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Abstract

We present in this work a natural Interacting Particle System (IPS) approach for
modeling and studying the asymptotic behavior of Genetic Algorithms (GAs). In this
model, a population is seen as a distribution (or measure) on the search space, and the
Genetic Algorithm as a measure valued dynamical system. This model allows one to
apply recent convergence results from the IPS literature for studying the convergence
of genetic algorithms when the size of the population tends to infinity.

We first review a number of approaches to Genetic Algorithms modeling and re-
lated convergence results. We then describe a general and abstract discrete time
Interacting Particle System model for GAs, and we propose a brief review of some re-
cent asymptotic results about the convergence of the N -IPS approximating model (of
finite N -sized-population GAs) towards the IPS model (of infinite population GAs),
including law of large number theorems, ILp-mean and exponential bounds as well as
large deviations principles.

Finally, the impact of modeling Genetic Algorithms with our interacting particle
system approach is detailed on different classes of generic genetic algorithms including
mutation, cross-over and proportionate selection. We explore the connections between
Feynman-Kac distribution flows and the simple genetic algorithm. This Feynman-Kac
representation of the infinite population model is then used to develop asymptotic
stability and uniform convergence results with respect to the time parameter.

Keywords: Genetic algorithms, Interacting particle systems, asymptotical convergence,
Feynman-Kac formula, measure valued processes.
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En este trabajo presentamos un enfoque natural de Sistemas de Part́ıculas Inter-
actuantes (IPS) para modelar y estudiar el comportamiento asintótico de Algoritmos
Genéticos (GAs). En este modelo, una población es vista como una distribución (o
medida) en el espacio de búsqueda, y el Algoritmo Genético como un sistema dinámico
valuado en medida. Este modelo permite aplicar resultados recientes sobre convergen-
cia de la literatura sobre IPS para estudiar la convergencia de GAs cuando el tamaño
de la población tiende al infinito.

Primero revisamos algunos enfoques para modelar GAs y resultados relacionados
con la convergencia. Enseguida describimos un modelo general y de tiempo discreto
abstracto para GAs, basado en un IPS, y proponemos una breve revisión de algunos
resultados asintóticos recientes acerca de la convergencia de N -IPS modelos de aprox-
imación (de GAs de población finita de tamaño N), que conducen al modelo IPS
(de GAs de población infinita), incluyendo teoremas de leyes de los grandes números,
LLp-media y cota exponencial, aśı como principios de grandes desviaciones.

Finalmente, se detalla el impacto de modelar Algoritmos Genéticos con nuestro
enfoque de IPS sobre diferentes clases de algoritmos genéticos genéricos que incluyen
mutación, cruzamiento y selección proporcional. Exploramos las conexiones entre los
flujos de distribución de Feynman-Kac y el algoritmo genético simple. Esta repre-
sentación de Feynman-Kac del modelo de población infinita es usada luego para de-
sarrollar resultados de estabilidad asintótica y convergencia con respecto al parámetro
de tiempo.

Palabras clave: Algoritmos genéticos, sistemas de part́ıculas interactuantes, convergen-
cia asintótica, fórmula de Feynman-Kac, procesos valuados en medida.

1 Introduction

Evolutionary algorithms (abbreviate EAs) are a class of stochastic optimization techniques
that have been successfully applied in diverse areas, such as machine learning, combinato-
rial problems, and numerical optimization. This success, has initiated the development of
various EA variants, and stimulated the theoretical research about convergence properties
of these algorithms.

The history of EAs goes back to the sixties where genetic algorithms were introduced
for solving biological adaptation problems [54]. Today, EAs include Evolution Strategies
[22] first designed for real-valued parameter search spaces, Evolutionary Programming
[41, 40], Genetic Programming [59] designed for tree search spaces, simulated annealing
[91, 89] and genetic algorithms [47] first designed for discrete parameter search spaces.

While most differ slightly in their actual implementations, all these evolutionary tech-
niques use the same metaphor of mapping problem solving onto a model of evolution,
where a candidate solution is represented by an individual and the solution quality is
determined by a fitness function. The evolutionary process consists in evolving a vector
(or population) of individuals, under stochastic modification and selection operators (see
figure 1).

In contrast to many papers in the literature of Evolutionary Algorithms, we don’t fol-
low the above described historical classification of algorithms. Rather, we review conver-
gence results classified according to the model (e.g. Markov, schema, allele distributions),
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Figure 1: A general description of Evolutionary Algorithms. – Initialization consists
in selecting, usually at random and uniformly, a population of N individuals from the
search space. – Selection consists in choosing a number (in the range [1, N ]) of high
fitness members that undergo Mutation and/or Crossover. – Mutation is an elementary
modification operator. – Crossover combines the properties of two parents to produce an
offspring. – In the replacement step, a new population is selected among the current and
modified individuals, such that the fittest individuals are more likely to survive.

space (finite, infinite) and operators (mutation, crossover). Then, we detail an alterna-
tive Markov model GAs valid for finite or infinite search spaces, static or dynamic fitness
environment, homogeneous or inhomogeneous operators. An overview of our approach is
presented later on in this introduction.

1.1 Summary of the paper

We first review the modeling of homogeneous GAs in the binary space E = {0, 1}`, where
an individual is a sequence of binary bits (called alleles). We describe approaches studying
the evolution of population schemata ; population mean and variance in fitness ; population
alleles marginal distribution.

We then point out the limitations of these approaches: the first approaches applies
to infinite populations, the second applies to particular fitness functions, the third only
models a particular type of GAs – basicly selection and crossover algorithms with no
mutation.

We also review strong convergence results, about the complexity of the time to ab-
sorption, that have been obtained for simplified and rudimentary GAs (selection only or
mutation only).

The main general theoretical results in the field of evolutionary function optimization
have been obtained using Markov chain analyses in finite spaces. These results prove the
asymptotical absorption into optimal states w.r.t. time for the homogeneous GA ; and
prove a finite time visits to the optimal set for the inhomogeneous GA. In this Markov
framework, the state space is the set of all populations.

An alternative Markov approach considers the state space of all probability distribu-
tions of the populations, rather than the space of populations. It proves the existence of
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fix points for population distributions, for an infinite population size. In this framework, a
distribution is a vector of length 2`, describing the proportion of each point of E = {0, 1}`

in the population.
In this paper we propose an alternative Markov approach on the space of population

distributions. But, in contrast to the latter approach we consider the empirical measures
(2) associated to the population (1), resulting in distributions having a small variable
support, which length is equal to the population size.

A first advantage of this approach is that it also applies to infinite and continuous
spaces. A second advantage is that it allows to build a bridge between the fields of genetic
algorithms and that of interacting particle systems.

An important part of this paper is then devoted to applying some recent convergence
results from the IPS literature to the simple mutation-only genetic algorithm. Note that
the term convergence here is twofold. We (briefly) consider the long time behavior of GAs,
and (widely) investigate the convergence quality and rate of the genetic algorithm, seen
as a measure valued process, when the population size tends to infinity.

For example, when the population size tends to infinity, in some sense to be defined,
the difference between the finite population empirical measure at time t and the measure
it would have if the population size were infinite, goes to zero in ILp-mean. Analogous
results also apply to the path space, involving a sequence of measures taken from time 0
to n, and provide large deviation bounds.

On the other hand, when the time parameter goes to infinity, we show that under some
conditions, the distribution of GA (infinite) population at time n converges exponentially
fast to a unique fix point.

Last but not least, we generalize the IPS approach so as to cope with different variants
of genetic algorithms.

For example, we consider mutations where the transition probabilities depend on the
whole current population (and not only the point to be mutated). Such transition kernels
naturally include special crossover mechanisms. We also investigate the convergence of
GAs with commonly used crossover operators.

We end the paper by proposing a new dynamical system, corresponding to GAs with an
original generational scheme: selection-or-mutation transitions rather than the common
selection-and-mutation ones.

1.2 The IPS approach: preliminaries

In the following we outline the IPS approach, before presenting the related sections’ con-
tents.

Genetic algorithms can be defined as a system of particles (or individuals) evolving ran-
domly in a given measurable space (E, E) and undergoing adaptation in an environment,
not necessarily time homogeneous, represented by a collection of fitness functions.

In discrete time settings these stochastic algorithms can be modeled as a Markov chain

ξn =
(
ξ1n, . . . , ξ

N
n

)
, n ≥ 0, (1)
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taking values in the product state space EN where N ≥ 1 denotes the number of particles.
Although it is not really essential the initial particle system ξ0 usually consists in N
independent particles with common law η0 ∈ P(E), where P(E) denotes the set of all
probability measures on E endowed with the weak topology.

Rather than studying the dynamic and limiting process of the so defined Markov chain
(1), we propose to study the flow of the empirical measures associated with the systems
of particles ξn

m(ξn) def.=
1
N

N∑

i=1

δξi
n

(2)

where δa stands for the Dirac measure at a ∈ E.
The transition from the population ξn−1 at time (n−1) to the next population ξn only

depends on the empirical measure m(ξn−1). More precisely, given the configuration ξn−1

at time (n− 1) the next generation ξn consists of N (conditionally) independent random
variables with common law

Φn (m(ξn−1))

where Φn : P(E) → P(E), n ≥ 1, is a given collection of sufficiently regular functions,
that are dictated by the GA operators and parameters (see section 7.1).

This quite general interacting particle system model has been introduced in [10, 11].
Its asymptotic behavior as N → ∞ is now well understood. In some sense to be defined
the empirical measures

ηN
n

def= m(ξn), n ≥ 0,

converge as the number of particles N → ∞ to a deterministic flow of distributions

ηn ∈ P(E), n ≥ 0,

solution of the measure valued dynamical system

ηn = Φn (ηn−1) , n ≥ 1, (3)

In measure valued processes literature the system (3) is usually called the limiting
process. Such measure valued dynamical systems have arisen in such diverse scientific
disciplines as physics, biology, evolutionary computing, nonlinear filtering and elsewhere.
In GA settings this measure valued dynamical system is sometimes referred as the infinite
population model and it is used to predict the behavior of the finite population model.
In advanced signal processing and particularly in filtering literature (3) represents the
evolution in time of the conditional distributions of a signal given the observation record.
Incidently the N -IPS approximating scheme of the nonlinear filtering equation is defined
in terms of a time inhomogeneous and simple GA.

The continuous time version of this model is described in [7, 8] revealing a very striking
analogy between GA, the robust and path-wise nonlinear filter, Feynman-Kac formulae
and spatially homogeneous Boltzmann equation.

The objective of this paper is not to develop the details of all these connections between
these research fields, the interested reader is referred to the monograph [7] and to [8]. Our
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aim is to introduce the reader to IPS approximations of nonlinear measure valued processes
of the form (3) and to present the mathematical theory that it is useful in studying the
asymptotic behavior of GAs.

1.3 Organization of the paper

This paper is organized as follows.
Section 2 summarizes a number of approaches to GA modeling, so far encountered

during the last decade, excluding the Markov models that are described in a separate
section. These approaches does not lead necessarily to strong convergence results, but give
insights into some aspects of GA dynamics under some approximations or in particular
fitness cases.

Section 3 reviews results obtained on simplified and rudimentary processes, such as
selection only or mutation only algorithms. These simplifications have the advantage of
making theoretical analysis very amenable and allow one to compare complexity of time
to convergence with different selection or mutation schemes. On the other hand, results
obtained with such simplifications cannot be generalized to more complex and realistic
(working) GA instances.

Section 4 presents different exact Markov models leading to the proof of the convergence
of different classes of Genetic Algorithms towards the optima of the fitness function. While
these results put almost no restrictions on the fitness function, they cannot give the order
or complexity of convergence time.

Having introduced different models for Genetic Algorithms, related results and lim-
itations, we introduce the IPS model for infinite populations, which can be seen as a
generalization of the infinite population model of Vose [96], to the case of infinite search
spaces. We then show how the N -IPS approximating model can be used to study N -sized-
population GAs.

A first advantage of the IPS model is that it allows us to model a wide variety of Genetic
Algorithms, as shown in section 7. A second advantage is the existence of a number of
recent theorems from probability literature that guarantee the convergence of the finite
population dynamic of GAs (N -IPS approximating model) towards the infinite population
dynamic (IPS model), for large populations uniformly with respect to time (these results
are summarized in section 6 for an abstract and general IPS model). Finally, the Feynman-
Kac interpretation allows us to derive the exact analytical distribution of GA population
members.

In section 6 we describe precisely the IPS approximating model and we review recent
results on the convergence of such IPS methods when the number of particles (or popula-
tion size) goes to infinity, including weak convergence theorems, ILp-mean error estimates,
exponential rates and large deviation principles.

Most of the limit theorems presented in this preliminary section 6 result from collab-
orations of one of the authors with Alice Guionnet, Michel Ledoux and Laurent Miclo.
Only a selection of existing results is presented. More information and detailed proofs can
be founded in the set of referenced papers [1, 2, 3, 4, 6, 7, 10, 11].
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All these developments offer the appropriate theoretical background to analyze the
asymptotic behavior of GA. They also permit us to construct new genetic-type methods.

In section 7 we present several generic GAs which fit into our framework including the
simple GA with classical mutation and proportionate selection, but also GAs with interact-
ing mutation, cross-over transitions and GAs with randomly ordered selection/mutation.
We will also give a detailed illustration of how the convergence results presented in sec-
tion 6 may be applied to study the asymptotic behavior of such GAs.

It turns out that many GAs including cross-over transitions fit into the simple GA
framework. For these reasons, and because of the importance of the simple GA in prac-
tice, section 7.1 is built around this theme. We complement the limit theorems of section 6
and we present several additional asymptotic theorems including a Central Limit Theo-
rem, a limit theorem on the long time behavior of the limiting system as well as a uniform
convergence theorem for the N -IPS approximating model with respect to the time param-
eter.

We hope this paper will be useful to our colleagues working on GAs and evolutionary
computing.

2 Different approaches to GA modeling

This section briefly presents a number of tentative approaches to GA modeling, excluding
the Markov models that are described in the next section. We also present some alter-
native algorithms that arose from some of these modeling approaches. Such alternative
algorithms also intend to achieve a stochastic optimization task, but at a reduced cost
compared to the standard Evolutionary Algorithms described in figure 1. Most of these
approaches consider search spaces of binary strings E = {0, 1}`, where a string is viewed
as a vector of ` binary alleles.

Section 2.1 recalls and comments on the schema theory, modeling the evolution of
schemata. Section 2.2 presents and comments on an approach borrowed from physics,
approximating the evolution of population fitness distributions by some of their moments.
Section 2.3 focuses on the evolution of allelic marginal distributions. This latter point of
view has been given much attention in the last 5 years, and led to a number of alternative
algorithms, that are not guaranteed to find the global optimum, but which might converge
quicker than GAs.

