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ABSTRACT. This paper develops a new contrast process for parametric inference of general
hidden Markov models, when the hidden chain has a non-compact state space. This contrast is
based on the conditional likelihood approach, often used for ARCH-type models. We prove
the strong consistency of the conditional likelihood estimators under appropriate conditions.
The method is applied to the Kalman filter (for which this contrast and the exact likeli-
hood lead to asymptotically equivalent estimators) and to the discretely observed stochastic
volatility models.
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1. Introduction

Parametric inference for hidden Markov models (HMMs) has been widely investigated, es-
pecially in the last decade. These models are discrete-time stochastic processes including
classical time series models and many other non-linear non-Gaussian models. The observed
process (Z,) is modelled via an unobserved Markov chain (U,) such that, conditionally on
(Uy), the (Z,)s are independent and the distribution of Z, depends only on U,. When studying
the statistical properties of HMMs, a difficulty arises since the exact likelihood cannot be
explicitly calculated. As a consequence, a lot of papers have been concerned with approxi-
mations by means of numerical and simulation techniques (see, e.g. Gouriéroux et al., 1993;
Durbin & Koopman, 1998; Pitt & Shephard, 1999; Kim et al., 1998; Del Moral & Miclo, 2000;
Del Moral et al., 2001).

The theoretical study of the exact maximum likelihood estimator (m.l.e.) is a difficult
problem and has only been investigated in the following cases. Leroux (1992) has proved the
consistency when the unobserved Markov chain has a finite state space. Asymptotic nor-
mality is proved in Bickel er al. (1998). The extension of these properties to a compact state
space for the hidden chain can be found in Jensen & Petersen (1999) and Douc & Matias
(2001).

In previous papers (see Genon-Catalot et al., 1998, 1999, 2000a), we have investigated some
statistical properties of discretely observed stochastic volatility models (SV). In particular,
when the sampling interval is fixed, the SV models are HMMs, for which the hidden chain has
a non-compact state space. Using ergodicity and mixing properties, we have built empirical
moment estimators of unknown parameters. Other types of empirical estimators are given in



298 V. Genon-Catalot et al. Scand J Statist 30

Gallant et al. (1997) using the efficient moment method or by Serensen (2000) considering the
class of prediction-based estimating functions.

In this paper, we propose a new contrast for general HMMs, which is theoretical in nature
but seems close to the exact likelihood. The contrast is based on the conditional likelihood
method, which is the estimating method used in the field of ARCH-type models (see
Jeantheau, 1998). The method is applied to examples. Particular attention is paid throughout
this paper to the well-known Kalman filter which lightens our approach. It is a special case of
HMM with non-compact state space for the hidden chain. All computations are explicit and
detailed herein. The minimum contrast estimator based on the conditional likelihood is as-
ymptotically equivalent to the exact m.l.e. In the case of the SV models, when the unobserved
volatility is a positive ergodic diffusion, the method is also applicable. It requires that the state
space of the hidden diffusion is open, bounded and bounded away from zero. Contrary to
moment methods, only the finiteness of the first moment of the stationary distribution is
needed.

In Section 2, we recall definitions, ergodic properties and expressions for the likelihood
(Propositions 1 and 2) for HMMs. We define and study in Section 3 the conditional like-
lihood (Theorem 1 and Definition 2) and build the associated contrasts. Then, we state a
general theorem of consistency to study the related minimum contrast estimators (Theorem
2). We apply this method to examples, especially to the Kalman filter and to GARCH(1,1)
model. Then, we specialize these results to SV models in Section 4. We consider the con-
ditional likelihood (Proposition 4) and study its properties (Proposition 5). Finally, we
consider the case of mean reverting hidden diffusion. The proof of Theorem 2 is given in the
appendix.

2. Hidden Markov models
2.1. Definition and ergodic properties

The formal definition of an HMM can be taken from Leroux (1992) or Bickel & Ritov (1996).

Definition 1. A stochastic process (Z,,n>1), with state space (Z,%4(%)), is a hidden
Markov model if:

(i) (Hidden chain) We are given (but do not observe) a time-homogeneous Markov chain
Uy, Uy, ..., U, ... with state space (%, B(U)).
(i) (Conditional independence) For all n, given (U;, Uy, ..., U,), the Z;;i = 1,...n are con-
ditionally independent, and the conditional distribution of Z; only depends on U;.
(iii) (Stationarity) The conditional distribution of Z; given U; = u does not depend on i.

Above, & and % are general Polish spaces equipped with their Borel sigma-fields. There-
fore, this definition extends the one given in Leroux (1992) or Bickel & Ritov (1996) since we
do not require a finite state space for the hidden chain.

We give now some examples of HMMs. They are all included in the following general
framework. We set

Z, = G(Uy, &), (1)

where (&,),.n+ 1s a sequence of i.i.d. random variables, (U,),cn is @ Markov chain with state
space %, and these two sequences are independent.
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Example 1 (Kalman filter). The above class includes the well-known discrete Kalman filter
Z, = U, + ¢, (2)

where (U,) is a stationary real AR(1) Gaussian process and (g,) are i.i.d. .47(0,7?).

Example 2 (Noisy observations of a discretely observed Markov process). In (1), take

Uy = Vaa, Where (V;),c, is any Markov process independent of the sequence (&), -

Example 3 (Stochastic volatility models). These models are given in continuous time by a
two-dimensional process (Y;, ;) with
dY; = 0,dB;,

and V, = atz (the so-called volatility) is an unobserved Markov process independent of the
brownian motion (B;). Then, a discrete observation with sampling interval A is taken. We set

1 1
= oy dB; = — (Yoa — Yiu1)a)- 3
VA Juia Va e~ Tana) ¥

Conditionally on (V;,s>0), the random variables (Z,) are independent and Z, has
distribution ./7(0, %,) with

/ " @)

n—1)A

Z,

=

1

A

Noting that U, = (¥,, ¥,a) is Markov, we set, in accordance with (1),
Zy = G(l]m‘c:n) = f/nl/zgm

Such models have been first proposed by Hull & White (1987), with (¥;) a diffusion process.
When (V) is an ergodic diffusion, it is proved in Genon-Catalot et al. (2000a) that (Z,) is an
HMM. In Barndorff-Nielsen & Shephard (2001), the model is analogous, with (¥;) an Ornstein
Uhlenbeck Levy process.

