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ABSTRACT. This paper develops a new contrast process for parametric inference of general

hidden Markov models, when the hidden chain has a non-compact state space. This contrast is

based on the conditional likelihood approach, often used for ARCH-type models. We prove

the strong consistency of the conditional likelihood estimators under appropriate conditions.

The method is applied to the Kalman filter (for which this contrast and the exact likeli-

hood lead to asymptotically equivalent estimators) and to the discretely observed stochastic

volatility models.
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1. Introduction

Parametric inference for hidden Markov models (HMMs) has been widely investigated, es-

pecially in the last decade. These models are discrete-time stochastic processes including

classical time series models and many other non-linear non-Gaussian models. The observed

process ðZnÞ is modelled via an unobserved Markov chain ðUnÞ such that, conditionally on

ðUnÞ, the ðZnÞs are independent and the distribution of Zn depends only on Un. When studying

the statistical properties of HMMs, a difficulty arises since the exact likelihood cannot be

explicitly calculated. As a consequence, a lot of papers have been concerned with approxi-

mations by means of numerical and simulation techniques (see, e.g. Gouriéroux et al., 1993;

D1 urbin & Koopman, 1998; Pitt & Shephard, 1999; Kim et al., 1998; Del Moral & Miclo, 2000;

Del Moral et al., 2001).

The theoretical study of the exact maximum likelihood estimator (m.l.e.) is a difficult

problem and has only been investigated in the following cases. Leroux (1992) has proved the

consistency when the unobserved Markov chain has a finite state space. Asymptotic nor-

mality is proved in Bickel et al. (1998). The extension of these properties to a compact state

space for the hidden chain can be found in Jensen & Petersen (1999) and Douc & Matias

(2001).

In previous papers (see Genon-Catalot et al., 1998, 1999, 2000a), we have investigated some

statistical properties of discretely observed stochastic volatility models (SV). In particular,

when the sampling interval is fixed, the SV models are HMMs, for which the hidden chain has

a non-compact state space. Using ergodicity and mixing properties, we have built empirical

moment estimators of unknown parameters. Other types of empirical estimators are given in
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Gallant2 et al. (1997) using the efficient moment method or by Sørensen (2000) considering the

class of prediction-based estimating functions.

In this paper, we propose a new contrast for general HMMs, which is theoretical in nature

but seems close to the exact likelihood. The contrast is based on the conditional likelihood

method, which is the estimating method used in the field of ARCH-type models (see

Jeantheau, 1998). The method is applied to examples. Particular attention is paid throughout

this paper to the well-known Kalman filter which lightens our approach. It is a special case of

HMM with non-compact state space for the hidden chain. All computations are explicit and

detailed herein. The minimum contrast estimator based on the conditional likelihood is as-

ymptotically equivalent to the exact m.l.e. In the case of the SV models, when the unobserved

volatility is a positive ergodic diffusion, the method is also applicable. It requires that the state

space of the hidden diffusion is open, bounded and bounded away from zero. Contrary to

moment methods, only the finiteness of the first moment of the stationary distribution is

needed.

In Section 2, we recall definitions, ergodic properties and expressions for the likelihood

(Propositions 1 and 2) for HMMs. We define and study in Section 3 the conditional like-

lihood (Theorem 1 and Definition 2) and build the associated contrasts. Then, we state a

general theorem of consistency to study the related minimum contrast estimators (Theorem

2). We apply this method to examples, especially to the Kalman filter and to GARCH(1,1)

model. Then, we specialize these results to SV models in Section 4. We consider the con-

ditional likelihood (Proposition 4) and study its properties (Proposition 5). Finally, we

consider the case of mean reverting hidden diffusion. The proof of Theorem 2 is given in the

appendix.

2. Hidden Markov models

2.1. Definition and ergodic properties

The formal definition of an HMM can be taken from Leroux (1992) or Bickel & Ritov (1996).

Definition 1. A stochastic process ðZn; nP1Þ, with state space ðZ;BðZÞÞ, is a hidden

Markov model if:

(i) (Hidden chain) We are given (but do not observe) a time-homogeneous Markov chain

U1;U2; . . . ;Un; . . . with state space ðU;BðUÞÞ.
(ii) (Conditional independence) For all n, given ðU1;U2; . . . ;UnÞ, the Zi; i ¼ 1; . . . n are con-

ditionally independent, and the conditional distribution of Zi only depends on Ui.
(iii) (Stationarity) The conditional distribution of Zi given Ui ¼ u does not depend on i.

Above, Z and U are general Polish spaces equipped with their Borel sigma-fields. There-

fore, this definition extends the one given in Leroux (1992) or Bickel & Ritov (1996) since we

do not require a finite state space for the hidden chain.

We give now some examples of HMMs. They are all included in the following general

framework. We set

Zn ¼ GðUn; enÞ; ð1Þ

where enð Þn2N� is a sequence of i.i.d. random variables, Unð Þn2N� is a Markov chain with state

space U, and these two sequences are independent.
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Example 1 (Kalman filter). The above class includes the well-known discrete Kalman filter

Zn ¼ Un þ en; ð2Þ

where ðUnÞ is a stationary real AR(1) Gaussian process and ðenÞ are i.i.d. Nð0; c2Þ.

Example 2 (Noisy observations of a discretely observed Markov process). In (1), take

Un ¼ VnD, where ðVtÞt2Rþ
is any Markov process independent of the sequence enð Þn2N� .

Example 3 (Stochastic volatility models). These models are given in continuous time by a

two-dimensional process ðYt; VtÞ with

dYt ¼ rtdBt;

and Vt ¼ r2
t (the so-called volatility) is an unobserved Markov process independent of the

brownian motion ðBtÞ. Then, a discrete observation with sampling interval D is taken. We set

Zn ¼
1ffiffiffiffi
D

p
Z nD

ðn�1ÞD
rs dBs ¼

1ffiffiffiffi
D

p ðYnD � Yðn�1ÞDÞ: ð3Þ

Conditionally on ðVs; s 	 0Þ, the random variables ðZnÞ are independent and Zn has

distribution Nð0; �VVnÞ with

�VVn ¼
1

D

Z nD

ðn�1ÞD
Vs ds: ð4Þ

Noting that Un ¼ ð�VVn; VnDÞ is Markov, we set, in accordance with (1),

Zn ¼ GðUn; enÞ ¼ �VV 1=2
n en:

Such models have been first proposed by Hull & White (1987), with ðVtÞ a diffusion process.

When ðVtÞ is an ergodic diffusion, it is proved in Genon-Catalot et al. (2000a)3 that ðZnÞ is an

HMM. In Barndorff-Nielsen & Shephard (2001), the model is analogous, with ðVtÞ an Ornstein

Uhlenbeck Levy process.

An HMM has the following properties.

Proposition 1

(1) The process ððUn; ZnÞ; nP1Þ is a time-homogeneous Markov chain.

