
On a Class of Genealogical and Interacting
Metropolis Models

Pierre Del Moral1 and Arnaud Doucet2

1 CNRS-UMR 5583, Univ. P. Sabatier, 31062 Toulouse, France
e-mail: delmoral@cict.fr

2 Engineering Department, Cambridge University, CB2 1PZ Cambridge, UK
e-mail: ad2@eng.cam.ac.uk

Summary. A genealogical tree based particle model for drawing approximate sam-
ples from the conditional path-distributions of a Markov chain with respect to its
terminal values is presented. This path-particle evolution model can be interpreted
as the historical process associated to a sequence of interacting Metropolis Markov
chains. This novel class of interacting models can also be used to obtain approximate
samples from a given target distribution which is only known up to a normalizing
constant. We design an original Feynman–Kac modeling technique for studying the
asymptotic analysis of these path-particle and Metropolis type simulation models.
We provide precise convergence results as the time or the size of the systems tends
to infinity. In contrast to the traditional Metropolis model we show that the decays
to equilibrium do not depend on the nature of the desired limiting distribution.
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1 Introduction

The problem of generating random samples from a given distribution plays
an important role in many research areas including physics, biology, statistics
and engineering science such as in signal and image processing. In practice the
target distribution π is often complex and it is only known up to a normal-
izing constant. During the last decades several strategies have been proposed
in the literature and Markov chain Monte Carlo (MCMC) methods have be-
come the most popular tools. We refer for instance the reader to the book
of W. R. Gilks, S. Richardson, D. J. Spielgelhalter [13] and to the pioneer-
ing articles of W. K. Hastings [14] and N. Metropolis, A. W. Rosenbluth,
M. N. Rosenbluth, A. H. Teller, E. Teller [17].

J. Azéma et al. (Eds.): LNM 1832, pp. 415–446, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



416 Pierre Del Moral and Arnaud Doucet

The underlying idea in MCMC methods consists in building a Markov
transition Kπ admitting π as a stationary measure. After running the chain
for a long time its random states are approximately distributed according to
the desired measure. These techniques are widely used in practice and the
study of their asymptotic behavior has been the subject of many research
articles.

Another important and related question is to generate random samples
from the path distributions of a Markov chain with initial distribution π and
restricted to a fixed terminal value. The interacting and genealogical particle
models presented in this article give a novel strategy for drawing recursively in
time approximate samples according to these conditional path-distributions.
In addition these path-particle evolution models can be interpreted as the his-
torical process associated to a sequence of interacting Metropolis algorithms.
The latter also provides a new strategy for drawing samples according to a
given target distribution π.

This article also sheds some new lights on the connection between tradi-
tional Monte Carlo Markov chain studies and the recently developed branch-
ing and interacting particle techniques arising in physics and advanced signal
processing ([6], [10]). To motivate this article let us briefly mention how these
two approaches are combined:

We first design a strategy to represent the desired conditional and target
distributions in terms of a non linear Feynman–Kac distribution flow model.

This original model is a combination of a non linear Feynman–Kac and
Metropolis type Markov chain. The non linear nature of the latter comes from
the fact that its elementary transitions depend on the distributions of the cur-
rent random states. In contrast to the classical Metropolis situation the decays
to equilibrium of this non homogeneous Feynman–Kac–Metropolis model does
not depend on the nature of the limiting measure π. The interacting particle
approximating model associated to this flow can be interpreted as a genetic
type sequence of interacting Metropolis Markov chains. Another difference
with the traditional Metropolis model is that the historical process associated
to this scheme can be regarded as a path-particle simulation technique for
sampling from the conditional path distribution of a chain restricted to its
terminal values. In this article we use this original Feynman–Kac modeling
technique to analyze the asymptotic behavior of this class of particle models
as the population size or the time parameter tends to infinity.

This opening section is decomposed in two parts. In the first one we de-
scribe the interacting Metropolis particle model and its historical process and
we compare the former with the traditional Metropolis algorithm. We also
give in some details the two main results presented in this article. In the sec-
ond part we close with some comments on related works on this subject and
we propose new lines of research problems. We finally initiate a comparison
between the traditional and this novel interacting particle Metropolis model.

Here are some standard notations to be used in all the paper. Let P(S)
and Bb(S) denote respectively the set of probability measures and bounded
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measurable functions on a given measurable space (S,S). We denote by δx
the Dirac measure at a point x ∈ S.

As usual Bb(S) is regarded as a Banach space with the supremum norm

∀f ∈ Bb(S), ‖f‖ = sup
x∈S

|f(x)|.

We also slightly abuse notations and denote by 1 the unit function on S.
The total variation distance ‖µ1−µ2‖tv between probability measures µ1,

µ2 ∈ P(S) is defined by

‖µ1 − µ2‖tv =
1
2

sup
{
|µ1(f)− µ2(f)| : f ∈ Bb(S), ‖f‖ � 1

}
.

