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I. NOMENCLATURE

a Regularizing function

E[-] Mathematical expectation

E[-|-] Conditional expectation

€€, INS errors in longitude and latitude

INS Inertial Navigation System

Ao Longitude, latitude

AL dy Longitude and latitude readings from
INS

A> Do Longitude and latitude of vehicle

N Number of particles

dP(-),dRy(") Probability measures

dP(-|-) Conditional probability

P Weight of particle i

2 Pseudo-range from satellite i

X Y, Basic stochastic processes

Xg Regularized exploring process

X State of exploring particle i

X State of auxiliary particle j

Z, Radon—~Nykodim derivative

z; Regularized Radon—Nykodim

derivative.

Il INTRODUCTION

GPS/INS (Global Positioning Systeny/Inertial

Navigation System) integration [25] has proven to be
a very efficient means of navigation due to the short
term accuracy of INS allied to the long term accuracy
of GPS fixes. \

Tightly coupled GPS/INS units (see Fig. 1) as
well as modular equipments (Fig. 2) may be found
in the literature [3, 4, 19, 27] but the former is more
appropriate to perform optimal signal processing.
Indeed, this processing scheme allows the various
errors and noise sources (such as atmospheric effects, .
clock delays, accelerometer biases, etc....) acting on
both GPS and INS units to be taken into account in a
global way, as opposed to the “classical” approach of
Fig. 2 where fictitious (or at least coarsely evaluated)
noises are associated to the GPS fixes in the model
used by the navigation filter.

o Lat VeV + (lonLat Ve . Vn.aray)
ALRLT Y
e d

INS

estimated errors

INS | outputs

RF front-end
. :
correlaors | PSendo-ranges

lon = longitude, Lat = latinude, Ve = East speed
Va = North speed, ax = X accelerometer output
ay = Yaccelerometer output

Fig. 1. Tightly coupled GPS/INS unit.
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Fig. 2. Modular GPS/INS unit.

Kalman filtering [10, 11, 13, 16, 18, 21] is a
popular tool in handling estimation problems, but
its optimality heavily depends on linearity. When
used for nonlinear filtering (extended Kalman filter
(EKF)), its performance relies on, and is limited by
the linearizations performed on the concerned model.
On the other hand, despite early papers [2, 20, 26]
on nonlinear filtering theory, the implementation
of nonlinear filters has been plagued so far by the
difficulties inherent to their infinite-dimensional
nature.

A new approach to optimal nonlinear filtering is
presented here, which is applied to the problem of
INS recalibration by means of GPS. This new method,
called particle filtering (PF), may cope with nonlinear
models without any limitation, and non-Gaussian
noises as well. Section III gives the mathematical
basis of this new method.

The main feature of PF is that it constructs
the conditional probability of the variable to be
estimated, with respect to the measurements, through a
suitable random particle exploration of the state space
followed by a Bayes correction of the weights of the
particles. Originally proposed by G. Salut, this method
was first designed with birth and death of particles
then with a constant number of particles, and appeared
for the first time in 1989 [15]. Since then, it has been
extensively studied and applied ([5, 7, 8, 22, 24]).

In this work the PF and EKF performances are
evaluated by simulation of the filtering scheme of
Fig. 1 in critical situations. Section IV describes the
system models used by the navigations filters along
with the GPS satellite constellation.

The simulation results in Section V yield a basis
to compare the performance of both types of filter in
terms of accumulated quadratic errors. Conclusions
are drawn in Section VI

Hl. DISCRETE-TIME NONLINEAR FILTERING:
PARTICLE APPROACH

Nonlinear filtering [6, 16, 17, 23] concerns the
recursive estimation of any function ¢(X,) of an

R"-valued stochastic process X from the observation
of a related R™-valued, random process Y, where the

“best” (minimum variance) estimator w@) is given by
the conditional expectation!
Bl | %=l = | wx)P@x 1%

where ¥, = (1j,.... %),
Let the process X be governed by

Xk+1 = f(Xk9k7wk) (1)
while the observation process Y is given by
Y, = kX, k) + g(X;. kv, )
N o’

Vi

where {w,} and {v,}, k > 0, are sequences of
independent random variables with appropriate
dimensions, f, g, and 4 are measurable functions
of X. We define v, = g(X,,k)v, with R” =
g(X,. k)R g (X,.k), which is assumed to be strictly
positive definite.