(2) If the hidden chain ðUn; n 	 1Þ is strictly stationary, so is ððUn; ZnÞ; nP1Þ.
(3) If, moreover, the hidden chain ðUn; nP1Þ is ergodic, so is ððUn; ZnÞ; nP1Þ.
(4) If, moreover, ðUn; nP1Þ is a-mixing, then ððUn; ZnÞ; nP1Þ is also a-mixing, and

aZðnÞOaðU ;ZÞðnÞOaU ðnÞ:

The first two points are straightforward, the third is proved in Leroux (1992), and the

mixing property is proved in Genon-Catalot et al. (2000a, b) and Sørensen (1999). This mixing

property holds for the previous examples.

Example 1 (continued) (Kalman filter). We set

Un ¼ aUn�1 þ gn; ð5Þ

where ðgnÞ are i.i.d. Nð0; b2Þ. When jaj < 1, and Un has law Nð0; s2 ¼ b2=ð1� a2ÞÞ, Un is

a-mixing.
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Examples 2 and 3 (continued). In both cases, whenever ðVtÞ is a diffusion, we have

aZðnÞOaV ððn� 1ÞDÞ:

For ðVtÞ a strictly stationary diffusion process, it is well known that

aV ðtÞ �! 0 as t �! þ1:

For details (such as the rate of convergence of the mixing coefficient), we refer to Genon-

Catalot et al. (2000a) and the references therein.

The above properties have interesting statistical consequences. When the unobserved chain

depends on unknown parameters, the ergodicity and mixing properties of ðZnÞ can be used to

derive the consistency and asymptotic normality of empirical estimators of the form

1=n
Pn�d
i¼0 uðZiþ1; . . . ; ZiþdÞ. This leads to various procedures that have been already applied to

models [Moment method, GMM (Hansen, 1982), EMM (Tauchen et al., 1996; Gallant et al.,

1997) or prediction-based estimating equations4 (Sørensen, 2000)]. These methods yield esti-

mators with rate
ffiffiffi
n

p
. However, to be accurate, they require high moment conditions that may

be not fulfilled, and often lead to biased estimators and/or to cumbersome computations.

Another central question lies in the fact that they may be very far from the exact likelihood

method.

2.2. The exact likelihood

We recall here general properties of the likelihood in an HMM model. Such likelihoods have

already been studied but mainly under the assumption that the state space of the hidden chain

is finite (see, e.g. Leroux, 1992; Bickel & Ritov, 1996). Since this is not the case in the examples

above, we focus on the properties which hold without this assumption.

Consider a general HMM as in Definition 1 and let us give some more notations and

assumptions.

• (H1) The conditional distribution of Zn given Un ¼ u is given by a density f ðz=uÞ with

respect to a dominating measure lðdzÞ on ðZ;BðZÞÞ.
• (H2) The transition operator Ph of the hidden chain ðUiÞ depends on an unknown parameter

h 2 H 
 Rp; pP1, and the transition probability is specified by a density pðh; u; tÞ with

respect to a dominating measure mðdtÞ on ðU;BðUÞÞ.
• (H3) For all h, the transition Ph admits a stationary distribution having density with respect

to the same dominating measure, denoted by gðh; uÞ. The initial variable U1 has this sta-

tionary distribution.

• (H4) For all h, the chain ðUnÞ with marginal distribution gðh; uÞmðduÞ is ergodic.

Under these assumptions, the process ðUn; ZnÞ is strictly stationary and ergodic. Let us point

out that we do not introduce unknown parameters in the density of Zn given Un ¼ u, since, in
our examples, all unknown parameters will come from the hidden chain.

With these notations, the distribution of the initial variable ðU1; Z1Þ of the chain ðUn; ZnÞ has

density gðh; uÞf ðz=uÞ with respect to mðduÞ � lðdzÞ; the transition density is given by

pðh; u; tÞf ðz=tÞ: ð6Þ

Now, if we denote by pnðh; z1; . . . ; znÞ the density of ðZ1; . . . ; ZnÞ with respect to

dlðz1Þ � � � � dlðznÞ, we have

p1ðh; z1Þ ¼
Z
U

gðh; uÞf ðz1=uÞdmðuÞ; ð7Þ
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pnðh; z1; . . . ; znÞ ¼
Z
Un
gðh; u1Þf ðz1=u1Þ

Yn
i¼2

pðh; ui�1; uiÞf ðzi=uiÞdmðu1Þ � � � � dmðunÞ: ð8Þ

In formula (8), the function under the integral sign is the density of ðU1; . . . ;Un; Z1; . . . ; ZnÞ.
A more tractable expression for pnðh; z1; . . . ; znÞ is obtained from the classical formula:

pnðh; z1; . . . ; znÞ ¼ p1ðh; z1Þ
Yn
i¼2

tiðh; zi=zi�1; . . . ; z1Þ; ð9Þ

where tiðh; zi=zi�1; . . . ; z1Þ is the conditional density of Zi given Zi�1 ¼ zi�1; . . . ; Z1 ¼ z1. The

interest of this representation appears below.

Proposition 2

(1) For all iP2, we have (see (9))

tiðh; zi=zi�1; . . . ; z1Þ ¼
Z
U

giðh; ui=zi�1; . . . ; z1Þf ðzi=uiÞdmðuiÞ; ð10Þ

where giðh; ui=zi�1; . . . ; z1Þ is the conditional density of Ui given Zi�1 ¼ zi�1; . . . ; Z1 ¼ z1.

(2) If ĝigiðh; ui=zi; . . . ; z1Þ denotes the conditional density of Ui given Zi ¼ zi; . . . ; Z1 ¼ z1, then it is

given by

ĝigiðh; ui=zi; . . . ; z1Þ ¼
giðh; ui=zi�1; . . . ; z1Þf ðzi=uiÞ

tiðh; zi=zi�1; . . . ; z1Þ
:

(3) For all iP1,

giþ1ðh; uiþ1=zi; . . . ; z1Þ ¼
Z
U

ĝigiðh; ui=zi; . . . ; z1Þpðh; ui; uiþ1ÞdmðuiÞ: ð11Þ

The result of Proposition 2 is standard in the field of filtering theory (see, e.g. Liptser &

Shiryaev, 1978, and for details, Genon-Catalot et al., 2000b). It leads to a recursive expression

of the exact likelihood function. Now, we are faced with two kinds of problems, a numerical

one and a theoretical one.

The numerical computation of the exact m.l.e. of h raises difficulties and there is a large

amount of literature devoted to approximation algorithms (Markov chain Monte Carlo

methods (MCMC), EM algorithm, particle filter method, etc.). In particular, MCMC methods

have been recently considered in econometrics and applied to partially observed diffusions

(see, e.g. Eberlein et al., 2001)5 .

From a theoretical point of view, for HMMs with a finite state space for the hidden chain,

results on the asymptotic behaviour (consistency) of the m.l.e. are given in Leroux (1992),

Francq & Roussignol (1997) and Bickel & Ritov (1996). Extensions to the case of a compact

state space for the hidden chain have been recently investigated (Jensen & Petersen, 1999;

Douc & Matias, 2001). Apart from these cases, the problem is open. Let us stress that, in the

SV models, the state space of the hidden chain is not compact.

Nevertheless, there is at least one case where the state space of the hidden chain is non-

compact and where the asymptotic behaviour of the m.l.e. is well known: the Kalman filter

model defined in (2).