Any Markov transition K(u, dv) from S into itself generates two operators.
One acting on bounded S-measurable functions f ∈ Bb(S) and taking values
in Bb(S)

∀(u, f) ∈
(
S × Bb(S)

)
, (Kf)(u) =

∫

S

K(u, dv) f(v),

and the other one acting on measures µ ∈ P(S) and taking values in P(S)

∀(µ,A) ∈
(
P(S)× S

)
, (µK)(A) =

∫

S

µ(du)K(u,A).

We also recall that the contraction coefficient β(K) associated to a Markov
operator K on P(S) is defined by

β(K) = sup
µ1,µ2∈P(S)

‖µ1K − µ2K‖tv
‖µ1 − µ2‖tv

= sup
u,v∈S

‖K(u, . )−K(v, . )‖.

If L is another Markov transition from (S,S) into itself then we denote by
(KL) the composite operator

(KL)(u, dw) =
∫

S

K(u, dv)L(v, dw).

We also write Kn, n � 0, the n-th time iterate of the operator K defined by
the inductive formula

Kn = Kn−1K with K0 = Id.

For a distribution µ and a Markov transition K on S we denote by (µ×K)i,
i = 1, 2, the distributions on S2 defined by

(µ×K)1(d(u, v)) = µ(du)K(u, dv) and (µ×K)2(d(u, v)) = µ(dv)K(v, du).

Sometimes we simplify notations and write (µ×K) instead of (µ×K)1.
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We usually associate to a given Markov transition K on S a canonical
Markov chain

(
Ω = SN, F = (Fn)n�0, Y = (Yn)n�0,

(
P
K
y

)
y∈S

)

with elementary transitions K. We recall that (Fn)n�0 represents the non
decreasing family of σ-algebras Fn generated by the canonical variables
X0, . . . , Xn. For a given distribution µ ∈ P(S) we define the probability mea-
sures

P
K
µ =

∫

S

µ(dy) P
K
y .

In this notation we have for instance

P
K
µ

(
(Y0, . . . , Yn) ∈ d(y0, . . . , yn)

)
= µ(dy0)K(y0, dy1) . . .K(yn−1, dyn).

We use E
K
µ and E

K
y for the expectation with respect to P

K
µ and P

K
y . Finally

we will use the traditional conventions

(sup∅, inf∅) = (−∞,∞) and (
∑

∅
,
∏

∅
) = (0, 1).

1.1 Description of the models and statement of some results

Let π and L be a probability measure and a Markov kernel on a measurable
state space (S,S). We associate to the pair (π, L) the S-valued Markov chain
(Ω,F, Y,PLπ ) with initial distribution π and Markov transitions L.

In this article we design a genealogical tree based model for solving nu-
merically and recursively in time (a version of) the conditional distribution
flow

n −→ P
L
π

(
(Y0, . . . , Yn) ∈ d(y0, . . . , yn)

∣∣Yn+1 = y
)
. (1)

When L is sufficiently regular, it is convenient to notice that in a sense to be
defined we have that

lim
n→∞

P
L
π (Y0 ∈ dy0 |Yn+1 = y) = π(dy0).

We will combine this observation with a time inversion formula to prove that
the current occupation measures of the genealogical particle model converge to
the distribution π. In other words the particle approximating model presented
in this work can also be used for drawing approximate samples from π as soon
as the latter is known up to a normalizing constant.
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To describe briefly this algorithm and its connection with the traditional
Metropolis model we suppose we are given an auxiliary Markov kernel K on
S such that

• The measures (π ×K)1 and (π × L)2 are mutually absolutely continuous.
• The Radon–Nykodim derivative defined by

G =
d(π × L)2
d(π ×K)1

(2)

is a bounded and strictly positive function on E = (S × S).

The standard Metropolis ratio corresponds to the case where K = L.
In practice the Markov kernel L is fixed and the choice of K depends on

the problem at hand. Usually the state space S is endowed with a topology
and K(u, . ) is often defined as the uniform distribution on a suitably chosen
neighborhood of u ∈ S. If we are not interested in computing the conditional
path-distributions (1) but only want to draw samples according to π then we
have the choice of the pair (K,L). To illustrate this observation and motivate
this article let us suppose that π is the Boltzmann–Gibbs measure associated
to a pair measure/potential function (ν,H) with H � 0, ν(e−H) > 0 and
defined by

π(dx) =
1

ν(e−H)
e−H(x) ν(dx). (3)

In this situation the generalized Metropolis ratio takes the form

G(y, y′) = e−(H(y′)−H(y)) d(ν × L)2
d(ν ×K)1

(y, y′). (4)

Whenever K is reversible with respect to ν if we take L = K then we find
that

G(y, y′) = e−(H(y′)−H(y)). (5)

This indicates that if we want to approximate simultaneously the conditional
path-distributions (1) and the target distribution π using the forthcoming
interacting Metropolis model then we need to consider the ratio (4). In the
previous reversible case if we only want to draw samples according to π we
can alternatively take the ratio (5).

To better connect our strategy with the traditional Metropolis model we
have chosen to present the latter in a way which parallels the forthcoming
construction.

