential equation and the
estimate of the parameter §. This lemma is the main building block for our result in this section.

Lemma 1 For the SDE
dXt = ft (Xt) dt + Gt (Xt) th, X0, te [0, tf],

assume that £,(-), G¢(-) are such that for the Brownian motion, wy, the probability density of the
state xy lies in the family S for © bounded, with g(6) positive definite and bounded away from zero.
We also assume the conditions in Fact 1 and in Theorem 2 with c¢(x) replacing u(x). Then, there
exist k1 and ko such that

E[|16; — 6,I] < k1h® + € [0, 4] (20)

ko
N1/2°
where 0 is the estimate of 0y, and N and h are the number of particles and the time step, respec-
tively.

Proof: Let 6y be the initial condition for 6. At ¢ = 0, N independent initial conditions are
generated based on the density p (x,6y), and the approximation method (18) is applied. From (19)
we know that:

!

E HEgtc (x¢) — % Z c (ii)

i=1

2
< Kh + i

12



On the other hand, from (16), we know that 6 is a solution to the system of equation
1 & ‘
NZW@:%@W%%M=pr
i=1

N .
From Fact 1, the solution is exact if we replace & 3 ¢;(X) by Ejp,(cj(x¢)). Subtracting the term

=1
Ey,(cj(x)) from both sides of the above equation and using the vector form for it, we get

1<

N 2 C(xt) = Bo,(e(xt)) = B (e(xt)) — Ey, (c(xt))-
i=1

On the other hand, we know that Ep(c(x)) is a differentiable and one to one function of §. The

derivative of this function, g(f), is positive definite and bounded away from zero, so Ja > 0 such

that .
16: = 6] < af By, (c(x:)) = Ep, (c(x))]l

c(x}) — Eat(C(Xt))H :

M=

= o

1
N
=1

Taking the expectation on both sides of the inequality we have

) N
E|j6; =0, < aEII%,EC(X%)—Eat(C(Xt))II

IN

N

o Kh?+ ’§/2>
(kih? + k)

Now we are ready to present the main result of this section.

Theorem 3 For System (3) assume that £(-), G¢(-), and h(-) are such that for Brownian motion
wy, and the Gaussian noise vy, the conditional probability density of the state x4, conditioned on the
observations, lies in the family S for © bounded and for t € [0,T]. We also assume the conditions
in Fact 1 and in Theorem 2 with c(x) replacing u(x). Then, if g~ ' () By, (Lc (x)) is Lipschitz
with the Lipschitz constant L and g(0) is positive definite and bounded away from zero, there exist
l1 and ly such that

n—1
R l
. 2 2
E|0n: — 0nr|| < i:EO exp(LiT) (llh + 1/2> , nT€[0,T],

where O, is the estimate of 0, and N and h are the number of particles and the time step, re-
spectively.

Proof: Let 6, and 6, be the actual and the estimated values of the parameter of the density at time

t = n7, respectively. At time ¢ = (n + 1)7 the error of the estimate of 6, ét” is a combination of
the error of the estimate in §; and the error added in the time interval [t,t]. Let 6, be the estimate

of 6, if the error due to resampling and the approximation of the SDE solution is not taken into

account in the interval [t, ], then

10, — 0,1 <16, — 0,1+ 110, — 0,1

13



If the conditional distribution stays in the exponential family of distributions, 8; has to satisfy the
following differential equation:

0 =g (0)Eg, (Lsc(x))dt, nr<t<(n+1)r.

By the assumption of the theorem, g~ ! (0) Ey, (L;c (x)) is Lipschitz with Lipschitz constant L,
then by continuity of the solution of the differential equation with respect to the initial condition
[24], we know that

H(’t’ ey

< Het o étH eL(t’ft)’

therefore,

E Het, b,

< B0, — b eHe 0.

