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In most of the applications, integrated INS/GPS, dead reckoning/GPS, or vehicle dynam-ics/GPS, linearization of the dynamics and the GPS observation is the main tool for estimation[6][7][4]. It can be shown [3] that when the number of satellites is below a certain level or thegeometry of the current constellation is near singular, the linearization causes the system to beunobservable. In this case, it is important to use a nonlinear setup for the estimation problem. In[3] this case is studied by using an approximation for nonlinear �ltering [8][9].Except for very special cases in nonlinear settings, estimating the state given the observationsresults in an in�nite dimensional �lter [10]. Therefore, approximation methods of �nite dimensionare very appealing. The most widely used approximation �ltering method is the Extended KalmanFilter (EKF), which is a heuristic method based on the linearization of the state dynamics andobservation near the nominal path [10]. EKF is computationally simple but, the convergence ofthe conditional distribution to the actual distribution is not guaranteed.Projection Filtering (PrF) is another approximation method [11][12][13][14]. In PrF it is as-sumed that the conditional density of the state of the system can be approximated by a memberof parametric family of densities. In this case, estimating the conditional density is equivalent toestimating the parameter of the family. In [11][12][13] the exponential family of densities is chosenas the parametric family. In [14] the approach is di�erent; there a Galerkin approximation is usedfor solving the Fokker-Planck equation [10].An entirely di�erent approach to approximate the conditional density was proposed in [8][9].This method is based on the Monte Carlo method and is called Particle Filtering (PaF). In thismethod, the particles at time ti are i.i.d. random vectors that are distributed according to theempirical conditional distribution of the state, given the observations up to time ti. These parti-cle/state vectors are used in the state equation to �nd the values of particles at time ti+1. Thenat time ti+1, the empirical distribution is evaluated according to the values of the particles. Thenew observation at time ti+1 is taken into account through Bayes' Rule to calculate the conditionalempirical distribution, and this process can be repeated. In [8] it is proved that by a large enoughnumber of particles, one can get an approximate conditional distribution that is arbitrarily closeto the true conditional distribution.In the cases where we have some prior information about the distribution, we may be able to dobetter if we take this information into account. By better, we mean reduction in the computationalcost and increase in the convergence rate. Here we assume that the conditional distribution hasa density in an exponential family of densities, or at least stays close to it in a sense that will bede�ned. Using this assumption, we replace the empirical distribution in [8] with the MaximumLikelihood Estimate (MLE) of the distribution and obtain a convergence result in Theorems (3)and (4).To use nonlinear �ltering methods for CPDGPS, one should be able to include the integerambiguity resolution in these methods. In this paper we present some simulation results whichshow that PaF, with minor modi�cations, is capable of resolving integer uncertainties present in aproblem similar to CPDGPS. One problem of PaF is the need for large number of particles. Thisproblem is even more important for the cases where integer uncertainty is present. The writers areoptimistic that PaF for exponential families of distributions is more suitable for nonlinear �lteringwith integer ambiguity.In this paper, Section 2 states the nonlinear �ltering problem. In Section 3 we review the resultsin [11][12][13] on projection �ltering. In Section 4 we explain particle �ltering and we state theresults in [8][9]. In Sections 5 and 6 we introduce a new PaF algorithm and we state the mainresults of this paper. In Section 7 we apply the PaF method to a nonlinear system with integeruncertainty and we present the simulation results. In Section 8 we discuss the future research on2



this subject.2 Nonlinear Filtering, Problem SetupFiltering problems consist of \estimating" the process fxtg (or something about it) given therelated process, fytg, which can be observed [15]. The observation is available in an interval, i.e.,fys; 0 � s < tg and the function of the state is estimated at time t. To proceed, we need to givesome structure to the concerned processes.We assume that all stochastic processes are de�ned on a �xed probability space (
; F; P ), and a�nite time interval, [0; T ], on which there is de�ned an increasing family of �-�elds, fFt; 0 � t � Tg.It is assumed that each process, fxtg, is adapted to Ft, i.e., fxtg is Ft-measurable for all t. Weassume that fxtg is a vector di�usion process of the formxt = x0 + Z t0 fs(xs)ds+ Z t0 Gs(xs)dws; (1)where xt 2 Rn, and wt 2 Rq is a vector from an independent Brownian motion process; the secondintegral is in Ito sense [16], and the function ft(�) and the matrix Gt(�) have the proper sizes. Theobservation, yt, is a discrete time process given as follows:yn� = hn(xn� ) + vn; (2)where yn� 2 Rd, and vn 2 Rd is a discrete time white Gaussian noise process with zero mean andknown covariance matrix. The state dynamics and observation equation can be rewritten formallyas follows: dxt = ft(xt)dt+Gt(xt)dwt; x0yn� = hn(xn� ) + vn (3)The noise processes fwt; t � 0g, and fvn; n = 0; 1; � � �g , and the initial condition x0 areassumed independent. We use Qt and Rn for the covariance matrices of the processes wt andvn, respectively. We assume that Rn is invertible for all n's. We have the following additionalassumptions [12]:(A1) local Lipschitz continuity: 8 x; x0 2 Br and t 2 [0; T ], where Br is a ball of radius r,we have kft(x)� ft(x0)k � krkx� x0k; andkGt(x)QtGTt (x)�Gt(x0)QtGTt (x0)k � krkx� x0k: (4)(A2) non-explosion: there exists k > 0 such thatxT ft(x) � k(1 + kxk2); andtrace(Gt(x)QtGTt (x)) � k(1 + kxk2): (5)8 t 2 [0; T ] and 8 x 2 Rn.Under assumptions (A1) and (A2), there exists a unique solution fxt; t 2 [0; T ]g to the stateequation, and xt has �nite moment of any order [12].3