The traditional Metropolis algorithm associated to the triplet (π,K,L)
introduced above can be represented in terms of a Markov chain

Zn = (Un, Vn)

on the product space E = S2 with a two-step selection/mutation elementary
transition
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Kπ = SπMK (6)

and an initial distribution of the form µ0 = δy ×K for some arbitrary point
y ∈ S. The selection and mutation transitions Sπ and MK are defined by

Sπ
(
(u, v), .

)
=

(
1 ∧G(u, v)

)
δ(u,v)( . ) +

(
1− (1 ∧G(u, v))

)
δ(u,u)( . )

and
MK

(
(u, v), d(u′, v′)

)
= δv(du′)K(u′, dv′).

The probabilistic interpretation of the two-step Markov chain

Zn = (Un, Vn)
Sπ−−−−−→ Ẑn =

(
Ûn, V̂n

) MK

−−−−−→ Zn+1 = (Un+1, Vn+1)

is simple. At time n = 0 we start from a random state (U0, V0) distributed
according to δy × K. That is we set U0 = y and we sample V0 according
to K(y, . ). Starting from a point Zn = (Un, Vn) the selection transition at
time n � 0 consists in accepting the second component Vn with a probability
(1 ∧G(Un, Vn)) and setting

Ẑn =
(
Ûn, V̂n

)
= (Un, Vn).

Otherwise we reject it and we set Ẑn = (Ûn, V̂n) = (Un, Un). The mutation
transition consists in evolving randomly according to K the selected compo-
nent. In other words, given the point Ẑn = (Ûn, V̂n) we set

Zn+1 = (Un+1, Vn+1) =
(
V̂n, Vn+1

)
,

where Vn+1 is randomly chosen with distribution K(V̂n, . ).
It is easily seen that the first component Un of Zn forms a Markov chain

with elementary transitions

Mπ(u, du′) =
(
1∧G(u, u′)

)
K(u, du′)+

(
1−

∫

S

(
1∧G(u, y)

)
K(u, dy)

)
δu(du′).

It is also well known that if we choose for instance K = L then π is Mπ-
invariant and in the reversible case Mπ is reversible with respect to π. Thus,
running the chain Un for a long time we get a random variable approxima-
tively distributed according to π. The convergence to the equilibrium of this
chain has been studied by many authors. For instance we refer the reader to
the articles of Catoni [1, 2, 3], Gaudron and Trouvé [12], S. F. Jarner and
E. Hansen [15], K. L. Mengersen and R. L. Tweedie [16], Miclo [18, 19, 20],
Trouvé [21], the review article P. Diaconis and L. Saloff-Coste [11] and refer-
ences therein.

We would like to mention here that the decays to equilibrium depend on
the target distribution π. For instance the rate of convergence to zero of the
contraction coefficients β(Mn

π) as n → ∞ strongly depends on the nature
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of the limiting measure π. We will illustrate this observation with a three
points example in the end of section 1.2. Another main difference between
our interacting particle method and this traditional scheme is that the latter
cannot be used to approximate the conditional path-distributions (1).

The particle model presented in this article gives an alternative simulation
technique to produce approximate samples from π. The key idea is to consider
π as the fixed point of a non linear Feynman–Kac type distribution flow. More
precisely instead of studying the linear evolution equation associated to the
Metropolis Markov kernel (6) we consider the non linear distribution flow on
P(E) given by

µn+1 = µnKµn with Kµ = SµM
K . (7)

The collection of selection transition kernels Sµ, µ ∈ P(E), are defined by

Sµ
(
(u, v), .

)
= εG(u, v) δ(u,v)( . ) +

(
1− εG(u, v)

)
ψ(µ)( . ) (8)

with a parameter ε � 0 such that εG � 1 and the Boltzmann–Gibbs trans-
formation ψ : P(E) → P(E) defined by

ψ(µ)
(
d(u, v)

)
=

1
µ(G)

G(u, v)µ
(
d(u, v)

)
.

The equation (7) can again be interpreted as the evolution in time of the dis-
tributions of a two-step non homogeneous (and non linear) E-valued Markov
chain

Zn = (Un, Vn)
Sµn−−−−−→ Ẑn =

(
Ûn, V̂n

) MK

−−−−−→ Zn+1 = (Un+1, Vn+1)

with µn = Law(Zn). The mutation stage is the same as above but during the
selection a rejected variable is replaced by sampling a new pair according to
the Boltzmann–Gibbs distribution ψ(µn). If we denote by φn, n � 0, the non
linear semigroup associated to the flow (7) then our first main result will be
basically stated as follows.

Theorem 1. The distribution (π × K) is a fixed point of φ and when L is
sufficiently regular then we have for any µ1, µ2 ∈ P(E) and n � 0

‖φm+n(µ1)− φm+n(µ2)‖tv � bL β(Ln) (9)

for some fixed m � 1 and finite constant bL < ∞ whose values only depend
on L.