Also from the Lemma 1, 3k (t') and ky(¢) such that

. , ko (t)
Ellfy — 0[] < Ea(t)h* + N2
therefore,
B0, -6, < E He .y H L0 4 gy (¢ yn2 4+ F2)

The observation noise v,, and the function h(-) are such that Bayes’ Rule does not introduce any
further error in the estimate of 6. Therefore, starting from the initial point 6y we get

n—1

A . ly
E|0p: — One|| <> exp(Lit) <l1h2 + N1/2> ,  nT€[0,T]
=0
where
l; = maxkij(nt), nrel0,T], i=12
n
o

Here, we would like to make a few remarks:

e The result of Theorem (3) can be easily extended to convergence in the mean square sense.

e The assumption that the probability density stays in the family of densities, S, does not seem
very realistic. But with our approach, we should be able to get the result in [12]. In fact, in
[12] the evolution of the density is forced to stay in the family at every single moment. In our
method, we only force the density to be in the family at th end of each full iteration. This
allows the estimated density to be closer to the actual density.

e In [12] the observation equation is considered to be time invariant. Here, the time-varying
nature of h,, (x) does not complicate the algorithm. It surely affects the assumption that the
density stays in the family, but as we explained earlier, this assumption is not realistic to
begin with, and it will be dropped.

14



e If u(-) and its derivatives up to order six are in class F, then

E || Egu(x) — Eg-u(x)]| — 0,
N — o0
h —0

This is the criteria that was used in [8].

6 Projection Particle Filtering for Exponential Families of Densi-
ties

In this section, we drop the assumption that the conditional density of the state given the obser-
vation (6) lies in an exponential family of densities. Instead we have the following assumptions:
(A3) The density in (6) stays close to the given exponential family S in a weak sense:

Vte€[0,T], YueF 30; € ©F s.t. | Ep, (u(x)) — Ep: (u(x))[| < e (21)

where ©* is closed and bounded.
(A4) V0,05 € ©* and Yu € F 3K;, Ky such that

| B u(x) — Eg,u(x)|| < K|/t — 6
161 — 6 < Ksl|Eg u(x) — Eg,u(x)||

In the following we go through the proof of the theorem that we state later precisely. Assume
0y, is calculated according to Algorithm (2) and assume p,,|,,(x,0,) is such that Vu € F

BB, ux)—~ Hy u(x)| < & (22)
where Gz‘n satisfies

1By, u0) — Bpe u()]| < e (23)
Using the distribution p,, ,, (x, én), new particles x., - - -, x¥ are produced. The approximate solution

for the SDE at time (n + 1)7 maps these particles to X}, -+, %2 ;. From these new particles

On+1 is calculated. From (22) and (23) we have
E||E'pn‘nu(x) —-E; ux)| < d+e (24)

nin

We define the function r(x) as follows:
r(x) = Be(Xnx((n +1)7))

where x,, x((n+1)7) is the approximate solution of SDE (17) at time (n +1)7 with the given initial
condition x at time n7 using the method in (18). Since according to our assumption ¢ € F, then
by using lemma 9.1 in [23], we have

[e(x)]| < K3(1+ [Ix[|*)

15



where K3 and p only depend on the function ¢(-) and the dimension of x. We assume that r € F.
If the argument of r(-) is a random variable, then using (24) we have

ElEp,, r(x) = B r(x)]| < dte (25)
Therefore,
E| By, Ble(nx((n+1)7)|x] ~ By Ble(Enx((n+ D7) < d+e
In other words,
BBy, elanx((n+ 1)) = By elax(n+ V)| < 5+ (26)
From Theorem (2) we have
B| By, c(xnx((n+1)7)) = By, cGFnx((n+ 7)) < Kih?, (27)

for some K. Using the Monte Carlo method to calculate the E, c(x, x((n + 1)7)) brings another
error term that is due to the finite number of particles as the initial conditions for method (18).
The expectation of this error is bounded, i.e. K5 s.t.