In addition to these, we assume that the probability distribution of the state xt, given theobservation up to time t, �t(dx) = P (xt 2 dxjyt), where yt = fyn; i = 1; � � � ; n; n� < tg, has adensity pt with respect to the Lebesgue measure on Rn. Then fpt; t > 0g satis�es the followingPDE and updating equations [12]:@@tpt = L�t pt n� � t < (n+ 1)�; andpn� = cn	npn�� (6)where L�t (�) = � nXi=1 @@xi [f it�] + 12 nXi;j=1 @2@xi@xj [aijt �];[aijt ] = GtQtGTt ;	n(x) 4= exp��12(yn� � hn(x))TR�1n (yn� � hn(x))� ;and cn is a normalizing factor.Solving System (6) constitures an in�nite dimensional �lter [10]. This problem can be over-come in certain special cases. In the linear Gaussian case (6) is equivalent to Kalman Filtering.Approximation of probability densities with a parametric family of distributions, in certain cases,has shown good results. In the next sections we review these results.3 Projection Filtering on Exponential Families of DensitiesThis section is mainly a review of the results in [13]. We start this section with the de�nition ofthe exponential family of distributions.De�nition 1 Let fc1; � � � ; cpg be a�nely independent 1 scalar functions de�ned on Rn, and assumethat the convex set �0 = f� 2 Rp : �(�) = log Z exp ��T c(x)� dx <1g;has nonempty interior. Then,S = fp(�; �); � 2 �g; p(x; �):= exp h�T c(x)��(�)i ;where � � �0 is open, is called an exponential family of probability densities.We denote by S 12 the square root of the densities of S , i.e., S 12 = fpp(�; �); � 2 �g. Ifp(�; �) 2 S, then pp(�; �) 2 L2. 12pp(�;�) @p(�;�)@�i ; i = 1; � � � ; p make a basis for the tangent vectorspace at pp(�; �) to the space S 12 , i.e., the tangent space at pp(�; �) is given by [17]:Lpp(�;�)S 12 = spanf 12pp(�; �) @p(�; �)@�1 ; � � � ; 12pp(�; �) @p(�; �)@�p g: (7)1fc1; � � � ; cpg are a�nely independent if for distinct points x1;x2; � � � ;xp+1, Pp+1i=1 �ic(xi) = 0 and Pp+1i=1 �i = 0implies �1 = �2 = � � � = �p+1 = 0 4



The inner product of any two basis elements is de�ned de�ned as follows� 12pp(�;�) @p(�;�)@�i ; 12pp(�;�) @p(�;�)@�j � = 14 R 1p(x;�) @p(x;�)@�i @p(x;�)@�j dx= 14gij(�) (8)It can be easily seen that g(�) = (gij(�)) = (E[cicj ]� E[ci]E[cj ]) is the Fisher information matrixof p(�; �).Any member of L2 can be projected to the tangent space Lpp(�;�)S 12 according to the followingprojection formula�� : L2 � V ! Lpp(�;�)S 12v ! pPi=1 pPj=1 4gij(�)�v; 12pp(�;�) @p(�;�)@�j � 12pp(�;�) @p(�;�)@�i : (9)Projection �ltering seeks a solution for pt for (6) that lies in S. Of course, this solution is onlyan exponential density, but we hope, by choosing the proper family, we can keep the approximationerror small (in L2 sense).If we consider the square root of the density in (6), we get@ppt@t = 12ppt @pt@t = 12pptL�t pt: (10)De�ne �t;� = L�t pt(�;�)pt(�;�) . We assume that for all � 2 � and all t � 0, Ep(�;�)fj�t;�j2g < 1, whichimplies that L�t pt(�;�)ppt(�;�) is a vector of L2 for all � 2 � and all t � 0 [12].Now assume that in equation (10), for fppt; t � t0g, starting at time n� from the initialcondition, ppn� = pp(�; �n� ) 2 S 12 for some �n� 2 �. Under these assumptions, the right handside of (10) is in L2, which can be projected into the �nite dimensional tangent vector spaceLpp(�;�n� )S 12 . The projection �lter for the exponential family, S, in the interval [n�; (n + 1)�), isde�ned as the solution of the following di�erential equation in the same interval:@ppt(�; �t)@t = ��t L�t pt(�; �t)2ppt(�; �t) ; (11)We also assume that hn(x) in equation (2) is time invariant, i.e., hn(x) = h(x), and thecomponents of h(x), hi(x), and kh(x)k2R�1 are linear combinations of ci(x); i = 1; � � � ; p.12kh(x)k2R�1 = pXi=1 �0i ci(x) and hk(x) = pXi=1 �ki ci(x); k = 1; � � � ; d (12)where kxkA = pxTAx. Then if vn is stationary with the covariance matrix Rn = R, the likelihoodfunction 	n(n) can be written as follows:	n(x) = exp(�12 (yTn�R�1yn� )) exp(�12 (hT (x)R�1h(x)) + (yTn�R�1h(x)))= An exp � dPi=1�0i ci(x) + pPk=1( pPi=1 �ki zkn� )ci(x)! ; (13)where zn� = yTn�R�1, and An is a constant depending on yn� . Therefore the coe�cient 	n(x), isa member of exponential family of distributions. This family is closed under multiplication. Usingall of these facts, we can present the following theorem [12]:5



Theorem 1 For system (3), where wt is a Brownian motion process with covariance Qt and vi is awhite Gaussian noise with covariance R, we assume (A1) and (A2) to be true. We also assume that12kh(x)k2R�1 = pPi=1�0i ci(x), hk(x) = pPi=1�ki ci(x), for k = 1; � � � ; d, and Ep(�;�)kL�t p(�;�)p(�;�) k2 < 1, 8� 2�, 8t � 0. Then for all � 2 �, and all t � 0, �� L�t p(�;�)pp(�;�) is a vector on the exponential manifoldS 12 . The projection �lter density, p�t = pt(�; �t) is described by@ppt(�;�t)@t = ��t L�t pt(�;�t)2pp(�;�t) , n� � t < (n+ 1)�pn� (�; �n� ) = cn	n(yn� )pn��(�; �n��) ,and the projection �lter parameter satis�es the following combined di�erential and stochastic dif-ference equations: g(�t)d�t = E�tfLtcgdt; n� � t < (n+ 1)�;�n� = �n�� � �00 +Pdk=1 �k0zkn;where Lt = nXi=1 f it @@xi + 12 nXi;j=1aijt @2@xi@xj ;and �i0 = [�i1; � � � ; �ip]T , i = 0; � � � ; d, and zkn is the kth component of zTn� = R�1yn� .From now on we use E� and Ep(�;�) interchangeably.As can be seen from the result of the theorem, the calculation of the conditional probabilitydensity is reduced to the calculation of the parameter of the exponential family. But still, solvingthe di�erential equation in the theorem is not an easy task. At each moment g(�t) and E�tfLtcgneed to be calculated. This requires a heavy computational load. In this paper, we introduce aMonte Carlo method to calculate the parameter of the exponential family with a more a�ordablecomputational load.Although the PrF gives a better solution than EKF, there is no known error bound with whichwe can compare the distance between the real distribution and the distribution given by the PrF.In the next section we review PaF as an alternative to optimal nonlinear �ltering.4 Particle FilteringConsider either the continuous dynamics and discrete observation in (3) or the discrete case,xn+1 = fn(xn) +Gn(xn)wn; x0yn = hn(xn) + vn: (14)We assume that in both cases, the initial distribution for x0 is given. The propagation of theconditional density, at least conceptualy, can be expressed as follows [10]:� Step 1 . Initialization: p0j0(x0jy0) = p(x0):6