The above theorem implies that the law of the first component Un con-
verge to the desired distribution π with a rate which does not depend on the
target distribution. In contrast to the traditional Metropolis model the non
homogeneous chain described above cannot be sampled perfectly and another
level of approximation is needed.
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One way to draw approximate samples according to the distributions µn is
to associate to the collection of Markov transitions Kµ, µ ∈ P(E), a sequence
of interacting particle systems (cf. for instance [5, 6]). These particle approxi-
mating models consist in a Markov chain ξn = (ξin)1�i�N on a product space
EN with initial distribution µ⊗N0 and elementary transitions

P
(
ξn+1 ∈ d(x1, . . . , xN )

∣∣ ξn
)

=
N∏

i=1

K 1
N

∑N
j=1 δξ

j
n

(ξin, dx
i).

The asymptotic behavior as n and/or N tend to infinity depends on the nature
of the transitions Kµ but, for fairly general kernels, we have for any fixed time
horizon n � 0, as N →∞ and in a sense to be given

µNn =
1
N

N∑

i=1

δξi
n
−→ µn.

Since Kµ = SµM
K is the composition of a pair of selection and mutation

Markov kernels we observe that the previous particle model is a two-step
genetic type Markov chain in the product space EN

ξn = (ξin)1�i�N
selection
−−−−−−−−−→ ξ̂n = (ξ̂in)1�i�N

mutation
−−−−−−−−−→ ξn+1. (10)

During the selection stage each particle ξin −→ ξ̂in evolves according to the
Markov transition S 1

N

∑
N
j=1 δξ

j
n

(ξin, . ). The mutation stage consists in evolv-

ing randomly each selected particle ξ̂in −→ ξin+1 according to the Markov
transition MK .

One important feature of this genetic type particle model is that the sta-
bility properties of the limiting system (7) can be used to derive uniform
estimates with respect to the time parameter for the convergence as N →∞
of the sequence of N -particle approximating measures µNn . We will use this
important property to calibrate the convergence of this simulation technique
when the pair parameter (n,N) → ∞. As we already mentioned the other
impact of this class of interacting Metropolis models is that it gives a nat-
ural and simple way for drawing approximate samples from the conditional
distributions

P
L
π

(
(Y0, . . . , Yn) ∈ d(y0, . . . , yn)

∣∣ Yn+1 = y
)
. (11)

To make these observations more precise let us put ξin = (U i
n, V

i
n), 1 � i �

N . If we take µ0 = δy ×K then the initial system is given by

ξi0 = (U i
0, V

i
0 ) = (y, V i

0 )

where V i
0 are independent and identically distributed random variables with

common law K(y, . ). From the above description we see that the particle
model can be alternatively interpreted as a mutation/selection algorithm
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(U i
n)1�i�N

mutation
−−−−−−−−−→ (V i

n)1�i�N
selection
−−−−−−−−−→ (U i

n+1)1�i�N .

During the mutation stage each particle U i
n evolves randomly and indepen-

dently according to the Markov kernel K to some new locations V i
n. These

new locations V i
n are accepted or rejected according to a mechanism which

depends on the pairs configuration

{(U j
n, V

j
n ) ; 1 � j � N}.

With probability εG(U i
n, V

i
n) we accept the i-th state V i

n and we set U i
n+1 = V i

n

and, with probability 1 − εG(U i
n, V

i
n), we select randomly a state Ṽ i

n with
distribution

N∑

j=1

G(U j
n, V

j
n )

∑N
k=1 G(Uk

n , V
k
n )

δV j
n

and we set U i
n+1 = Ṽ i

n. Loosely speaking the selection transition intends
to improve the quality of the configuration by allocating more reproductive
opportunities to pair-particles (U j

n, V
j
n ) with higher Metropolis ratio. If we

interpret this stage as a birth and death mechanism then we see that particles
V j
n with high ratio G(U j

n, V
j
n ) have more chance to give birth to an offspring

than those with poor ratio. When the i-th particle U i
n+1 selects a site V j

n we
can also interpret V j

n as the parent of the individual U i
n+1. Recalling that V j

n

has been sampled according to K(U j
n, . ) we can interpret U j

n as the ancestor
U i
n,n+1 of U i

n+1 at level n. Running back in time this construction we can
trace back the complete ancestral line

U in = (U i
0,n, U

i
1,n, . . . , U

i
n,n)

of each current individual U i
n,n = U i

n. The parameter p = 0, . . . , n represents
the level of the ancestors. Up to a time reversal transformation the occupation
measure of the corresponding genealogical tree converges to the desired condi-
tional path distributions (11) as N tends to infinity. We summarize and make
precise this discussion in terms of the second main result of this article which
can be basically stated as follows. We use the notations E

(N)
µ ( . ), µ ∈ P(S),

N � 1, for the expectation with respect to the law of the N -particle model
ξin ∈ E starting with N independent and identically distributed random vari-
ables with common law (µ × K). When µ = δy is concentrated at a single
point y ∈ S we simplify notations and we write E

(N)
y ( . ) instead of E

(N)
δy

( . ).

Theorem 2. For any n � 0, p � 1, y ∈ S and fn ∈ Bb(Sn+1) with ‖fn‖ � 1
we have the estimate

E
(N)
y

(∣∣∣∣
1
N

N∑

i=1

fn(U in)− E
L
π

(
fn(Yn, Yn−1, . . . , Y0)

∣∣ Yn = y
)∣∣∣∣
p)1/p

� cp√
N

d(n)
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for some finite constant d(n) <∞ which only depends on the time parameter
n � 0 and an universal constant cp whose values only depend on the parameter
p � 1.