An HMM has the following properties.

Proposition 1

(1) The process ((Uy, Z,),n=1) is a time-homogeneous Markov chain.

(2) If the hidden chain (U,,n > 1) is strictly stationary, so is ((U,,Z,),n=1).

(3) If, moreover, the hidden chain (U,,n>1) is ergodic, so is ((Uy,Z,),n=1).

(4) 1f, moreover, (U,,n=1) is a-mixing, then ((U,,Z,),n=1) is also a-mixing, and

az(n) <oy z)(n) <oy(n).

The first two points are straightforward, the third is proved in Leroux (1992), and the
mixing property is proved in Genon-Catalot et al. (2000a, b) and Serensen (1999). This mixing
property holds for the previous examples.

Example 1 (continued) (Kalman filter). We set

Up=aUy—1 + s (5)
where () are i.i.d. .4°(0, ). When |a| < 1, and U, has law .4(0,7> = 2/(1 — a?)), U, is
o-mixing.
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Examples 2 and 3 (continued). In both cases, whenever (V;) is a diffusion, we have
oz(n)<ap((n—1)A).
For (V) a strictly stationary diffusion process, it is well known that
op(t) — 0 ast — +oo.

For details (such as the rate of convergence of the mixing coefficient), we refer to Genon-
Catalot et al. (2000a) and the references therein.

The above properties have interesting statistical consequences. When the unobserved chain
depends on unknown parameters, the ergodicity and mixing properties of (Z,) can be used to
derive the consistency and asymptotic normality of empirical estimators of the form
1/n Z:’;g ©(Zis1, ..., Zi+q). This leads to various procedures that have been already applied to
models [Moment method, GMM (Hansen, 1982), EMM (Tauchen et al., 1996; Gallant et al.,
1997) or prediction-based estimating equations (Serensen, 2000)]. These methods yield esti-
mators with rate  /n. However, to be accurate, they require high moment conditions that may
be not fulfilled, and often lead to biased estimators and/or to cumbersome computations.
Another central question lies in the fact that they may be very far from the exact likelihood
method.

2.2. The exact likelihood

We recall here general properties of the likelihood in an HMM model. Such likelihoods have
already been studied but mainly under the assumption that the state space of the hidden chain
is finite (see, e.g. Leroux, 1992; Bickel & Ritov, 1996). Since this is not the case in the examples
above, we focus on the properties which hold without this assumption.

Consider a general HMM as in Definition 1 and let us give some more notations and
assumptions.

e (H1) The conditional distribution of Z, given U, = u is given by a density f(z/u) with
respect to a dominating measure p(dz) on (2, %4(%)).

e (H2) The transition operator Py of the hidden chain (U;) depends on an unknown parameter
0€®CR’,p=1, and the transition probability is specified by a density p(0,u,t) with
respect to a dominating measure v(d¢) on (%, B()).

e (H3) For all 0, the transition Py admits a stationary distribution having density with respect
to the same dominating measure, denoted by g(0,u). The initial variable U; has this sta-
tionary distribution.

e (H4) For all 0, the chain (U,) with marginal distribution g(0,u)v(du) is ergodic.

Under these assumptions, the process (U, Z,) is strictly stationary and ergodic. Let us point
out that we do not introduce unknown parameters in the density of Z, given U, = u, since, in
our examples, all unknown parameters will come from the hidden chain.

With these notations, the distribution of the initial variable (U;, Z,) of the chain (U,, Z,) has
density g(0,u)f (z/u) with respect to v(du) ® u(dz); the transition density is given by

PO, u,0)f (z/1). (6)

Now, if we denote by p,(0,z1,...,2z,) the density of (Z,...,Z,) with respect to
dp(z1) - - ® du(z,), we have

pi(0,2) = / 9(0, u)f (21 /) dv ), )
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P02z = [ 0. fu) [[pOucr, ) Gifu) ) @ ). (8)

=2

In formula (8), the function under the integral sign is the density of (Uy,...,U,,Z1,...,Z,).
A more tractable expression for p,(0,z,...,z,) is obtained from the classical formula:
pn(07217 v 7Zn) :PI(9721) HI,’(@,Z;/Z,;[, s 721)7 (9)
i=2

where t;(0,z;/zi_1,...,z1) is the conditional density of Z; given Z;,_ =z_y,...,Z; =z. The
interest of this representation appears below.

Proposition 2

(1) For all i=2, we have (see (9))

60,271, 20) = [ O/ 20 ) dv(), (10)
u
where g;(0,u;/zi_1,...,z1) is the conditional density of U; given Z;_y = z;_y,...,Z) = z,.
(2) If §i(0,ui/zi, . . . ,z1) denotes the conditional density of U; given Z; = z;, ..., Z, = zy, then it is
given by
N gi(07 Mi/Zi—|7~~~,Zl)f(Zi/ui)
i(0,ui/zi,. .., z1) = .
g( u/z Zl) ti(evzi/zi—lv"'7zl)
(3) Foralli=1,
gir1 (0, uiy1/zi, ... 21) = / §i(0,ui/zi, ..., 20)p(0, uz, uiyr) dv(u;). (11)

The result of Proposition 2 is standard in the field of filtering theory (see, e.g. Liptser &
Shiryaev, 1978, and for details, Genon-Catalot et al., 2000b). It leads to a recursive expression
of the exact likelihood function. Now, we are faced with two kinds of problems, a numerical
one and a theoretical one.