It is well known that the optimal estimator

©(X,) does not have, in general, a finitely recursive
realization, as it is the case in linear-Gaussian theory
(Kalman filter).

The problem of assessing E[¢(X,) | X1 is of
course related to that of recursively computing
the probability law dP(x | ), which provides all
statistical information about X, obtainable from the
observations ¥, = y,.

The elementary recursion from time k —1 to
k follows two steps: prediction and correction, as
explained below.

Suppose dP(x_q | ¥_1) is known. The prediction
step is based on the Markovian properties of the
system, and the Chapman-Komolgorov equation which
yields

aPx |y = /dP(xk | xp_)dP (g | yx_1)-

The correction step, introduces the Bayes’ ratio
which may be viewed as a change of probability
measure. This will be useful in the sequel. It relies on
the fact [28] that there exists a random variable Z, and
a probability measure F, absolutely continuous with
respect to P, such that X and ¥ become independent

under £,.
F, is defined by the change of measure
dP
—=7Z,X)Y
a5 =BT

and Z, is the Radon—Nykodim derivative of P with
respect to R,.

Z, may be interpreted as being the likelihood ratio
relative to the hypotheses '

1'We write dP(x, | y_,) for the correct notation dPXk|Yk'1(xk | Ve 1)»
and boldface k stands for the sequence 1,2,...k.
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{Hl Y = k(XD 4y,
H):Y,

which yields, in the case of a Gaussian observation
process,

v;, for i=1,....,k

exp {—% POpig A h(Xi’i)lee"}
exp{ -4, Il }

(with notation: ||a||%, = a’[R*]"'a, a € R™).
The searched estimator may be expressed in terms
of Z, and F as

Z(X,Y) =

Eolp(X)Z (X, Y) | K]
E ¥ Y1= 0 k/“k k
(X)) [ K] Eo[Z,(X,Y) | %]

S BleXOUX, 1) %] (@)

where E, denotes the mathematical expectation with
respect to F,, and

—_ Zk(X’Y)
N VACS IRl

It should be noted that, in this form, the filter has
a recursive but infinite-dimensional solution. Further
developments of filtering theory call for practical
implementation methods of nonlinear filters. A rather
crude approximation is the EKF.

A rather different approach to the problem is PF.
The conditional expectations are estimated by means
of Monte-Carlo type methods which are based on
the Law of Large Numbers. This powerful theorem,
which guarantees that the searched expectation may
be approximated by the sum of independent random
variables, is here specialized to the case of conditional
probability laws.

On the basis of what was just stated, we call PF
any conditional expectation approximation induced by
random exploration of the state space by means of a
set of independent random processes (particles) X
(where the e stands for exploration).

However, the conditional law dP (x| y,) is not
directly available. The introduction of the reference
probability measure F,, for which the Law of Large
Numbers may be applied, yields a solution to this
problem.

We introduce, as previously, a random variable zZ,

defined as
dP

B - Z,(X.Y) 5
where dF, is any known and recursively realizable
probability law, such as dP(x), which yields the
a priori sampling method, or dP(xp, | X, s Y5
(where Xy =[x X 15+ 03X, 41 1), which yields the
n-conditional sampling method.
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The basic idea is to apply the Law of Large
Numbers to the numerator and denominator in
(4) to obtain an estimator which converges in
probability (L°) to the conditional expectation, as was
demonstrated in [7].