In addition, when the Markov kernel L is sufficiently regular then we have
for any n � 0, µ ∈ P(S) and f ∈ Bb(E) with ‖f‖ � 1

E
(N)
µ

(∣∣∣∣
1
N

N∑

i=1

f(U i
m+n)− π(f)

∣∣∣∣
p)1/p

� cp
aπ,L√
N

+ bL β(Ln)

for some finite constant aπ,L < ∞ which depends on the pair (π, L) and the
same constants (m, bL) as those arising in (9) of theorem 1. In this situation
we also have d(n) = O(n).

1.2 Notes and contents

The idea to introduce interactions for improving convergence of the models
is not new. In a short Note D. Chauveau and P. Vandekerkhove [4] have
presented a different strategy based on interacting proposal densities. The in-
teraction structure of the latter strongly differs from the genetic type models
presented in this article. In contrast to our study their approach is restricted
to finite dimensional state spaces and the convergence of the particle approxi-
mating models depends on the dimension parameter. Furthermore their model
cannot be used to approximate the conditional path distributions of a chain
restricted to its terminal values.

The interacting Metropolis method presented here belongs to the class
of particle approximating models of Feynman–Kac formulae. The abstract
description and the analysis of the latter have been investigated in several
research articles. Many asymptotic results are available in this field including
empirical process convergence, central limit theorems, large deviation princi-
ples as well as increasing propagation of chaos estimates and uniform conver-
gence estimates with respect to the time parameter. The interested reader is
referred to the survey article [6] and the more recent studies [5, 7, 9].
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The models presented here correspond to the particular situation where
the potential functions are given by the generalized Metropolis ratio (2). This
particular choice of potential function simplifies the analysis and many known
estimates on the asymptotic behavior of these interacting processes can be
greatly improved. For instance the asymptotic stability properties stated in
theorem 1 and the convergence estimate presented in theorem 2 are here
expressed in terms of the contraction coefficient β(Ln). Up to our knowledge
these results improve the ones obtained in the literature on the subject.

To the best of our knowledge this class of interacting process simulation
technique is also new and it has never been covered in the MCMC literature
nor on the one on Feynman–Kac particle approximating models. In contrast to
the traditional Metropolis model the interaction structure of our model allows
to compute recursively in time the conditional path-distribution flow of a given
Markov chain restricted to its terminal values. The Feynman–Kac modeling
technique and the asymptotic behavior estimates presented in this article also
give a novel and solid probabilistic theoretical framework for studying the
convergence of a class of interacting Metropolis models and their genealogies.

Our approach also better connects the recently developed branching parti-
cle methods for solving non linear filtering problems with the more traditional
MCMC literature. In this connection we mention that the choice of the parti-
cle approximating model associated to an abstract class of Feynman–Kac flow
is not unique. Many branching particle variants have been proposed in the lit-
erature including random population size particle models (cf. for instance [6]
and references therein). These variants intend to improve the performance of
the algorithm for a given computational cost. In this article we have restricted
our attention to a generic mean-field type particle strategy. To illustrate this
observation and guide the reader to construct interacting models along these
lines we give next a brief discussion on one strategy to define branching vari-
ants with fixed population size. First we observe that the evolution equation
(7) can be rewritten as follows

µn+1 = φ(µn) with φ(µ) = ψ(µ)MK .

This already shows that formula (7) holds true for any selection transition
Sµn such that µnSµn = ψ(µn). Instead of (8) and as soon as

g = sup
x1,x2

(
G(x1)/G(x2)

)
<∞

we can alternatively choose

Sµ(x, . ) = ε
G(x)
µ(G)

δx( . ) +
(

1− ε
G(x)
µ(G)

)
ψ(µ)( . )

for any ε � 1/g. The selection transition (8) associated to the corresponding
N -particle approximating model is now given by
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S 1
N

∑
N
j=1 δξ

j
n

(ξin, . ) = Nε
G(ξin)

∑N
j=1 G(ξjn)

δξi
n
( . )

+
(

1−Nε
G(ξin)

∑N
j=1 G(ξjn)

)
ψ

(
1
N

N∑

j=1

δξj
n

)
( . ).

Notice that for any N � g we can choose ε = 1/N . The convergence of this
particle algorithm can be studied along the same line as the one associated to
the choice (8). The optimal choice of the selection transitions is an important
open problem. One way to tackle this problem is probably to compare the
covariance functions in the central limit theorems for the N -particle approxi-
mating measures.