2.1 The Evolution of Schemata

Initial investigations about binary Genetic Algorithms (GAs) concentrated on a macro-
scopic view of the algorithms, based on the evolution of schemata (rather than strings or
proportions of strings, as in the Markov framework). A first version of the schema theorem
was proved in [55] then an extension in [47].

The framework is the following. Consider the binary space E = {0, 1}`, a proportionate
selection, a 1-point crossover and a 1/` mutation.

A schema is defined as a subspace H of E where a number, denoted o(H), of string
positions have fixed values. For example, the schema (1 ∗ 11) = {1011, 1111} has 3 fixed
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values.

Theorem 2.1 ([55, 47]) Let N (H, n) be the number of representatives of H in the pop-
ulation at time step n, then, neglecting the possible reconstruction of new representatives
of H by mutation or crossover,

IE[N (H,n + 1)] ≥ N (H,n)
f̄(H,n)
f̄(ξn)

[
1 − pmo(H) − pc

l(H)
`− 1

)
]
, (4)

where f̄(H, n) denotes the average fitness of representatives of H present in the population
ξn, and l(H) denotes the distance (number of positions) between the first and last fixed
positions of H ( l(H) = 4 in the previous example), pm and pc denote the mutation and
crossover probabilities.

Under infinite population approximation, the expectation of the number of schema repre-
sentatives can be replaced by its actual value in (4), one obviously conclude that schemata
with above average fitness (f̄(H, n) > f̄(ξn)) tend to colonize the population.

The usefulness of the Schema Theory has been seriously questioned [52, 93, 71, 63, 19,
97, 36, 22]. One of the main limitations of the Schema theory is that it is only valid for one
generation prediction and cannot be iterated more than once (as it maps a schemata into
the next expected one only), hence cannot be used for studying the long term behavior.

Recent work [17, 84, 85, 96] prove a new relation for the evolution of schemata, taking
into account the effect of schema reconstruction by crossover and mutation (and so ac-
counting for possible low fitted schemata that yield high fitted offspring), but still falling
under the limitation of relating the expectation of N (H, n + 1) to N (H, n) as explained
above.

Note finally that, at its current stage, the schema theory still doesn’t lead to any strong
theoretical result about convergence, or complexity of the algorithm itself.

2.2 Cumulants of Population Fitnesses

In the statistical mechanics formulation [29, 99, 72], a population is described in terms of
a few macroscopic quantities: the cumulants of the population magnetization distribution.
The cumulants denote the mean k1, variance k2 (and eventually moments of higher order)
of the population magnetization distribution. The magnetization of a string is defined as

M(x) =
∑̀

i=1

xi where xi = {0, 1}. (5)

For most problems the fitness distribution is not related to the magnetization distribu-
tion. However for simple examples such as one-max, magnetization equals fitness. Thus
many papers study the evolution of expected population cumulants, providing recurrence
relations between the expected cumulants when mutation (resp. selection, or crossover) is
applied to population members, in a generational scheme (see [14] for a detailed review of
the approach and simplification hypothesis).
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Under the usual assumption that only the – 2,3 or n – first order cumulants are non null,
[99, 100] prove the following relation when N individuals are selected following Boltzmann
selection with small strength β, the change in cumulants – when terms of higher powers
of β are truncated – follows from [99, 100].

< κ1 >S ' < κ1 > +< κ2 > β,

< κ2 >S ' < κ2 > −< κ2 >

N
+< κ3 >β.

where the subscript S denotes that this is the effect of selection.
When mutation is applied to all population members with bit-wise-flipping probability

c/`.

< κ1 >M = (1 − 2c) < κ1 >, (6)
< κ2 >M = (1 − 2c)2 < κ2 > +`(1 − (1 − 2c)2), (7)

where the subscript M denotes that this is the effect of mutation, and < . > denotes the
expected cumulant value over an ensemble (infinite set) of populations evolving in parallel.

Combining these expressions, to find the expected cumulants after selection, mutation
(and eventually crossover (15)) is straight-forward for the onemax function, but can be
unwieldy for more complex functions, in such cases the formulae are simulated numerically.
This approximated model has been extended to other generational and selection schemes
and also demonstrated to be quite close to the actual behavior of GAs averaged over many
runs [75, 14].

This approach has also been applied to study the dynamics of GAs on functions dif-
ferent from one-max, but in most cases, the fitness is a function of the magnetization (or
Hamming distance to all-ones optimum) [82, 76].

At the cost of some approximations, this statistical mechanics model allows us to gain
significant insights into the population dynamics on a number of fitness functions. These
results would be difficult to obtain at this stage using exact models of GAs such as Markov
chains. Indeed, apart from particular cases [57, 43], Markov chain studies of GA exact
dynamic consider populations of size one and no crossover, on simple functions (see section
5).

2.3 Allelic Marginal Distributions

This modeling approach is in some ways similar to the one we are presenting in the paper
– namely, the interacting particle systems model (IPS). However, the goals are different.
The IPS model is used to study the convergence of the dynamic of finite population
GAs towards that of the infinite population GAs, whereas the following model is used to
construct alternative stochastic algorithms, with a smaller time to convergence than GAs.

The basic idea is to transform the initial search problem over E into a search problem
over probability distributions on E. The target probability distributions are then mixtures
of Dirac distributions charging optimal solutions of the initial search problem over E.
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The model we describe in this section was first proposed in practical numerical simu-
lations [23]: selected population members are no longer mutated and mated, but used to
update the allelic marginal distributions pi, as follows.

pi(xi, t+ 1) = pi(xi, t) + λ
(
ps

i (xi, t) − pi(xi, t)
)
, (8)

where ps
i (xi, t) are the marginal frequencies of allele xi in the selected population members.

The new population is then constructed by drawing N strings x = (x1 . . . x`), according
to the probability profile

p(x, t+ 1) =
∏̀

i=1

pi(xi, t+ 1).

The convergence speed of this algorithm (8) critically depends on λ. For λ = 0 we obtain
a random search, for λ = 1 we obtain the so called UMDA algorithm [65]. Mühlenbein
formalizes the UMDA algorithm, in the infinite population framework, with proportionate
selection (10) and complete crossover, but no mutation. He shows that this algorithm
consists in performing a gradient search with the potential W (t) =

∑
x p(x, t)f(x) [65],

(that is, the average fitness),

p(xi, t+ 1) = p(xi, t) + p(xi, t)(1 − p(xi, t))
∂W/∂p(xi)

W (t)
(9)

where p(xi, t) denotes the probability that xi = 1 at time t. However, this gradient is not
easy to implement directly as W (t) requires the knowledge of 2` parameters.

In order to search directly in the space of distributions, another approach consists in
reducing the complexity of the distributions space. This can be achieved by restricting
the search to a family of parametrized distributions, allowing one to simply search in the
parameter space. This is a typical approach in the learning field.

This approach is illustrated in [24] where the vector x = (x1, . . . , x`) of E is replaced
with a vector of ` random variables with a vector of respective parametrized density profiles

p(x, θ) = (p1(x1, θ1), . . . p`(x`, θ`)),

where pi(. , θi) defines the distribution of allele xi over {0, 1}, parametrized by θi. For
example, numerical simulations of [24] assume pi(. , θi) as independent Bernoulli laws (resp.
gaussian) with average θi (resp. average and variance given by θi components).

The discrete optimization problem in E is then transformed into a continuous mini-
mization problem of the Kullback-Leibler (KL) divergence [101] between p and the Gibbs
distribution p∗T , which charges the high fitness states of E for low temperatures T . It can
be shown that this minimization can be achieved with a gradient in the space of the free
energy of the system F (θ) [24]. Yet as for W (t) above (9), computing the free energy
requires the knowledge of 2` parameters.

In order to make this gradient minimization computationally amenable, Berny [24]
proposes approximate (and stochastic) update (gradient following) rules for θ, allowing
him to successfully minimize the free energy on a number of fitness functions, and for
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different temperatures. However, due to the approximations, the asymptotical convergence
to the global optima is not guaranteed on a given fitness landscape.

Note finally that more robust algorithms could be obtained, if dependent random
variables were considered for allelic distributions, as pointed out in [24] and [65].

3 Convergence of simplified algorithms

In any evolutionary algorithm, the strong interactions between selection and evolution
operators (crossover, mutation, . . . ) make it difficult to efficiently compare the effects of
different operators without taking into account the characteristics of the selection (i.e. the
fitness function).

A standard method for avoiding such a bias, is to start by considering the effects of
each operator alone: Selection without evolution operators (see the studies of takeover
time [49, 34]), or innovation time of crossover or mutation in the absence of selection
[88, 48], or the evolution of random walks directed by some mutation [45] or crossover [31]
operators.

In the following, for the sake of clarity, the reported results do not always cover the
whole set of extensions and generalizations that could have been achieved in the papers,
but mainly focus on the techniques used to find the results (for example we might omit
to mention extensions of formulae to r-ary alphabets).

3.1 Selection only algorithms

Consider a finite population of N members ξ ∈ EN and suppose some members of the
population ξ are selected possibly more than once in order to form a new population of
size N . This defines a rudimentary dynamical process and we are usually interested in
calculating the time required to reach a population with N copies of a same member.

ξn−1 =
(
ξ1n−1, . . . , ξ

N
n−1

) Selection
−−−−−−−−−−−−→ ξn =

(
ξ1n, . . . , ξ

N
n

)

This is a widely studied in both the literatures of genetic algorithms and populations
genetics. However, the approaches and selections involved differ significantly.

In the context of genetic algorithms, we are interested in problem solving, hence se-
lection directly depends on the fitness of population members: high fitted members are
more likely to be selected than low fitted ones. Typically, with a proportionate selection
the probability to select the i-th individual of ξn−1 is given by

f
(
ξi
n−1

)
∑N

j=1 f
(
ξj
n−1

) (10)

At each iteration, N individuals are selected following (10), that build up the population
ξn (see Table 3.1 for alternative typical iterations). Other typical selections are Ranking
selection (same as (10) replacing fitness values by their rank in the population), and
tournament selection (p members are chosen uniformly, and the fittest is selected).
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In the genetic algorithms literature, early studies use Markov chains to numerically
calculate the expected absorption time. This is achieved by calculating the visitation
matrix V = (I − Q)−1, after partitioning the states of the absorbing Markov chain (ξn)
associated with the selection algorithm,

P =
(

Q R
0 I

)
.

Summing over the set of transient states TS,
∑

j∈TS Vij , yields the expected absorption
time for a process starting at state i. This method was first applied in the space E = {0, 1}
with proportionate selection [51].

The impact of selection with sharing 1 has been investigated using the same method
and space E = {0, 1} [56], demonstrating that the expected absorption time is signifi-
cantly larger with sharing (simulated for various small population sizes and various ratios
f(1)/f(0)).

An original issue is also addressed in the same paper [56]. The author studies the
“quasi-equilibrium state” of the chain before absorption (as absorption time is very large
with sharing). This corresponds to finding the quasi-stationary distribution of matrix Q
(as defined in [35] for near-ergodic absorbing Markov chains).

Also in the Markov framework, [60] considers the general case of E = {0, 1}` and shows,
under some simplifications, that Boltzmann tournament selection have the same effect of
maintaining the diversity in the populations resulting in a larger expected absorption time.

Still from the GA literature, a different approach to selection algorithms approximates
the recurrence between the proportion pn of the optimum x∗ at each generation (valid for
infinite populations),

pn ' f(x∗) pn−1

f̄(ξn−1)

In the space E = {0, 1} [18] solves this recurrence, showing that starting from a random
uniform population, expected time to have a proportion 1 − 1/N of the optimum (say
individual 1) is

ln(N − 1)
ln(f(1)/f(0))

(11)

Again under the infinite population approximation, different types of selections are studied

and compared in the continuous space E = [0, 1] [49]. Results are summarized below,
showing that starting from a population containing one optimum, the expected time to
reach a proportion 1 − 1/N of the optimum, have a complexity ranging from O(lnN) to
O(N lnN).

1Sharing [50] tends to spread the population out over multiple peaks in proportion to the height of the
peaks. For example, if there are m individuals yk in a Hamming radius of σ from local optimum x, their
fitness is divided by

∑
k=1,...,m(1 − d(x, yk)/σ)
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Generational Selection Takeover time

Proportionate
1
c
(N lnN − 1), for f(x) = xc

1
c
(N lnN), for f(x) = exp (c x)

Linear ranking
1

ln 2
(lnN + ln lnN), for c = 2

by r(f(x)) = c− 2(c − 1)x,
2

c− 1
log(N − 1), for 1 < c < 2

p-Tournament
1

ln p
(lnN + ln lnN)

In the population genetics literature, selection is usually uniform on the population.
The progressive loss of diversity in the population is then called genetic drift. Analysis
of genetic drift is often performed by calculating the Markov chain transition matrices in
order to analytically approximate the time to absorption [62, 58].

An alternative approach to genetic drift consider the rate of decrease in population fit-
ness variance under uniform selection [68, 67, 72], and lead to an exact analytical approach
in many cases (see [74] for a quick overview). The ratio between population variances after
one generation is given below (the first is exact and the others are approximations accurate
up to terms of order 1/N).

Iteration loop ratio of fitness variance
of successive populations

Generational
(choose N members independently 1 − 1/N
and uniformly in ξn−1 to form ξn)
Generational gap G
(choose GN members uniformly, that 1 − (2 −G)/N , for 0 ≤ G ≤ 1
replace GN members uniformly chosen)
CHC type
(duplicate each member of ξn−1, then 1 − 1/(2N)
delete N members uniformly chosen)

These studies are half way between population genetics (as the selection is fitness-
independent) and genetic algorithms as different typical iterations are compared for the
same selection. These results show that genetic drift for a CHC iteration is slower (at
half the rate) than for the traditional generational iteration, which in turn is slower than
generational gap and steady-state (obtained for G = 1/N) iterations.

Genetic drift is usually seen as the responsible for the often observed problem of prema-
ture convergence. That’s why such results obtained for selection algorithms can be helpful
in guiding GA practicers in the choice of selection schemes and iteration loop according
to the problem at hand.
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3.2 Random walks on operator-neighborhood graph

Consider a finite population of N members, ξ ∈ EN , and suppose each member of the
population undergoes a mutation, transforming ξk

n−1 into ξk
n, for k = 1, . . . , N .

ξn−1 =
(
ξ1n−1, . . . , ξ

N
n−1

) Mutation
−−−−−−−−−−−−→ ξn =

(
ξ1n, . . . , ξ

N
n

)
(12)

In the binary space E = {0, 1}`, two typical mutations are compared [45]. For large `
values, it is shown that the hitting time of solution obeys an exponential distribution with
respective means

2`

N(1 − e−c)
, for the c/` mutation (flips each bit with probability c/`),

2`

N
, for the 1-bit mutation (flips exactly 1 bit uniformly chosen).