� Step 2 . Di�usion: pn+1jn(xn+1jYn) = Z p(xn+1jxn)pnjn(xnjYn)dxn;where Yn = fy1;y2; � � � ;yng.� Step 3 . Bayes' rule update:pn+1jn+1(xn+1jYn+1) = p(yn+1jxn+1)pn+1jn(xn+1jYn)R p(yn+1jxn+1)pn+1jn(xn+1jYn)dxn+1 ;� Step 4 . . n n+ 1; go to Step (2).The conditional density given by the above steps is exact, but in general it can be viewed asan in�nite dimensional �lter, thus, not implementable. PaF, in brief, is an approximation methodthat mimics the above calculations with a �nite number of operations using Monte Carlo method.The procedure for Paf is as follows [18][8]:Algorithm 1 Particle Filtering� Step 1 . Initialization� Sample x10; � � � ; xN0 , N i.i.d. random vectors with the distribution P0(x).� Step 2 . Di�usion� Find x̂1n+1; � � � ; x̂Nn+1 from the given x1n; � � � ; xNn , using the dynamics rules:dxt = ft(xt)dt+Gt(xt)dwt; n� � t < (n+ 1)�or xn+1 = fn(xn) +Gn(xn)vn:� Step 3 . Find the empirical distributionPNn+1jn(x) = 1N NXj=1 �x̂jn+1(x)� Step 4 . Use Bayes RulePNn+1jn+1(x) = 1N NPj=1 �x̂jn+1(x) �	n+1(x)1N NPj=1 �x̂jn+1(x̂jn+1) �	n+1(x̂jn+1)� Step 5 . Resample� Sample x1n+1; � � � ; xNn+1 according to PNn+1jn+1(x)� Step 6 . n n+ 1; go to Step (2). 7



where �v(w) = 1 if w = v and 0 otherwise.It is customary to call x1n; � � � ; xNn particles. In the next few lines, we try to explain in wordsthe evolution of these particles using the above algorithm.Let x̂1n; � � � ; x̂Nn be the distinct particles at time n before incorporating the observation attime n. The probability of each particle is 1N , and it is uniformly distributed. After using theobservations, the conditional probability of each particle changes. Some will have small, and somelarge probabilities. Therefore, in the process of resampling, it is very likely that some particles willnever be used and instead some other particles (with high probabilities) will be sampled more thanonce. Therefore, after resampling, some particles have repeated versions, but in the di�usion phasethey go through di�erent paths and at the end of the di�usion phase, it is very likely, we wouldhave N distinct particles. This automatically makes the approximation one of better resolution inthe areas where the probability is higher.In [8] it is proved under some conditions thatE  ����� 1N NPi=1 f(x̂in)�EPn(f(x))�����! �! 0N �! 0 (15)for every bounded Borel test function, f(�).One problem in using PaF method is the computational cost. Specially for high dimensionalsystem, getting reasonable accuracy means using a large N , which causes heavy computation. Inthe next section, we propose a method that can reduce the number of particles for a certain classof problems.5 Particle Filtering for Exponential Families of DensitiesIn the previous sections, we saw two approximation methods for nonlinear �ltering. In the PaFmethod, we saw that the conditional distribution is approximated by the empirical distribution.In most cases, the actual conditional distribution is smooth, unlike the empirical distribution. Itseems that if, before hand, we know some properties about the distribution, we can do betterin performance than just using the empirical distribution. In the following, we assume that theconditional density lies in a parametric family of densities. We will see that with this assumption,we can show the convergence of the approximated density to the actual one. Forcing the densityto lie in a parametric family induces some error to the estimate of the density, but we hope to �ndthe proper family that results in an acceptable error.In this section, after introducing our algorithm, we present some convergence results, and afterthat, we compare our method with the methods introduced in the previous sections.For System (3), we assume that the probability density of xt, given the observation, is in afamily of exponential densities S. This assumption is rather strong. We will drop this assumptionlater, and we will only assume that there exists a known family of densities that approximates thereal density well, i.e., with acceptable accuracy.With this assumption, the proposed algorithm is as follows:Algorithm 2 Particle Filtering for an Exponential Family of Densities.� Step 1 . Initialization� Sample x10; � � � ; xN0 , N i.i.d. random variable with the densities, p0(x).8



� Step 2 . Di�usion� Find x̂1n+1; � � � ; x̂Nn+1 from the given x1n; � � � ; xNn , using the dynamics rule:dxt = ft(xt)dt+Gt(xt)dwt; i� � t < (i+ 1)�� Step 3 . Find the MLE of �̂n+1 given x̂1n+1; � � � ; x̂Nn+1 [19]�̂n+1 = argmax� NYi=1 exp(�Tc(x̂in+1)��(�))� Step 4 . Use Bayes Rulepn+1jn+1(x; �̂n+1) = exp(�̂Tn+1c(x) ��(�̂n+1))	n+1(x)R exp(�̂Tn+1c(x) ��(�̂n+1))	n+1(x)dx� Step 5 . Resample� Sample x1n+1; � � � ; xNn+1 according to pn+1jn+1(x; �̂n+1).� Step 6 . n n+ 1; go to Step (2).To generate x1n+1; � � � ; xNn+1, a Gibbs sampler can be used [20]. This brings an extra computationalcost, which should be taken into account when choosing Algorithm 2 over Algorithm 1.It is constructive to discuss the structure of the ML estimator. We are going to use this structurefor the proof of convergence.Let x̂1n; � � � ; x̂Nn be the value of the particles, right before the measurement at time n. TheMLE of �n, �̂n, satis�es the �rst order necessary conditionNXi=1 cj(x̂in)�N Rx cj(x) exp(�̂Tn c(x))dxRx exp(�̂Tn c(x))dx = 0:Therefore, we get 1N NXi=1 cj(x̂in) = E�̂n(cj(x)); for j = 1; � � � ; p (16)where from now on, by E�(u(x)) we mean the expectation of u(x) under the probability densityp(x; �). Equation (16) suggests that the sample average of cj(x) and its probabilistic average,evaluated at �̂n, should be equal. Therefore, the MLE of � is the solution to the system of equationsin (16). Let Fj(�) be as follows:Fj(�) = 1N NXi=1 cj(x̂in)� R cj(x) exp(�Tc(x))dxR exp(�T c(x))dx ; j = 1; � � � ; p:For simplicity we drop the index n from �n. It is easy to see that�@Fi@�j = E�(ci(x)cj(x))�E�(ci(x))E�(cj(x)):9