THEOREM 1 If the following hypothesis is valid:
(H,): Stochastic nonexplosion condition:

There exists a nonempty class of Y, -adapted processes

X, such that

{ X, “Xk”LZ(P) < +00
[|(X,) — h(X})

L2(P) < +00

and the exploring processes X, (i = 1,...,N), belong
to this class, then ~

1 i L0P)
7 2 UX ) BolUp (X, V)X, | K]
i=1
where Z} = Z,(X%',Y) and

4 :
1 k| 6)

Ui =
N
N 214

We now comment on the simplest case of
application.

A. A priori Exploration

.....

according to dP(x,), the estimator may be written as a
weighted sum of the exploring random variables:

N
(X)) =) ploGi) Q)

i=1

where the weights pi = U} are obtained from the
Radon-Nykodim derivatives Z, (see (3)) and, dP(x)
can be recursively obtained from dP(x, | x,_,)dP(x;_).

As is well known from the duality between
functions and measures, this is equivalent to
approximate the measure dP(x | y,) by

N .
Z p'é < (o5)
i=1

where § i,i(') denotes the Dirac’s measure with
pointwise support x,.. That is, the positions of the
particles with their weights yield a Dirac comb
approximation of the searched conditional law. Fig. 3
depicts the paths of the weighted particles representing
the evolution of the conditional probability law.

B. Regularization Procedure

Theorem 1 guarantees convergence for any finite
k, but N may depend on k. In order to guarantee
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Fig. 3. A priori particles exploration of probability space.

uniform convergence with respect to (wrt) time &, we
need a further regularization procedure.
To make this point clear, consider, as an example,

the system
Xy =wy
®)
Lo =X+

where w, and v, are real valued independent Gaussian
random variables of unity variance, and the random
variable r, = Z{*/Zg’, which expresses the likelihood
ratio of an exploration (sample) path i wrt another
one, j.

From (2) and (3), we have

k
2
a1 —
Efrf] = < ___1_5q2> o oo,

That is, ]E[r,f ] — oo as k. — oo, since only those
moments corresponding to 0 < g < 1/+/5 are defined.
In other words, the weights p’ will numerically
degencrate due to the fact that likelihoods for
different sample paths diverge. We would then expect,
asymptotically, null weights for almost all particles but
a very few, due to normalization. Consequently, this
degenerate discrete representation of the probability
law bears asymptotically no useful information about
the process, and some regularizing action must be
carried out.

For this, consider the modified Radon—Nykodim
derivative

dP

E}Tooj = Zl?(Xk’ Yk)

related to the follbwing hypothesis
{ H Y2 = h(X;, k) + v

where v is a modified Gaussian white noise with

covariance [R"*] ! = a(k, D[R]}, a(k,D) is an

N x N - [0,1] function and v,R” as defined in (2).
With the help of the above regularization

procedure, a more general theorem may be stated

(cf. [9]).
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THEOREM 2 - Consider a regularizing function o such
that : ~

a(0,)) =0
alkly <atk—1,1p), ¥V l,eN .
alky, D) > alkg,l—1), ¥ kyeN

If the following hypotheses are valid:

(H}'): Uniform stochastic detectability condition:
There exits a nonempty class of Y -adapted processes X,
such that

{wn—&m<+m
(X)) — h(X|; < +oo

and the exploring processes X,f’ia, (i=1,...,N), belong
to this class. '
(H,): Continuous regularizability condition

“ N
Xy — X,

a—1
then one may choose c(N) such that:

Koy _ XN: 72 (x1Y) e
k= p ,
YLyt

i=1

LD Py
I\J(TS’OEO[Uka | Xl

Two examples of regularizing function are given
for a Gaussian observation noise.