In other words, this result shows that the widely used (positive) c/` mutation is clearly
outperformed by the simple 1-bit mutation (in terms of the probability that the optimum
has already been hit) at each time step.

Again in the binary space E = {0, 1}`, but for large population sizes and only for
the c/` mutation, the whole dynamic of the algorithm can be described in terms of the
distribution of the population magnetization (average number of ones in population mem-
bers, as detailed in section 2.2). Equations (6) and (7) provide an approximate recurrence
relation between the expected average and variance of the population magnetization at
successive generations.

The case of populations evolving under crossover has also been addressed. Consider
N random couples selected uniformly and independently in ξn−1. Each couple is mated,
resulting in N offspring that build up the next population.

ξn−1 =
(
ξ1n−1, . . . , ξ

N
n−1

) Crossover
−−−−−−−−−−−−→ ξn =

(
ξ1n, . . . , ξ

N
n

)

In the context of infinite populations, general results can be found in [46, 30] which
prove that all complete2 crossover schemes lead to the same limit distribution, given by
Robbins proportions of individuals in the limiting population.

π(x) =
∏̀

i=1

p(xi), (13)

where p(xi) is the constant marginal distribution of the allele at position i. Note that
these marginal distributions do not change when crossover is applied.

Recently, [31] proved that finite populations of r-ary strings under crossover converge
in average to the populations with Robbins proportions. This result assumes that the
application of crossover can produce any combination of parents alleles.

2Assuming that the application of crossover can produce any combination of parents’ alleles.
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The case of finite populations has been widely investigated [99, 100] using statistical
mechanics techniques in the binary framework, introduced in section 2.2. Averaging over
all the ways of performing bit-wise crossover, the expected mean and variance of population
magnetization is given by the recurrence relations

µc = µ, (14)

σ2
c = (a2 + (1 − a)2)σ2 + 2a(1 − a)

`(1 − q)
4

, (15)

where a is the probability we choose an offspring allele from parent x and (1 − a) is the
probability that we choose an offspring allele from parent y, and

q =
1

N(N − 1)

∑

x 6=y

(
1
`

∑̀

i=1

(2xi − 1)(2yi − 1)

)
,

is the pair-wise correlation between population members. Hence crossover increases the
population magnetization variance towards `(1 − q)/4 at a rate which is maximized for
a = 0.5, and does not change the mean magnetization of the population.

As a conclusion, these results obtained for rudimentary versions of algorithms certainly
allow one to obtain theoretical bounds on convergence for different operators and selec-
tions, but these results cannot be generalized to general GA instances using mutation,
crossover and selection, nor do they allow us to prove the convergence of GAs as function
optimizers, in a general function context.

4 Three Markov approaches to GA convergence

The main theoretical results in the field of evolutionary binary function optimization have
been obtained using Markov chain analyses. The two first approaches are Markov chains
in the space of the GA populations; the third approach is a Markov chain in the space of
the distributions of population members in E.

4.1 Homogeneous Genetic Algorithms in finite search spaces

Historically, it has been quite natural to model GAs as Markov chains where the “state of
the GA” at time step n is given by the current population (viewed as N individuals)

ξn =
(
ξ1n, . . . , ξ

N
n

)
. (16)

The state space is then the product space EN , where N ≥ 0 denotes the number of
individuals in a population, and the initial population ξ0 usually consists of N random
individuals uniformly chosen in E.

ξn−1

Selection
−−−−−−−−−→ ξ̂n−1

Mutation
−−−−−−−−−→ ̂̂

ξn−1

Crossover
−−−−−−−−−→ ξn
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We shall give the transition probabilities in the case of a generational GA, with pro-
portionate selection, fitness function f , and mutation kernel K from E into itself.

At each iteration, N individuals are selected following (10), that build up the popu-
lation ξ̂n−1. Each member of the selected population ξ̂n−1 undergoes a mutation. The
transition can be summarized, for each n ≥ 0, as follows

IP (ξn+1 = x |ξn = y ) =
N∏

p=1

N∑

i=1

f(yi)
∑N

j=1 f(yj)
K
(
yi, xp

)
, (17)

where K
(
yi, xp

)
gives the probability that individual yi ∈ E is mutated into xp.

The mutation operator is at the core of all convergence results obtained so far in the
GA literature, as irreducible mutation is often responsible for the reachability of all states
in a finite time. More precisely, we have the following theorem by well known Markov
Chain results, proving the convergence with probability one towards optimal states.

Theorem 4.1 ([53]) If the sequence of populations-best-fitness is monotone (increasing if
maximizing) with respect to time; and if any point of E is reachable by means of mutation
and recombination in a finite number of steps, then

IP(limn→∞x
∗ ∈ ξn) = 1. (18)

Note that the monotonicity can easily be achieved by considering an elitist selection or an
adequate iteration loop guaranteeing the survival of the best individual at each generation.
For example, with a steady-state iteration, at each iteration an individual (chosen with
any selection) undergoes mutation and crossover, then replaces the individual with the
worst fitness in the population.

Analogous general theorems exist for large classes of evolutionary algorithms in infinite
real-valued search spaces, as Evolutionary Programming and Evolution Strategies. In fact,
these algorithms can be seen as particular cases of the global random search algorithm
which convergences with probability one towards optimal states [98]. The reader is referred
to [22] (pages 48–51) for a discussion of the connection between these continuous space
algorithms and the uniform and global random search algorithms.

This Markov chain model has been adopted in many papers, where some convergence
proofs are provided for specific GA instances mainly in the space E = {0, 1}` and for the
widely used positive 1/` mutation.

For example, Rudolph’s convergence results [78, 77, 80] directly rely on the positivity3

of the mutation operator, while their extension by Agapie [16] relaxes the strong hypothesis
of positive mutations to the irreducible4 and diagonal positive transition mutation matrix.
Both these authors emphasize that the monotonicity condition can be fulfilled virtually by
maintaining and updating the best so far individual in the population without it taking
place in the evolution process. In other words, the sequence of best fitnesses found so far
by GA populations converges almost surely to the optimal value of the fitness function,

3there exists a mutation that links any two points of the space with non-zero probability
4Existence of a finite chain of mutations linking any two points of the space with non-zero probability.



modeling genetic algorithms with interacting particle systems 35

when an ergodic GA is used. On the other hand, Agapie [16] shows that the monotonicity
condition is necessary for the convergence with probability one (as in equation 18) of the
homogeneous GA with proportionate selection and irreducible mutation.

Note finally that nearly all convergence results for the homogeneous GA prove that the
best so far individual of the population enters the optimal set with probability one (18).
On the other hand, the inhomogeneous parameters of Cerf’s GA (next section), allows him
to prove first, the absorption of all population members towards the optimal set almost
surely, and second, finite time visits to the optimal set.

4.2 Inhomogeneous Genetic Algorithms in finite search spaces

Also in the Markov framework, other results have been obtained with techniques, similar to
those used to prove the convergence of simulated annealing [89, 90] : a genetic algorithms
is seen as a stochastic perturbation (mutation, crossover) of a deterministic dynamical
system (selection only). The rate of these perturbations goes to zero with time going to
infinity.

Some preliminary results obtained by Davis and al. [37, 38], consider populations
as a vector describing the number of occurrences of each individual in the population,
(the same as the population vector described in next section for homogeneous GAs (21)).
The authors prove the convergence of an inhomogeneous GA towards populations with
identical individuals. More recently, Suzuki [87] builds on Davis model, and proves the
asymptotical convergence to optimal states.

These results are largely extended by Cerf [32, 33] using the same Markov model as
last section, where a population is defined as a vector of N individuals (16).

Using the Friedlin-Wentzell theory of stochastic perturbation of dynamical systems
[61], Cerf obtains a lower bound for the population size allowing him to prove finite time
convergence results for the inhomogeneous Genetic Algorithm detailed below. His results
are primarily based on mutation (but he shows that an acceleration of convergence might
be brought by crossover, in the sense that the lower bound on population size is smaller
when crossover is used).

Cerf’s results emphasize a decreasing mutation rate, tightly coupled to an increasing
selection pressure, to reach finite time convergence (absorption of all the members of the
population in the set of optimal points). More precisely, this result holds if the probability
of mutating x into y is given by the kernel

αk(x, y) =





α(x, y)k−a, if x 6= y

1 −
∑

z∈E,z 6=x

αk(x, z) if x = y

and the probability of selecting an individual yi in a population ξ is

βk(yi, ξ) =
ec f(yi) ln(k)

∑m
j=1 e

c f(xj) ln(k)
#{j, xj = yi},
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where α is an irreducible mutation kernel on E, and k is a parameter that tends to infinity
such that λ, the radius of convergence of the series S =

∑
t∈IN k(t)

−θ is in the range
θ1 < λ < θ2 (θ2 and θ2 are dictated by the fitness function).

Finally, Cerf provides a function N∗ such that N > N∗(α, f, a, c) ensures the following
results.

∀x ∈ EN , limn→∞ IP([ξn] ∈ f∗ |ξ0 = x) = 1, (19)
∀x ∈ EN , IP(∃N, ∀n ≥ N , [ξTn ] ∈ f∗ |ξ0 = x) = 1, (20)

where Tn is the time of the n-th visit to the set of populations with equi-fitness values, f∗

being the class of optimal populations. Equation (19) ensures the absorption in the optimal
states with probability one, while (20) ensures finite time recurrent visits to populations
with optimal states only.

An alternative inhomogeneous algorithm has been proposed [42], where the first K(n)
points of the population vector undergo a random mutation, and the others are replaced
by the optimal point at each generation. The proof of convergence relies on the Perron-
Frobenius theorem and shows that if K follows a binomial law with a parameter going to
zero at the rate p = n−1/D (where D denotes the diameter of the mutation graph), and if
the population size is large enough (a sufficient condition is N > D), then

∀x ∈ EN lim
n→∞

IP([ξn] ∈ f∗ /ξ0 = x) = 1.

Note that these inhomogeneous GAs are not used in practice as the rate of decay of
the perturbations is too slow to be implemented, and the required population size is too
big. However, one can expect these results to be improved under some assumptions on
the fitness function.

4.3 Dynamical Systems model for Homogeneous GAs

When the search space E is finite, and the fitness function is constant (homogeneous with
respect to time), then there is a model describing the simple genetic algorithm (selection,
mutation, and cross-over) called the dynamical systems model. The analysis is best devel-
oped for GAs with proportional selection, although others (rank-based, tournament) can
be described within the framework. There has also been some work done on analysing
fitness functions which are periodic with respect to time (see, for example, [107, 103, 106])

The existing theory is largely due to Michael Vose, and is described in detail in [96]
(and see [104] for a simple introduction). The idea is to represent populations as vectors

pn = (p1
n, . . . , p

d
n), n ≥ 0, (21)

taking values in the unit d-simplex ∆d ⊂ IRd with

d = Card(E) and ∆d =

{
x ∈ IRd ; xi ≥ 0

d∑

i=1

xi = 1

}
,
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where pk
n denotes the proportion of the k-th individual of the search space in the population

at time step n. We are then interested in the trajectory of the population through the
simplex, which defines a Markov chain (pn), n ≥ 0. Notice that a vector p ∈ ∆d has a
dual interpretation. It represents an actual (finite) population, but it can be viewed as a
sampling distribution for choosing a new population. In the infinite population framework,
both these points of view can be confused.

Given a population pn at time step n, we define an operator G : ∆d → ∆d such that
G(pn) is the sampling distribution for the population at time step n + 1, so that in the
inifinite population framework we have,

pn+1 = G(pn) (22)

and in the finite population framework we have,

IE[pn+1] = G(pn).

This operator G can be broken down into three parts, one for each of selection (F),
mutation (U) and cross-over (C), with

G = C ◦ U ◦ F

For certain typical definitions of these operators, it turns out that mutation and cross-over
commute. The combined effect of these operators is called the mixing operator, denoted
M.

Given a population pn at time step n, G(pn) defines the sampling distribution for choos-
ing a new population. Such a population may be chosen by sampling the k-th individual
with probability G(pn)k. This is a multipnomial distribution, hence the probability that
this results in a specified population q, is

IP(pn+1 = q |pn = p) = N !
s−1∏

j=0

(G(p)j)
Nqj

(Nqj)!
(23)

where N is the population size.
In addition to representing the sampling probabilities for the next population, G(pn)

is the expected next population. As N → ∞, the variance of the sampling shrinks to
zero. In effect, the trajectory of the markov chain tends (in some sense to be defined
in Theorems 6.3 and 7.6 using the IPS model of GAs) to the deterministic sequence
p0,G(p0),G2(p0),G3(p0), . . . . For this reason, this model (22) is sometimes referred to as
the infinite population model .

It should be noted, however, that properties of this (infinite population) sequence do
give us information about finite populations. In particular, regions in which ‖G(p) − p‖
are small enough5 will, by a continuity argument, be regions in which a finite population
will spend some period of time. Such regions (for example, those around fixed points of
G) are referred to as metastable states [102, 108].

5Whether this is possible – to closely approach any real numbers by fractions of N – is out of the topic
of this paper.
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An other recent direction of research has been proposed by [31]. He investigates the link
between an abstract property π of a finite population and that of an infinite population.
He proves that a sufficient condition for having π(IE[pn+2]) = π(G2(pn)) is that π be a
linear operator on the finite populations vectors and that for all finite populations pn,
π(G(pn)) = απ(pn+1).

Each of the three GA operators (selection, mutation and cross-over) are thought of in
terms of their action on the simplex ∆d. Proportional selection is a scaled linear operator:

F(p) =
Sp

‖Sp‖1

where S is a diagonal matrix with
Sk,k = f(k)

for each individual k. Mutation is a linear operator. It is given by a matrix U , in which
Ui,j is the probability that individual j mutates to become individual i. Then

U(p) = Up

Suppose we have a bilinear operator B : IRd × IRd → IRd, so that B is linear in both
parameters. Then a mapping Q : IRd → IRd defined by

Q(x) = B(x, x)

is called a quadratic operator. Cross-over is given by just such an operator. It can be
represented by a set of d matrices, C1, . . . , Cd, in which the i, j-th component of Ck is the
probability that individuals i and j will cross-over to form k.

When the GA has no cross-over, its analysis is relatively straight-forward, as it is a
(scaled) linear system. For example, a fixed-point of G satisfies

USp = λp

where λ is the mean fitness of p. Thus fixed-points are eigenvectors of the matrix US.
The Perron-Frobenius theorem ensures that there is eactly one such eigenvector in ∆d,
corresponding to the largest eigenvalue. Other eigenvectors may be significant, for example
by creating metastable regions, as described above, if they are near to the simplex.