In this paper, we consider and study new estimators that are minimum contrast estimators

based on the conditional likelihood. We can justify our approach by the fact that these

estimators are asymptotically equivalent to the exact m.l.e. in the Kalman filter.
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3. Contrasts based on the conditional likelihood

Our aim is to develop a theoretical tool for obtaining consistent estimators. A specific feature

of HMMs is that the conditional law of Zi given the past observations depends effectively on i

and all the observations Z1; . . . ; Zi�1. In order to recover some stationarity properties, we need

to introduce the infinite past of each observation Zi. This is the concern of the conditional

likelihood. This estimation method derives from the field of discrete time ARCH models.

Besides, as a tool, it appears explicitly in Leroux (1992, Section 4).

We first introduce and study the conditional likelihood, and then derive associated contrast

functions leading to estimators.

3.1. Conditional likelihood

Since the process ðUn; ZnÞ is strictly stationary, we can consider its extension to a process

ððUn; ZnÞ; n 2 ZÞ indexed by Z, with the same finite-dimensional distributions. For all i 2 Z, let

Zi ¼ ðZi; Zi�1; . . .Þ be the vector of RN defining the past of the process until i. Below, we prove

that the conditional distribution of the sample ðZ1; . . . ; ZnÞ given the infinite past Z0 admits a

density with respect to lðdz1Þ � � � � � lðdznÞ, which allows to define the conditional likelihood

of ðZ1; . . . ; ZnÞ given Z0.

From now on, let us suppose that Z ¼ R and U ¼ Rk , for some kP1. Denote by Ph the

distribution of ððUn; ZnÞ; n 2 ZÞ on the canonical space, ððUn; ZnÞ; n 2 ZÞ will be the canonical

process, and Eh ¼ EPh .

Theorem 1

Under (H1)–(H3), the following holds:

(1) The conditional distribution, under Ph, of U1 given the infinite past Z0 admits a density with

respect to mðduÞ equal to

~ggðh; u=Z0Þ ¼ Ehðpðh;U0; uÞ=Z0Þ: ð12Þ

The function ~ggðh; u=Z0Þ is well defined under Ph as a measurable function of ðu; Z0Þ, since there

exists a regular version of the conditional distribution of U0 given Z0.

(2) The conditional distribution, under Ph, of Z1 given the infinite past Z0 admits a density with

respect to dlðz1Þ equal to

~ppðh; z1=Z0Þ ¼
Z
U

~ggðh; u1=Z0Þf ðz1=u1Þmðdu1Þ: ð13Þ

Proof of Theorem 1. We omit h in all notations for the proof. By the Markov property of

ðUn; ZnÞ, the conditional distribution of U1 given ðU0; Z0Þ; ðU�1; Z�1Þ; . . . ; ðU�n; Z�nÞ is iden-

tical to the conditional distribution of U1 given ðU0; Z0Þ, which is simply the conditional

distribution of U1 given U0 [see (6)]. Consequently, for u : U ! ½0; 1� measurable,

EðuðU1Þ=U0; Z0; Z�1; . . . ; Z�nÞ ¼ EðuðU1Þ=U0Þ ¼ PuðU0Þ; ð14Þ

with

PuðU0Þ ¼
Z

uðuÞpðU0; uÞmðduÞ: ð15Þ

Hence,

EðuðU1Þ=Z0; Z�1; . . . ; Z�nÞ ¼ EðPuðU0Þ=Z0; Z�1; . . . ; Z�nÞ: ð16Þ
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By the martingale convergence theorem, we get

EðuðU1Þ=Z0Þ ¼ EðPuðU0Þ=Z0Þ: ð17Þ

Now, using the fact that there is a regular version of the conditional distribution of U0 given

Z0, say dPU0
ðu0=Z0Þ, we obtain

EðuðU1Þ=Z0Þ ¼
Z
U

Puðu0ÞdPU0
ðu0=Z0Þ: ð18Þ

Applying the Fubini theorem yields

EðuðU1Þ=Z0Þ ¼
Z
U

uðuÞEðpðU0; uÞ=Z0ÞmðduÞ: ð19Þ

So, the proof of (1) is complete.

Using again the Markov property of ðUn; ZnÞ and (6), we get that the conditional distri-

bution of Z1 given ðU1; Z0; Z�1; . . . ; Z�nÞ is identical to the conditional distribution of Z1 given

U1 which is simply f ðz1=U1Þlðdz1Þ. So taking u : Z ! ½0; 1� measurable as above, we get

EðuðZ1Þ=Z0; Z�1; . . . ; Z�nÞ ¼ EðEðuðZ1Þ=U1Þ=Z0; Z�1; . . . ; Z�nÞ: ð20Þ
So, using the martingale convergence theorem and Proposition 2, we obtain

EðuðZ1Þ=Z0Þ ¼
Z
R

uðz1Þlðdz1Þ
Z
U

f ðz1=u1Þ~ggðu1=Z0Þmðdu1Þ: ð21Þ

This achieves the proof. h

Note that, under Ph, by the strict stationarity, for all iP1, the conditional density of Zi given
Zi�1 is given by

~ppðh; zi=Zi�1Þ ¼
Z
U

~ggðh; ui=Zi�1Þf ðzi=uiÞmðduiÞ: ð22Þ

Thus, the conditional distribution of ðZ1; . . . ; ZnÞ given Z0 ¼ z0 has a density given by

~ppnðh; z1; . . . ; zn=z0Þ ¼
Yn
i¼1

~ppðh; zi=zi�1Þ: ð23Þ

Hence, we may introduce Definition 2.

Definition 2. Let us assume that, Ph0
a.s., the function ~ppðh; Zn=Zn�1Þ is well defined for all h

and all n. Then, the conditional likelihood of ðZ1; . . . ; ZnÞ given Z0 is defined by

~ppnðh; ZnÞ ¼
Yn
i¼1

~ppðh; Zi=Zi�1Þ ¼ ~ppnðh; Z1; . . . ; Zn=Z0Þ: ð24Þ

Let us set when defined

lðh; z1Þ ¼ log ~ppðh; z1=z0Þ; ð25Þ
so that

log ~ppnðhÞ ¼
Xn
i¼1

lðh; ZiÞ:

We have Proposition 3.

Proposition 3

Under (H1)–(H4), if Eh0
jlðh; Z1Þj < 1, then, we have, almost surely, under Ph0

,

1

n
log ~ppnðh; ZnÞ ! Eh0

lðh; Z1Þ:
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Proof of Proposition 3. Using Proposition 1 (3), ðZnÞ is ergodic, and the ergodic theorem

may be applied. h

Example 1 (continued) (Kalman filter). For the discrete Kalman filter [see (2)], the suc-

cessive distributions appearing in Proposition 2 are explicitely known and Gaussian.

With the notations introduced previously, the unknown parameters are a; b2 while c2 is

supposed to be known and jaj < 1. We assume that ðUnÞ is in a stationary regime. The

following properties are well known and are obtained following the steps of Proposition 2.