EXAMPLE 1 (Age-weighting factor: a(k,l) = ¥,
v€(©,1))

exp{ 1 Sh 7Y~ A |

ZpyX,Y) = :
exp {—4 Sk % R |

EXAMPLE 2 (Window of length T' : a(k,l) = 1;o (k)

exp {—% Zi’(:kAT 1% — h(Xi’i)le*”}

ZEX,Y) =
exp{~4 S, rlI%IR }

Applying the window function «(k,l) = Lo (k) to
the system (8) yields

T
2

that is, the weights will not vanish, nor will the
discrete representation of the conditional density
degenerate.
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1) Basic A Priori Algorithm: The a priori
sampling algorithm may be summarized as follows.

a) Initialization. Positions of particles are
initialized according to dP(x;), and weights to [ /N.

b) Evolution. Move particles according to (1),
and randomly generated noises w,.

c) Weighting. Weights are given by (6), and
regularizations according to Examples 1 or 2.

d) Estimation. Given by (7).

e) Recursion. Step from b to d.

C. n-Conditional Exploration

While the a priori sampling method is well suited
for stable systems, it is not the case for unstable
ones, since the exploring particles tend to move away
from each other, and from the real process, thus
failing to satisfy hypothesis (H}"). The n-conditional
method, described below, tracks the process X, by
conditioning the exploration paths to limited sections
of the observed path, to avoid divergence from the
real process. It should be noticed that n = dim(X) is
always sufficient, if the dynamic system (1)—(2) is
uniformly observable.

Consider the following partition of the time
interval [0,k] in T — 1 intervals Ij, (G=2,....,T) of
length n and one interval ;, of length p < n such that
k=nT-1)+p:

0 1 14 ptn k—n k
—— S ——— ——’
I L I

This is equivalent to having I; = {p+ (j — D)n+

1,...,p+ jn}, and we note x;;; = {x;};;, and xp) = x,.

We want to sample X|;;, conditionally to n
observations ¥, and X;_,. The corresponding
probability law appears in the following
decomposition

i~

dP (o) = | | APy | XG0 Yi-11)

~.
il
—

il
i~

dP (x| X 1Y) AP Oy | Xg21y)
=1

~
I

and we have
T
{dPo = [Tj=1 dP Gy L )

Zk(xk’yk) = H,T'=1dP()’[j] fx[j—l])-

But, since
AP (xyey | Xge- 175 V)

_ dP(yyg | XpgsXpe-1p)
dP(y[k] Ix[k_l])

dP(xyy | Xp—1p)
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| '
dP(xlkI xll-nl ’I’kl)

kn n steps

Fig. 4. Conditional exploration.

one may sample dP (xy, | x_yy. ) by M particles (as
in the a priori case) {xjj};=1,. s as follows.

Given a trajectory portion X,_;;, the next portion
is estimated, conditionally to the observations yy; by

auxiliary particles, moving according to dP (xy | Xj_13)
(that is, (1)), and weighted proportionally to

APy | Xp—1p X = {x?iéli})
1 M )
37 2=1=19P O | X1, Xg = {xah)

i
Zyy =

Finally, one of the M trajectory sections is
randomly selected according to the newly generated
probability law.

Fig. 4 illustrates this concept. It shows one of the
N basic particles and its M auxiliary particles.

In terms of algorithm, this technique modifies
Steps b and ¢ of the a priori algorithm as shown
below. ‘

b) Evolution. For each of the N particles
{xe’j}j=1,...,1v1

.....

positions and weights with those of x;”,.

2) Move the auxiliary particles n steps ahead,
according to (1) and its randomly generated driving
noises.

3) For each of the N particles {x*/};_; y,
weights are recursively calculated by (6).

4) Choose randomly one of the auxiliary trajectory
sections using the discrete representation of the
probability law expressed by the particles at instant k.

c) Weighting. The particles’ weights dP(yy; | Xp-1;)
can be assessed by

APy | X)) = /P()’[k] | ) AP gy | Xpge—1p)s
(Chapman-Kolmogorov).
If we substitute dP(xy, | x;;.1;) by its particle

. . N
approximation Y ;_; 6y, we have
%1
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Fig. 5. A priori PF of unstable system.
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Fig. 6. A priori PF of unstable system with redistribution.