When there is cross-over, the situation becomes harder to analyse. The fixed-point
equations, for example, form a set of simultaneous quadratic equations. However, the
situation can often be dramatically simplified. This happens when crossover and mutation
are designed to respect structural symmetries that exist in the search space. This is the
case, for example, when the search space comprises fixed-length binary strings, with the
usual forms of cross-over and mutation [96]. However, the theory can be generalised to
apply to any finite search space with a given group structure [105]. As an example of the
kind of results that can be obtained, it is possible to diagonalise the cross-over matrices
C1, . . . , Cd by applying a Fourier transform, if and only if the underlying group structure
is abelian.
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It will become clear, as the paper progresses, that the dynamical systems model (22) is
a special case of the IPS model (24). It corresponds exactly to the case where E is finite,
and fitness is homogeneous with respect to time. For this special case, there are a number
of theorems which describe the behaviour of the simple GA. However, there are also a
number of open questions. One of the most intriguing issues is the extent to which results
which have been proved for finite E can be generalised to infinite E, and also the extent to
which results which have been proved for infinite populations apply to finite populations.
Recasting the dynamical systems model as an N -IPS model will help to establish both
these questions. In particular, convergence properties of the finite population GA when
N tends to infinity, can be addressed directly using the N -IPS model, and these results
are presented in Theorems 6.1 and 6.2 for a general IPS model, and in Theorem 7.2 and
7.6 for a Genetic-type IPS model.

5 GA behavior and Complexity results on particular fitness

functions

None of the results of last section make any particular assumption6 on the fitness function.
But on the other hand, they do not give any indication about the complexity of the
algorithm: the expectation of the number of generations required to reach the optimum
remains unknown.

5.1 Finite spaces

In binary spaces E = {0, 1}`, the first results about complexity give the expected first
hitting time of the solution [20, 64, 21, 81] on the simple, well-studied, OneMax problem
[15] (f(x) =

∑`
i=1 xi).

Recently, these results have been extended by Markov chain techniques, giving the
variance of convergence time with different mutations [45]. Another well-studied problem
is the long k-path (optimizable with a 1-bit-flip hill climber in exponential time w.r.t.
string length) where expected convergence time [79, 39] and variance of convergence time
have also been analytically derived [44] as a function of string length and population
size. This study examines the simplified situation where the optimal population size is
one. Furthermore, the GA with c/` mutation and proportionate or ranking selection takes
a super-polynomial time to solve a sub-class of long k-path problems, although these
functions present only one local optimum in the Hamming space. This latter paper also
answers the challenging issue of existence of controlled paths for c/` mutation GAs.

By definition, GAs are stochastic population-based algorithms. It makes little sense
to exactly control the composition of the successive populations. Rather, we say that a
GA follows a controlled path when the best individual of the population visits a number
of predefined points in the search space in a predefined order during the course of its run.

This issue is addressed in [57]: A family of controlled-path functions is constructed,
based on an arbitrary choice of keys which define a path in the search space. Experiments

6The only prerequisite, is that the fitness is supposed to be totally known.
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show that the trajectory of elitist GAs with crossover and mutation, follow this path at
each run.

5.2 Infinite spaces

In real-valued spaces E = [−b, b]`, an exhaustive set of results have been obtained for the
corridor (f1(x) = c0 + c1x1) and sphere (f2(x) =

∑`
i=1 (xi − x∗i )

2) fitness functions, since
the early days of Evolution Strategies (abbreviate ES) [73, 83]. In the case of the sphere
model (f2), it is shown that for large `, log(ft/f0) ' t, where ft denotes the smallest
fitness found at time t.

The most recent and powerful results provide bounds for the Euclidean distance to the
solution in different situations. Beyer [25, 26, 27, 28] handles sophisticated variants of ES
(i.e. based on Gaussian mutations with self-adaptive mutation parameters), while Rudolph
[80, 81] studies the local convergence speed for a larger class of mutation operators.

6 The Interacting Particle System model of GAs

As discussed in the introduction, we can associate with the Markov chain modeling GAs
on the space of populations (ξn)n≥) (1) with transitions (17), a measure valued process
(m(ξn))n≥0 where m(ξ) is the empirical measures associated with the population ξn, defin-
ing a uniform distribution over the population members.

Alternatively, we can associate with any abstract measure valued process (24) an N -
interacting particle approximating model, defining a finite population GA, as in (25).
In this case, the mutation/selection transitions are dictated by the form of the limiting
measure valued dynamical system (24). We illustrate this fact in the following section.

We first describe the Interacting Particle model, and limiting behavior with detailed
convergence results. Then, we show how these results impact on standard GAs (section
7.1), GAs with crossover (section 7.3) and interacting (fitness dependent) mutations (sec-
tion 7.2). We finally show how these developments permit us to construct and study new
genetic algorithms (section 7.4).

6.1 Description of interacting particle processes

Consider a measure valued process of the form

ηn = Φn (ηn−1) , n ≥ 1, (24)

where {Φn ; n ≥ 1} is a given collection of continuous functions from P(E) into P(E).
The N -IPS approximating model associated with this measure valued process is defined
in terms of an EN -valued Markov chain

ξn =
(
ξ1n, . . . , ξ

N
n

)
, n ≥ 0,

with transition probability kernels

P (ξn ∈ dy | ξn−1 = x) =
N∏

p=1

Φn(m(x))(dyp), (25)
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where dy def= dy1×· · ·×dyN is an infinitesimal neighborhood of the point y = (y1, . . . , yN ) ∈
EN and x = (x1, . . . , xN ) ∈ EN and where

∀x = (x1, . . . , xN ) ∈ EN , m(x) =
1
N

N∑

i=1

δxi ∈ P(E), (26)

The initial system ξ0 = (ξ10 , . . . , ξ
N
0 ) consists of N independent particles with common

law η0.
This IPS algorithm can be described as follows:

• At the time n = 0 the particle system consists of N independent random particles
ξ10 , . . . , ξ

N
0 . with common law η0.

• At the time n ≥ 1 the empirical measure m(ξn−1) associated with the particle system
ξn−1 enters in the plant equation (3) so that the resulting measure Φn(m(ξn−1))
depends on the configuration of the system at the previous time n− 1.

• Finally, the particle system at the time n consists of N independent (conditionally
to ξn−1) particles ξ1n, . . . , ξ

N
n with common law Φn(m(ξn−1)).

The above description enables us to consider the particle density profiles

ηN
n = m(ξn) =

1
N

N∑

i=1

δξi
n
, n ≥ 0,

as a measure valued Markov process with transition probability kernel given by

IE
(
F (ηN

n )
∣∣ηN

n−1

)
=
∫

EN

F

(
1
N

N∑

i=1

δxi

)
Φn

(
ηN

n−1

)
(dx1) . . .Φn

(
ηN

n−1

)
(dxN ),

for any F : P(E) → IR in the set Cb(P(E)) of all bounded continuous test functions on
P(E).

6.2 Asymptotic Behavior

This section is concerned with the asymptotic behavior of the N -IPS approximating model
as the number of particles N tends to infinity.
It is divided into three parts. Section 6.2.1 covers weak law of large numbers results. In
section 6.2.2 we propose an easily verifiable Lipschitz condition on the one step mappings
{Φn ; n ≥ 1} under which one can derive ILp-mean error estimates and useful exponential
rates. Section 6.2.3 focuses on large deviations principles. These results complement and
strengthen the distributional limit theorems presented in section 6.2.1.

The investigation of these asymptotic results require quite specific mathematical tools.
To each of these approaches and techniques correspond an appropriate set of conditions on
the one step mappings {Φn ; n ≥ 1}. We provide no examples in this section; this choice
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is deliberate. Several detailed and precise examples of GAs satisfying these conditions will
be given in the further development of section 7.

We also emphasize that when the state space E is finite most of these conditions are
easy to interpret mainly because in this situation the set of all probability measures P(E)
coincide with the unit d-simplex ∆d ⊂ IRd with

d = Card(E) and ∆d =

{
p ∈ IRd ; pi ≥ 0

d∑

i=1

pi = 1

}
.

6.2.1 Weak Law of Large Numbers

The approximation of dynamical system (24) by the N -IPS approximating model (25)
involving the empirical measures ηN

n , is guaranteed by the following Theorem.

Theorem 6.1 ([11], p. 448.) If E is compact then we have that

∀F ∈ Cb(P(E)), ∀n ≥ 0, lim
N→∞

IE
(
F (ηN

n )
)

= F (ηn). (27)

More generally (27) holds when E is locally compact and the mappings Φn, n ≥ 1, are
uniformly continuous.

We now give some comments on Theorem 6.1.
By Bb(E) we denote the space of all bounded Borel measurable functions f : E → IR and
by Cb(E) we denote the sub-space of all bounded continuous functions. For any f ∈ Bb(E)
and µ ∈ P(E) we write

µ(f) =
∫

E
f(x) µ(dx).

One consequence of (27) is that for any F ∈ Cb(IRd), d ≥ 1, and f1, . . . , fd ∈ Cb(E) and for
any n ≥ 0

lim
N→∞

IE
(
F (ηN

n (f1), . . . , ηN
n (fd))

)
= F (ηn(f1), . . . , ηn(fd)).

Applying this result one can obtain the limit of the ILp-moments of the particle density
profiles errors. More precisely for any n ≥ 0 and p ≥ 1 and f ∈ Cb(E) we have that

lim
N→∞

IE
(∣∣ηN

n (f) − ηn(f)
∣∣p
)

= 0.

6.2.2 ILp and Exponential Bounds

In the next Theorem we propose an easily verifiable condition with regard to the one step
mappings Φn, n ≥ 1, which enables us to develop useful estimates. For any finite subset
F ⊂ Bb(E) and µ, ν ∈ P(E) we will use the notations

‖µ− ν‖F = sup {|µ(f) − ν(f)| ; f ∈ F}
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Theorem 6.2 ([11], pp. 451-458.) Suppose that for any n ≥ 1 and η ∈ P(E) and for
any finite subset F ⊂ Bb(E) there exists a finite constant Cn,η(F) <∞ and a finite subset
Θn,η(F) ⊂ Bb(E) such that

∀µ ∈ P(E) ‖Φn(µ) − Φn(η)‖F ≤ Cn,η(F) ‖µ− ν‖Θn,η(F) . (28)

Then, for any finite subset F ⊂ Bb(E) and n ≥ 0 and p ≥ 1 there exists a finite constant
An,p(F) <∞ such that

IE
(∥∥ηN

n − ηn

∥∥p

F

) 1
p ≤ An,p(F)√

N
. (29)

In addition, for any finite subset F ⊂ Bb(E) and for any n ≥ 0 there exists a finite
constant Bn(F) <∞ such that

∀ε > 0, IP
(∥∥ηN

n − ηn

∥∥
F > ε

)
≤ Bn(F) exp− N ε2

Bn(F)
. (30)

Theorem 6.2 is a combination of Theorem 2, p. 451, and Proposition 2, p. 458, in [11].
It might seem difficult to check but we shall see in fact that it is in many cases fulfilled.

The proof of (29) is given in [11] for p = 1, 2. To prove this inequality for any p ≥ 1 we
simply combine Marcinkiewicz-Zygmund’s inequality (cf. [12] p. 498) with the inductive
proof presented in [11] (see also [7]).

The extension of Theorem 6.2 to countable and uniformly bounded classes F can be
found in [6] and [7]. These extensions are proved for Feynman-Kac type limiting processes
(3) using empirical process techniques. They also depend on appropriate conditions on
the covering and entropy numbers associated with the class of function.

The exact magnitude of variability of the ILp-mean errors (29) for general one step
mappings Φn is still in progress. Central limit theorems for the N -IPS associated with a
Feynman-Kac type limiting processes (3) can be founded in [1, 5, 7] including a Donsker
type theorem and central limit theorem for the empirical measures on path space. The
interested reader is recommended to consult the survey paper [7].

6.2.3 Large Deviation Principles

Precise estimates of the exponential bounds (30) are described in [2] using large deviations
techniques. As in this work we will assume that the state space is a Polish space (that is
E is a complete separable metric space).

To get some flavor of these precise estimates let us present some quite simple but
general large deviations results. To state these results we need to introduce some additional
notations.

By I(µ|ν) we denote the relative entropy of µ with respect to ν, that is the function

I(µ|ν) =
∫

log
dµ

dν
dµ

if µ� ν and +∞ otherwise. We will write Q(N)
n the law of the empirical measures

ηN
[0,n]

def.=
1
N

N∑

i=1

δ(ξi
0,...,ξi

n) ∈ P(En+1)
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on the path space En+1 and by µk we denote the marginal at time k ∈ {0, . . . , n} of a
measure µ ∈ P(En+1).

Let Φ[0,n] : P(En+1) → P(En+1) be the function defined for any µ ∈ P(En+1) by
setting

Φ[0,n](µ) = η0 ⊗ Φ1(µ0) ⊗ . . .⊗ Φn(µn−1)

then we have the following Theorem.

Theorem 6.3 ([2]) Suppose the functions {Φk ; 1 ≤ k ≤ n} satisfy the condition
(H) For any time 1 ≤ k ≤ n there exists a reference probability measure λk ∈
P(E) such that Φk(µ) ∼ λk, ∀µ ∈ P(E) and

• For any 1 ≤ k ≤ n the function

(x, ν) 7→ log
dΦk(ν)
dλk

(x)

is uniformly continuous w.r.t. x and continuous w.r.t. ν.