Under Ph, ðh ¼ ða; b2ÞÞ:

(i) the conditional distribution of Un given ðZn�1; . . . ; Z1Þ is the law Nðxn�1; r2
n�1Þ;

(ii) the conditional distribution of Un given ðZn; . . . ; Z1Þ is the law Nðx̂xn; r̂r2
nÞ;

(iii) the conditional distribution of Zn given ðZn�1; . . . ; Z1Þ is the law Nð�xxn�1; �rr2
n�1Þ,

with

vn ¼
r̂r2
n

c2
v1 ¼

s2

s2 þ c2
; ð26Þ

x̂xnþ1 ¼ ax̂xn þ ðZnþ1 � ax̂xnÞvnþ1 x̂x0 ¼ 0; ð27Þ

vnþ1 ¼ f ðvnÞ with f ðvÞ ¼ 1� 1 þ b2

c2
þ a2v

� ��1

; ð28Þ

xn�1 ¼ ax̂xn�1 ¼ �xxn�1 r2
n�1 ¼ b2 þ a2c2vn�1; ð29Þ

�rr2
n�1 ¼ r2

n�1 þ c2 �rr2
0 ¼ s2 þ c2: ð30Þ

With the above notations, the distribution of Z1 is the law Nð�xx0; �rr2
0Þ and the exact likelihood of

ðZ1; . . . ; ZnÞ is (up to a constant) equal to

pnðhÞ ¼ pnðh; Z1; . . . ; ZnÞ ¼ ð�rr0 . . . �rrn�1Þ�1 exp �
Xn
i¼1

ðZi � �xxi�1Þ2

2�rr2
i�1

 !
; ð31Þ

where h ¼ ða; b2Þ, �xxi ¼ �xxiðhÞ and �rri ¼ �rriðhÞ.
The conditional distribution of Z1 given ðZ0; . . . ; Z�nþ2Þ is obtained substituting

ðZn�1; . . . ; Z1Þ by ðZ0; . . . ; Z�nþ2Þ in the law Nð�xxn�1; �rr2
n�1Þ. This sequence of distributions

converges weakly to the conditional distribution of Z1 given Z0. Indeed, the deterministic

recurrence equation for ðvnÞ converges to a limit vðhÞ 2 ð0; 1Þ with exponential rate [see (28)].

Using the above equations, we find after some computations that the conditional distribution

of Z1 given Z0 is the law Nð�xxðh; Z0Þ; �rr2ðhÞÞ with

�xxðh; Z0Þ ¼ aEhðU0=Z0Þ ¼ avðhÞ
X1
i¼0

aið1� vðhÞÞiZ�i and �rr2ðhÞ ¼ ac2vþ b2 þ c2:

Therefore, the conditional likelihood is (up to a constant) explicitely given by

~ppnðh; ZnÞ ¼ �rrðhÞ�n exp �
Xn
i¼1

ðZi � �xxðh; Zi�1ÞÞ2

2�rrðhÞ2

 !
: ð32Þ

Since the series �xxðh; Z0Þ converges in L2ðPh0
Þ, this function is well defined for all h under Ph0

.

Moreover, the assumptions of Proposition 3 are satisfied, and the limit is
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Eh0
lðh; Z1Þ ¼ � 1

2
log �rrðhÞ2 þ 1

�rrðhÞ2
Eh0

ðZ1 � �xxðh; Z0ÞÞ2
( )

: ð33Þ

3.2. Associated contrasts

The conditional likelihood cannot be used directly, since we do not observe Z0. However, the

conditional likelihood suggests a family of appropriate contrasts to build consistent estima-

tors.

As mentioned earlier, our approach is motivated by the estimation methods used for dis-

crete time ARCH models (see Engle, 1982). In these models, the exact likelihood is untract-

able, whereas the conditional likelihood is explicit and simple. Moreover, the common feature

of these series is that they usually do not have even second-order moments. This rules out any

standard estimation method based on moments. Elie & Jeantheau (1995) and Jeantheau (1998)

have proved an appropriate theorem to deal with this difficulty. We also use this theorem later

and recall it. For the sake of clarity, its proof is given in the appendix.

3.2.1. A general result of consistency

For a given known sequence z0 of RN, we define the random vector of RN

Znðz0Þ ¼ ðZn; . . . ; Z1; z0Þ:

Let f be a real function defined on H � RN and set

Fnðh; znÞ ¼ n�1
Xn
i¼1

f ðh; ziÞ: ð34Þ

Let us introduce the random variable

h�n ¼ arg inf
h
Fnðh; ZnÞ ¼ h�nðZnÞ: ð35Þ

Now, we introduce the estimator defined by the equation

~hhnðz0Þ ¼ arg inf
h
Fnðh; Znðz0ÞÞ ¼ h�nðZnðz0ÞÞ: ð36Þ

The estimator ~hhnðz0Þ is a function of the observations ðZ1; . . . ; ZnÞ, but also depends on f and

z0. Theorem 2 gives conditions on f and z0 to obtain strong consistency for this type of

estimators.

We have in mind the case of f ¼ � log l [see (25)] so that Fnðh; ZnÞ ¼ � log ~ppnðhÞ. Never-

theless, other functions of f could be used.

As usual, let h0 be the true value of the parameter and consider the following conditions:

• C0 H is compact.

• C1 The function f is such that

(i) For all n, f ðh; ZnÞ is measurable on H � X and continuous in h, Ph0
a.s.

(ii) Let Bðh; qÞ be the open ball of centre h and radius q, and set for i 2 Z,

f�ðh; q; ZiÞ ¼ infff ðh0; ZiÞ; h0 2 Bðh; qÞ \ Hg. Then, 8h 2 H; Eh0
ðf�� ðh; q; Z1ÞÞ > �1 [with

the notation a� ¼ infða; 0Þ] .

• C2 The function h ! F ðh0; hÞ ¼ Eh0
f ðh; Z1Þð Þ has a unique (finite) minimum at h0.

• C3 The function f and z0 are such that

(i) For all n, f ðh; Znðz0ÞÞ is measurable on H � X and continuous in h, Ph0
a.s.

(ii) f ðh; ZnÞ � f ðh; Znðz0ÞÞ �! 0 as n! 1; Ph0
a:s:; uniformly in h.
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Theorem 2

Assume (H1)–(H4). Then, under (C0)–(C2), the random variable h�n defined in (35) converges Ph0

a.s. to h0 when n! 1. Under (C0)–(C3), ~hhnðz0Þ converges Ph0
a.s. to h0.

Let us make some comments on Theorem 2. It holds not only for HMMs, but for any

strictly stationary and ergodic process under condition (C0)–(C3). It is an extension of a result

of Pfanzagl (1969) proved for i.i.d. data and for the exact likelihood. Its main interest is to

obtain strongly consistent estimators under weaker assumptions than the classical ones. In

particular, (C1) and (C2) are weak moment and regularity conditions. Condition (C3) appears

as the most difficult one. We give below examples where these conditions may be checked. Let

us stress that in econometric literature, (C3) is generally not checked and only h�n is considered

and treated as the standard estimator. Note also that (C3) may be weakened into

1

n

Xn
i¼1

f�ðh; q; ZiÞ � f�ðh; q; Ziðz0ÞÞð Þ �! 0 as n! 1;

uniformly in h, in Ph0
-probability. This leads to a convergence in Ph0

-probability of ~hhnðz0Þ
to h0.