N o,
APy | xpe1y) = Z/P(y[k] | %pg)8 o
i=1

N .
=Y POy | Xi)
i=1

and the base particle weight may be expressed in
terms of auxiliary particles as follows:

ei 23/1:1 {pa,j}i
S YTy

where {p®/}* is the weight of the auxiliary particle j
corresponding to the base particle i.

D. Extensions of the Algorithm

The regularization technique introduced in the
preceding paragraphs prevents the total degeneracy
of the weights of the particles, but it does not prevent
some of these weights from being very low relative
to those of other particles, and therefore poorly
contributing to the calculation of the estimator. (The

application of the generalized Law of Large Numbers
needs less particles as their weights are closer to
1/N) o

In order to improve this, a redistribution technique
may be applied which accelerates the (already granted)
convergence. This technique is an extension of well- .
known sampling/resampling principles, as in [12].

It consists of periodically redistributing the
particle positions (in the state space), in accordance
to the discrete representation of the probability law,
and reinitializing all of them with weight 1/N. As
a consequence, redistribution has a regularizing
effect.

This procedure allows “heavy” particles to give
birth to more particles, at the expense of light particles
which die. This guarantees an occupation of the
state space regions proportional to their probability
mass, thus providing an adaptive grid. It has also a
stabilizing effect, by eliminating particles that are
too unlikely with respect to the measurements, so
that it may often be used instead of n-conditional
exploration. (It should be noticed, however, that
uniform convergence of particle filtering has only
been proved under conditions of Theorem 2.)
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Fig. 7. N-conditional PF of unstable system with redistribution.

In order to illustrate these concepts, the following
figures show an unstable system trajectory along with
the exploring particles trajectories.

The first example (Fig. 5) illustrates the a priori
method, and the divergence of particles.

Fig. 6 shows that the introduction of redistribution
into the preceding case recenters the particles around
the trajectory of the system, despite piecewise
instability, since particles have an increasing tendency
to spread away from the tracked trajectory.

Finally, Fig. 7 shows the application of the
n-conditional algorithm, with redistribution. In this
case, particles are kept around the trajectory of the
system in a stationary fashion at all times.

IV. MODELS FOR GPS AND INS

This section describes the mathematical models
used by PF and EKF as well as the simulation model
used to study their performances.

A. WGS84 Reference Frame

The general reference frame in which all equations
are written is the WGS84 ellipsoid defined by the
following parameters:

Parameter Value Description
a 6.378.137, 0 m semimajor axis
b 6.356.752, 314 m semiminor axis
W 7.292.115, angular velocity of the
0E — 11 rads™! Earth
4 3.986.005, 0E8 m>.s~2  gravitational constant

B. GPS NAVSTAR Constellation

Almanac data (see below for an excerpt of an
almanac file), generally used by receivers in searching

CARVALHO ET AL.: OPTIMAL NONLINEAR FILTERING IN GPS/INS INTEGRATION

tasks, provide a good and simple approximation of the
satellite orbits in the WGS-84 frame.

spkserrkkk Week 733 almanac for PRN-01 sksrsorrssok

ID: 01

Health: 000

Eccentricity: 3.4704208374E — 003
Time of Applicability(s): 32768.0000

Orbital Inclination(rad): 1.9549714327

Rate of Right Ascen(r/s):
SQRT(A) (m"1/2):

Right Ascen at TOA(rad):
Argument of Perigee(rad):
Mean Anom(rad):

—7.8746138499E — 009
5153.623047
1.4436991215E + 000

—1.125461102

—1.3702572584E + 000

Af0(s): —3.8146972656E — 006
Af1(s/s): -3.6379788071E - 012
week: 733

These data along with motion equations (9) are
used to position the GPS satellites in their orbits at
time ¢ counted from the beginning of the GPS week:

M@ =My+n(t—1t,)
Q) = Qy + Q1 —1,) = wpt = £y
5(t) = ag + a(t — 1)

®

where ,

M), (M,) is mean anomaly at time f,(z,),
Q(1),(§),) is ascending node at time ¢,(z,),

n is y/u/a?, mean motion,

t, is reference epoch within GPS week (seconds),
Iyeer 18 beginning of GPS week.