• There exist B(E)-measurable functions ϕ and ψ and constants α, β ∈]1,∞]
and ε > 0 such that 1

α + 1
β < 1 and for any 1 ≤ k ≤ n

∣∣∣∣log
dΦk(µ)
dλk

(x)
∣∣∣∣ ≤ ϕ(x) + µ(ψ)

and ∫
exp (αϕ1+ε) dλk ∨

∫
exp (βψ1+ε) dλk <∞

Then, {Q(N)
n : N ≥ 1} satisfies the LDP with good rate function

Jn : µ ∈ P(En+1) −→ Jn(µ) def.= I(µ|Φ[0,n](µ)) ∈ [0,+∞].

and
Jn(µ) = 0 ⇐⇒ µ = η0 ⊗ . . .⊗ ηn

In other words for any closed subset A ⊂ P(En+1) and for any open subset B ⊂ P(En+1)

lim sup
N→∞

1
N

log IP
(
ηN
[0,n] ∈ A

)
≤ − inf

µ∈A
Jn(µ)

lim inf
N→∞

1
N

log IP
(
ηN
[0,n] ∈ B

)
≥ − inf

µ∈B
Jn(µ)

Theorem 6.3 makes it possible to estimate in a simple way the probability of the events

Bn,ε =
{
µ ∈ P(En+1) ; d(µ,Φ[0,n](µ)) < ε

}

where d is a metric on P(En+1) compatible with the weak topology

d(µ, ν) =
∑

n≥1

2−(n+1) |(µ(fn) − ν(fn)|
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where {fn ; n ≥ 1} is a suitably chosen sequence of uniformly continuous functions
uniformly bounded by 1.
Recalling that

d(µ,Φ[0,n](µ)) = 0 ⇐⇒ µ = η[0,n]
def.= η0 ⊗ · · · ⊗ ηn

we see that Bn,ε is an open neighborhood of the product measure η[0,n]. Recalling the
usual inequality

d(µ, ν) ≤ ‖µ− ν‖tv ≤ (2 I(µ|ν))
1
2

where
‖µ− ν‖tv = sup {|µ(f) − ν(f)| ; f ∈ Bb(E) ‖f‖ ≤ 1}

denotes the total variation norm, the large deviation upper bound implies that

lim sup
N→∞

1
N

log IP
(
ηN
[0,n] ∈ Bc

n,ε

)
≤ −ε

2

2

It follows that for any ε > 0 there exists an integer N(ε) ≥ 1 such that for any N ≥ N(ε)

log IP
(
d(ηN

[0,n],Φ[0,n](η
N
[0,n])) > ε

)
≤ e−

N ε2

4

from which one concludes that for any F ∈ Cb(P(En+1))

lim
N→∞

IE
(
F (ηN

[0,n])
)

= F (η[0,n])

Remark 6.4:
When the state space E is finite, condition (H) holds as soon as for any time n ≥ 1 there
exists a reference probability measure λn ∈ P(E) and a positive number εn > 0 such that
Φn(µ) ∼ λn, ∀µ ∈ P(E) and

εn ≤ dΦn(µ)
dλn

(x) ≤ 1
εn

(31)

for any µ ∈ P(E) and n ≥ 1 and x ∈ E.
One can also check that the previous condition is met as soon as for any µ ∈ P(E)

and n ≥ 1 and x ∈ E

Φn(µ) ({x}) > 0

One way to remove assumption (H) is to work with the law PN
n of the density profiles

ηN
n

def.=
1
N

N∑

i=1

δξi
n
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Theorem 6.5 ([2]) Assume that the continuous functions {Φn ; n ≥ 1} satisfy the fol-
lowing condition
(H′) For any n ≥ 1, ε > 0 and for any Markov transition M on E, there exist a
Markov kernel M̃ and 0 < δ ≤ ε such that

µM̃(Ac) < δ =⇒ Φn(µ)M(Ac) < ε

for any µ ∈ P(E) and for any compact set A ⊂ E.

Then, for any n ≥ 0, {P (N)
n : N ≥ 1} obeys a LDP with convex good rate function Hn

given by





Hn(µ) = sup
V ∈Cb(E)

(
µ(V ) + inf

ν∈P(E)

(
Hn−1(ν) − log (Φn(ν)(eV ))

))
, n ≥ 1

H0(µ) = I(µ|η0)

In addition Hn(µ) = 0 iff µ = ηn, for any n ≥ 1.

When the state space E is finite, condition (H′) holds whenever there exists a sequence
of transition probability kernels {Kn ; n ≥ 1} and a sequence of positive numbers {εn ; n ≥
1} such that Φn(µ) ∼ µKn, ∀µ ∈ P(E) and n ≥ 1 and

εn ≤ dΦn(µ)
dµKn

(x) ≤ 1
εn

(32)

for any µ ∈ P(E) and n ≥ 1 and x ∈ E.
To see that this condition relaxes condition (31) we simply notice that under condition

(31) the desired inequality (32) holds with

Kn(x, dy) = λn(dy)

7 Genetic-type Interacting Particle Systems

The research literature abounds with genetic type stochastic models. We believe that
many of them could benefit by a more thorough approach along the IPS lines presented
here.

To illustrate the modeling impact of our IPS methodology we have chosen to restrict
our attention to 4 generic models, namely

• The simple (selection/mutation) GA.

• GAs with interacting mutation.

• GAs with cross-over transitions.

• GAs with randomly ordered selection/mutation.
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The interested reader will find that, although we restrict ourselves to these generic models
in illustrating the value of the IPS modeling presented in section 6, virtually all the
asymptotic results presented in the previous section apply across more complex GAs.

Let us briefly present the three main ingredients we will use to define these generic
GAs.

1. The selection transitions are related to a collection of time-inhomogeneous and con-
tinuous fitness functions

gn : E −→]0,+∞[, n ≥ 0.

Although it is not essential, to avoid technical difficulties we assume that for any
n ≥ 0 there exists some positive constant an > 0 such that

∀x, y ∈ E
1
an

≤ gn(x)
gn(y)

≤ an (33)

2. The mutation transitions are described in terms of a sequence of Markov transition
kernels Kn(x, dz), n ≥ 1, from E into itself. More generally interacting mutations
will be defined in terms of a collection of Markov transition kernels

{Kn,η ; n ≥ 1, η ∈ P(E)}

indexed by the set of all probability measures P(E) and by the time parameter
n ≥ 1.
We also assume that Kn and Kn,η are Feller transitions, in the sense that

Kn (Cb(E)) ⊂ Cb(E) Kn,η (Cb(E)) ⊂ Cb(E)

3. The one point cross-over transition will be regarded as a (not necessarily time-
homogeneous) random transition from E2 = E×E into E It will be defined in terms
of transitions probability kernels

C(2)
n ((x1, x2), dy), n ≥ 1.

More generally a p−point cross-over, p ≥ 1, will be regarded as a (not necessarily
time-homogeneous) random transition from

Ep = E × . . .×E︸ ︷︷ ︸
p−times

into E. It will be defined in terms of transitions probability kernels

C(p)
n (((x1, . . . , xp), dz), n ≥ 1.

We also assume that C(p)
n are Feller, that is

C(p)
n (Cb(E)) ⊂ Cb(Ep) (34)
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To describe precisely our generic models it is convenient to introduce some additional
notations.

Let (E1, E1) and (E2, E2) be two measurable spaces and let K1(x1, dx2) be a transition
probability measure from E1 into E2. It generates two operators, one acting on bounded
E2-measurable functions f ∈ Bb(E2) and the other on measures µ ∈ P(E1)

(K1f)(x1)
def.=
∫

E2

K1(x1, dx2) f(x2) (µK1)(dx2)
def.=
∫

E1

µ(dx1) K1(x1, dx2)

As usual, for any µ1 ∈ P(E1) and µ2 ∈ P(E2) we denote by µ1 ⊗ µ2 the tensor product
measure on the product space (E1 ×E2, E1 ⊗E2) defined by setting

(µ1 ⊗ µ2)(dx1, dx2) = µ1(dx1) µ2(dx2)

If K2(x2, dx3) is a transition probability kernel from (E2, E2) into an auxiliary mea-
surable space (E3, E3) then we write K1K2(x1, dx3) the composite transition probability
from (E1, E1) into (E3, E3) defined by

K1K2(x1, dx3)
def.=
∫

E2

K1(x1, dx2) K2(x2, dx3)

and we write K1 ×K2 the transition probability measure from E1 into E2 ×E3 defined by

(K1 ×K2)(x1, d(x2, x3)) = K1(x1, dx2) K2(x2, dx3)

Finally, for any probability measure µ ∈ P(E1) we write (µ×K1) the probability measure
on (E1 ×E2)

(µ×K1)(dx1, dx2)
def.= µ(dx1) K1(x1, dx2)

and if K ′
1(x1, dx3) is transition probability measure from E1 into E3 we write K1⊗K ′

1 the
transition probability measure from E1 into E2 ×E3 defined by

(K1 ⊗K ′
1)(x1, d(x2, x3)) = K1(x1, dx2) K ′

1(x1, dx3)

7.1 The Simple Genetic Algorithm

7.1.1 Description of the Model

The simple GA can be defined as the N -IPS approximating scheme associated with the
nonlinear measure valued process

ηn = Φn(ηn−1) ∀n ≥ 1 (35)

where for all n ≥ 1, Φn : P(E) → P(E) is the mapping defined by

Φn(η) = Ψn(η)Kn

∀f ∈ Bb(E), Ψn(η)(f) =
η(gnf)
η(gn)

(36)
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The transition probabilities of the N -IPS model ξn = (ξ1n, . . . , ξ
N
n ), n ≥ 0, associated with

the limiting process (35) here take the form

P (ξn ∈ dz | ξn−1 = x) =
N∏

p=1

(Ψn(m(x))Kn) (dzp)

where dz def= dz1×· · ·×dzN is an infinitesimal neighborhood of the point z = (z1, . . . , zN ) ∈
EN and x = (x1, . . . , xN ) ∈ EN . We notice that this transition can be rewritten in the
form

P (ξn ∈ dz | ξn−1 = x) =
∫

EN

(
N∏

p=1

Ψn(m(x))(dyp)) (
N∏

p=1

Kn(yp, dzp))

=
∫

EN

S(x, dy) M(y, dz)

where dy def= dy1 × · · · × dyN is again an infinitesimal neighborhood of the point y =
(y1, . . . , yN ) ∈ EN and S and M are respectively the selection and mutation transitions
on EN defined by

S(x, dy) def.=
N∏

p=1

Ψn(m(x))(dyp) M(y, dz) def.=
N∏

p=1

Kn(yp, dzp)

Using the fact that

Ψn

(
1
N

N∑

i=1

δxi

)
=

N∑

i=1

gn(xi)
∑N

j=1 gn(xj)
δxi ,

we see that the resulting motion of the particles is decomposed into two stages

ξn−1

Selection
−−−−−−−−−−−−−→ ξ̂n−1

Mutation
−−−−−−−−−−−−−→ ξn

with

P
(
ξ̂n−1 ∈ dz | ξn−1 = x

)
= S(x, dz) and P

(
ξn ∈ dz | ξ̂n−1 = x

)
= M(x, dz)

More precisely, at each time n ≥ 1, each particle examines the system of particles
ξn−1 =

(
ξ1n−1, . . . , ξ

N
n−1

)
and chooses randomly a site ξi

n−1, 1 ≤ i ≤ N , with a probability
which depends on the entire configuration ξn−1 and given by

gn

(
ξi
n−1

)
∑N

j=1 gn

(
ξj
n−1

) .

This mechanism is called the Selection transition as the particles are selected for repro-
duction, the most fit individuals being more likely to be selected. In other words, this
transition allows particles to give birth to some particles at the expense of other, low
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fitness, particles which die.
The second mechanism is called Mutation since at this step each particle evolves randomly
according to a given transition probability kernel.

The preceding scheme is clearly a system of interacting particles undergoing adaptation
in a time inhomogeneous environment represented by the fitness functions {gn; n ≥ 1}.
Roughly speaking the natural idea is to approximate the two step transitions

ηn−1

Updating
−−−−−−−→ η̂n−1

def= ψn(ηn−1)
Prediction
−−−−−−−→ ηn = η̂n−1Kn (37)

of the system (35) by a two step Markov chain taking values in the set of finitely discrete
probability measures with atoms of size some integer multiple of 1/N . Namely, we have
that

ηN
n−1

def.=
1
N

N∑

i=1

δξi
n−1

Selection
−−−−−−−→ η̂N

n−1
def.=

1
N

N∑

i=1

δ
ξ̂i
n−1

Mutation
−−−−−−−→ ηN

n =
1
N

N∑

i=1

δξi
n
.

Remark 7.1:
In nonlinear filtering settings the choice of the transition probability kernels {Kn ; n ≥ 1}
and the choice of the fitness functions {gn ; n ≥ 0} is dictated by the filtering problem
(see [7] for specific nonlinear filtering examples).

In numerical function optimization settings the choice of the mutation transitions (and
also the choice of the fitness function) is more flexible. For example the transitions Kn

may involve a cross-over mechanism. For instance Kn may be given by

Kn(x, dz) =
∫

Ep

K(1)
n (x, dy1) . . . K(p)

n (x, dyp) C(p)
n ((y1, . . . , yp), dz)

for some p ≥ 2 and some transitions K(1)
n , . . . ,K

(p)
n on the state space E.

7.1.2 Feynman-Kac Representation

In [7] the simple GA is regarded as a natural N -IPS approximating model for Feynman-
Kac type formulae. This connection simply comes from the fact that the solution of the
limiting process and infinite population model (35) can be explicitly solved in terms of
Feynman-Kac type formulae.

Indeed, let X = {Xn ; n ≥ 0} be a time-inhomogeneous Markov chain taking values
in E with initial distribution η0 and whose transition probability kernels are defined by

IP (Xn ∈ dy |Xn−1 = x) = Kn (x, dy)

(here dx stands for an infinitesimal neighborhood of a point x ∈ E and y ∈ E) and let
{ηn ; n ≥ 0} be the Feynman-Kac type distribution flow given for any f ∈ Bb(E) and
n ≥ 0 by

ηn(f) =
γn(f)
γn(1)

with γn(f) = IE

(
f(Xn)

n∏

m=1

gm(Xm−1)

)
(38)
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(and the usual convention
∏

∅ = 1). Using the Markov property of X one can check that

ηn(f) =
γn−1( gn (Knf) )

γn−1( gn )

from which one concludes easily that

ηn(f) =
γn−1( gn (Knf) )/γn−1( 1 )

γn−1( gn )/γn−1( 1 )
=
ηn−1( gn (Knf) )

ηn−1( gn )

and therefore one gets the desired result

ηn = Ψn(ηn−1)Kn, n ≥ 1.

In nonlinear filtering settings the distributions

ηn and η̂n−1
def.= Ψn(ηn−1)

represent the one-step predictor conditional distributions and the optimal filter conditional
filter. These distributions also arise in physics and they can also be regarded as the
conditional distribution of a killed particle given non-extinction.