Example 4 (ARCH-type models). Consider observations Zn given by

Zn ¼ U1=2
n en and Un ¼ uðh; Zn�1Þ;

where ðenÞ is a sequence of i.i.d. random variables with mean 0 and variance 1, and with

In ¼ rðZk ; kOnÞ, en is In-measurable and independent of In�1. Although Un is a Markov

chain, Zn is not an HMM in the sense of Definition 1. Still, under appropriate assumptions, Zn
is strictly stationary and ergodic. If the ens are Gaussian, we choose

f ðh; Z1Þ ¼
1

2
loguðh; Z0Þ þ

Z2
1

uðh; Z0Þ

� �
;

which corresponds to the conditional loglikelihood. If the ens are not Gaussian, we may still

consider the same function.

To clarify, consider the special case of a GARCH(1,1) model, given by

Un ¼ x þ aZ2
n�1 þ bUn�1 ¼ x þ ðae2n�1 þ bÞUn�1;

where x; a and b are positive real numbers. It is well known that, if Eðlogðae21 þ bÞÞ < 0, there

exists a unique stationary and ergodic solution, and, almost surely,

Un ¼
x

1� b
þ a

X
iP1

bi�1Z2
n�i:

Let us remark that this solution does not even have necessarily a first-order moment.

However, it is enough to add the assumption xPc > 0 to prove that assumptions (C1)–(C2)

hold. Fixing Z0 ¼ z0 is equivalent to fixing U1 ¼ u1, and (C3) can be proved (see Elie &

Jeantheau, 1995).

3.2.2. Identifiability assumption

Condition (C2) is an identifiability assumption. The most interesting case is when f directly

comes from the conditional likelihood, that is to say

f ðh; z1Þ ¼ �lðh; z1Þ ¼ � log ~ppðh; z1=z0Þ:
In this case, the limit appearing in (C2) admits a representation in terms of a Kullback–Leibler

information. Consider the random probability measure
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~PP hðdzÞ ¼ ~ppðh; z=Z0ÞlðdzÞ ð37Þ

and the assumptions

• (H5) 8h0; h; Eh0
jlðh; Z1Þj < 1

• (H6) ~PP h ¼ ~PP h0
;Ph0

a.s. ¼) h ¼ h0.

Set

Kðh0; hÞ ¼ Eh0
Kð~PP h0

; ~PP hÞ; ð38Þ
where Kð~PP h0

; ~PP hÞ denotes the Kullback information of ~PP h0
with respect to ~PP h.

Lemma 1

Assume (H1)–(H6), we have, almost surely, under Ph0
,

1

n
ðlog ~ppnðh0; ZnÞ � log ~ppnðh; ZnÞÞ ! Kðh0; hÞ;

and (C2) holds for f ¼ �l.

Proof of Lemma 1. Under (H5), the convergence is obtained by the ergodic theorem.

Conditioning on Z0, we get

Eh0
log ~ppðh; Z1=Z0Þ ¼ Eh0

Z
R

log ~ppðh; z=Z0Þd~PP h0
ðzÞ:

Therefore,

Eh0
lðh; Z1Þ � lðh0; Z1Þ½ � ¼ Kðh0; hÞ:

This quantity is non negative [see (38)] and, by (H6), equal to 0 if and only if
~PP h ¼ ~PP h0

Ph0
a.s. h

Example 1 (continued) (Kalman filter). Recall that [see (33)] the conditional likelihood is

based on the function

f ðh; Z1Þ ¼ �lðh; Z1Þ ¼
1

2
log �rrðhÞ2 þ 1

�rrðhÞ2
ðZ1 � �xxðh; Z0ÞÞ2

( )
: ð39Þ

Condition (C1) is immediate. To check (C2), we use Lemma 1. Assumption (H5) is also

immediate. Let us check (H6). We have seen that

~PP h ¼ Nð�xxðh; Z0Þ; �rr2ðhÞÞ:

Thus,

~PP h ¼ ~PP h0
Ph0

a.s.

is equivalent to

�xxðh; Z0Þ ¼ �xxðh0; Z0Þ Ph0
a.s. and �rrðhÞ2 ¼ �rrðh0Þ2: ð40Þ

The first equality in (40) writes
P
iP0 kiZi ¼ 0 Ph0

a.s. with

ki ¼ avðhÞaið1� vðhÞÞi � a0vðh0Þai0ð1� vðh0ÞÞi:

Suppose that the kis are not all equal to 0. Denote by i0 the smallest integer such that ki0 6¼ 0.

Then, Zi0 becomes a deterministic function of its infinite past. This is impossible. Hence, for all
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i, ki ¼ 0. Thus, we get avðhÞ ¼ a0vðh0Þ and að1� vðhÞÞ ¼ a0ð1� vðh0ÞÞ. Since

0 < vðhÞ; vðh0Þ < 1, we get a ¼ a0 and vðhÞ ¼ vðh0Þ. The second equality in (40) yields b ¼ b0.

3.2.3. Stability assumption

Condition (C3) can be viewed as a stability assumption, since it states an asymptotic forgetting

of the past. But, here, the stability condition has only to be checked on the specific function f

and point z0 chosen to build the estimator. This holds for Example 4 (ARCH-type models).

We can also check it for the Kalman filter.

Example 1 (continued) (Kalman filter). Let us prove that (C3) holds with z0 ¼ ð0; 0; . . .Þ ¼ 0

and f given by (39). Note that for abirtrary z0 in RN, �xxðh; z0Þ may be undefined. For z0 ¼ 0, we

have

f ðh; ZnÞ � f ðh; Znð0ÞÞ ¼
1

2�rrðhÞ2
�xxðh; Zn�1Þ � �xxðh; Zn�1ð0ÞÞð Þ 2Zn � �xxðh; Zn�1Þ � �xxðh; Zn�1ð0ÞÞð Þ:

Now,

�xxðh; Zn�1Þ � �xxðh; Zn�1ð0ÞÞ ¼ an�1ð1 � vðhÞÞn�1xðh; Z0Þ:

Using that H is compact, we easily deduce (C3) for this example.

Remark

To conclude, let us stress that it is possible to compare the exact m.l.e. and the minimum

contrast estimator ~hhnð0Þ in the Kalman filter example. Indeed, ðZnÞ is a stationary ARMA(1,1)

Gaussian process. The exact likelihood requires the knowledge of ZtR�1
1;nZ where R1;n is the

covariance matrix of ðZ1; . . . ; ZnÞ. To avoid the difficult computation of R�1
1;n, two approxi-

mations are classical. The first one is the Whittle approximation which consists in computing
~ZZ

t
R�1
�1;1

~ZZ, where R�1;1 is the covariance matrix of the infinite vector ðZn; n 2 ZÞ and
~ZZ ¼ ð. . . ; 0; 0; Z1; . . . ; Zn; 0; 0; . . .Þ. The second one is the case described here. It corresponds to

computing ~ZZ
t
R�1
�1;0

~ZZ with ~ZZ ¼ Znð0Þ ¼ ð. . . ; 0; 0; Z1; . . . ; ZnÞ. It is well known that the three

estimators are asymptotically equivalent. It is also classical to use the previous estimators even

for non-Gaussian stationary processes (for details, see Beran, 1995).