In another context the literature on Markov chains stability and simulated
annealing algorithms abounds with precise rates of decays to equilibrium in-
cluding spectral analysis, large deviation as well as log-Sobolev semigroup
contractions. We refer the reader to the list of referenced articles on this
subject. One new line of research is to develop the convergence of these in-
teracting and non linear processes along the same lines as for the traditional
Metropolis algorithm. In this connection we also notice that the Metropolis
model is also used in engineering problems to solve global optimization prob-
lems. The idea is to introduce a suitably decreasing cooling schedule so that
the corresponding annealing algorithm converge in law to to desired extremal
states. The interacting version of this simulated annealing model can also be
regarded as a genetic global search algorithm. One open problem is to study
the asymptotic behavior of the latter. This analysis is related to the annealed
properties of non linear Feynman–Kac flows and it can probably be studied
along the same lines as in [8]. Nevertheless the estimates of the convergence
of the N -particle approximating models presented in the present article are
too crude to solve completely this question. We will hopefully analyze this
problem in a forthcoming study.

A precise comparison between these different approaches is beyond the
scope of this article. We initiate hereafter this subject in the situation where
the Markov kernel L = K is reversible with respect to some distribution ν. We
also suppose that the contraction coefficient β(K) � (1−ε), for some ε ∈ (0, 1)
and the target distribution π is the Boltzmann–Gibbs measure (3) associated
to an non negative Hamiltonian function H with bounded oscillations

osc(H) = sup
y1,y2∈S

|H(y1)−H(y2)| <∞.

In this situation we have the well know estimates

β(Mn
π ) � (1− ε e− osc(H))n and β(Kn) � (1− ε)n.

The exponential term arising in the left hand side estimate cannot be removed.
For instance suppose S = {0, 1, 2} and the Hamiltonian function is given by
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H =




H(0)
H(1)
H(2)



 =




0
h
0



 .

Also suppose that (K, ν) are defined in matrix and vector notation as follows

K =




0 1 0

1/3 1/3 1/3
0 1 0



 and ν =
(
ν(0), ν(1), ν(2)

)
= (1/5, 3/5, 1/5).

Since ν is reversible with respect to K if we take L = K then we have

G(y1, y2) = e−(H(y2)−H(y1)) and Mπ =




1− e−h e−h 0

1/3 1/3 1/3
0 e−h 1− e−h



 .

Using some elementary algebraic calculations we find that Mπ has three eigen-
values

λ2 =
1
3
− e−h < λ1 = 1− e−h < λ0 = 1.

The corresponding orthogonal and normalized eigenvector basis

L2(π) = Span(ϕ0, ϕ1, ϕ2)

is given by

ϕ2 =

√
3 e−h

2




−1
2eh

3
−1



 , ϕ1 =

√
1 +

3 e−h

2




1
0
−1



 , ϕ0 =




1
1
1



 .

Using the decomposition

Mn
π (y1, y2) = π(y2) + λn1 ϕ1(y1)ϕ1(y2)π(y2) + λn2 ϕ2(y1)ϕ2(y2)π(y2),

we find after some elementary computations that, as soon as h � 2, one has

β(Mn
π ) = ‖Mn

π (0, . )−Mn
π (2, . )‖tv = (1− e−h)n.

Similar arguments yield that β(Kn+1) = (2/3)n.
By the weak law of large numbers the analog of the Lp bound presented in

theorem 2 for a sequence of N independent and identical distributed Metropo-
lis Markov chains is proportional to a term of the form

eNiid(n) =
1√
N

+
(
1− ε e− osc(H)

)n

In the case of N -interacting Metropolis models we will see that the constant
aπ,K arising in theorem 2 is proportional to e4h. Thus, the resulting Lp bounds
are now proportional to a term of the form
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eNips(n) =
e4 osc(H)

√
N

+ (1 − ε)n.

These two estimates seem to lead to the following conclusion: To get the
same accuracy the interacting Metropolis algorithm need more particles but
less time runs. Nevertheless the exponential term arising in eNiid(n) may really
slow down the decays to equilibrium. When the oscillation of Hamiltonian
function are not too large, it seems more advantageous to use the interacting
Metropolis model. Indeed, we observe that

(
1− ε e− osc(H)

)
= (1− ε)

(
1 +

ε

1− ε

(
1− e− osc(H)

))
.

Thus, if we have ε � e− osc(H) and if we take
√
N = (1 − ε)−n then we find

that √
N eNiid(n) �

(
1 + (1 + ε)n

)
�

(
1 + e4 osc(H)

)
=
√
N eNips(n)

as soon as n log (1 + ε) � 4 osc(H).
This article has the following structure: Section 2 is concerned with model-

ing the conditional path-distributions of a given Markov chain restricted to its
terminal values in terms of Feynman–Kac path-distributions. In section 3 we
present the non linear evolution equations associated to these Feynman–Kac
formulae. We also recall the construction of the mean field interacting particle
approximating model associated to these flows. We connect these modeling
techniques with the genealogical Metropolis particle algorithm presented ear-
lier. Section 4 focuses on the asymptotic behavior of these measure valued
models. In a first subsection 4.1 we analyze the stability properties of the non
linear Feynman–Kac flow as the time parameter tends to infinity. In the final
subsection 4.2, we presents essentially the proof of theorem 2.