The numerical computation of the exact m.l.e. of 0 raises difficulties and there is a large
amount of literature devoted to approximation algorithms (Markov chain Monte Carlo
methods (MCMC), EM algorithm, particle filter method, etc.). In particular, MCMC methods
have been recently considered in econometrics and applied to partially observed diffusions
(see, e.g. Eberlein et al., 2001) .

From a theoretical point of view, for HMMs with a finite state space for the hidden chain,
results on the asymptotic behaviour (consistency) of the m.l.e. are given in Leroux (1992),
Francq & Roussignol (1997) and Bickel & Ritov (1996). Extensions to the case of a compact
state space for the hidden chain have been recently investigated (Jensen & Petersen, 1999;
Douc & Matias, 2001). Apart from these cases, the problem is open. Let us stress that, in the
SV models, the state space of the hidden chain is not compact.

Nevertheless, there is at least one case where the state space of the hidden chain is non-
compact and where the asymptotic behaviour of the m.le. is well known: the Kalman filter
model defined in (2).

In this paper, we consider and study new estimators that are minimum contrast estimators
based on the conditional likelihood. We can justify our approach by the fact that these
estimators are asymptotically equivalent to the exact m.l.e. in the Kalman filter.
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3. Contrasts based on the conditional likelihood

Our aim is to develop a theoretical tool for obtaining consistent estimators. A specific feature
of HMMs is that the conditional law of Z; given the past observations depends effectively on i
and all the observations Z, ..., Z;_;. In order to recover some stationarity properties, we need
to introduce the infinite past of each observation Z;. This is the concern of the conditional
likelihood. This estimation method derives from the field of discrete time ARCH models.
Besides, as a tool, it appears explicitly in Leroux (1992, Section 4).

We first introduce and study the conditional likelihood, and then derive associated contrast
functions leading to estimators.

3.1. Conditional likelihood

Since the process (U,,Z,) is strictly stationary, we can consider its extension to a process
((Un, Z,),n € Z) indexed by Z, with the same finite-dimensional distributions. For all i € Z, let
Z;, = (Z;,Z;_1,...) be the vector of RN defining the past of the process until i. Below, we prove
that the conditional distribution of the sample (Z,...,Z,) given the infinite past Z, admits a
density with respect to u(dz;) ® - - - ® u(dz,), which allows to define the conditional likelihood
of (Z,...,Z,) given Z,,.

From now on, let us suppose that 2 = R and % = R, for some k> 1. Denote by Py the
distribution of ((U,, Z,),n € Z) on the canonical space, ((U,,Z,),n € Z) will be the canonical
process, and Ey = Ep,.

Theorem 1
Under (HI1)—(H3), the following holds:

(1) The conditional distribution, under Py, of U, given the infinite past Z, admits a density with
respect to v(du) equal to

5(07M/Z0) :E(;(p(o, UO7“)/ZO)' (12)

The function §(0,u/Z,) is well defined under Py as a measurable function of (u,Z,), since there
exists a regular version of the conditional distribution of Uy given Z,,.

(2) The conditional distribution, under Py, of Z, given the infinite past Z, admits a density with
respect to du(z) equal to

p(0,21/Z) = / 9(0,u1/Zy)f (21 /ur)v(dur). (13)

74

Proof of Theorem 1. We omit 0 in all notations for the proof. By the Markov property of
(Un, Z,), the conditional distribution of U; given (U, 2y), (U-1,Z-1),...,(U_4,Z_,) is iden-
tical to the conditional distribution of U, given (Uy,Z), which is simply the conditional
distribution of U; given U [see (6)]. Consequently, for ¢ : % — [0, 1] measurable,

E(o(U1)/ Uy, Z0,Z1,. .., Z_s) = E(o(U1)/Us) = Pp(Up), (14)
with

Po(t) = [ olu)p(Unuv(du). (15)
Hence,

E(p(U1)/ 20,2, ..., Z-y) = E(Po(Uy)/Z0,Z-1, . . ., Z-p). (16)
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By the martingale convergence theorem, we get
E(p(U1)/Z,) = E(Pp(U)/Zy)- (17)

Now, using the fact that there is a regular version of the conditional distribution of U, given
Z,, say dPy,(uo/Z,), we obtain

E(o(U1)/2,) = /] Po(uo) dPy, (10/ Zy). (18)
Applying the Fubini theorem yields
E(p(U)/2y) = / P(WE(p(Un, u)/Zo)v(du). (19)

So, the proof of (1) is complete.
Using again the Markov property of (U,,Z,) and (6), we get that the conditional distri-

bution of Z; given (U, %y, Z-y,...,Z_,) is identical to the conditional distribution of Z; given
U, which is simply f(z; /U;)u(dz;). So taking ¢ : & — [0, 1] measurable as above, we get
E(p(Z1)/ 20,221, ... Z-n) = E(E(@(Z1)/U1) [ 20, Z -1, .. ., Z—). (20)
So, using the martingale convergence theorem and Proposition 2, we obtain
Blo@)/20) = [ oudz) [ G jn)in/Zu)vidm). (1)
JAU
This achieves the proof. O

Note that, under Py, by the strict stationarity, for all i > 1, the conditional density of Z; given
Z;_, is given by

PO/Zi) = [ §0.0/Z, 0 o)) (22)
Thus, the conditional distribution of (Z,...,Z,) given Z, = z, has a density given by
1~7n(07217-“72n/50) :Hﬁ(azi/zi—l)‘ (23)
i=1

Hence, we may introduce Definition 2.

Definition 2. Let us assume that, Py, a.s., the function p(0,Z2,/Z,_,) is well defined for all 0
and all n. Then, the conditional likelihood of (Z,...,Z,) given Z, is defined by

5.0.2,) =[[2(0.2/2,.) = b0, 2, ..., 2,/ Z,). (24)
i=1

Let us set when defined

1(07§1) :10g1~7(0721/§0)7 (25)
so that

log p,(0) =) _1(0,Zy).
=1
We have Proposition 3.