4. Stochastic volatility models

In this section, we give more details on Example 3, in the case where the volatility Vt is a

strictly stationary diffusion process.

4.1. Model and assumptions

We consider for t 2 R, ðYt; VtÞ defined by, for sOt

Yt � Ys ¼
Z t

s
ru dBu; ð41Þ

Vt ¼ r2
t and Vt � Vs ¼

Z t

s
bðh; VuÞduþ

Z t

s
aðh; VuÞdWu: ð42Þ

For positive D, we observe a discrete sampling ðYiD; i ¼ 1; . . . ; nÞ of (41) and the problem is to

estimate the unknown h 2 H 
 Rd of (42) from this observation.
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We assume that

• (A0) ðBt;WtÞt2R is a standard Brownian motion of R2 defined on a probability space

ðX;A;PÞ.

Equation (42) defines a one-dimensional diffusion process indexed by t 2 R. We make now

the standard assumptions on functions bðh; uÞ and aðh; uÞ ensuring that (42) admits a unique

strictly stationary and ergodic solution with state space ðl; rÞ included is ð0;1Þ.

• (A1) For all h 2 H; bðh; vÞ and aðh; vÞ are continuous (in v) real functions on R, and C1

functions on ðl; rÞ such that

9k > 0; 8v 2 ðl; rÞ; b2ðh; vÞ þ a2ðh; vÞOkð1 þ v2Þ and 8v 2 ðl; rÞ; aðh; vÞ > 0:

For v0 2 ðl; rÞ, define the derivative of the scale function of diffusion ðVtÞ,

sðh; vÞ ¼ exp �2

Z v

v0

bðh; uÞ
a2ðh; uÞdu

� �
: ð43Þ

• (A2) For all h 2 H,Z
lþ
sðh; vÞdv ¼ þ1;

Z r�
sðh; vÞdv ¼ þ1;

Z r

l

dv
a2ðh; vÞsðh; vÞ ¼ Mh < þ1:

Under (A0)–(A2), the marginal distribution of ðVtÞ is phðdvÞ ¼ pðh; vÞdv, with

pðh; vÞ ¼ 1

Mh

1

a2ðh; vÞsðh; vÞ 1ðv2ðl;rÞÞ: ð44Þ

In order to study the conditional likelihood, we consider the additional assumptions

• (A3) For all h 2 H;
R r
l vphðdvÞ < 1.

• (A4) 0 < l < r < 1.

Let us stress that (A3) is a weak moment condition. The condition l > 0 is crucial. Intui-

tively, it is natural to consider volatilities bounded away from 0 in order to estimate their

parameters from the observation of ðYtÞ.
Let C ¼ CðR;R2Þ be the space of continuous functions on R and R2-valued, equipped with

the Borel r-field C associated with the uniform topology on each compact subset of R. We

shall assume that ðYt; VtÞ is the canonical diffusion solution of (41) and (42) on ðC;CÞ, and we

keep the notation Ph for its distribution. For given positive D, we observe ðYiD � Yði�1ÞD;

i ¼ 1; . . . ; nÞ and we define ðZiÞ as in (3). As recalled in Example 3, ðZiÞ is an HMM with

hidden chain Un ¼ ðVn; VnDÞ.
Setting t ¼ ðv; vÞ 2 ðl; rÞ2, the conditional distribution of Zi given Ui ¼ t is the Gaussian law

Nð0; v), so that lðdzÞ ¼ dz is the Lebesgue measure on R and

f ðz=tÞ ¼ f ðz=vÞ ¼ 1

ð2pvÞ1=2
exp � z

2

2v

� �
: ð45Þ

For the transition density of the hidden chain Ui ¼ ðV i; ViDÞ, it is natural to have, as

dominating measure, the Lebesgue measure

mðdtÞ ¼ 1ðl;rÞ2ðv; vÞdv dv: ð46Þ

Actually, it amounts to proving that the two-dimensional diffusion ð
R t
0 Vs ds; VtÞ admits a

transition density. Two points of view are possible. In some models, a direct proof may be

feasible. Otherwise, this will be ensured under additional regularity assumptions on functions
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aðh; :Þ and bðh; :Þ (see, e.g. Gloter, 2000). For sake of clarity, we introduce the following

assumption:

• (A5) The transition probability distribution of the chain ðUiÞ is given by

pðh; u; tÞmðdtÞ; ð47Þ

where ðu; tÞ 2 ðl; rÞ2 � ðl; rÞ2 and mðdtÞ is the Lebesgue measure (46).

This has several interesting consequences. First, note that this transition density has a

special form. Setting u ¼ ða; aÞ 2 ðl; rÞ2,

pðh; u; tÞ ¼ pðh; a; tÞ ð48Þ

only depends on a and is equal to the conditional density of U1 ¼ ðV 1; VDÞ given V0 ¼ a.
Therefore, the (unconditional) density of U1 is (with t ¼ ðv; vÞ)

gðh; tÞ ¼
Z r

l
pðh; a; tÞpðh; aÞda; ð49Þ

where pðh; aÞda, defined in (44), is the stationary distribution of the hidden diffusion ðVtÞ. Of

course, gðh; tÞ is the stationary density of the chain ðUiÞ. The densities of V 1 and Z1 are,

therefore [see (45)],

pðh; vÞ ¼
Z r

l
gðh; ðv; vÞÞ dv; ð50Þ

p1ðh; z1Þ ¼
Z r

l
f ðz1=vÞpðh; vÞdv: ð51Þ

Second, the conditional distribution of V i given Zi�1 ¼ zi�1; . . . ; Z1 ¼ z1 has a density with

respect to the Lebesgue measure on ðl; rÞ, say

piðh; vi=zi�1; . . . ; z1Þ: ð52Þ

So, applying Proposition 2, we can integrate with respect to the second coordinate ViD of

Ui ¼ ðV i; ViDÞ to obtain that the conditional density of Zi given Zi�1 ¼ zi�1; . . . ; Z1 ¼ z1, is

equal to

tiðh; zi=zi�1; . . . ; z1Þ ¼
Z r

l
piðh; vi=zi�1; . . . ; z1Þf ðzi=viÞdvi ð53Þ

for all iP2 [see (9)]. Therefore, (53) is a variance mixture of Gaussian distributions, the mixing

distribution being piðh; vi=zi�1; . . . ; z1Þdvi.
Let us establish some links between the likelihood and a contrast previously used in the case

of the small sampling interval (see Genon-Catalot et al., 1999). The contrast method is based

on the property that the random variables ðZiÞ behave asymptotically (as D ¼ Dn goes to zero)

as a sample of the distribution

qðh; zÞ ¼
Z r

l
pðh; vÞf ðz=vÞdv:

The same property of variance mixture of Gaussian distributions appears in (53), with a

change of mixing distribution [see also (54)].