1 K

BB, cln(n+ D7) = & 3 el ((n 4 D) < = (28)
i=1
where x;(n) are distributed according to py,, (x, 6,,). Combining (26), (27), and (28) we get
1< 5
E|| By, e(nx((n+1)7) = = D e(Xng((n+1)7))| <6 +e+ Kih? + —+. (29)
i=1 2
Based on (A3) we know that 36, such that
1Ep, 1, c(x((n+1)7)) = Eg: | c(x((n+1)7))|| <e (30)

n+1|n

We know that B, c(x((n+1)7)) = Ep  c(x,x((n+1)7)), therefore from (29) and (30) we get

E||E0:L+1\n 3

1 X K
c(x((n+1)7) = = > e(Fns((n+ 1)) <0+ 2 + Kah® + —. (31)
=1

Then the én+1 given by Algorithm (2) satisfies the following inequality

K

E||E'g;+l‘nc(x((n +1)7)) — E; o c(x((n+ 1)) <6+ 2+ Kih? + - (32)
n n 5
From (A4) it is easy to see that
5 Ks
EHEQ;+1‘”U(X((’H +1)7)) — E; o u(x((n+1)7))|| < K1Ks |6+ 2¢ + Kqh* + N1/ (33)
n n 5

Yu € F. Step (4) in Algorithm (2) incorporates the new measurement according to Bayes’ Rule.
Since the measurement noise is Gaussian and ©* is compact V0 € ©*dk; and k9 such that
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Ky < / exp(67c(x) — L(0))Tn 1 (x)dx < Ko,
and
| Bpus(3)) T ()] < .
From (33) we have

E| Ey- u—FE

n+1n+1 Ont1|nt1

u| = E
= F
1 1 i
+EE0;+1M“\I}”+1 - EEén+1‘n1L\Ijn+1H

1 _1p
c*EanH‘n“\Ij"H 6E9n+1\n“\y"+1”

1 g
o E€n+1‘nu\11n+1 éEﬂn

“\IITL—I—I

(34)

IN

K1

(2 + 5K K (5 +2¢ + K4h® + Li)
1 N2

= K¢K 1K, (5 + 2 + K4h? + K—§;> ,
N2

where ¢* = [exp(0*]_¢c(x) — T(60%,41))¥pi1(x)dx and ¢ = fexp(égﬂc(x) — Y (Ops1)) Wy (x)dx.
Comparing (34) and (22) shows that by choosing d, €, and h, small and N big enough, one can
achieve the desired accuracy in convergence. The next theorem summarizes our result in this
section.

Theorem 4 For the system (3) assume (A1), (A2), and (A3). We also assume (A}) and the
conditions in Fact 1 and in Theorem 2 with ¢(x) replacing u(x), and we assume r € F. Then in
Algorithm 2 with approximation (18), if

A

)

EHEén‘nu(x) — By u(x)]|

nin

then

E||Ey-

n+1|ln+1

u(x((n+1)7) = By u(x((n+1)7))| < KoK Ko (5 426 Kub? 4 20 ) ,

9n+1\n+1 %
for some Ky, -+, Kg.

In Theorem (4) only one step of Algorithm (2) is considered, but it is straightforward to use
Theorem(4) repeatedly, then for the time interval [0, 7], where T' = M, if ||Eéo‘oqt(x)ngg‘Ou(x)H <
dg, then Jaq, a9, a3, and «ay such that

n—1

u(x((n)7))]| < af'do + Z ai(age + a3h2 + 044]\[*1/2)7
i=0

El|Ey:, u(x((n)7) — B

nlln

for 0 <n <M.