Proposition 3
Under (HI)-(H4), if Ey,|1(0,Z,)| < oo, then, we have, almost surely, under Py,,

1 _
;log pn(evzn) - E()01(07Z1)~
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Proof of Proposition 3. Using Proposition 1 (3), (Z,) is ergodic, and the ergodic theorem
may be applied. O

Example 1 (continued) (Kalman filter). For the discrete Kalman filter [see (2)], the suc-
cessive distributions appearing in Proposition 2 are explicitely known and Gaussian.

With the notations introduced previously, the unknown parameters are a, 8> while 7 is
supposed to be known and |a| < 1. We assume that (U,) is in a stationary regime. The
following properties are well known and are obtained following the steps of Proposition 2.
Under Py, (0= (a, %)):

(i) the conditional distribution of U, given (Z,_1,...,Z;) is the law N(xn,l,(ri_l);
(i) the conditional distribution of U, given (Z,,...,Z;) is the law N(%,, 6);

(iii) the conditional distribution of Z, given (Z,_1,...,Z;) is the law N(x,_1,5>_,),
with
) 2
G T
Un:y_g U] :’E2+‘y27 (26)
5Cn+l = ll)AC,, + (Zn+l - ajcn)anrl 5CO = 07 (27)
AR
Vg1 = f(vy) with f(v)=1-— (1 +72+a212) , (28)
Xpn—1 = afcnfl =Xn-1 0%71 = ﬁz + az’yzvnflv (29)
G =0, +)7 Go=1+7. (30)

With the above notations, the distribution of Z; is the law N(Xo, 6'[2)) and the exact likelihood of
(Z1,...,Z,) is (up to a constant) equal to

_ - - Zi_xi—l)z
2 (0) = pu(0,2y,...,7Z,) = i Gy) ! o) , 31
Pa(0) = pu(0, 2, )=(60...6y1) eXP( ; 27 (31)
where 0 = (a, ), % = %(0) and &, = &;(0).

The conditional distribution of Z; given (Zy,...,Z_,42) is obtained substituting
(Zy-1y.-,Z1) by (Zy,...,Z_ps2) in the law N(%,-1,62_;). This sequence of distributions

converges weakly to the conditional distribution of Z; given Z,. Indeed, the deterministic
recurrence equation for (v,) converges to a limit v(6) € (0,1) with exponential rate [see (28)].
Using the above equations, we find after some computations that the conditional distribution
of Z; given Z, is the law N(x(0, Z,), 5>(0)) with

%(0,Zy) = aEp(Up/Zy) = av(0) Zai(l —0(0))'Z; and & (0) = ay’v+ B +°.
i=0
Therefore, the conditional likelihood is (up to a constant) explicitely given by
_ Py (2 —%(0,Z,1))°
0(0,2,) =6(0) "exp| - Y ———=—"|. 32
71(0.2,) = 3(0) p<21 (0 (32)
Since the series ¥(0, Z,) converges in L?(Py, ), this function is well defined for all 6 under Py, .

Moreover, the assumptions of Proposition 3 are satisfied, and the limit is
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Eal(0.2) = —3 {loga<e>2 e —xw,zo)f}. (33)

3.2. Associated contrasts

The conditional likelihood cannot be used directly, since we do not observe Z,. However, the
conditional likelihood suggests a family of appropriate contrasts to build consistent estima-
tors.

As mentioned earlier, our approach is motivated by the estimation methods used for dis-
crete time ARCH models (see Engle, 1982). In these models, the exact likelihood is untract-
able, whereas the conditional likelihood is explicit and simple. Moreover, the common feature
of these series is that they usually do not have even second-order moments. This rules out any
standard estimation method based on moments. Elie & Jeantheau (1995) and Jeantheau (1998)
have proved an appropriate theorem to deal with this difficulty. We also use this theorem later
and recall it. For the sake of clarity, its proof is given in the appendix.

3.2.1. A general result of consistency
For a given known sequence z, of RN, we define the random vector of RN

Zn(g()) = (Zm ce 7ZI7§0)'

Let f be a real function defined on ©® x RY and set
F(0.z) =n" > £(0.2). (34)
=1

Let us introduce the random variable

0, = arginf £,(0,2,) = 0,(Z,). (35)

Now, we introduce the estimator defined by the equation

0(z0) = argind F,(0,Z,(20)) = 0,(Z,(z). (36)
The estimator 6, (zo) is a function of the observations (Zi,...,Z,), but also depends on f and
zy. Theorem 2 gives conditions on f and z, to obtain strong consistency for this type of
estimators.

We have in mind the case of f = —log/ [see (25)] so that F,(0,Z,) = —log p,(0). Never-
theless, other functions of f could be used.
As usual, let 0y be the true value of the parameter and consider the following conditions:

e C0 O is compact.
e C1 The function f'is such that
(i) For all n, f(0,Z,) is measurable on ® x Q and continuous in 0, Py, a.s.
(ii) Let B(0,p) be the open ball of centre 0 and radius p, and set for i€ Z,
f:(0,p,2) = mnf{f(0,Z;),0' € B(0,p) N O}. Then, V0 € ©, Ey,(f7(0,p,Z;)) > —oc [with
the notation ¢~ = inf(a,0)] .
e C2 The function 0 — F(6y, 0) = Ey,(f(0,Z;)) has a unique (finite) minimum at 6.
e C3 The function f and z, are such that
(i) For all n, £(0,Z,(z,)) is measurable on ® x Q and continuous in 0, Py, a.s.
i) f00,z,) - f(0,Z,(zy)) — 0 as n — oo, Py, a.s., uniformly in 0.
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Theorem 2
Assume (H1)~(H4). Then, under (C0)—(C2), the random variable 0, defined in (35) converges Py,
a.s. to Oy when n — oo. Under (CO)~(C3), 0,(z,) converges Py, a.s. to 0.