C. GPS Receiver

In a tightly coupled GPS/INS unit, the primary
tasks accomplished by a GPS receiver are as follows:

—identification of all visible satellites with
possible choice of the best four in terms of geometric
dilution of precision (GDOP),

— measurement of satellite-to-receiver
pseudo-ranges and decoding of the navigation
message,
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Fig. 8. Visible satellite.

—delivering of these data to the navigation
processor.

These tasks are discussed in the following two
sections.

1) Visible Satellites: All satellites with elevation
angle 0 greater than a user chosen visibility mask are
considered to be visible, as shown in Fig. 8.

2) Pseudo-Ranges: Pseudo-ranges are modeled as
the true range between satellite and receiver, corrupted
by the user equipment clock bias and atmospheric
propagation delay:

- \/(Xsi —X,)%+ (7,
+cAT, + Ay,

—Y )+ (2, ~ 7,

(10)

where (X ,Y,,Z ) and (X "Ly are the S; satellite
and receiver coordinates in the WGS 84 frame

Ar, is the receiver clock bias, A, the atmospheric
propagation delay converted in distance along the
propagation path, and ¢ is the speed of light.

By reading the navigation message, the receiver
can compute the coordinates of each satellite by
means of the broadcasted ephemeris data. In the
simulation, these data are substituted by almanac data,
and the triplets (X ,Y,,Z ) are found by resolution of
the following equations for each visible satellite:

E@)=M(@)+sinE(@) (Kepler's Equation)

1+e E@)
t _
T—e "2

v(t) = 2arctan I:

p=A(l —ecoskE)

X it = pcos(v +w)

¥, i = pSInQ +w)
X =X ;0080 —Y .. sin{lcosi
Y =X i SINQ + Y, . cosQcosi

Z =Y 4;sini.

Troposphenc Delsy
v T

T g I SO S

k- — _—

Oelay (m)
8
[—

/
f
|
J

© [
Elovetion Angle

~ Fig. 9. Tropospheric delay.

3) Modeling of Drifts and Uncertainties: = The
receiver clock drift &, is represented by the integration
of an exponentially correlated random process x,:

{xf_axﬁwt o

6 = x,

with @ = 1/500 and w, being a Gaussian white noise,
o, = 10712 to model a typical frequency drift rate of
109 s/s for a quartz TCXO.

The atmospheric delays are caused mainly by the
propagation of the electromagnetic wave through
the ionospheric and tropospheric layers. Since the
former effect can be overcome by double-frequency
receivers, the atmospheric delays were represented .
by a simplified version of Goad and Geodman
tropospheric model [14]. The tropospheric delay

Ayopo(9) is shown in Fig. 9 as a function of the
elevation angle 6. The value of the delay, converted
into meters, is given by

Atropo(e) = 10_6{NIOPO( (R + hd)Z R2c0s20 — RS]n@)

+N"°( /(R + h,)? — R*cos?f — Rsin)}

where R is the Earth’s radius, A, and h,, are the
heights of the dry and wet tropospheric layers:

h,~11 km
hy = 40136 + 148.72(T — 273.16) [m]

with refraction indices:

NP = 77645

Ntropo

(4 €
o = —12.96T + 3.71810575

where
p is local atm. pressure (1013.0 mbar),
T is local temperature (298.0-K),
e is partial pressure of water vapor (34.0 mbar).
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v

Fig. 10. INS axis model.

A Gaussian white noise with a standard deviation
equal to 5% of A, (¢) is added to the pseudo-ranges
to take uncertainties of the model into account.

These data are delivered to the navigation
processor, which calculates the navigation solution,
in view of the data gathered from INS outputs.