This shows that (�@Fi@�j )i;j = g(�), where g(�) is the Fisher information matrix of the exponentialdensity at �, and, by assumption positive de�nite. Therefore (16) is the necessary and su�cientcondition for optimality.In the next few pages, we prove the convergence of the MLE of �n, �̂n, to �n in the mean squaresense. This results in the convergence of the density in the weak sense.In each iteration the proposed algorithm starts from the density p�̂t �xtjyt�, t = �n, where �̂tis the best estimate �t according to the algorithm. After a full iteration the algorithm yields �̂t+1which is the best estimate of �t+1. The error in �̂t+1 is a combination of the series of possibleerrors for which we want to �nd the upper bound. The �rst source of error is the error in �̂t whichwill propagate even if no other error is considered. The other source comes from the fact that ineach iteration new particles are resampled based on the estimated density which is di�erent fromthe actual density. Finally the last source of error comes from the discretization of the stochasticdynamics of the system. We want to emphasize that here, we assume that the density of vn isstationary and Gaussian, and exp(�12(yn� � h(xn� ))TR�1(yn� � h(xn� ))) lies in the family of thedensities. Therefore, no other error is added to the estimate because of the Bayes correction.We recall the following fact [19]:Fact 1 For the family of densities S with probability density p(x; �) = exp(�T c(x)��(�)), assumethat the Fisher information matrix g(�) = (E(ci(x)cj(x))�E(ci(x))E(cj(x)))i;j is positive de�nite.This implies that the likelihood functionl(�) = �TC(x)��(�);is strictly concave. Also if c1(x); � � � ; cp(x), the components of c(x), are a�nely independent almosteverywhere, then for the system of equationscj(x) = E�[cj(x)]; j = 1; � � � ; p;if a solution exists2, it is unique. In addition if x1; � � � ; xN are N i.i.d. random variables distributedaccording to f�(x) = exp(�T c(x) ��(�)), then the MLE of �, �̂N , has the following property:�̂N = argmax� NQi=1 p(xi; �)pN(�̂N � �) � N (0; g�1(�)):Using this fact, it is easy to see thatE �


�̂N � �


2� = 1N trace(g�1(�));therefore, when N �! 1, �̂N �! � in the m.s. sense. On the other hand, �̂N is the solutionto (16). Using the strong law of large numbers [22], when N ! 1 the LHS in (16) goes toE�(cj(x)); j = 1; � � � ; p; with probability one. In other words, the solution to (16) when the LHSis the exact E�(cj(x)); j = 1; � � � ; p; gives the exact solution for �. Using this argument, onecan expect that by �nding a good estimate of the left hand side of (16), a good estimate of � isaccessible. In each iteration of the algorithm presented in this section the estimate of the LHS of2In [21] it is shown that if N > p, the solution exists almost surely.10



(16) is found by using the Monte Carlo method and the approximate solution for the stochasticdi�erential equation (3).To approximate the solution to the stochastic di�erential equation (3), we employ the methodused in [23]. In the following, we review this method brie
y. The stochastic di�erential equationin (3) can be rewritten as follows:dxt = ft (xt) dt+ qXr=1grt (xt) dwrt ; (17)where grt (�) is the rth column of the matrix Gt(�), and wrt is the rth component of wt. We introducethe operators �ru = �gr ; @@x�u;Lu = 0@ @@t + �f ; @@x�+ 12 qXr=1 nXi=1 nXj=1 gri grj @2@xi@xj1Au;where �a ; @@x� = nPi=1 ai @@xi . Then, the approximate solution for the SDE can be written as follows:xk+1 = xk + qPr=1 grtk�rkh 12 + ftkh+ qPr=1 qPi=1 (�rgr)tk �irk h+12 qPr=1 (Lgr +�rf)tk �rkh 32 + (Lf)tk h22 ; (18)where h is the step size and the coe�cients grtk , ftk , (�igr)tk , etc., are computed at the point(tk;xk), and the sets of random variables �rk, �irk are independent for distinct k and can, for each k,be modeled as follows:�ij = 12�i�j � 12
ij�i�j; 
ij = ��1 , i < j1 , i � jand �i and �j are independent random variables satisfyingE�i = E�3i = E�5i = 0; E�2i = 1; E�4i = 3;E�j = E�3j = 0; E�2j = �4j = 1:In particular, �i can be modeled by the law P (� = 0) = 23 , P �� = p3� = P �� = �p3� = 16 , and�j can be modeled by P (� = �1) = P (� = 1) = 12 .De�nition 2 We say that a function u(�) belongs to the class F , written as u 2 F , if we can �ndconstants, k > 0, and �, such that for all x 2 Rn, the following inequality holds:ku(x)k � k (1 + kxk�) :If a function u(x; s) depends not only on x 2 Rn, but also on a parameter s 2 S, then we say thatu(x; s) belongs to F ( with respect to the variable x) if the inequality holds uniformly in s 2 S.11