7 Particle Filtering for Nonlinear Systems with Constant Integer
Uncertainty

Consider the following nonlinear dynamics and observation
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dXt
Ynr

ft(Xt)dt + Gt(xt)dwt
h, (x(n71)) + Jpz + v,

where the assumptions and the dimensions for x;, y,. , w;, and v,, are the same as in the previous
sections. We assume that z is a random integer vector, i.e. z € Z™ and J, has the proper
dimension. Vector z is assumed to be constant in time. This problem can be set up in discrete
time as well. In this case the system dynamics and the observation can be written as follows:

Xp+1 = fn(xn) + Gn(xn)wn
Yn = hn(xn)+an+Vn

In both setups we assume that the integer uncertainty affects only some components of the
observation, and other components are unaffected by z. The affected components have associated
noise components in v,, that have considerably lower energy. In other words, the uncertain com-
ponents of y,,(or equivalently y,) are considerably more accurate than the other components if
the integer ambiguity were known. This suggests that an accurate estimation of z can increase
the accuracy of the estimate of the state of the system significantly. With this explanation our
treatment of z is clear. From the state dynamics and the observation equation we first estimate
z and then, with fixed z, we use regular nonlinear filtering methods to estimate the state of the
system xy.

We augment the state x; with the integer ambiguity z. Having done that, the state dynamics
and the observation have the following form:

dl )Zc: ] = l gt(xt) ] dt + l (?t(xt) ] dwy

Yor = h,(x(n7) + Jyz(nt)) + vy

(35)

We assume that the initial distribution of (x{,z{)7 is known. Now with this form the state

dynamics and the observation have the same form that was studied in Section (4). Therefore, we
can apply particle filtering to find the conditional probability distribution of the augmented state.
This setup is a special case of the setup in Section (4). In (35) there is no state transition for
z;, therefore, using PaF in its original form may not be the best option. Recall that in PaF we
start with IV i.i.d. particles distributed according to the initial distribution. In the resampling
part the low probability particles die and the high probability particles produce many particles
identical to themselves. Since z; does not change, the part of the particles associated to z; tends to
cover smaller and smaller portions of the state space. In fact, the state space of the integer vectors
is defined by the particles at the initial time. This problem can be overcome by modifying the
algorithm mentioned in Section (4). In the new algorithm Step 5 is changed in such a way that the
particles are the addition of the original particles found by Algorithm 1, with a random vector. The
modification is very important for the integer values, since the integers do not have a dynamics that
is driven by a random input. In [9], a similar modification has been used for the regular nonlinear
filtering setup (no parameter is considered constant). It seems that the convergence results given
in [9] can be applied to our case as well.

Based on the modified algorithm, we simulated a nonlinear filtering problem similar to the
problem involved in the GPS system.
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In a two dimensional space, three transmitters (imagine three pseudo satellites) are mounted
on three known points (2000, 100000), (0,100000), and (—2000,100000). The moving object can
measure its distance from these transmitters. For each pseudo satellite, two types of measurement
are possible. One with high measurement noise and the other with low measurement noise. For the
low measurement noise, though, there is an integer ambiguity. The dynamics of the moving object
for this example is considered to be in discrete time and linear time invariant. The dynamics and
observation equation is given as follows:

T 1 At 0 0 T w1
U1 _ 0 1 0 O U1 " W9
D) o 0 0 1 At X9 ws ’
v2 ), 0O 0 0 1 v ) wy )
yz: :||X_Si||+U;IL 7i:17273
Yl o= x 8| +ni+0d i=1,2,3,
where x = (ml,rI:Q)T, s; is the position of pseudo satellite ¢ in two dimensional space, At = 0.1
unit of time, n; is the integer ambiguity of the pseudo satellite i, and w = (wl,wg,wg,w4)T
T
and v = (1){1,1)'{,1)3,1)3,1)%,1)%) are zero mean white Gaussian noise with covariance matrices

Yw = diag (1,0.5,1,0.5) and ¥, = diag (5,0.2,5,0.2,5,0.2), respectively. In the simulation, it is
assumed that the initial condition for the position is distributed in a square of size 200 x 200 units
squared, symmetric with respect to the origin.