D. INS Model

The INS [1, 11] is represented as a two-axis?

strap-down unit, shown in Fig. 10. The X and

Y accelerometers are assumed to lie in the local
tangent plane to the Earth, and the mobile’s steering
direction (©) of the mobile wrt North is assumed to
be perfectly determined. This is equivalent to having
the accelerometers as the sole source of error.

In this simplified model, the accelerometers deliver
biased acceleration information along the X and Y
axes (Ay +ay and Ay + ay) where the biases are
modeled as random walks, limited to 10ug, so as to
be representative of typical accelerometers biases.
The acceleration is integrated twice to yield longitude
(Ap) and latitude (¢;). A velocity feedback loop of
gain K, introduces a damping factor that reduces the
accumulated (integrated) effect of the bias over the
position results. Exact external velocity references
in the North (V*) and East (V§*') directions are
provided to account for this damping.

1) INS Error Model: If we define the vector
e= [eA,ed,,é/\,é(b,ax,ay]T containing the INS errors in
longitude (e, ), latitude (e¢), their derivatives (é)\,éq)),

2The X axis is aligned with the steering direction of the mobile,
axis Z points upward in the local vertical direction, and the Y axis
completes the orthogonal system.

Fig. 11.

Skyplot.

and the accelerometers biases (ax,ay), then the error
model for the INS may be written as

re, 0 0 1 0 0 0 77r7eT
e ) 00 0 1 0 0 ey
e, 0 0 - K 0 -cos® —sin® e,
d| "= ldt
e, 0 0 —-K --sin® cos <] e,
a, 0 0 0 0 0 a,
La, LO 0 O 0 0 0o La,
-0 0-
00
0 0] [dw,
+ (12)
00 dwy
10
LO 14

where dw,,dw, are Brownian increments of adequate
variance.

E. INS/GPS Integrated Model

In order to be useful for filtering purposes, the
GPS/INS state-space model stiould comprise the
following:

—a dynamic equation containing the laws of
evolution for the system states (INS errors and
receiver clock bias), such as (12) and (11),

——observation equations, where the observables
(pseudo-ranges) are expressed as functions of the
above mentioned states.
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The evolution equations for the state vector where
containing the INS errors, and its derivatives, as well R = a2
as the clock drift are given in discrete-time form in p 5 )
a’cos? ¢ + b?sin” ¢
(13) below:
N o A 0 0 0 0 0 Tl [ O 0 0 7
€, 01 0 At 0 0 0 0 e, 0 0 0
e, 0 0 1-KAr 0 —Atcos®,,, —Atsin®,,, 0 0 e, 0 0 0
Aw
e, 00 0 1-KAr —Arsin®,,, Atcos®,,, 0 0 e, 0 0 0 '
= + Aw
a, 00 O 0 1 0 0 0 a, RV 0 Y
Aw
a 00 0 0 0 1 0 0 a, 0 oA 0 ’
0, 00 0 0 0 0 1 At [ 0 0 0
161 LOO 0 0 0 0 0 l—aat] L64, L 0 0 osVAL
(13)

where the Aws are unitary Brownian drift increments.

If (\,,¢,,) are the coordinates of the mobile, and
(A;.¢;) are the corresponding INS outputs, we may
write

{A,:Am+eA:>Am=>\,—2A .

¢I=¢m+e(b:>¢m=¢)1_é¢

The observation equation for a visible satellite S;
may be then written as

p; = h(Xs,, Y5, Zg, A p€5,€4) — €O

+ g(XS’JXS'i’ZS’.v )‘I’ ¢176)\7€¢)[1 + O—tropoy]
(15)
where

h'(XS,"YS,"ZS,"AI’ ¢[76A9e¢)

- \/ (X — X,)% + (Y, —Y,)2 + (Zg, — Z,)?
g(X '.’YS,.sZsis)\I’d)[ae,\’eqb)

= Atropo(ei)

v = white noise with std. dev.
equal to 5% of A,.(0,).