The following theorem summarizes the weak approximation results for (18)[23].Theorem 2 Suppose (A1) from Section (2), and suppose that the functions f(�); gr(�); r = 1; � � � ; qtogether with the partial derivatives of su�ciently high order, belong to class F . Also, suppose thatthe functions �igr; Lgr; �rf , and Lf grow at most as a linear function in kxk. Then, if thefunction u(�) and all its derivatives up to order 6 belong to class F , the approximation (18) has theorder of accuracy 2, in the sense of weak approximation, i.e.,kEu (x0;x0 (tk))�Eu (x̂0;x0 (tk)) k � Kh2; tk 2 [0; T ];where K is a constant and x0;x0(�) and x̂0;x0(�) are the exact and approximate solutions for thestochastic di�erential equation, respectively.The Monte Carlo approximation of Eu (x0;x0 (tk)) brings another error term. The combination ofthese errors can be expressed as follows:kEu (x0;x0 (tk))� 1N NPi=1 u�x̂0;xi0 (tk)� k �kEu (x0;x0 (tk))�Eu (x̂0;x0 (tk)) k+ kEu (x̂0;x0 (tk))� 1N NPi=1 u�x̂0;xi0 (tk)� k:If the variance of u (x̂0;x0 (tk)) is bounded, we haveEkEu (x0;x0 (tk))� 1N NXi=1 u�x̂0;xi0 (tk)� k � Kh2 + k0N1=2 ; (19)where K and k0 are constants and h is the step size for the approximation of the solution of thestochastic di�erential equation.The next lemma relates the approximate solution to the stochastic di�erential equation and theestimate of the parameter �. This lemma is the main building block for our result in this section.Lemma 1 For the SDEdxt = ft (xt) dt+Gt (xt) dwt; x0; t 2 [0; tf ];assume that ft(�); Gt(�) are such that for the Brownian motion, wt, the probability density of thestate xt lies in the family S for � bounded, with g(�) positive de�nite and bounded away from zero.We also assume the conditions in Fact 1 and in Theorem 2 with c(x) replacing u(x). Then, thereexist k1 and k2 such that E[k�t � �̂tk] � k1h2 + k2N1=2 ; t 2 [0; tf ] (20)where �̂t is the estimate of �t, and N and h are the number of particles and the time step, respec-tively.Proof: Let �0 be the initial condition for �. At t = 0, N independent initial conditions aregenerated based on the density p (x; �0), and the approximation method (18) is applied. From (19)we know that: E 




E�tc (xt)� 1N NXi=1 c�x̂it�




 � Kh2 + k0N1=2 :12



On the other hand, from (16), we know that �̂ is a solution to the system of equation1N NXi=1 cj(x̂it) = E�̂t(cj(xt)); for j = 1; � � � ; p:From Fact 1, the solution is exact if we replace 1N NPi=1 cj(x̂it) by E�t(cj(xt)). Subtracting the termE�t(cj(x)) from both sides of the above equation and using the vector form for it, we get1N NXi=1 c(x̂it)�E�t(c(xt)) = E�̂t(c(xt))�E�t(c(xt)):On the other hand, we know that E�(c(x)) is a di�erentiable and one to one function of �. Thederivative of this function, g(�), is positive de�nite and bounded away from zero, so 9� > 0 suchthat k�t � �̂tk � �kE�t(c(xt))�E�̂t(c(xt))k= � 




 1N NPi=1 c(x̂it)�E�t(c(xt))




 :Taking the expectation on both sides of the inequality we haveEk�t � �̂tk � �Ek 1N NPi=1 c(x̂it)�E�t(c(xt))k� ��Kh2 + k0N1=2�= �k1h2 + k2N1=2�� Now we are ready to present the main result of this section.Theorem 3 For System (3) assume that ft(�), Gt(�), and h(�) are such that for Brownian motionwt, and the Gaussian noise vn, the conditional probability density of the state xt, conditioned on theobservations, lies in the family S for � bounded and for t 2 [0; T ]. We also assume the conditionsin Fact 1 and in Theorem 2 with c(x) replacing u(x). Then, if g�1 (�)E�t (Ltc (x)) is Lipschitzwith the Lipschitz constant L and g(�) is positive de�nite and bounded away from zero, there existl1 and l2 such thatEk�n� � �̂n�k � n�1Xi=0 exp(Li�)�l1h2 + l2N1=2� ; n� 2 [0; T ];where �̂n� is the estimate of �n� , and N and h are the number of particles and the time step, re-spectively.Proof: Let �t and �̂t be the actual and the estimated values of the parameter of the density at timet = n� , respectively. At time t0 = (n+ 1)� the error of the estimate of �t0 , �̂t0 , is a combination ofthe error of the estimate in �̂t and the error added in the time interval [t; t0 ]. Let ~�t0 be the estimateof �t0 , if the error due to resampling and the approximation of the SDE solution is not taken intoaccount in the interval [t; t0 ], thenk�t0 � �̂t0k � k�t0 � ~�t0k+ k~�t0 � �̂t0k:13



If the conditional distribution stays in the exponential family of distributions, �t has to satisfy thefollowing di�erential equation:_� = g�1 (�)E�t (Ltc (x)) dt; n� � t < (n+ 1) �:By the assumption of the theorem, g�1 (�)E�t (Ltc (x)) is Lipschitz with Lipschitz constant L,then by continuity of the solution of the di�erential equation with respect to the initial condition[24], we know that 


�t0 � ~�t0


 � 


�t � �̂t


 eL(t0�t);therefore, E 


�t0 � ~�t0


 � E 


�t � �̂t


 eL(t0�t):Also from the Lemma 1, 9k1(t0) and k2(t0) such thatE[k~�t0 � �̂t0k] � k1(t0)h2 + k2(t0)N1=2 ;therefore, Ek�t0 � �̂t0k � E 


�t � �̂t


 eL(t0�t) + k1(t0)h2 + k2(t0)N1=2 :The observation noise vn and the function h(�) are such that Bayes' Rule does not introduce anyfurther error in the estimate of �̂t0 . Therefore, starting from the initial point �0 we getEk�n� � �̂n�k � n�1Xi=0 exp(Li�)�l1h2 + l2N1=2� ; n� 2 [0; T ]where li = maxn ki(n�); n� 2 [0; T ]; i = 1; 2:� Here, we would like to make a few remarks:� The result of Theorem (3) can be easily extended to convergence in the mean square sense.� The assumption that the probability density stays in the family of densities, S, does not seemvery realistic. But with our approach, we should be able to get the result in [12]. In fact, in[12] the evolution of the density is forced to stay in the family at every single moment. In ourmethod, we only force the density to be in the family at th end of each full iteration. Thisallows the estimated density to be closer to the actual density.� In [12] the observation equation is considered to be time invariant. Here, the time-varyingnature of hn (x) does not complicate the algorithm. It surely a�ects the assumption that thedensity stays in the family, but as we explained earlier, this assumption is not realistic tobegin with, and it will be dropped. 14