In brief, the simulation can be separated into two parts, initialization and the full non-linear
filtering. In the initialization part, we start with the initial probability distribution for (z1,z9) and
from a series of observations, we find an estimate for the probability distribution (v;,v2). In this
part, we do not use the dynamics of the moving object. Using our estimate for the probability
distribution of (x1,v1,x2,v9) we find the distribution for the integer ambiguity. After this, the
initialization is over, and the full non-linear filter is used. There are some minor numerical con-
siderations that we would like to point out. In the Bayes step of the algorithm, the numbers are
usually very small, without proper scaling the original algorithm would not work. In the resampling
part, one can use the law of large numbers and regenerate the particles based on their probability
without generating random numbers that are time consuming. The result of the simulations are
shown in Figures(1), (2), (3), (4), (5), and (6). To display the estimated integers, we simply used
the mean value, which is not necessarily the best choice. Of course, since we have the distribution,
we can use the MAP estimate of the integers. In this simulation we forced one of the integers to
have a jump. Although our algorithm is not designed for these kinds of changes, we see that it can
estimate the new integer values. In future, we use special treatment for the times that these kinds
of jumps happen. As you can see, the estimate for the integers are reasonably good. The reliability
of the estimate for the integers depends on the energy of the noise.

8 Future Works

The simulations results show that our method is capable of estimating the integer ambiguity and
the position. There are certain issues that need further investigation. In the following, we itemize
these issues:

e What are the proper criteria to stop the integer ambiguity estimation part and fix the integers?
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e What happens when a cycle slip happens, i.e. one or more of the integers have a jump? What
change detection algorithm is proper and what is the performance of this algorithm? How
can we repair the integer ambiguity efficiently?

e What happens when the number of the satellites drops from the critical number?

e How much improvement does the method of Section 5 for integer ambiguity and position
estimation have over PaF?

These questions are to be answered in the future work. In addition to these, we shall be more
specific in our simulations, and use real GPS data for our results.

In our lab setup we have two GPS receivers that can work in differential mode. One of the
receivers is mounted on a radio controlled car. In the setup, we monitor the position of the car on
a stationary monitor that is connected to the base station GPS receiver. The position estimation is
done by this receiver. In future, we want to integrate the GPS observations and the car dynamics
for better estimation results. The car kinematics is a modified version of kinematic car [25].

T cos 6
di y | = sinf un + G(0,p,x,y) dw,
0 %tanq’)

where z, y, 0, ¢, and [ are shown in Figure (7).

We assume that two sensors on the car can measure the control u; and the angle ¢ (¢ is another
control). The function G depends on the structure of the sensors and the nature of the noise. This
model and the DGPS observation will be used for estimating the position and the speed of the car.
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Figure 1: Estimated integer ambiguity versus the actual integer ambiguity of pseudo satellite (1). At time
100 there is a cycle slip of strength —20 for the measured phase of the carrier from pseudo satellite (1) .
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The Estimated and Actual Integer Ambiguity
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Figure 2: Estimated integer ambiguity versus the actual integer ambiguity of pseudo satellite (2). At time
100 there is a cycle slip of strength —20 for the measured phase of the carrier from pseudo satellite (1) .
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Figure 3: Estimated integer ambiguity versus the actual integer ambiguity of pseudo satellite (3). At time
100 there is a cycle slip of strength —20 for the measured phase of the carrier from pseudo satellite (1) .
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Th estimated x component versus the actual x component
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Figure 4: Estimated X component versus the actual X component of the position of the car. At time 100
there is a cycle slip of strength —20 for the measured phase of the carrier from pseudo satellite (1) .

The estimated y component versus the actual y component
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Figure 5: Estimated Y component versus the actual Y component of the position of the car. At time 100
there is a cycle slip of strength —20 for the measured phase of the carrier from pseudo satellite (1) .
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The actual trajectory versus the estimated trajectory
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Figure 6: Estimated trajectory versus the actual trajectory of the car. At time 100 there is a cycle slip of
strength —20 for the measured phase of the carrier from pseudo satellite (1) .
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Figure 7: Kinematic car.
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