7.1.3 Asymptotic Behavior

Since the mappings Φn are continuous Theorem 6.1 can be be used to guarantee the
convergence of the N -IPS approximating model to the limiting model as N → ∞.
To check that assumption (28) of Theorem 6.2 is satisfied we first use the decomposition

Φn(µ)(f) − Φn(ν)(f)

=
1

ν(gn)
[(µ(gn Knf) − ν(gn Knf)) + Φn(µ)(f) (ν(gn) − µ(gn))]

to prove that

|Φn(µ)(f) − Φn(ν)(f)|
≤ an [ |µ(gn Knf) − ν(gn Knf)| + ‖f‖ |µ(gn) − ν(gn)| ]
≤ an max (1, ‖f‖) [ |µ(gn Knf) − ν(gn Knf)| + |µ(gn) − ν(gn)| ]

¿From the above inequality one concludes that assumption (28) holds. More precisely, for
any finite subset F ⊂ Bb(E) one gets

‖Φn(µ) − Φn(ν)‖F ≤ Cn(F) ‖µ− ν‖Θn(F) .

with

Cn(F) = 2an max (1, sup
f∈F

‖f‖) and Θn(F) = {gn (Knf) ; f ∈ F ∪ {1}}

Thus, Theorem 6.2 can be used to obtain ILp-mean errors as well as exponential rates.
More precise estimates including Glivenko-Cantelli Theorem, Donsker and Central Limit
Theorems can be founded in [7].
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We will not describe in details all these limit theorems but we would like to mention
a fluctuation result which gives precise estimates for the previous ILp-mean errors stated
in Theorem 6.2.
Let {Qp,n ; 0 ≤ p ≤ n} be the time inhomogeneous semi-group defined by

Qn−1,n(x, dy) = gn(x) Kn(x, dy), ∀n ≥ 1

and the inductive formula

Qp,n(x, dz) =
∫

E
Qp,p+1(x, dy) Qp,n(y, dz), ∀0 ≤ p ≤ n,

with the convention Qn,n = Id. For any f ∈ Bb(E) and µ ∈ P(E) we denote by Qp,nf the
bounded measurable function

(Qp,nf)(x) =
∫

E
Qp,n(x, dz) f(z)

and by µQp,n ∈ P(E) the distribution given by

(µQp,n)(dy) =
∫

E
µ(dx) Qp,n(x, dy)

If {Qp,n ; 0 ≤ p ≤ n} denotes the time inhomogeneous semi-group defined for any f ∈
Bb(E) and 0 ≤ p ≤ n and x ∈ E by setting

(Qp,nf)(x) def.=
(Qp,nf)(x)
ηp(Qp,n1)

then we have the following Central Limit Theorem.

Theorem 7.2 ([7])
For any time n ≥ 0, the sequence of random fields {WN

n (f) ; f ∈ Bb(E)} where

WN
n (f) def.=

√
N
(
ηN

n (f) − ηn(f)
)
, ∀f ∈ Bb(E)

converges in law as N → ∞ to a centered Gaussian field {Wn(f) ; f ∈ Bb(E)} satisfying

IE (Wn(f)Wn(h)) =
n∑

p=0

ηp

[
Qp,n (f − ηnf)Qp,n (h− ηnh)

]

for any f, h ∈ Bb(E), in the sense of convergence of finite dimensional distributions.

One consequence of the previous Central Limit Theorem is that for any f ∈ Bb(E) we
have the following stochastic expansion

ηN
n (f) = ηn(f) +

1√
N

Wn(f) + op

(
1/
√
N
)
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where op

(
1/
√
N
)

denotes the order in probability, that is for any ε > 0

lim
N→∞

IP
(∣∣∣
√
N op

(
1/
√
N
)∣∣∣ > ε

)
= 0

Next we present how the large deviations principles given in section 6.2.3 translate in
this situation.

Corollary 7.3
Assume that E is a Polish state space and the functions {Φn ; n ≥ 1} are given by (35)
and the transitions probability kernels {Kn ; n ≥ 1} are Feller and satisfy the following
conditions:
For any time 1 ≤ k ≤ n there exists a reference probability measure λk ∈ P(E) such that
Kk(x, .) ∼ λk and

• For any time 1 ≤ k ≤ n the function

z 7→ log
dKk(x, .)
dλk

(z)

is Lipschitz, uniformly on the parameter x ∈ E, and for any z ∈ E the map

x 7→ dKk(x, .)
dλk

(z)

is continuous.

• There exist a B(E)-measurable function ϕ and constants α > 1 and ε > 0 such that
for any time 1 ≤ k ≤ n

∣∣∣∣log
dKk(x, .)
dλk

(z)
∣∣∣∣ ≤ ϕ(z) and

∫
exp (αϕ1+ε) dλk <∞

Then, {Q(N)
n : N ≥ 1} satisfies a LDP with good rate function Jn.

Remark 7.4:
In view of the remark 6.4 when the state space E is finite the previous large deviation
principle holds as soon as for any n ≥ 1 and x, y ∈ E

Kn(x, y) > 0

To see that (H′) holds if the functions {Φn ; n ≥ 1} are given by (35) we simply notice
that, for any n ≥ 1 and for any compact set A ⊂ E,

∀η ∈ P(E), Φn(η)(Ac) ≤ an ηKn(Ac)

Corollary 7.5 If the functions {Φn ; n ≥ 1} are given by (35) and the transitions prob-
ability kernels {Kn ; n ≥ 1} are Feller then for any n ≥ 0, {PN

n : N ≥ 1} obeys a LDP
with convex good rate function Hn.
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7.1.4 Asymptotic Stability and Uniform Convergence.

Because of its importance in practice we conclude this section with a brief discussion on
the asymptotic behavior of the Feynman-Kac type dynamical system (35). More details
can be founded in [3] and [7, 9].

Let ‖µ−ν‖tv be the usual total variation distance between probability measures µ, ν ∈
P(E). If {Φp,n ; 0 ≤ p ≤ n} denote the composite mappings

Φp,n = Φn ◦ Φn−1 ◦ . . . ◦ Φp+1

with the convention Φn,n = Id then we have the following asymptotic stability result

Theorem 7.6 ([3, 4])
Assume that the transition probability kernels {Kn ; n ≥ 1} satisfy the following condition
(K) For any time n ≥ 1, there exist a reference probability measure λn ∈ P(E)
and a positive number εn ∈ (0, 1] so that Kn(x,.) ∼ λn for any x ∈ E and

εn ≤ dKn(x,.)
dλn

≤ 1
εn

Then, we have for any µ, ν ∈ P(E)

∑

n≥1

ε2n = ∞ =⇒ lim
n→∞

‖Φ0,n(µ) − Φ0,n(ν)‖tv = 0

lim
n→∞

1
n

n∑

p=1

ε2p
def.= ε2 > 0 =⇒ lim sup

n→∞

1
n

log ‖Φ0,n(µ) − Φ0,n(ν)‖tv ≤ −ε2 < 0

inf
n≥1

εn
def.= ε > 0 =⇒ sup

p≥0
‖Φp,p+T (µ) − Φp,p+T (ν)‖tv < exp−(ε2 T )

The one step mappings {Φn ; n ≥ 1} usually fail to be contractive (see for instance [3]
for a simple example in the case where E = {0, 1}) and the classical tools of dynamical
systems theory cannot be used to study the asymptotic stability of our limiting systems.

Some authors have made the sanguine assumption that the one step mappings are
locally contractive (see for instance [13], page 401). This assumption is very restrictive
and the resulting stability results do not apply to many situations of interest. In addition
(as noticed by the author in [13] page 398) the long time time behavior of such limiting
systems strongly depends on its initial condition.
In contrast to the latter our assumption only depends on the mutation transitions {Kn ; n ≥
1} and further, the one step mappings {Φn ; n ≥ 1} are not necessarily contractive for
the total variation norm. Our asymptotic stability Theorem 7.6 also implies that the long
time behavior of the system does not depend on its initial condition.

Remark 7.7:
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• When the state space E is countable the total variation distance coincide with the
IL1-norm, that is

‖µ− ν‖tv =
1
2

∑

x∈E

|µ(x) − ν(x)|

When the state space E = IR is the real line and the probability measures µ and ν
have a probability density (with respect to Lebesgue measure dx) p(x) and q(x) we
also have that

‖µ− ν‖tv =
1
2

∫ +∞

−∞
|p(x) − q(x)| dx

• In time homogeneous settings (that is Kn = K, gn = g) the mapping Φn = Φ is time
homogeneous. If the state space E is compact then P(E) is again a compact set (for
the weak topology) and Brouwer’s fixed point Theorem tells us that there exists some
fixed point

µ = Φ(µ) ∈ P(E).

Theorem 7.6 gives several conditions under which this fixed point µ is unique and
any solution {ηn ; n ≥ 0} of the time homogeneous dynamical system associated with
Φ converges exponentially fast to µ as the time parameter n → ∞. For instance if
(K) holds with εn = ε > 0 then we clearly have that

∀η ∈ P(E) sup
p≥0

‖Φp,p+T (η) − µ‖tv ≤ e−ε2.T

• When the state space E is finite condition (K) is satisfied whenever for any n ≥ 1
and x, y ∈ E

Kn(x, y) > 0

with the uniform distribution λn on E.

• In [3] we propose two different ways to relax the assumptions of theorem 7.6. First we
prove that for time homogeneous Markov kernels (Kn = K) the asymptotic stability
of (35) also holds when some iterate Km, m ≥ 1 satisfies the mixing condition (K).
We also relax the assumptions of theorem 25 so that to apply to Gaussian transition
probability kernels such as those arising in nonlinear filtering settings.

In [3, 4] and [7, 6, 9] the authors use the asymptotic stability properties of the limiting
system (35) to obtain uniform convergence results with respect to the time parameter for
the N -IPS approximating model.

Theorem 7.8 ([3, 7]) Assume that the fitness functions {gn ; n ≥ 0} satisfy (33) for
some sequence of positive numbers {an ; n ≥ 0} such that

sup
n≥1

an
def.= a <∞
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If the limiting measure valued system (35) is asymptotically stable in the sense that

lim
T→∞

sup
µ,ν∈P(E)

sup
p≥0

‖Φp,p+T (µ) − Φp,p+T (ν)‖tv = 0

then we have the following uniform convergence result with respect to the time parameter

lim
N→∞

sup
n≥0

IE
(∣∣ηN

n (f) − ηn(f)
∣∣) = 0

In addition if the limiting system 35) is exponentially asymptotically stable in the sense
that

sup
µ,ν∈P(E)

sup
p≥0

‖Φp,p+T (µ) − Φp,p+T (ν)‖tv ≤ exp−γ.T

then for any f ∈ Bb(E) and p ≥ 1 we have that

sup
n≥0

IE
(∣∣ηN

n (f) − ηn(f)
∣∣p
) 1

p ≤ Cp a
2

N
β
2

‖f‖

where Cp is a universal constant which only depends on p ≥ 1 and β is given by

β =
γ

γ′ + γ
, γ′ = 1 + 2 log a

Finally if the transitions probability kernels {Kn ; n ≥ 1} satisfy the mixing condition (K)
(stated in Theorem 7.6) for some sequence of positive numbers {εn ; n ≥ 1} such that

inf
n≥1

εn
def.= ε > 0

then, for any f ∈ Bb(E) and p ≥ 1 we have that

sup
n≥0

IE
(∣∣ηN

n (f) − ηn(f)
∣∣p
) 1

p ≤ Cp√
N

a2

ε6
‖f‖

where Cp is a universal constant which only depends on p ≥ 1.

This Theorem is in fact a simpler version of the uniform convergence result for Zolotarev’s
type semi-norms presented in [6, 7]. A full discussion of the empirical process techniques
involved in [6, 7] would be too great digression here.

7.2 Genetic Algorithm with Interacting Mutation

7.2.1 Description of the Model

Let {Kn,η ; n ≥ 1, η ∈ P(E)} be a collection of transition probability kernels and let
{ηn ; n ≥ 0} be the solution of the limiting measure valued process

ηn = Φn(ηn−1), n ≥ 1, (39)
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where the one step mappings Φn : P(E) → P(E) are given for any η ∈ P(E) by

Φn(η) = Ψn(η)Kn,η (40)

In connection with the Feynman-Kac representation (38) of the limiting model associated
with the simple GA described in section 7.1, it is interesting to note that the limiting
process (39) can also be explicitly solved using a similar Feynman-Kac formulae.
More precisely, let {ηn ; n ≥ 0} be the solution of (39) and let X = {Xn ; n ≥ 0} be a
time in-homogeneous Markov chain taking values in E and whose transition probability
kernels are defined by

IP (Xn ∈ dy |Xn−1 = x) = Kn,ηn−1 (x, dy)

(here again the notation dx stands for an infinitesimal neighborhood of a point x ∈ E and
y ∈ E) and initial law η0.
Arguing as before one can check (by induction) that the flow of distributions {ηn ; n ≥ 0}
can be rewritten as follows

ηn(f) =
IE ( f(Xn)

∏n
m=1 gm(Xm−1) )

IE (
∏n

m=1 gm(Xm−1) )

7.2.2 The Genetic Algorithm

As usual the N -IPS approximating scheme of (40) is the EN -valued Markov chain ξn =
(ξ1n, . . . , ξN

n ), n ≥ 0, with transition probability kernels

P (ξn ∈ dz | ξn−1 = x) =
N∏

p=1

(
Ψn(m(x))Kn,m(x)

)
(dzp)

where, as usual, dz def= dz1 × · · · × dzN is an infinitesimal neighborhood of the point
z = (z1, . . . , zN ) ∈ EN and x = (x1, . . . , xN ) ∈ EN .

As in the preceding section the latter transition can be rewritten as follows

P (ξn ∈ dz | ξn−1 = x) =
∫

EN

(
N∏

p=1

Ψn(m(x))(dyp)) (
N∏

p=1

Kn,m(x)(y
p, dzp))

=
∫

EN

S(x, dy) M ′((x, y), dz) (41)

where dy def= dy1 × · · · × dyN is again an infinitesimal neighborhood of the point y =
(y1, . . . , yN ) ∈ EN and S and M ′ are respectively the selection and mutation transitions
from EN (respectively EN ×EN ) into EN defined by

S(x, dy) def.=
N∏

p=1

Ψn(m(x))(dyp) M ′((x, y), dz) def.=
N∏

p=1

Kn,m(x)(y
p, dzp)
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According to 41 the transition from ξn−1 to ξn is decomposed into two mechanisms

ξn−1 ∈ EN
Selection

−−−−−−−−−−−−−→ (ξn−1, ξ̂n−1) ∈ EN ×EN
InteractingMutation

−−−−−−−−−−−−−−−−−−−−−−−−−→ ξn ∈ EN

with transitions:

P
(
ξ̂n−1 ∈ dy | ξn−1 = x

)
= S(x, dy)

P
(
ξn ∈ dz | ξn−1 = x, ξ̂n−1 = y

)
= M ′((x, y), dz).

In contrast to the simple GA the mutation transition from the individual ξ̂i
n−1 to

ξi
n depends on the whole configuration ξn−1 = (ξ1n−1, . . . , ξ

N
n−1). More precisely, given

the configurations (ξn−1, ξ̂n−1) the next configuration ξn = (ξ1n, . . . , ξN
n ) consists of N -

conditionally independent random variables with distributions

Kn,m(ξn−1)(ξ̂
i
n−1, .), 1 ≤ i ≤ N. (42)

As a guide to their usage let us work out some simple examples of interacting mutation
kernels.

Example 1 The simplest example of interacting mutation to describe is the transition
probability kernel with cross-over component and given by

Kn,η(x, dz) =
∫

E
η(dy) C(2)

n ((x, y), dz)

It is clear that the sampling of a transition x→ z with distribution Kn,η(x, dz) consists in
crossing over the initial individual x with a randomly chosen individual y with distribution
η.