Let us make some comments on Theorem 2. It holds not only for HMMs, but for any
strictly stationary and ergodic process under condition (C0)—(C3). It is an extension of a result
of Pfanzagl (1969) proved for i.i.d. data and for the exact likelihood. Its main interest is to
obtain strongly consistent estimators under weaker assumptions than the classical ones. In
particular, (C1) and (C2) are weak moment and regularity conditions. Condition (C3) appears
as the most difficult one. We give below examples where these conditions may be checked. Let
us stress that in econometric literature, (C3) is generally not checked and only 0} is considered
and treated as the standard estimator. Note also that (C3) may be weakened into

l n
= ul0.p.2) = £.(0.p. Zi(z))) — 0 asn — oo,
i=1

uniformly in 0, in Py, -probability. This leads to a convergence in [Py, -probability of 0, (zo)
to 0y.

Example 4 (ARCH-type models). Consider observations Z, given by
Z,=U%¢, and U, = (0,2, ),

where (g,) is a sequence of i.i.d. random variables with mean 0 and variance 1, and with
In=0(Zk,k<n), &, is S ,-measurable and independent of .#,_;. Although U, is a Markov
chain, Z, is not an HMM in the sense of Definition 1. Still, under appropriate assumptions, Z,
is strictly stationary and ergodic. If the ¢,s are Gaussian, we choose

70,2, = (10 (92)+Zi12
v &1 72 gpU, Ly QD(Q,ZO) )

which corresponds to the conditional loglikelihood. If the ¢,s are not Gaussian, we may still

consider the same function.
To clarify, consider the special case of a GARCH(1,1) model, given by

U, =w+ 062371 + ﬁUnfl =w+ (aﬁﬁ,l + /)))Unflv

where o, & and B are positive real numbers. It is well known that, if E(log(ae? + f8)) < 0, there
exists a unique stationary and ergodic solution, and, almost surely,

Un = L + O(Z[))iflzﬁ_i.
-5 i>1
Let us remark that this solution does not even have necessarily a first-order moment.
However, it is enough to add the assumption w>=c¢ > 0 to prove that assumptions (C1)—(C2)
hold. Fixing Z, =z, is equivalent to fixing U; = u;, and (C3) can be proved (see Elie &
Jeantheau, 1995).

3.2.2. Identifiability assumption
Condition (C2) is an identifiability assumption. The most interesting case is when f directly
comes from the conditional likelihood, that is to say

f(gvgl) = _1(9751) = _IOgi](aZl/gO)'

In this case, the limit appearing in (C2) admits a representation in terms of a Kullback—Leibler
information. Consider the random probability measure
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Py(dz) = p(0,2/Zy)u(d2) (37)
and the assumptions

o (HS3) V0o, 0, Eg,|1(0,2,)| < 0o
o (H6) Py = Py,, Py, a.s. = 0 = 0.

Set
K (09, 0) = Eg,K(Pg,, Pp), (38)
where K (1300,130) denotes the Kullback information of 1300 with respect to Py.

Lemma 1
Assume (HI)-(H6), we have, almost surely, under Py,,

1 N -
; (Ingn(()OvZn) - Ingn(07Zn)) - K(007 0)’

and (C2) holds for f = —1.

Proof of Lemma 1. Under (HS), the convergence is obtained by the ergodic theorem.
Conditioning on Z,, we get

Eqylog (0,21 /2y) = Ea, / log p(0.2/2y) 4Py (2).
R
Therefore,
E100,2)) — 1000, 2))] = K(00.0).

This quantity is non negative [see (38)] and, by (H6), equal to 0 if and only if
]30 :Poo Poo a.s. O

Example 1 (continued) (Kalman filter). Recall that [see (33)] the conditional likelihood is
based on the function

f(9711) = 71(95Zl) :;{log 5-(0)2 +%(Zl )_C(H?ZO))Z}' (39)

&(0)

Condition (C1) is immediate. To check (C2), we use Lemma 1. Assumption (HS) is also
immediate. Let us check (H6). We have seen that

Py = N(x(0,Z,),5%(0)).
Thus,
P(} = ]3()0 [FD()O a.s.
is equivalent to
%(0,Zy) = (60, Zy) Py, a.s. and a(0)* = a(6)*. (40)
The first equality in (40) writes } ;- 4Z; = 0 Py, a.s. with
Ji = av(0)d' (1 — v(0))" — agu(0p)aiy(1 — v(0p))'.
Suppose that the A;s are not all equal to 0. Denote by iy the smallest integer such that 4;, # 0.

Then, Z;, becomes a deterministic function of its infinite past. This is impossible. Hence, for all
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i, 4 =0. Thus, we get av(0)=aov(0y) and a(l—v(0))=ao(l—v(6)). Since
0 < v(0),v(6) < 1, we get a = ag and v(6) = v(y). The second equality in (40) yields f = f3,.

3.2.3. Stability assumption

Condition (C3) can be viewed as a stability assumption, since it states an asymptotic forgetting
of the past. But, here, the stability condition has only to be checked on the specific function f'
and point z; chosen to build the estimator. This holds for Example 4 (ARCH-type models).
We can also check it for the Kalman filter.

Example 1 (continued) (Kalman filter). Let us prove that (C3) holds with z, = (0,0,...) =0
and f given by (39). Note that for abirtrary z, in R, %(0, z,) may be undefined. For z, = 0, we
have

o

f(67Zn) _f(07Zn(Q)) = 2,(19)2 (2(97Zn—l) _x(07Zn71(Q)))(2ZH _2(072;1—1) _X(07Zn71(g)))

Now,
5(0,Z, 1) = %(0.Z,1(0) = " (1 = 0(0))""'x(0, Z).
Using that © is compact, we easily deduce (C3) for this example.