� If u(�) and its derivatives up to order six are in class F , thenE kE�u(x)�E��u(x)k �! 0;N �! 1h �! 0This is the criteria that was used in [8].6 Projection Particle Filtering for Exponential Families of Densi-tiesIn this section, we drop the assumption that the conditional density of the state given the obser-vation (6) lies in an exponential family of densities. Instead we have the following assumptions:(A3) The density in (6) stays close to the given exponential family S in a weak sense:8t 2 [0; T ]; 8u 2 F 9��t 2 �� s:t: kEpt(u(x)) �E��t (u(x))k � � (21)where �� is closed and bounded.(A4) 8�1; �2 2 �� and 8u 2 F 9K1;K2 such thatkE�1u(x)�E�2u(x)k � K1k�1 � �2kk�1 � �2k � K2kE�1u(x)�E�2u(x)kIn the following we go through the proof of the theorem that we state later precisely. Assume�̂n is calculated according to Algorithm (2) and assume pnjn(x; �̂n) is such that 8u 2 FEkE�̂njnu(x)�E��njnu(x)k � �: (22)where ��njn satis�es kEpnjnu(x)�E��njnu(x)k � �: (23)Using the distribution pnjn(x; �̂n), new particles x1n; � � � ;xNn are produced. The approximate solutionfor the SDE at time (n + 1)� maps these particles to x̂1n+1; � � � ; x̂Nn+1. From these new particles�̂n+1 is calculated. From (22) and (23) we haveEkEpnjnu(x)�E�̂njnu(x)k � � + �: (24)We de�ne the function r(x) as follows:r(x) = Ec(x̂n;x((n+ 1)�))where x̂n;x((n+1)�) is the approximate solution of SDE (17) at time (n+1)� with the given initialcondition x at time n� using the method in (18). Since according to our assumption c 2 F , thenby using lemma 9.1 in [23], we havekr(x)k � K3(1 + kxk�)15



where K3 and � only depend on the function c(�) and the dimension of x. We assume that r 2 F .If the argument of r(�) is a random variable, then using (24) we haveEkEpnjnr(x)�E�̂njnr(x)k � � + �: (25)Therefore,EkEpnjnE[c(x̂n;x((n+ 1)�))jx] �E�̂njnE[c(x̂n;x((n+ 1)�))jx]k � � + �:In other words,EkEpnjnc(x̂n;x((n+ 1)�)) �E�̂njnc(x̂n;x((n+ 1)�))k � � + �: (26)From Theorem (2) we haveEkEpnjnc(xn;x((n+ 1)�)) �Epnjnc(x̂n;x((n+ 1)�))k � K4h2; (27)for some K4. Using the Monte Carlo method to calculate the Epnc(x̂n;x((n+ 1)�)) brings anothererror term that is due to the �nite number of particles as the initial conditions for method (18).The expectation of this error is bounded, i.e. 9K5 s.t.EkE�̂njnc(x̂n;x((n+ 1)�))� 1N NXi=1 c(x̂n;x̂i((n+ 1)�))k � K5N 12 ; (28)where x̂i(n) are distributed according to pnjn(x; �̂n). Combining (26), (27), and (28) we getEkEpnjnc(xn;x((n+ 1)�))� 1N NXi=1 c(x̂n;x̂((n+ 1)�))k � � + �+K4h2 + K5N 12 : (29)Based on (A3) we know that 9��n+1 such thatkEpn+1jnc(x((n + 1)�)) �E��n+1jnc(x((n + 1)�))k � �: (30)We know that Epn+1jnc(x((n+1)�)) = Epnjnc(xn;x((n+1)�)), therefore from (29) and (30) we getEkE��n+1jnc(x((n+ 1)�)) � 1N NXi=1 c(x̂n;x̂((n+ 1)�))k � � + 2�+K4h2 + K5N 12 : (31)Then the �̂n+1 given by Algorithm (2) satis�es the following inequalityEkE��n+1jnc(x((n+ 1)�)) �E�̂n+1jnc(x((n+ 1)�))k � � + 2�+K4h2 + K5N 12 : (32)From (A4) it is easy to see thatEkE��n+1jnu(x((n+ 1)�)) �E�̂n+1jnu(x((n+ 1)�))k � K1K2 �� + 2�+K4h2 + K5N 12 � ; (33)8u 2 F . Step (4) in Algorithm (2) incorporates the new measurement according to Bayes' Rule.Since the measurement noise is Gaussian and �� is compact 8� 2 ��9�1 and �2 such that16



�1 � Z exp(�T c(x)��(�))	n+1(x)dx � �2;and kE�u(x))	n+1(x)k � �3:From (33) we haveEkE��n+1jn+1u�E�̂n+1jn+1uk = Ek 1c�E��n+1jnu	n+1 � 1̂cE�̂n+1jnu	n+1k= Ek 1c�E��n+1jnu	n+1 � 1̂cE��n+1jnu	n+1+ 1̂cE��n+1jnu	n+1 � 1̂cE�̂n+1jnu	n+1k� ( 1�1 + �3�21 )K1K2 �� + 2�+K4h2 + K5N 12 �= K6K1K2 �� + 2�+K4h2 + K5N 12 � ; (34)
where c� = R exp(��Tn+1c(x) ��(��n+1))	n+1(x)dx and ĉ = R exp(�̂Tn+1c(x)��(�̂n+1))	n+1(x)dx.Comparing (34) and (22) shows that by choosing �, �, and h, small and N big enough, one canachieve the desired accuracy in convergence. The next theorem summarizes our result in thissection.Theorem 4 For the system (3) assume (A1), (A2), and (A3). We also assume (A4) and theconditions in Fact 1 and in Theorem 2 with c(x) replacing u(x), and we assume r 2 F . Then inAlgorithm 2 with approximation (18), ifEkE�̂njnu(x) �E��njnu(x)k � �thenEkE��n+1jn+1u(x((n+ 1)�)) �E�̂n+1jn+1u(x((n+ 1)�))k � K6K1K2 �� + 2�+K4h2 + K5N 12 � ;for some K1; � � � ;K6.In Theorem (4) only one step of Algorithm (2) is considered, but it is straightforward to useTheorem(4) repeatedly, then for the time interval [0; T ], where T =M� , if kE�̂0j0u(x)�E��0j0u(x)k ��0, then 9�1; �2; �3; and �4 such thatEkE��njnu(x((n)�)) �E�̂n1jnu(x((n)�))k � �n1�0 + n�1Xi=0 �i1(�2�+ �3h2 + �4N�1=2);for 0 � n �M .7 Particle Filtering for Nonlinear Systems with Constant IntegerUncertaintyConsider the following nonlinear dynamics and observation17