Note that the distributions (42) take the form

Kn,m(ξn−1)(ξ̂
i
n−1, .) =

1
N

N∑

j=1

C(2)
n ((ξj

n−1, ξ̂
i
n−1), .)

for each 1 ≤ i ≤ N and each interacting mutation

ξ̂i
n−1 −→ ξi

n, 1 ≤ i ≤ N,

is decomposed into two stages

• One chooses randomly and uniformly a site ξj
n−1 in the configuration ξn−1 = (ξ1n−1, . . . , ξ

N
n−1).

• When the individual ξj
n−1 is chosen, we cross-over the individuals (ξj

n−1, ξ̂
i
n−1) ac-

cording to the transition C
(2)
n ((ξj

n−1, ξ̂
i
n−1), .), that is

(ξj
n−1, ξ̂

i
n−1) −→ ξi

n ∼ C(2)
n ((ξ̂i

n−1, ξ
j
n−1), .)
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Example 2 The second example

Kn,η(x, du) =
∫

E×E
η(dy) C(2)

n ((x, y), dz) Kn(z, du)

is essentially the same as the first one except that the cross-over mechanism is followed by
a simple mutation transition.

Example 3 In previous examples the cross-over operates on randomly chosen individual
with common law ηn. If we replace η by Ψn(η) one gets the following interacting mutation

Kn,η(x, dz) =
∫

E×E
Ψn(η)(dy) C(2)

n ((x, y), dz)

Note that in this situation the cross-over mechanism acts on randomly chosen but selected
individuals with common law Ψn(η).
One can also combine the selection Ψn with the mutation transition Kn and define

Kn,η(x, dz) =
∫

E×E
(Ψn(η)Kn) (dy) C(2)

n ((x, y), dz)

7.2.3 Asymptotic Behavior

In order to apply Theorem 6.1 we need to ensure that the one step mappings {Φn ; n ≥ 1}
are continuous (for the weak topology on P(E)). Next we propose sufficient continuity
conditions in terms of the interacting transitions {Kn,η ; n ≥ 1, η ∈ P(E)}, namely

• For any η ∈ P(E) and for any n ≥ 1, Kn,η is a Feller transition kernel.

• For any f ∈ Cb(E) and n ≥ 1 the mapping

η ∈ P(E) −→ Kn,ηf(x)

is uniformly continuous with respect to x ∈ E.

Under these conditions and when the state space E is compact Theorem 6.1 implies
that the density profiles

ηN
n =

1
N

N∑

i=1

δξi
n

converge weakly to the desired distribution ηn as N → ∞.
In order to be able to verify the Lipschitz condition (28) of Theorem 6.2 we need to

strengthen the previous continuity properties.
Let us assume that for any n ≥ 1 and η ∈ P(E) and for any finite subset F ⊂ Bb(E) there
exists a finite constant C(1)

n,η(F) < ∞ and a finite subset Θ(1)
n,η(F) ⊂ Bb(E) such that for

any µ ∈ P(E) and x ∈ E

‖Kn,µ(x, .) −Kn,η(x, .)‖F ≤ C(1)
n,η(F) ‖µ− η‖

Θ
(1)
n,η(F)

(43)
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Arguing as in section 7.1.3 one can check that the condition (28) of Theorem 6.2 holds
with

Cn,η(F) = C(1)
n,η(F) + C(2)

n,η(F) and Θn,η(F) = Θ(1)
n,η(F) ∪ Θ(2)

n,η(F)

where

C(2)
n,η(F) = 2an max (1, sup

f∈F
‖f‖) and Θ(2)

n,η(F) = {gn (Kn,ηf) ; f ∈ F ∪ {1}}

from which one concludes that under (43) the ILp-mean errors and the exponential rates
stated in Theorem 6.2 hold true. When the state space E is finite the inequality (43)
is met for the three examples of interacting mutations given in the end of the previous
section.

Next we propose a mean field interacting mutation which also fits into our framework.

Example 4 Suppose that E = IR and Kn,η are given by

Kn,η(x, dz) =
αn

2
e−αn|z−b(x,η)| dz

where bn : IR × P(IR) → IR is a bounded measurable function and αn > 0. Using the
inequality ∣∣e−x − e−y

∣∣ ≤ |x− y|
∣∣e−x + e−y

∣∣

which is valid for any x, y ∈ IR one concludes that for any µ, η ∈ P(IR)
∣∣∣e−αn|z−b(x,µ)| − e−αn|z−b(x,η)|

∣∣∣ ≤ 2 eαn‖bn‖ |b(x, µ) − b(x, η)| e−αn|z|

with
‖bn‖ = sup {|b(x, µ)| ; x ∈ IR, µ ∈ P(IR)}

This implies that for any finite subset F ⊂ Bb(IR) and for any x ∈ IR

‖Kn,µ(x, .) −Kn,η(x, .)‖F ≤ 2 αn eαn‖bn‖ sup
f∈F

‖f‖ |b(x, µ) − b(x, η)|

Thus, is we assume that

sup
x

|b(x, µ) − b(x, η)| ≤ Cn ‖µ− η‖Fn (44)

for some finite constant and some finite subset Fn ⊂ Bb(IR) then the desired inequality
(43) holds with

C(1)
n,η(F) = 2 αn Cn e

αn‖bn‖ sup
f∈F

‖f‖

and
Θ(1)

n,η(F) = Fn

If the function bn have the form

b(x, µ) =
L∑

l=1

al,n(x) µ(fn,l)
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for some finite L, ‖al,n‖ < ∞ and some bounded Borel measurable functions {fn,l ; 1 ≤
l ≤ L} then (44) is clearly satisfied with

Cn =
L∑

l=1

‖al,n‖ and Fn = {fn,l ; 1 ≤ l ≤ L}

Next we present a sufficient condition for the condition (H) of Theorem 6.3 in terms
of the interacting transitions {Kn,η ; n ≥ 1, η ∈ P(E)}. Assume that for any n ≥ 0 there
exists a reference probability measure λn ∈ P(E) such that for any n ≥ 1, η ∈ P(E) and
x ∈ E

Kn,η(x, .) ∼ λn

and

• z ∈ E → dKn,η(x,.)
dλn

(z) ∈ IR is uniformly Lipschitz with respect to (x, η).

• x ∈ E → dKn,η(x,.)
dλn

(z) ∈ IR is continuous.

• η ∈ P(E) → dKn,η(x,.)
dλn

(z) ∈ IR is continuous uniformly with respect to x.

It is not difficult to check that under these conditions (H) is met. We also notice that
when the state space E is finite the first and the second continuity conditions clearly hold
and the third and last one reduces to the simple continuity of the mapping

η ∈ ∆d → dKn,η(x, .)
dλn

(z) ∈ IR

where ∆d is the unit d-simplex ∆d ⊂ IRd with d = Card(E).

7.3 Genetic Algorithms with Cross-over

The cross-over transition is often used in GA literature to improve the search procedures.
In the present section we single out two rather general GA models with cross-over transi-
tions.
One of the achievements of this section is the identification of some very striking connec-
tions between GA with cross-over transitions and the simple GA framework discussed in
section 7.1.

We begin with a simple GA model with cross-over which fit into the simple GA frame-
work of section 7.1. We emphasize that all limit theorems for the simple GA can be used
to study the long time behavior as well as the fluctuations and the large deviations.
We end this section with a GA variant which does not fit in the previous simple GA
framework but which can be studied using the general limit theorems presented in the
preliminary section 6.
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7.3.1 Description of the Model

We shall now describe a general approach which allows us to model a GA with crossing
over transitions as a simple GA. The key idea consists in replacing the state space E by a
product state space and to consider mutation transitions involving cross-over mechanisms.

To begin with, let E(2) = E×E and for any n ≥ 1 let Kn be the transition probability
kernel from E(2) into itself given by

Kn((x1, x2), d(y1, y2)) = C(2)
n ((x1, x2), dy1) Kn+1(y1, dy2)

For each n ≥ 1, let Gn : E(2) →]0,∞[ by a collection of fitness functions on E(2) which
only depend on the first component and such that

Gn(x1, x2) = gn(x1), gn : E →]0,∞[

As in section 7.1 we consider the P(E(2))-valued limiting process

µn = Υn(µn−1)Kn (45)

with initial distribution

µ0 = η0 ×K1 ∈ P(E(2)), η0 ∈ P(E)

and where for all n ≥ 1, Υn : P(E(2)) → P(E(2)) is the mapping defined for any f ∈
Bb(E(2)) by setting

Υn(µ)(f) =
µ(Gnf)
µ(Gn)

It is transparent from our construction that the limiting process (45) has the same
form as the limiting process associated with a simple GA except that the state space is
now P(E(2)) instead of P(E).

7.3.2 Feynman-Kac Representation

Arguing as in section 7.1.2, if
X = {Xn ; n ≥ 0}

is the time-inhomogeneous Markov chain taking values in E(2) with initial distribution

µ0(d(x1, x2)) = η0(dx1) K1(x1, dx2)

and whose transition probability kernels are defined by

IP (Xn ∈ d(y1, y2) |Xn−1 = (x1, x2)) = Kn((x1, x2), d(y1, y2))
= C(2)

n ((x1, x2), dy1) Kn+1(y1, dy2)

(here d(y1, y2) stands for an infinitesimal neighborhood of a point (y1, y2) ∈ E × E and
(x1, x2) ∈ E×E) then one concludes that the Feynman-Kac distributions flow {µn ; n ≥ 0}
given for any f ∈ Bb(E ×E) and n ≥ 0 by

µn(f) =
IE ( f(Xn)

∏n
m=1 Gm(Xm−1) )

IE (
∏n

m=1 Gm(Xm−1) )
(46)
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(and the usual convention
∏

∅ = 1) are solutions of (45).
This Feynman-Kac representation of the infinite population model (45) and its N -IPS
approximating model clearly enter the framework of the simple GA presented in section 7.1.

7.3.3 The Genetic Algorithm

The particular interest of our model relies on the presence of a cross-over transition in the
definition of the mutation transition probability kernel Kn. In our situation the N -IPS
approximating model associated with (45) is an (E(2))N -valued Markov chain

ξn = (ξ1n, . . . , ξ
N
n ) ∈ (E(2))N , n ≥ 1

with transition probability kernels

P (ξn ∈ dz | ξn−1 = x) =
N∏

p=1

(Υn(m(x))Kn) (dzp) (47)

where dz def= dz1×· · ·×dzN is an infinitesimal neighborhood of the point z = (z1, . . . , zN ) ∈
(E(2))N and x = (x1, . . . , xN ) ∈ (E(2))N . As usual, the initial particle system

ξ0 = (ξ10 , . . . , ξ
N
0 ) ∈ (E(2))N

consists of N -independent and E(2)-valued random variables with common law

µ0(d(x1, x2)) = η0(dx1) K1(x1, dx2).

Since each individual ξi
n, 1 ≤ i ≤ N , takes values in the product space

E(2) = E ×E

it is convenient to use the notations

ξi
n = (ξ(1),in , ξ(2),in ), ∀1 ≤ i ≤ N.

Arguing as in section 7.1.1 the transition probability kernels (47) can be rewritten as
follows

P
(

(ξ(1)n , ξ
(2)
n ) ∈ d(z1, z2) | (ξ(1)n−1, ξ

(2)
n−1) = (x1, x2)

)

=
∫

(E(2))N

(
N∏

p=1

Υn(m((x1, x2)))(d(y1, y2)p)) (
N∏

p=1

Kn((y1, y2)p, d(z1, z2)p))

=
∫

(E(2))N

S((x1, x2), d(y1, y2)) M((y1, y2), d(z1, z2))

where
d(z1, z2)

def= d(z1, z2)1 × · · · × d(z1, z2)N
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denotes an infinitesimal neighborhood of the point

(z1, z2) = ((z1, z2)1, . . . , (z1, z2)N ) ∈ (E(2))N ,

and (x1, x2) = ((x1, x2)1, . . . , (x1, x2)N ) ∈ (E(2))N and S and M are respectively the
selection and mutation transitions on (E(2))N defined by

S((x1, x2), d(y1, y2))
def.=

N∏

p=1

Υn(m((x1, x2)))(d(y1, y2)p)

and

M((y1, y2), d(z1, z2))
def.=

N∏

p=1

Kn((y1, y2)p, d(z1, z2)p))

It follows from the preceding discussion that the transitions (47) are again decomposed
into two stages

(ξ(1)n−1, ξ
(2)
n−1)

Selection
−−−−−−−−−−−−−→ (ξ̂(1)n−1, ξ̂

(2)
n−1)

Mutation
−−−−−−−−−−−−−→ (ξ(1)n , ξ(2)n )

which can be modeled as follows

P
(

(ξ̂(1)n−1, ξ̂
(2)
n−1) ∈ d(y1, y2) | (ξ(1)n−1, ξ

(2)
n−1) = (x1, x2)

)
= S((x1, x2), d(y1, y2))

P
(

(ξ(1)n , ξ(2)n ) ∈ d(z1, z2) | (ξ̂(1)n−1, ξ̂
(2)
n−1) = (y1, y2)

)
= M((y1, y2), d(z1, z2))

Let us describe more precisely this two stages transition.

• Selection
Given (ξ(1)n−1, ξ

(2)
n−1) ∈ (E ×E)N the selected new configuration

ξ̂n−1 = (ξ̂(1)n−1, ξ̂
(2)
n−1) =

(
(ξ̂(1),1n−1 , ξ̂

(2),1
n−1 ), . . . , (ξ̂(1),Nn−1 , ξ̂

(2),N
n−1 )

)

consists of N -(conditionally) independent and (E ×E)-random variables with com-
mon distribution law

Υn(m((ξ(1)n−1, ξ
(2)
n−1)), .) =

N∑

i=1

gn(ξ(1),in−1)
∑N

j=1 gn(ξ(1),jn−1 )
δ
(ξ

(1),i
n−1 ,ξ

(2),i
n−1 )

(.)

Note that the fitness function only depends on the first component so that the
selection of the individuals

(ξ(1),in−1 , ξ
(2),i
n−1), 1 ≤ i ≤ N

only depends on the corresponding first components

ξ
(1),i
n−1 , 1 ≤ i ≤ N
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• Mutation
Given the selected configuration from the previous stage

ξ̂n−1 = (ξ̂(1)n−1, ξ̂
(2)
n−1)

Each pair individuals (ξ̂(1),in−1 , ξ̂
(2),i
n−1), 1 ≤ i ≤ N , cross-over into a new individual ξ(1),in

according to the transition C
(2)
n ((ξ̂(1),in−1 , ξ̂

(2),i
n−1), .), that is

(ξ̂(1),in−1 , ξ̂
(2),i
n−1) −→ ξ(1),in ∼ C(2)

n ((ξ̂(1),in−1 , ξ̂
(2),i
n−1), .), 1 ≤ i ≤ N

Then, independently each individual ξ(1),in , 1 ≤ i ≤ N , evolves randomly according
to the transition probability kernels Kn+1, that is

ξ(1),in −→ ξ(2),in ∼ Kn+1

(
ξ(1),in , .