Remark

To conclude, let us stress that it is possible to compare the exact m.l.e. and the minimum
contrast estimator 6,,(0) in the Kalman filter example. Indeed, (Z,) is a stationary ARMA(1,1)
Gaussian process. The exact likelihood requires the knowledge of Z'E;Z where X, is the
covariance matrix of (Zi,...,Z,). To avoid the difficult computation of Zl_,}q, two approxi-
mations are classical. The first one is the Whittle approximation which consists in computing
ZtZ:;OVOCZ, where X_ ~ is the covariance matrix of the infinite vector (Z,,n € Z) and
Z={(...,0,0,Z,,...,2Z,,0,0,...). The second one is the case described here. It corresponds to
computing ZtE:iO.OZ with Z=2,(0) = (...,0,0,Zy,...,Z,). Tt is well known that the three
estimators are asymptotically equivalent. It is also classical to use the previous estimators even
for non-Gaussian stationary processes (for details, see Beran, 1995).

4. Stochastic volatility models

In this section, we give more details on Example 3, in the case where the volatility V] is a
strictly stationary diffusion process.

4.1. Model and assumptions

We consider for 7 € R, (¥, ¥;) defined by, for s<¢

t
Yt - Ys = / Oy dBm (41)
t t
V,=¢> and V-V, :/ b(0, V,,)du+/ a(0,V,)dw,. (42)
For positive A, we observe a discrete sampling (¥;a,i = 1,...,n) of (41) and the problem is to

estimate the unknown 0 € ® C R? of (42) from this observation.
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We assume that

® (AO) (B, W;),cp is a standard Brownian motion of R? defined on a probability space
(Q, o, P).

Equation (42) defines a one-dimensional diffusion process indexed by ¢ € R. We make now
the standard assumptions on functions b(0, u) and a(0,u) ensuring that (42) admits a unique
strictly stationary and ergodic solution with state space (/,r) included is (0, c0).

e (A1) For all 0 € ®,b(0,v) and a(0,v) are continuous (in v) real functions on R, and C'
functions on (/,r) such that
>0, Yoe(l,r), b0,0)+d*0,0)<k(l+v*) and Yoe (L,r), a(0,v)>0.

For vy € (/,r), define the derivative of the scale function of diffusion (V;),

s(0,v) = exp(—Z/v: :2((067,2)) du). (43)

e (A2) Forall 0 € ©,

"~ 4 dv
/H s(0,v) dv = 400, / s(0,v)dv = 400, /1 20.05(0.0) My < 4o0.

Under (A0)-(A2), the marginal distribution of (¥}) is ny(dv) = n(0, v)dv, with

1 1

0,0) = 1 (e
m0:2) = 3 (6, 0)s(0,0) <)

(44)

In order to study the conditional likelihood, we consider the additional assumptions

e (A3) Forall 0 € ©, [/ vmy(dv) < .
e (AHY0<l<r<oo.

Let us stress that (A3) is a weak moment condition. The condition / > 0 is crucial. Intui-
tively, it is natural to consider volatilities bounded away from 0 in order to estimate their
parameters from the observation of (¥;).

Let C = C(R, R?) be the space of continuous functions on R and R*-valued, equipped with
the Borel g-field € associated with the uniform topology on each compact subset of R. We
shall assume that (Y, ¥;) is the canonical diffusion solution of (41) and (42) on (C, %), and we
keep the notation P for its distribution. For given positive A, we observe (Yja — Y_1ya,
i=1,...,n) and we define (Z;) as in (3). As recalled in Example 3, (Z;) is an HMM with
hidden chain U, = (¥, V;a).

Setting # = (v,v) € (1,r)*, the conditional distribution of Z; given U; = ¢ is the Gaussian law
N(0,7), so that u(dz) = dz is the Lebesgue measure on R and

2

1 z
(z/t) = f(z/t) = ———exp[ —= ). 45
1619 =1t = e () (45)
For the transition density of the hidden chain U; = (V;, V), it is natural to have, as
dominating measure, the Lebesgue measure
v(dr) = 1,2 (v, v)dvdo. (46)

Actually, it amounts to proving that the two-dimensional diffusion (j(; Vids, ;) admits a
transition density. Two points of view are possible. In some models, a direct proof may be
feasible. Otherwise, this will be ensured under additional regularity assumptions on functions
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a(0,.) and b(0,.) (see, e.g. Gloter, 2000). For sake of clarity, we introduce the following
assumption:

¢ (A5) The transition probability distribution of the chain (Uj;) is given by
p(0,u,t)v(dr), (47)

where (u,1) € (1,r)* x (1,r)* and v(dr) is the Lebesgue measure (46).
This has several interesting consequences. First, note that this transition density has a
special form. Setting u = (@, a) € (I,r)°,

p(0,u,1) = p(0,a,1) (48)
only depends on « and is equal to the conditional density of U; = (¥, V) given ¥ = a.

Therefore, the (unconditional) density of U, is (with ¢ = (7,v))

4(0,1) = /l (0, a,0)2(0, ) da, (49)

where 7(0, @) da, defined in (44), is the stationary distribution of the hidden diffusion (¥;). Of
course, ¢(0,¢) is the stationary density of the chain (U;). The densities of 7; and Z; are,
therefore [see (45)],

ﬁ(O,E):/ g(0, (7,v)) do, (50)
I
p1(0,zl):/ f(z1/0)7(0,7) dv. (51)
!
Second, the conditional distribution of V; given Z_; = z;_y,...,Z; =z has a density with

respect to the Lebesgue measure on (/,r), say

%(0,%/zi1,. -, 21)- (52)
So, applying Proposition 2, we can integrate with respect to the second coordinate ¥y of
U; = (V:,Via) to obtain that the conditional density of Z; given Z_| =z 1,...,Z1 =z, is
equal to
p
t,-(@,z,'/zi,l, . 7Zl) = / ﬁi(H,ﬁ,»/z,-,l, e ,Z])f(Z,'/Ei) dﬁ,‘ (53)
1

for all i =2 [see (9)]. Therefore, (53) is a variance mixture of Gaussian distributions, the mixing
distribution being 7;(0,7;/zi-1, . .. ,z1) dv.