dxt = ft(xt)dt+Gt(xt)dwtyn� = hn(x(n�)) + Jnz+ vnwhere the assumptions and the dimensions for xt, yn� , wt, and vn are the same as in the previoussections. We assume that z is a random integer vector, i.e. z 2 Zm and Jn has the properdimension. Vector z is assumed to be constant in time. This problem can be set up in discretetime as well. In this case the system dynamics and the observation can be written as follows:xn+1 = fn(xn) +Gn(xn)wnyn = hn(xn) + Jnz+ vnIn both setups we assume that the integer uncertainty a�ects only some components of theobservation, and other components are una�ected by z. The a�ected components have associatednoise components in vn that have considerably lower energy. In other words, the uncertain com-ponents of yn� (or equivalently yn) are considerably more accurate than the other components ifthe integer ambiguity were known. This suggests that an accurate estimation of z can increasethe accuracy of the estimate of the state of the system signi�cantly. With this explanation ourtreatment of z is clear. From the state dynamics and the observation equation we �rst estimatez and then, with �xed z, we use regular nonlinear �ltering methods to estimate the state of thesystem xt.We augment the state xt with the integer ambiguity z. Having done that, the state dynamicsand the observation have the following form:d " xtzt # = " ft(xt)0 # dt+ " Gt(xt)0 # dwtyn� = hn(x(n�) + Jnz(n�)) + vn (35)We assume that the initial distribution of (xT0 ; zT0 )T is known. Now with this form the statedynamics and the observation have the same form that was studied in Section (4). Therefore, wecan apply particle �ltering to �nd the conditional probability distribution of the augmented state.This setup is a special case of the setup in Section (4). In (35) there is no state transition forzt, therefore, using PaF in its original form may not be the best option. Recall that in PaF westart with N i.i.d. particles distributed according to the initial distribution. In the resamplingpart the low probability particles die and the high probability particles produce many particlesidentical to themselves. Since zt does not change, the part of the particles associated to zt tends tocover smaller and smaller portions of the state space. In fact, the state space of the integer vectorsis de�ned by the particles at the initial time. This problem can be overcome by modifying thealgorithm mentioned in Section (4). In the new algorithm Step 5 is changed in such a way that theparticles are the addition of the original particles found by Algorithm 1, with a random vector. Themodi�cation is very important for the integer values, since the integers do not have a dynamics thatis driven by a random input. In [9], a similar modi�cation has been used for the regular nonlinear�ltering setup (no parameter is considered constant). It seems that the convergence results givenin [9] can be applied to our case as well.Based on the modi�ed algorithm, we simulated a nonlinear �ltering problem similar to theproblem involved in the GPS system. 18



In a two dimensional space, three transmitters (imagine three pseudo satellites) are mountedon three known points (2000; 100000), (0; 100000), and (�2000; 100000). The moving object canmeasure its distance from these transmitters. For each pseudo satellite, two types of measurementare possible. One with high measurement noise and the other with low measurement noise. For thelow measurement noise, though, there is an integer ambiguity. The dynamics of the moving objectfor this example is considered to be in discrete time and linear time invariant. The dynamics andobservation equation is given as follows:0BBB@ x1v1x2v2 1CCCAn+1 = 0BBB@ 1 �t 0 00 1 0 00 0 1 �t0 0 0 1 1CCCA0BBB@ x1v1x2v2 1CCCAn +0BBB@ w1w2w3w4 1CCCAn ;yan = kx� sik+ van ; i = 1; 2; 3ybn = kx� sik+ ni + vbn ; i = 1; 2; 3;where x = (x1; x2)T , si is the position of pseudo satellite i in two dimensional space, �t = 0:1unit of time, ni is the integer ambiguity of the pseudo satellite i, and w = (w1; w2; w3; w4)Tand v = �va1 ; vb1; va2 ; vb2; va3 ; vb3�T are zero mean white Gaussian noise with covariance matrices�w = diag (1; 0:5; 1; 0:5) and �v = diag (5; 0:2; 5; 0:2; 5; 0:2), respectively. In the simulation, it isassumed that the initial condition for the position is distributed in a square of size 200� 200 unitssquared, symmetric with respect to the origin.In brief, the simulation can be separated into two parts, initialization and the full non-linear�ltering. In the initialization part, we start with the initial probability distribution for (x1; x2) andfrom a series of observations, we �nd an estimate for the probability distribution (v1; v2). In thispart, we do not use the dynamics of the moving object. Using our estimate for the probabilitydistribution of (x1; v1; x2; v2) we �nd the distribution for the integer ambiguity. After this, theinitialization is over, and the full non-linear �lter is used. There are some minor numerical con-siderations that we would like to point out. In the Bayes step of the algorithm, the numbers areusually very small, without proper scaling the original algorithm would not work. In the resamplingpart, one can use the law of large numbers and regenerate the particles based on their probabilitywithout generating random numbers that are time consuming. The result of the simulations areshown in Figures(1), (2), (3), (4), (5), and (6). To display the estimated integers, we simply usedthe mean value, which is not necessarily the best choice. Of course, since we have the distribution,we can use the MAP estimate of the integers. In this simulation we forced one of the integers tohave a jump. Although our algorithm is not designed for these kinds of changes, we see that it canestimate the new integer values. In future, we use special treatment for the times that these kindsof jumps happen. As you can see, the estimate for the integers are reasonably good. The reliabilityof the estimate for the integers depends on the energy of the noise.8 Future WorksThe simulations results show that our method is capable of estimating the integer ambiguity andthe position. There are certain issues that need further investigation. In the following, we itemizethese issues:� What are the proper criteria to stop the integer ambiguity estimation part and �x the integers?19