2 Feynman–Kac models

In this section we give a Feynman–Kac functional representation of the condi-
tional distributions of a given Markov chain restricted to its terminal values.
This preliminary modeling strategy is the essential step to define and study
the asymptotic behavior of the interacting Metropolis model presented in sec-
tion 1.1. We begin with presenting some of the main technical assumptions
on the triplet (π,K,L) used in this article. We also present a time inver-
sion formula and a state space enlargement technique which allow to describe
the conditional path-distributions (1) in terms of class Feynman–Kac path
measures associated to the Metropolis potential ratio (2).

Let π, L and K be a probability measure and a pair of Markov kernels on
a measurable state space (S,S). We associate to the pairs (π, L) and (π,K)
the S-valued canonical Markov chains

(
Ω,F, Y,PLπ

)
and

(
Ω,F, Y,PKπ

)



On a Class of Genealogical and Interacting Metropolis Models 429

with initial distribution π and respective Markov transitions L and K. With-
out further mention we suppose the triplet (π,K,L) is chosen such that for
some finite g <∞ and for any (x, x′) ∈ E2 we have that

G(x) � g G(x′).

This condition can alternatively be written in terms of the pairs (π,K) and
(π, L) as follows: for any x, x′ ∈ E = S2

1
g

� G(x)/G(x′) =
d(π × L)2
d(π ×K)1

(x)
d(π ×K)1
d(π × L)2

(x′) � g.

It is also instructive to note that the above condition is equivalent to the
following inequalities

1
√
g

(π ×K)1 � (π × L)2 � √
g (π ×K)1.

Using a clear induction on the time parameter n ∈ N we find that for any
n ∈ N we have πLn ) π and for any y ∈ S

dπLn

dπ
(y) ∈ [g−n/2, gn/2].

Finally observe that for the Boltzmann–Gibbs measure (3) and when K = L
is ν-reversible the above condition is met with log (g) = 2 osc(H).

By definition of G we readily obtain the inversion formula

π(dy0)K(y0, dy1) . . .K(yn, dyn+1)
∏n
p=0 G(yp, yp+1)

= π(dyn+1)L(yn+1, dy1) . . . L(y1, dy0).
(12)

In other words we have

dP
L
π ((Yn+1, Yn, . . . , Y0) ∈ . )

dPKπ ((Y0, Y1, . . . , Yn+1) ∈ . )
(y0, . . . , yn+1) =

n∏

p=0

G(yp, yp+1),

and we obtain the following pivotal lemma.

Lemma 1 (inversion formula). For any n � 0 and ϕn ∈ Bb(Sn+1) we have

E
L
π

(
ϕn(Yn+1, Yn, . . . , Y0)

)
= E

K
π

(
ϕn(Y0, Y1, . . . , Yn+1)

n∏

p=0

G(Yp, Yp+1)
)
.

If we put

Xn = (Yn, Yn+1) and
←
Xn = (Yn+1, Yn) ∈ E = S × S
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then under P
K
π the sequence X = (Xn)n�0 constitutes an E-valued Markov

chain with elementary transitions

MK
(
(y0, y1), d(y′0, y

′
1)
)

= δy1(dy′0)K(y′0, dy
′
1).

Given a probability measure η ∈ P(E) we slightly abuse notations and denote
by P

K
η instead of P

MK

η the probability measure on EN defined by

P
K
η

(
(X0, . . . , Xn) ∈ d(x0, . . . , xn)

)
= η(dx0)MK(x0, dx1) . . .MK(xn−1, dxn).

In these simplified notations and if E
K
η stands for the expectation with respect

to P
K
η then we have for any bounded measurable function f on En+1

E
K
η

(
f(X0, . . . , Xn)

)
= E

K
η

(
f
(
(Y0, Y1), . . . , (Yn, Yn+1)

))

=
∫

Sn+1
η
(
d(y0, y1)

)
K(y0, dy1) . . .K(yn−1, dyn) f

(
(y0, y1), . . . , (yn, yn+1)

)
.

Using this state space enlargement technique the above formulae lead to the
following Feynman–Kac representations.

Proposition 1. For any fn ∈ Bb(En+1), n � 0 and (y0, y1) ∈ E we have

E
K
(y0,y1)

(
fn(X0, X1, . . . , Xn)

n∏

p=1

G(Xp)
)

=
dπLn

dπ
(y1) E

L
(π×L)1

(
fn

(←
Xn, . . . ,

←
X0

)∣∣∣
←
Xn = (y0, y1

))

and

E
K
(y0,y1)

(
fn(X0, X1, . . . , Xn)

n−1∏

p=1

G(Xp)
)

=
dπLn−1

dπ
(y1) E

L
(π×K)2

(
fn

(←
Xn, . . . ,

←
X0

) ∣∣∣
←
Xn = (y0, y1)

)
.

Proof. First we use the inversion formula presented in lemma 1 to check that
for any ϕ ∈ Bb(E)

E
K
π

(
ϕ(Y0, Y1)

n∏

p=1

G(Yp, Yp+1)
)

= E
K
π

(
ϕ(Y0, Y1)G(Y0, Y1)−1

n∏

p=0

G(Yp, Yp+1)
)

= E
L
π

(
ϕ(Yn+1, Yn)G(Yn+1, Yn)−1

)

=
∫

dπLn

dπ
(yn)π(dyn+1)K(yn+1, dyn)ϕ(yn+1, yn).