Let us establish some links between the likelihood and a contrast previously used in the case
of the small sampling interval (see Genon-Catalot et al., 1999). The contrast method is based
on the property that the random variables (Z;) behave asymptotically (as A = A, goes to zero)
as a sample of the distribution

q(0,z) = /lr n(0,v)f (z/v) dv.

The same property of variance mixture of Gaussian distributions appears in (53), with a
change of mixing distribution [see also (54)].

4.2. Conditional likelihood

Applying Theorem 1 and integrating with respect to the second coordinate Vp of
U, = (V1,V,), we obtain the following proposition:
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Proposition 4
Assume (A0)—(A2) and (AS). Then, under Py:

(1) The conditional distribution of V| given Z, = z, admits a density with respect to the Lebesgue
measure on (I,r), which we denote by 7y(v/z,).
(2) The conditional distribution of Z, given Z, = z, has the density

p0.21/z) = [ Folo/2)f 2 f0) . (54)
/
Hence, the conditional likelihood of (Z,...,Z,) given Z, is given by

5,(0.2,) =] [5(0.2./2.).
i=1

Therefore, the distribution given by (54) is a variance mixture of Gaussian distributions, the
mixing distribution being now the conditional distribution 7y(v/Z,) dv of V; given Z, [com-
pare with (53)].

In accordance with Definition 2, let us assume that, Py, a.s., the function 7y(7/Z,) is well
defined for all 6 and is a probability density on (/,r). We keep the following notations:

f(07Zn) = —log 13(07271/21171)) and P")(dz) :13(07Z/Z0) dz.

Then, we have

Proposition 5
Under (A0)—(AS5):

(1) V6o, 0, Eg|f(0,Z))] < .
(2) We have, almost surely, under Py,

1 . - L
;(log pn(OO’Zn) —log pn(ovzn)) - K(O(), 0) = EHOK(PH()?PH)v

see (38).

Proof of Proposition 5. Using (A4) and the fact that 7y(7/Z,) is a probability density over
(1,r), we get

1 Z% 1
——exp— L <p(0,21/2Z,)) < . 55
So, for some constant C (independent of 0, involving only the boundaries /,»), we have
10, 2)]<C(1+2}). (56)
By (A3), Ey,Z? = Eg, ¥ < oo. Therefore, we get the first part. The second follows from the
ergodic theorem. O

So, we have checked (H5). We do not know how to check the identifiability assumption
(H6). However, in statistical problems for which the identifiability assumption contains ran-
domness, this assumption can rarely be verified. Hence, if we know that regularity condition
(C1) holds, we get that ) converges a.s. to 0y. Condition (C3) remains to be checked (see, in
this respect, our comments after Theorem 2).

To conclude, the above results on the SV models are of theoretical nature but clarify the
difficulties of the statistical inference in this model and enlight the set of minimal assumptions.
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4.3. Mean reverting hidden diffusion

In the SV models, we cannot have explicit expressions for the conditional densities. Therefore,
we must use other functions f(0,Z,) to build estimators. To illustrate this, let us consider
mean-reverting volatilities, that is, models of the form
dV, = a(p — V) dt + a(V;) dW,, (57)

where « > 0, > 0 and a(¥;) may also depend on unknown parameters. Due to the mean
reverting drift, these models present some special features. In particular, many authors have
remarked that the covariance structure of the process (7;) is simple (see, e.g. Genon-Catalot
et al., 2000a; Serensen, 2000).

Assume that the above hidden diffusion (¥;) satisfies (A1) and (A2), and that [EVO2 is finite.
Then, EV] = EV, = B,

2(0A — 1 +e%)

_2 _ 2 ’
EV,” = B~ + Var(W) A (58)
and for k>1,
o _ m (1—e"8)? —a(k—1)A
[EV‘] Vk+1 = ﬁ + Var(%) Te . (59)

The previous formulae allow to compute the covariance function of (Z2,i>1).

Proposition 6
Assume (A0)~(A2) and that BV} is finite. Then, the process defined for i=1 by

X, =7~ f—eNZ ~ p) (60)
satisfies, for j=2, Cov(Xi, Xiy,;) = 0. Hence, ((Z* — B),i=1) is centred and ARMA(1,1).

Proof of proposition 6. The process (Z2,i>1) is strictly stationary and ergodic. Straight-
forward computations lead to EZ? = 3,

Var(z2) = 267" + Var(7) (61)
and for j>1,

Cov(Z},73,;) = Cov(T1, Th)). (62)
Then, the computation of Cov(X;, X ;) easily follows from (58)—(60). O

Estimation by the Whittle approximation of the likelihood is, therefore, feasible as sug-
gested by Barndorff-Nielsen & Shephard (2001). To apply our method, as in the Kalman filter,
we can use the linear projection of Z? — f on its infinite past to build a Gaussian conditional
likelihood. To be more specific, let us set 6 = (a, §,¢?) with ¢> = VarF; and define, under Py,

70(0) = VargX;, y,(1) = Covy(X;, Xiy1)-

Straightforward computations show that y,(1) < 0. The L?(Py)-projection of Z? — 8 on the
linear space spanned by (Z2, — B,i>0) has the following form:

Z—B=>w(0)(Z2,— )+ U(0,2),

i>0
where, for all i>0,
Eo((22, - B)U(0,2)) =0 (63)

and the one-step prediction error is
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a*(0) = Eg(U*(0,2))). (64)

The coefficients (o;(6),i>0) can be computed using y,(0) and y,(1) as follows. By the
canonical representation of (X;) as an MA(1)-process, we have,

X, = Wiy — b(O)W,,

where (W) is a centred white noise (in the wide sense), the so-called innovation process. It is
such that |»(0)| < 1 and

02(0) = VaryW,.
Therefore, the spectral density fy(A) satisfies
Fo(2) = 79(0) 4+ 27,4(1) cos(2) = 6*(0)(1 + b*(8) — 2b(6) cos(2)).