4.2. Conditional likelihood

Applying Theorem 1 and integrating with respect to the second coordinate VD of

U1 ¼ ðV 1; VDÞ, we obtain the following proposition:

310 V. Genon-Catalot et al. Scand J Statist 30

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



Proposition 4

Assume (A0)–(A2) and (A5). Then, under Ph:

(1) The conditional distribution of V 1 given Z0 ¼ z0 admits a density with respect to the Lebesgue

measure on ðl; rÞ, which we denote by ~pphðv=z0Þ.
(2) The conditional distribution of Z1 given Z0 ¼ z0 has the density

~ppðh; z1=z0Þ ¼
Z r

l
~pphðv=z0Þf ðz1=vÞdv: ð54Þ

Hence, the conditional likelihood of ðZ1; . . . ; ZnÞ given Z0 is given by

~ppnðh; ZnÞ ¼
Yn
i¼1

~ppðh; Zi=Zi�1Þ:

Therefore, the distribution given by (54) is a variance mixture of Gaussian distributions, the

mixing distribution being now the conditional distribution ~pphðv=Z0Þdv of V 1 given Z0 [com-

pare with (53)].

In accordance with Definition 2, let us assume that, Ph0
a.s., the function ~pphðv=Z0Þ is well

defined for all h and is a probability density on ðl; rÞ. We keep the following notations:

f ðh; ZnÞ ¼ � log ~ppðh; Zn=Zn�1ÞÞ and ~PP hðdzÞ ¼ ~ppðh; z=Z0Þdz:

Then, we have

Proposition 5

Under (A0)–(A5):

(1) 8h0; h, Eh0
jf ðh; Z1Þj < 1:

(2) We have, almost surely, under Ph0
,

1

n
ðlog ~ppnðh0; ZnÞ � log ~ppnðh; ZnÞÞ ! Kðh0; hÞ ¼ Eh0

Kð~PP h0
; ~PP hÞ;

see (38).

Proof of Proposition 5. Using (A4) and the fact that ~pphðv=Z0Þ is a probability density over

ðl; rÞ, we get

1ffiffiffiffiffiffiffi
2pr

p exp� z
2
1

2l
O~ppðh; z1=Z0ÞÞO

1ffiffiffiffiffiffiffi
2pl

p : ð55Þ

So, for some constant C (independent of h, involving only the boundaries l; r), we have

jf ðh; Z1ÞjOCð1þ Z2
1Þ: ð56Þ

By (A3), Eh0
Z2

1 ¼ Eh0
V0 < 1. Therefore, we get the first part. The second follows from the

ergodic theorem. h

So, we have checked (H5). We do not know how to check the identifiability assumption

(H6). However, in statistical problems for which the identifiability assumption contains ran-

domness, this assumption can rarely be verified. Hence, if we know that regularity condition

(C1) holds, we get that h�n converges a.s. to h0. Condition (C3) remains to be checked (see, in

this respect, our comments after Theorem 2).

To conclude, the above results on the SV models are of theoretical nature but clarify the

difficulties of the statistical inference in this model and enlight the set of minimal assumptions.
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4.3. Mean reverting hidden diffusion

In the SV models, we cannot have explicit expressions for the conditional densities. Therefore,

we must use other functions f ðh; ZnÞ to build estimators. To illustrate this, let us consider

mean-reverting volatilities, that is, models of the form

dVt ¼ aðb � VtÞ dt þ aðVtÞdWt; ð57Þ
where a > 0, b > 0 and aðVtÞ may also depend on unknown parameters. Due to the mean

reverting drift, these models present some special features. In particular, many authors have

remarked that the covariance structure of the process ðViÞ is simple (see, e.g. Genon-Catalot

et al., 2000a; Sørensen, 2000).

Assume that the above hidden diffusion ðVtÞ satisfies (A1) and (A2), and that EV 2
0 is finite.

Then, EV1 ¼ EV0 ¼ b,

EV1
2 ¼ b2 þ VarðV0Þ

2ðaD � 1þ e�aDÞ
a2D2

ð58Þ

and for kP1,

EV1 Vkþ1 ¼ b2 þ VarðV0Þ
ð1� e�aDÞ2

a2D2
e�aðk�1ÞD: ð59Þ

The previous formulae allow to compute the covariance function of ðZ2
i ; iP1Þ.

Proposition 6

Assume (A0)–(A2) and that EV 2
0 is finite. Then, the process defined for iP1 by

Xi ¼ Z2
iþ1 � b � e�aDðZ2

i � bÞ ð60Þ
satisfies, for jP2, CovðXi;XiþjÞ ¼ 0. Hence, ððZ2

i � bÞ; iP1Þ is centred and ARMA(1,1).

Proof of proposition 6. The process ðZ2
i ; iP1Þ is strictly stationary and ergodic. Straight-

forward computations lead to EZ2
1 ¼ b,

VarðZ2
1 Þ ¼ 2EV1

2 þ VarðV1Þ ð61Þ
and for jP1,

CovðZ2
1 ; Z

2
1þjÞ ¼ CovðV1; V1þjÞ: ð62Þ

Then, the computation of CovðXi;XiþjÞ easily follows from (58)–(60). h

Estimation by the Whittle approximation of the likelihood is, therefore, feasible as sug-

gested by Barndorff-Nielsen & Shephard (2001). To apply our method, as in the Kalman filter,

we can use the linear projection of Z2
1 � b on its infinite past to build a Gaussian conditional

likelihood. To be more specific, let us set h ¼ ða; b; c2Þ with c2 ¼ VarV0 and define, under Ph,

chð0Þ ¼ VarhXi; chð1Þ ¼ CovhðXi;Xiþ1Þ:

Straightforward computations show that chð1Þ < 0. The L2ðPhÞ-projection of Z2
1 � b on the

linear space spanned by (Z2
�i � b; iP0) has the following form:

Z2
1 � b ¼

X
iP0

aiðhÞðZ2
�i � bÞ þ Uðh; Z1Þ;

where, for all iP0,

EhððZ2
�i � bÞUðh; Z1ÞÞ ¼ 0 ð63Þ

and the one-step prediction error is
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r2ðhÞ ¼ EhðU2ðh; Z1ÞÞ: ð64Þ

The coefficients ðaiðhÞ; iP0Þ can be computed using chð0Þ and chð1Þ as follows. By the

canonical representation of ðXiÞ as an MA(1)-process, we have,

Xi ¼ Wiþ1 � bðhÞWi;

where ðWiÞ is a centred white noise (in the wide sense), the so-called innovation process. It is

such that jbðhÞj < 1 and

r2ðhÞ ¼ VarhWi:

Therefore, the spectral density fhðkÞ satisfies

fhðkÞ ¼ chð0Þ þ 2chð1Þ cosðkÞ ¼ r2ðhÞð1 þ b2ðhÞ � 2bðhÞ cosðkÞÞ:

Since, for all k, fhðkÞ > 0, we get that c2
hð0Þ � 4c2

hð1Þ > 0. Now, using that chð1Þ < 0, the

following holds

bðhÞ ¼
chð0Þ � c2

hð0Þ � 4c2
hð1Þ


 �1=2
�2chð1Þ

; r2ðhÞ ¼ �chð1Þ
bðhÞ :

Then, setting aðhÞ ¼ exp ð�aDÞ, vðhÞ ¼ 1� ½bðhÞ=aðhÞ�,

aiðhÞ ¼ aðhÞvðhÞ aðhÞð1� vðhÞÞð Þi: ð65Þ

Now, we can define

f ðh; Z1Þ ¼ log r2ðhÞ þ 1

r2ðhÞ Z2
1 � b �

X
iP0

aiðhÞðZ2
�i � bÞ

 !2

:

Easy computations using (63)–(65) yield that

Eh0
ðf ðh; Z1Þ � f ðh0; Z1ÞÞ ¼

r2ðh0Þ
r2ðhÞ � 1� log

r2ðh0Þ
r2ðhÞ þ ðb0 � bÞ2

r2ðhÞ
1� aðhÞ
1� bðhÞ

� �2

þ 1

r2ðhÞEh0

X
iP0

ðaiðh0Þ � aiðhÞÞðZ2
�i � b0Þ

 !2

:

Hence, all the conditions of Theorem 2 may be checked and h can be identified by this method.