� What happens when a cycle slip happens, i.e. one or more of the integers have a jump? Whatchange detection algorithm is proper and what is the performance of this algorithm? Howcan we repair the integer ambiguity e�ciently?� What happens when the number of the satellites drops from the critical number?� How much improvement does the method of Section 5 for integer ambiguity and positionestimation have over PaF?These questions are to be answered in the future work. In addition to these, we shall be morespeci�c in our simulations, and use real GPS data for our results.In our lab setup we have two GPS receivers that can work in di�erential mode. One of thereceivers is mounted on a radio controlled car. In the setup, we monitor the position of the car ona stationary monitor that is connected to the base station GPS receiver. The position estimation isdone by this receiver. In future, we want to integrate the GPS observations and the car dynamicsfor better estimation results. The car kinematics is a modi�ed version of kinematic car [25].d0B@ xy� 1CA = 0B@ cos �sin �1l tan� 1CAun +G (�; �; x; y) dwtwhere x; y; �; �; and l are shown in Figure (7).We assume that two sensors on the car can measure the control u1 and the angle � (� is anothercontrol). The function G depends on the structure of the sensors and the nature of the noise. Thismodel and the DGPS observation will be used for estimating the position and the speed of the car.References[1] N. El-Sheimy and K.P. Schwarz. Navigating Urban Areas by VISAT-AMobile Mapping SystemIntegrating GPS/INS/Digital Camera for GIS Applications. Navigation, 45(4):275{285, Winter1999.[2] R. Zickel and N. Nehemia. GPS Aided Dead Reckoning Navigation. Proc. ION Nat. Tech.Meeting, pages 577{586, 1994.[3] H. Carvalho, P. Del Moral, A. Monin, and G. Salut. Optimal Nonlinear Filtering in GPS/INSIntegration. IEEE Trans. on Aerospace and Electronic Systems, 33(3):835{850, July 1997.[4] A. Hassibi and S. Boyd. Integer Parametric Estimation in Linear Models with Applications toGPS. IEEE Trans. on Signal Processing, 46(11):2938{52, Nov. 1998.[5] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Positioning System: Theoryand Practice. Springer-Verlag, Second edition, 1993.[6] P.J.G. Teunissen. A New Method for Fast Carrier Phase Ambiguity Estimation. Proc. IEEEPosition, Location and Navigation Symp., pages 562{73, 1994.[7] P.J.G. Teunissen. The Least Square Ambiguity Decorrelation Adjustment: a Method for FastGPS Integer Ambiguity Estimation. Journal of Geodesy, 70(1-2):65{83, Nov. 1995.20



[8] P. Del Moral. Non Linear Filtering: Interacting Particle Solution . Markov Processes andRelated Fields, 2(4):555{580, 1996.[9] F. LeGland, C. Musso, and N. Oudjane. An Analysis of Regularized Interacting ParticleMethods in Nonlinear Filtering,. In J. Rojicek, M. Valeckova, M. Karry, and K. Warwick,editors, Proceedings of the 3rd IEEE European Workshop on Computer-Intensive Methods inControl and Signal Processing, volume 1, pages 167{174. Prague, September 7{9 1998.[10] P.M. Maybeck. Stochastic Models, Estimation, and Control, volume 2. Academic Press, 1982.[11] D. Brigo, B. Hanzon, and F. LeGland. A Di�erential Geometric Approach to NonlinearFiltering : the Projection Filter. Proceedings of the 34th IEEE Conference on Decision andControl, pages 4006{4011, December 1995.[12] D. Brigo. Filtering by Projection on the Manifold of Exponential Densities. Ph.D. ThesisDepartment of Economics and Econometrics, Vrije Universiteit, Amsterdam, October 29 1996.[13] D. Brigo and F. LeGland. A Finite Dimensional Filter with Exponential Conditional Density.Proceedings of the 36th IEEE Conference on Decision and Control, pages 1643{1644, December10{12 1997.[14] R. Beard, J. Gunther, J. Lawton, and W. Stirling. Nonlinear Projection Filter Based onGalerkin Approximation. Journal of Guidance Control, and Dynamics, 22(2):258{266, March{April 1999.[15] M.H.A. Davis and S.I. Marcus. An Introduction to Nonlinear Filtering. In M. Hazewinkel andJ.C. Willems edit. Stochastic Systems: The Mathematics of Filtering and Identi�cation andApplications, pages 53{75, 1981.[16] K. Sobczyk. Stochastic Di�erential Equation With Application to Physics and Engineering.Kluwer Academic Publishers, 1991.[17] S. Amari. Di�erential-Geometrical Methods in Statistics. Springer-Verlag, 1985.[18] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel Approach to Nonlinear/NonGaussianBayesian State Estimation. IEE Proceedings-F (Radar and Signal Processing), 140(2):107{113,1993.[19] E.L. Lehmann and G. Casella. Theory of Point Estimation. Springer-Verlag, New York, secondedition, 1998.[20] A.E. Gelfand and A.F.M. Smith. Sampling-Based Approaches to Calculating Marginal Den-sities. Journal of the American Statistical Association, 85(410):398{409, 1990.[21] B.R. Crain. Exponential Models, Maximum Likelihood Estimation, and the Haar Condition.Journal of the American Statistical Association, 71(355):737{740, 1976.[22] P. Billingsley. Probability and Measure. John Wiley, New York, third edition, 1995.[23] G.N. Milstein. Numerical Integration of Stochastic Di�erential Equations. Kluwer AcademicPublishers, New York, 1995.[24] H.K. Khalil. Nonlinear Systems. Printice-Hall, second edition, 1996.21



0 20 40 60 80 100 120 140 160 180 200
−75

−70

−65

−60

−55

−50

−45

In
te

ge
r 

V
al

ue

Time

The Estimated and Actual Integer Ambiguity

Figure 1: Estimated integer ambiguity versus the actual integer ambiguity of pseudo satellite (1). At time100 there is a cycle slip of strength �20 for the measured phase of the carrier from pseudo satellite (1) .[25] R.M. Murray, Z. Li, and S.S. Sastry. A Mathematical Introduction to Robotic Manipulation.CRC Press, 1994.
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Figure 2: Estimated integer ambiguity versus the actual integer ambiguity of pseudo satellite (2). At time100 there is a cycle slip of strength �20 for the measured phase of the carrier from pseudo satellite (1) .
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Figure 3: Estimated integer ambiguity versus the actual integer ambiguity of pseudo satellite (3). At time100 there is a cycle slip of strength �20 for the measured phase of the carrier from pseudo satellite (1) .
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Figure 4: Estimated X component versus the actual X component of the position of the car. At time 100there is a cycle slip of strength �20 for the measured phase of the carrier from pseudo satellite (1) .
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Figure 5: Estimated Y component versus the actual Y component of the position of the car. At time 100there is a cycle slip of strength �20 for the measured phase of the carrier from pseudo satellite (1) .
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The actual trajectory versus the estimated trajectory

Figure 6: Estimated trajectory versus the actual trajectory of the car. At time 100 there is a cycle slip ofstrength �20 for the measured phase of the carrier from pseudo satellite (1) .
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Figure 7: Kinematic car.
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