)

It is also interesting to note that the limiting distribution flow {µn ; n ≥ 0} can also
be written in the form

µn = ηn ×Kn+1, n ≥ 0

where {ηn ; n ≥ 0} is the solution of the P(E)-valued dynamical system

ηn = (Ψn(ηn−1) ×Kn)C(2)
n , n ≥ 1 (48)

where Ψn : P(E) → P(E) is the mapping defined by

∀f ∈ Bb(E), Ψn(η)(f) =
η(gnf)
η(gn)

To see this claim it suffices to note that

Υn(ηn−1 ×Kn) = Ψn(ηn−1) ×Kn

and
C(2)

n ×Kn+1 = Kn

imply that

µn = ηn ×Kn+1 = (Ψn(ηn−1) ×Kn)C(2)
n ×Kn+1

= Υn(ηn−1 ×Kn)C(2)
n ×Kn+1

= Υn(µn−1)Kn

Thus, one gets the desired recursion

µn = Υn(µn−1)Kn
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In this connection it can also be checked directly that the EN -valued Markov chain
{ξ(1)n ; n ≥ 0} defined above coincides with the N -IPS approximating model associated
with (48). Indeed, using the above notations we clearly have that

IP
(
ξ(1)n ∈ dy1

∣∣∣ξ(1)n−1 = x1

)
=

N∏

p=1

(Ψn(m(x1)) ×Kn)C(2)
n

Remark 7.9:
The previous GA model with pair individual cross-over can also be extended into a GA
with p-cross-over transitions. Namely, if we replace in the previous construction the state
space E(2) by the product space E(p) and Kn by a transition probability kernel on E(p) such
that

Kn ((x1, . . . , xp), d(y1, . . . , yp))

= C
(p)
n (((x1, . . . , xp), dy1) Kn+1(y1, dy2) . . . Kn+(p−1)(yp−1, dyp)

and the fitness functions Gn by a fitness function

Gn : (x1, . . . , xp) ∈ E(p) −→ Gn((x1, . . . , xp)) = gn(x1)

then we end up with a P(E(p))-valued limiting process

µn = Υn(µn−1)Kn

which also fits into the simple GA framework of section 7.1.

7.3.4 A Crossover Variant

We conclude this section with a class of GA involving cross-over transitions and which do
not fit into the simple GA framework but which can be studied using the N -IPS approach
described in section 6.

As usual, one of the simplest way for defining this GA model is as the N -IPS appro-
ximating model associated with a suitably chosen limiting process. Here we will consider
the P(E)-valued dynamical system defined by

ηn = (Φn(ηn−1) ⊗ . . . ⊗ Φn(ηn−1)︸ ︷︷ ︸
p-times

)C(p)
n (49)

where for all n ≥ 1, Φn : P(E) → P(E) is the mapping defined by

Φn(η) = Ψn(η)Kn

∀f ∈ Bb(E), Ψn(η)(f) =
η(gnf)
η(gn)

(50)

The transition probabilities of the N -IPS approximating model ξn = (ξ1n, . . . , ξN
n ), n ≥ 0,

associated with the limiting process (49) take the form

P (ξn ∈ dz | ξn−1 = x) =
N∏

q=1

((Φn(m(x)) ⊗ . . . ⊗ Φn(m(x))︸ ︷︷ ︸
p-times

)C(p)
n )(dzq) (51)
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where, as usual, dz def= dz1 × · · · × dzN is an infinitesimal neighborhood of the point
z = (z1, . . . , zN ) ∈ EN and x = (x1, . . . , xN ) ∈ EN .

If B(p)
n and C(p)

n denote respectively the transition probability kernel from EN into
(Ep)N and from (Ep)N into EN , defined for any x ∈ EN and ỹ ∈ (Ep)N by

B(p)
n (x, dỹ) =

N∏

q=1

(Φn(m(x)) ⊗ . . . ⊗ Φn(m(x))︸ ︷︷ ︸
p-times

)(dỹq)

C(p)
n (ỹ, dz) =

N∏

q=1

C(p)
n (ỹq, dzq))

where
dỹ = dỹ1 × . . .× dỹN and dz = dz1 × . . . × dzN

are the infinitesimal neighborhoods of the points

ỹ = (ỹ1, . . . , ỹN ) ∈ (Ep)N and z = (z1, . . . , zN ) ∈ EN

then the transition (51) can be rewritten as follows

P (ξn ∈ dz | ξn−1 = x) =
∫

Ep

B(p)
n (x, dỹ) C(p)

n (ỹ, dz))

= (B(p)
n C(p)

n )(x, dz)

By construction the transitions (51) are once more decomposed into two stages

ξn−1 ∈ EN
Selection/Mutation
−−−−−−−−−−−−−−−−−−−→ ξ̃n−1 = (ξ̃1n−1, . . . , ξ̃

N
n−1) ∈ (Ep)N

p−Crossover
−−−−−−−−−−→ ξn ∈ EN

with

P
(
ξ̃n−1 ∈ dỹ | ξn−1 = x

)
= B(p)

n (x, dỹ)

P
(
ξn ∈ dz | ξ̃n−1 = ỹ

)
= C(p)

n (ỹ, dz)

Let us describe more precisely this two stage transition.

• Selection/Mutation
Given the configuration ξn−1 ∈ EN , the particle system

ξ̃n−1 =
(
ξ̃1n−1, . . . , ξ̃

N
n−1

)
∈ (Ep)N

consists of N -conditionally independent and Ep-valued random variables

ξ̃i
n−1 =

(
ξ̃i
n−1,1, . . . , ξ̃

i
n−1,p

)
∈ Ep, 1 ≤ i ≤ N
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with common law
(Φn(m(x)) ⊗ . . . ⊗ Φn(m(x))︸ ︷︷ ︸

p-times

)

In other words each Ep-valued random variable ξ̃i
n−1, 1 ≤ i ≤ N , consists in p-

conditionally independent with common law Φn(m(x)). By definition of the map-
pings Φn, and for each 1 ≤ i ≤ N , the d-vector random variables

(
ξ̃i
n−1,1, . . . , ξ̃

i
n−1,p

)

can be regarded as the result of d-conditionally independent (selection/mutation)-
transitions from the parent individual ξi

n−1.

• p-Crossover
Given the configuration, ξ̃n−1 each Ep-valued sub-configuration

ξ̃i
n−1 =

(
ξ̃i
n−1,1, . . . , ξ̃

i
n−1,p

)
∈ Ep, 1 ≤ i ≤ N

cross-over according to the transition probability C(p)
n , that is

ξ̃i
n−1 −→ ξi

n ∼ C(p)
n

(
ξ̃i
n−1, .

)
, 1 ≤ i ≤ N

As noticed this GA do not fit into the simple GA framework of section 7.1. Therefore
we need to find another strategy to study its asymptotic behavior. In order to apply
Theorem 6.1 we first need to check that the one step mappings of the limiting system are
continuous. In what follows the state space E is assumed to be a Polish space.

Let us set

ϕ(x1, . . . , xp) =
p∏

k=1

fk(xk), f1, . . . , fp ∈ Cb(E)

and assume that µm ∈ P(E) is a sequence which weakly converges to µ ∈ P(E) when m
tends to infinity. For a test function ϕ of the previous form we obtain

(Φn(µm) ⊗ . . . ⊗ Φn(µm)︸ ︷︷ ︸
p-times

)(ϕ) =
p∏

k=1

Φn(µm)(fk)

and therefore

lim
m→∞

(Φn(µm) ⊗ . . . ⊗ Φn(µm)︸ ︷︷ ︸
p-times

)(ϕ) = (Φn(µ) ⊗ . . . ⊗ Φn(µ)︸ ︷︷ ︸
p-times

)(ϕ)

Since linear combinations of such functions are dense in Cb(Ep) one can check that the
one step mappings of the limiting system (49) are continuous. Now, if E is compact then
Theorem 6.1 implies that the N -approximating distributions

ηN
n =

1
N

N∑

i=1

δξi
n
, n ≥ 0
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weakly converge to the desired distribution ηn as N tends to infinity.
Next we discuss the Lipschitz condition (28) of Theorem 6.2 when the state space is

finite and for p = 2, that is for a pair cross-over GA. The extension to any p ≥ 2 will be
straightforward.
For any ϕ ∈ Bb(E2), n ≥ 1, µ, η ∈ P(E) we clearly have that

∣∣Φn(µ)⊗2(ϕ) − Φn(η)⊗2(ϕ)
∣∣

≤ sup
x1∈E

|Φn(µ)(ϕ(x1, .)) − Φn(η)(ϕ(x1, .))| +
∣∣Φn(µ)(ϕn,η) − Φn(η)(ϕn,η)

∣∣

with
ϕn,η(x1)

def.= Φn(µ)(ϕ(x1, .)) ∈ IR

from which one concludes that for any finite subset F ∈ Bb(E)
∥∥∥Φn(µ)⊗2C(2)

n − Φn(η)⊗2C(2)
n

∥∥∥
F
≤ 2 ‖Φn(µ) − Φn(η)‖Γn,η(F)

with
Γn,η(F) def.=

{
C

(2)
n (f(x1, .)) ; f ∈ F , x1 ∈ E

}

⋃{
x1 7→

∫

E
Φn(η)(dx2)(C(2)

n f)(x1, x2) ; f ∈ F
}

Since the one step mappings {Φn ; n ≥ 1} satisfy assumption (28) one concludes that
the one step mappings of (49) again satisfy (28).

One can clearly translate conditions presented in section 6.2.3 to get large deviations
principles. For instance according to the remark 6.4 condition (H) is satisfied when E is
finite and for any n ≥ 1 and (x1, . . . , xp) ∈ Ep and y ∈ E

C(2)
n ((x1, . . . , xp), {y}) > 0

7.4 A Genetic Model with Random Selection/Mutation

The random selection/mutation GA model presented in this last section is theN -approximating
model associated with the limiting P(E)-valued dynamical system given by

ηn = α ηn−1Kn + (1 − α) Ψn(ηn−1) (52)

where α ∈]0, 1[ and as usual

∀f ∈ Bb(E), Ψn(η)(f) =
η(gnf)
η(gn)

The transition probabilities of the N -IPS model ξn = (ξ1n, . . . , ξN
n ), n ≥ 0, associated with

the limiting process (52) take the form

P (ξn ∈ dz | ξn−1 = x) =
N∏

p=1

(α m(x)Kn + (1 − α) Ψn(m(x))) (dzp)
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where dz def= dz1×· · ·×dzN is an infinitesimal neighborhood of the point z = (z1, . . . , zN ) ∈
EN and x = (x1, . . . , xN ) ∈ EN .

In other words given the configuration ξn−1, the next configuration ξn consists of N -
conditionally random variables with common law

α
1
N

N∑

i=1

Kn(ξi
n−1, .) + (1 − α)

N∑

i=1

gn(ξi
n−1)∑N

j=1 gn(ξj
n−1)

δξi
n−1

Independently of each other each particle ξi
n, 1 ≤ i ≤ N , can be sampled as follows:

• With a probability α we choose randomly and uniformly in the configuration ξn−1

an individual ξj
n−1, 1 ≤ j ≤ N . Then, the selected individual ξj

n−1 evolves randomly
according to the transition Kn.

• With a probability (1−α) we select randomly in the configuration ξn−1 an individual
with distribution

N∑

i=1

gn(ξi
n−1)∑N

j=1 gn(ξj
n−1)

δξi
n−1

When the state space E is compact Theorem 6.1 implies that for each n ≥ 0 the
N -approximating measures

ηN
n =

1
N

N∑

i=1

δξi
n

weakly converge to the desired distributions ηn as N → ∞.
We also notice that the Lipschitz condition of Theorem 6.2 needed to get ILp-rates

and exponential bounds is satisfied. To see this claim we simply note that for any n ≥ 1,
µ, η ∈ P(E) and f ∈ Bb(E)

|Φn(µ)(f) − Φn(η)(f)|

≤ α |µKn(f) − ηKn(f)| + (1 − α) an (µ(gnf) − η(gnf) + ‖f‖ |µ(gn) − η(gn)|)

≤ (α+ (1 − α) an max (1, ‖f‖)) ‖µ− η‖Fn(f)

with
Fn(f) = {gn f} ∪ {gn} ∪ {Knf}

This clearly implies that (h1) is satisfied for any finite subset F ⊂ Bb(E) with

Cn,η(F) = α+ (1 − α) an max (1,max
f∈F

‖f‖)

and
Θn,η(F) =

⋃

f∈F
Fn(f)
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The large deviations principles for the empirical measures on the path space stated in
Theorem 6.3 entirely rely on the existence of a collection of reference probability measures
λn ∈ P(E) such that for any η ∈ P(E) and n ≥ 1

Φn(η) ∼ λn

This condition is not met in our settings since the mappings {Ψn ; n ≥ 1} are such that
for any µ ∈ P(E)

Ψn(µ) ∼ µ

and this contradicts condition (H).
Nevertheless one can use Theorem 6.5 to deduce large deviations principles for the

particle density profiles {ηN
n ; N ≥ 1}. Let us check that the one step mappings

Φn(η) = α ηKn + (1 − α) Ψn(η)

satisfy condition (H′). We observe that for any bounded Borel function f : E → [0,∞[
we have that

Φn(η)(f) ≤ α ηKn(f) + an (1 − α) η(f)

Therefore, since an ≥ 1 one gets

Φn(η)(f) ≤ an ηK
(α)
n f

where K(α)
n is the Markov transition probability kernel on E given by

K(α)
n = α Kn + (1 − α) Id

As noticed in remark 7.4 this implies that (H′) is satisfied.
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[4] Del Moral, P.; Guionnet, A. (1999) “On the stability of measure valued processes with
applications to filtering”, C.R. Acad. Sci., Paris, t. 328, Série I.

[5] Del Moral, P.; Jacod, J. (1999) “The Monte-Carlo method for filtering with discrete time
observations. Central limit theorems”, Publications du Laboratoire de Probabilités, Paris VI,
No 515.



72 p. del moral – l. kallel – j. rowe

[6] Del Moral, P.; Ledoux, M. (2000) “Convergence of empirical processes for interacting particle
systems with applications to nonlinear filtering”, Journal of Theoret. Probability 13(1): 225–
257.

[7] Del Moral, P.; Miclo, L. (2000) “Branching and interacting particle systems approximations
of Feynman-Kac formulae with applications to non-linear filtering”, to appear in J. Azéma,
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