Since, for all 4, fy(1) >0, we get that y2(0) — 4y3(1) > 0. Now, using that y,(1) <0, the
following holds

, — (2(0) — 42 1/2 _
oy = 2O GO SO sy )
Then, setting a(0) = exp (—aA), v(0) = 1 — [b(0)/a(0)],
2(0) = a(0)v(0)(a(0)(1 — v(0)))". (65)

Now, we can define

2
1(0.2,) = log a*(0) + % (Z% B (0)(2, - ﬁ)) .

i>0
Easy computations using (63)—(65) yield that
_ () a*(0) (B —B)* (1-a(0))’
[Eoo(f(97zl) _f(907Z1)) - 0_2—@ —-1- log 0_2(9) + 0_2(9) <1 — b(@))

2
+ GZL(@)[EHO (Z(a;(@o) —(0))(22 ﬁ0)> .

i=0

Hence, all the conditions of Theorem 2 may be checked and 6 can be identified by this method.

5. Concluding remarks

The conditional likelihood method is classical in the field of ARCH-type models. In this paper,
we have shown that it can be used for HMMs, and in particular for SV models. The approach
is theoretical but enlightens the minimal assumptions needed for statistical inference. From
this point of view, these assumptions do not require the existence of high-order moments for
the hidden Markov process. This is consistent with financial data that usually exhibit fat tailed
marginals.

In order to illustrate on an explicit example the conditional likelihood method, we revisit
in full detail the Kalman filter. SV models with mean-reverting volatility provide another
example where the method can be used.

This method may be applied to other classes of models for financial data: models including
leverage effects (see, e.g. Tauchen ez al. 1996); complete models with SV (see, e.g. Hobson &
Rogers, 1998; Jeantheau, 2002).
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Appendix

This appendix is devoted to prove Theorem 2 due to Elie & Jeantheau (1995). Recall that we
have set at = sup(a,0) and ¢~ = inf(a, 0), so that a = a™ 4+ a~. The following proof holds for
any strictly stationary and ergodic process under (C0)—(C3).

Proof. First, let us introduce the random variable defined by the equation
0, = argir(}fE,((J,Z,,).

Note that 0} is not an estimator, since it is a function of the infinite past (Z,). The first part of
the proof is devoted to show that, under (H0)-(H2), 0, converges to 0, a.s.

By the continuity assumption on f, fi(0,p,Z;) is measurable. Moreover, under (Cl),
Ep,(f7(0),Z,) > —o0, therefore F(0y,0) is well defined, but may be equal to +oc.

For all 6 € ® and 0’ € B(0, p) N O, the function 0 — £(0',Z,) — f (0, p,Z,) is non-neg-
ative. Using (C1) and the continuity of f with respect to 6, Fatou’s Lemma implies
liminfy_, F(0y,0") =F(0y,0). Therefore, F is lower semicontinuous in 0.

Applying the monotone convergence theorem to /. (6, p,Z;) and the Lebesgue dominated
convergence theorem to f, (0, p,Z,), we get

}}L%Eﬁﬂ( *(Ovpvzl)) :Eﬁn(f(o/é)) :F(O(),O) (66)
Let ¢ > 0 and consider the compact set K, = @ N (B(6y, ¢))". By (C2) and the lower semi-
continuity of F, there exists a real # > 0 such that:
V0 € K, F(@o,@) 7F(0(),0()) >n. (67)
Consider 0 € K,. If F(6y,0) < 400, using (66), there exists p(f) > 0 such that
OﬁF(Go, 0) - E(')o(f*(evp(g)7Zl)) < '7/2‘
Combining the above inequality with (67), we obtain

Eg, (f:(0,p(0),Zy)) = F (00, 00) > n/2. (68)

If F (6, 0) = +oo, since F(6y, Oy) is finite, using (66), we can also associate p(f) > 0 such that
(68) holds. So we cover the compact set K, with a finite number L of balls, say

{B(Ok, p(0k)), k= 1,...,L}.
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The ergodic theorem implies that there exists a measurable N, C Q such that Py, (N,) =0,
and for all @ € N{, and for k=1,... L,

Zf*wk,p(ek),zi(w)) e By (. (00 p(00). 2)))-

This holds even if Ey, £, (0x, p(0k), Z;) = +oc. Since the sequence (0;(w)), is in the compact
0, we can extract, for all € N{, a converging subsequence (9:](60))

Let us assume that 0:,-(00) converges in K,. Therefore, it converges in one of the balls, say
B(01,p(0,)) and we have, for n; large enough:

S L 01, p(00), Zi()) <oy (0] (), 2, ().
i=1

1
nj

s &

But, £, (0, (»),Z, (w)) — Fy, (6, Z, (@)) <0, which implies
1
;Zf*((?l,p(@l)li(w))(w) = £3,(60,Z,,()) <O.
J =1

The above term converges as n; — oo to
Eq, (/2 (01, p(01),Z,)) = F(0o, 00) <O,

which is in contradiction with (68).

For o € Q, denote by A(w) the set of limit points of (0} (w)). We have proved that, for all
o € Nf, A(w) C B(0y, &) N ®. Now, choose ¢ = 1/n, and N = U,» N, /,. Then, N is Py -negli-
gible and

Vo € N, Yn=1, Aw)C B(0,1/n)N 0.

Therefore, for all € N¢, 2(w) = {6o}.
Now, we prove the consistency of our estimators using the additional assumption (C3). It is
enough to show

1< Py, A.8.
D (0.0.2) ~ £:(0.p.Zi())) " 0 when n— co. (69)
i=1

Set D; = sup,ee |f (2, Z;) — f(,Z;(zy))|. We have, for all & € @, f(0',Z,)<f(0,Z:(z,)) + D;.
Thus, for p > 0,

f*(&ﬁ:zl) <f*(97p7Zz(§0)) +Dl

We easily deduce

‘f*(07p721) _f*(97 p7Zz(zO))|<Dl

By (C3), D; converges a.s. to 0, and, using the Cesaro theorem, we get (69). O
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