Tuopo

The observation equation is clearly nonlinear due
to square root terms containing coordinate changes in
the WGS-84 frame:

X, = (R, +h)cos(¢; — es)cos(A; —e,)
¥, =(@R,+ h)cos(¢; — e,)sin(A; — ey)

b2 .
zZ,= <—a—2Rp + h) sin(g; — e4)

is the radius of curvature in the prime vertical, and
the tropospheric delay dependency on the elevation
angle:

T
6. = — —arccos

2

Xm(Xg ~X

m

)+ Ym(Ys —¥,) +Zm(Zs —Z,)

m

VXm2 +Ym? +Zm?, /(X — X, ) + (Y5, =Y, )> + (Zs, = 2,

m m m

The linearization used in the EKF, for comparison
purposes, follows the one presented in [29],
where ) and ¢ are substituted as in (14) and the
differentiations are made with relation to e, and e,.

V. SIMULATION RESULTS

The validation of the filtering schemes (PF and
EKF) just described was checked by simulation,
which included the vehicle movement, the INS
outputs, the GPS readings (pseudo-ranges) and the
constellation of the satellites. The models described in
the later sections were used to this end.

In order to show the superiority of the PF
approach, a critical situation was chosen in which
the number of visible satellites decays from 3 (the
minimum required for 2D static positioning) to 2.
In this situation GDOP is undefined (the system of
nonlinear equations is not invertible). We say that
static observability no longer holds. Positioning
information must be dynamically extracted from
the pseudo-range sequence. Indeed, the theoretical
observability is ensured, since the successive
positions of 2 moving satellites may be thought of
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as being many satellites, thus providing the necessary
positioning information.

Pseudo-ranges were available at an interval of 1 s,
and total simulation duration was 3600 s.

An a priori PF? with N = 1000 particles was used
in the simulation. The period of redistribution varies
automatically. (Redistribution occurs when the number
of particles whose weights are smaller than 1/(10N) is
higher than 10% of the total number of particles N.)

Fig. 11 shows the sky-plot corresponding to the
simulation period. A visibility mask of 50° was

3 Although not formally demonstrated, experience shows the
equivalence, concerning uniform convergence, of the a priori
filter with redistribution and the n-conditional filter, under large
observation noise covariance conditions.

chosen to provide the desired critical situation. The
number of visible satellites is shown in Fig. 12.

The following Figs. 13—18 show the filters
outputs, i.e., the estimations of the INS drifts (solid
line) in longitude, latitude and time, along with the
corresponding rms errors, as estimated by the PF
(dashed line) and EKF (dotted line). The rms error
for a variable X is given by

It is clear from these results that, as the satellites
disappear below the visibility mask, the EKF can no
longer keep track of the INS drifts, since it cannot
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correctly exploit the dynamic observability of the
system, deteriorated by linearization.

In normal situations (sufficient number of visible
satellites), where static observability is ensured,
the EKF linearization, which consists of replacing
the satellites centered spheres by tangent planes,
may be considered a good approximation of the
problem, and both filters are expected to exhibit
similar performances.

VI. CONCLUSIONS

These results show the .clear superiority of particle
nonlinear filtering over extended Kalman filtering

846

2000

4000

3000 3500

25IOO
time (s)

4500

Latitude drift.

in critical situations, aithough the former is more
time/memory consuming, as the number of particles
grows. These problems are overcome by the advent
of new technologies, making parallel processing
available to embedded systems, and enabling PF to
be implemented in on-board real-time systems.

The efficiency of the PF approach stems from
the uniform convergence of the particle approach as
N — oo. The degradation caused by finite number
of particles and unstable models is compensated by
redistribution and conditional evolution techniques,
respectively. '

The PF method can be seen from now on as a
general purpose, nonlinear filtering method, which .
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discards linearizations or series approximation. These
techniques modify the system model itself in order to
solve the filtering problem. The PF technique instead,
approaches the solution using the best available
model, and encourages realistic nonlinear modeling
instead of simplifications.
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