5. Concluding remarks

The conditional likelihood method is classical in the field of ARCH-type models. In this paper,

we have shown that it can be used for HMMs, and in particular for SV models. The approach

is theoretical but enlightens the minimal assumptions needed for statistical inference. From

this point of view, these assumptions do not require the existence of high-order moments for

the hidden Markov process. This is consistent with financial data that usually exhibit fat tailed

marginals.

In order to illustrate on an explicit example the conditional likelihood method, we revisit

in full detail the Kalman filter. SV models with mean-reverting volatility provide another

example where the method can be used.

This method may be applied to other classes of models for financial data: models including

leverage effects (see, e.g. Tauchen et al. 1996); complete models with SV (see, e.g. Hobson &

Rogers, 1998; Jeantheau, 2002).
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Appendix

This appendix is devoted to prove Theorem 2 due to Elie & Jeantheau (1995). Recall that we

have set aþ ¼ supða; 0Þ and a� ¼ infða; 0Þ, so that a ¼ aþ þ a�. The following proof holds for

any strictly stationary and ergodic process under (C0)–(C3).

Proof. First, let us introduce the random variable defined by the equation

h�n ¼ arg inf
h
Fnðh; ZnÞ:

Note that h�n is not an estimator, since it is a function of the infinite past ðZnÞ. The first part of

the proof is devoted to show that, under (H0)–(H2), h�n converges to h0 a.s.

By the continuity assumption on f, f�ðh; q; ZiÞ is measurable. Moreover, under (C1),

Eh0
f�ðhÞ; Z1ð Þ > �1, therefore F ðh0; hÞ is well defined, but may be equal to þ1.

For all h 2 H and h0 2 Bðh; qÞ \ H, the function h0 �! f ðh0; Z1Þ � f�� ðh; q; Z1Þ is non-neg-

ative. Using (C1) and the continuity of f with respect to h, Fatou’s Lemma implies

lim infh0!h F ðh0; h
0ÞPF ðh0; hÞ. Therefore, F is lower semicontinuous in h.

Applying the monotone convergence theorem to fþ� ðh; q; Z1Þ and the Lebesgue dominated

convergence theorem to f�� ðh; q; Z1Þ, we get

lim
q!0
Eh0

ðf�ðh; q; Z1ÞÞ ¼ Eh0
ðf ðh; Z1ÞÞ ¼ F ðh0; hÞ: ð66Þ

Let e > 0 and consider the compact set Ke ¼ H \ Bðh0; eÞð Þc. By (C2) and the lower semi-

continuity of F, there exists a real g > 0 such that:

8h 2 Ke; F ðh0; hÞ � F ðh0; h0Þ > g: ð67Þ
Consider h 2 Ke. If F ðh0; hÞ < þ1, using (66), there exists qðhÞ > 0 such that

0OF ðh0; hÞ � Eh0
f�ðh; qðhÞ; Z1Þð Þ < g=2:

Combining the above inequality with (67), we obtain

Eh0
f�ðh; qðhÞ; Z1Þð Þ � F ðh0; h0Þ > g=2: ð68Þ

If F ðh0; hÞ ¼ þ1, since F ðh0; h0Þ is finite, using (66), we can also associate qðhÞ > 0 such that

(68) holds. So we cover the compact set Ke with a finite number L of balls, say

fB hk ; qðhkÞð Þ; k ¼ 1; . . . ; Lg.
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The ergodic theorem implies that there exists a measurable Ne 
 X such that Ph0
ðNeÞ ¼ 0,

and for all x 2 Nce , and for k ¼ 1; . . . ; L,

n�1
Xn
i¼1

f�ðhk ; qðhkÞ; ZiðxÞÞ �! Eh0
f�ðhk ; qðhkÞ; Z1Þð Þ:

This holds even if Eh0
fþ� ðhk ; qðhkÞ; Z1Þ ¼ þ1. Since the sequence ðh�nðxÞÞnP1 is in the compact

H, we can extract, for all x 2 Nce , a converging subsequence ðh�nj ðxÞÞ.
Let us assume that h�njðxÞ converges in Ke. Therefore, it converges in one of the balls, say

Bðh1; qðh1ÞÞ and we have, for nj large enough:

1

nj

Xnj
i¼1

f�ðh1; qðh1Þ; ZiðxÞÞOFnj ðh�njðxÞ; ZnjðxÞÞ:

But, Fnjðh�nj ðxÞ; ZnjðxÞÞ � Fnjðh0; ZnjðxÞÞO0, which implies

1

nj

Xnj
i¼1

f�ðh1; qðh1Þ; ZiðxÞÞðxÞ � Fnjðh0; ZnjðxÞÞO0:

The above term converges as nj ! 1 to

Eh0
f�ðh1; qðh1Þ; Z1Þð Þ � F ðh0; h0ÞO0;

which is in contradiction with (68).

For x 2 X, denote by kðxÞ the set of limit points of ðh�nðxÞÞ. We have proved that, for all

x 2 Nce , kðxÞ 
 Bðh0; eÞ \ H. Now, choose e ¼ 1=n, and N ¼ [nP1N1=n. Then, N is Ph0
-negli-

gible and

8x 2 Nc; 8nP1; kðxÞ 
 Bðh0; 1=nÞ \ H:

Therefore, for all x 2 Nc; kðxÞ ¼ fh0g.
Now, we prove the consistency of our estimators using the additional assumption (C3). It is

enough to show

1

n

Xn
i¼1

f�ðh; q; ZiÞ � f�ðh; q; Ziðz0ÞÞð Þ �!
Ph0

a.s.
0 when n! 1: ð69Þ

Set Di ¼ supa2H jf ða; ZiÞ � f ða; Ziðz0ÞÞj. We have, for all h0 2 H, f ðh0; ZiÞOf ðh0; Ziðz0ÞÞ þ Di.
Thus, for q > 0,

f�ðh; q; ZiÞOf�ðh; q; Ziðz0ÞÞ þ Di:

We easily deduce

jf�ðh; q; ZiÞ � f�ðh; q; Ziðz0ÞÞjODi:

By (C3), Di converges a.s. to 0, and, using the Cesaro theorem, we get (69). h
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