This yields that
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E
K
π

(
ϕ(Y0, Y1)

n∏

p=1

G(Yp, Yp+1)
)

= E
K
π

(
ϕ(Y0, Y1)

dπLn

dπ
(Y1)

)
.

Since this formula holds true for any ϕ ∈ Bb(E) we conclude that for any
(y0, y1) ∈ E

E
K
(y0,y1)

( n∏

p=1

G(Yp, Yp+1)
)

=
dπLn

dπ
(y1). (13)

From lemma 1 we find that for any ϕ′ ∈ Bb(E)

E
L
π

(
ϕ′(Yn+1, Yn)ϕn(Yn+1, . . . , Y0)

)

= E
K
π

(
ϕ′(Y0, Y1)ϕn(Y0, . . . , Yn+1)

n∏

p=0

G(Yp, Yp+1)
)

= E
K
π

(
ϕ′(Y0, Y1) E

K
(Y0,Y1)

(
ϕn(Y0, . . . , Yn+1)

n∏

p=0

G(Yp, Yp+1)
))

.

Using (13) we also prove that

E
L
π

(
ϕ′(Yn+1, Yn)ϕn(Yn+1, . . . , Y0)

)

= E
K
π

(
ϕ′(Y0, Y1) E

K
(Y0,Y1)

( n∏

p=0

G(Yp, Yp+1)
)

× dπ
dπLn

(Y1) E
K
(Y0,Y1)

(
ϕn(Y0, . . . , Yn+1)

n∏

p=1

G(Yp, Yp+1)
))

= E
K
π

(
ϕ′(Y0, Y1)

n∏

p=0

G(Yp, Yp+1)

× dπ
dπLn

(Y1) E
K
(Y0,Y1)

(
ϕn(Y0, . . . , Yn+1)

n∏

p=1

G(Yp, Yp+1)
))

.

Then by lemma 1 we get

E
L
π

(
ϕ′(Yn+1, Yn)ϕn(Yn+1, . . . , Y0)

)

= E
L
π

(
ϕ′(Yn+1, Yn)

dπ
dπLn

(Yn)

×E
K
(Yn+1,Yn)

(
ϕn(Y0, . . . , Yn+1)

n∏

p=1

G(Yp, Yp+1)
))

.

Since this formula is valid for any ϕ′ we conclude that for any (y0, y1) ∈ E

E
K
(y0,y1)

(
ϕn(Y0, . . . , Yn+1)

n∏

p=1

G(Yp, Yp+1)
)

=
dπLn

dπ
(y1) E

L
π

(
ϕn(Yn+1, . . . , Y0)

∣∣ (Yn+1, Yn) = (y0, y1)
)
.
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This ends the proof of the first assertion of the proposition. To prove the
second formula we first observe that

E
L
(π×K)2

(
ϕn(Yn+1, . . . , Y0)

)
= E

L
(π×L)1

(
ϕn(Yn+1, . . . , Y0)

d(π ×K)2
d(π × L)1

(Y0, Y1)
)
.

By lemma 1 we find that

E
L
(π×K)2

(
ϕn(Yn+1, . . . , Y0)

)

= E
K
π

(
ϕn(Y0, . . . , Yn+1)

d(π ×K)2
d(π × L)1

(Yn+1, Yn)
n∏

p=0

G(Yp, Yp+1)
)

= E
K
π

(
ϕn(Y0, . . . , Yn+1)G(Yn, Yn+1)−1

n∏

p=0

G(Yp, Yp+1)
)

and therefore

E
L
(π×K)2

(
ϕn(Yn+1, . . . , Y0)

)
= E

K
π

(
ϕn(Y0, . . . , Yn+1)

n−1∏

p=0

G(Yp, Yp+1)
)
. (14)

From this formula we prove that for any ϕ′ ∈ Bb(E)

E
L
(π×K)2

(
ϕ′(Yn+1, Yn)ϕn(Yn+1, . . . , Y0)

)

= E
K
π

(
ϕ′(Y0, Y1)ϕn(Y0, . . . , Yn+1)

n−1∏

p=0

G(Yp, Yp+1)
)

= E
K
π

(
ϕ′(Y0, Y1) E

K
(Y0,Y1)

(
ϕn(Y0, . . . , Yn+1)

n−1∏

p=0

G(Yp, Yp+1)
))

.

On the other hand by (13) we have for any (y0, y1) ∈ E and n � 1

E
K
(y0,y1)

(n−1∏

p=1

G(Yp, Yp+1)
)

=
dπLn−1

dπ
(y1).

This yields that

E
L
(π×K)2

(
ϕ′(Yn+1, Yn)ϕn(Yn+1, . . . , Y0)

)

= E
K
π

(
ϕ′(Y0, Y1) E

K
(Y0,Y1)

(n−1∏

p=0

G(Yp, Yp+1)
)

× dπ
dπLn−1

(Y1) E
K
(Y0,Y1)

(
ϕn(Y0, . . . , Yn+1)

n−1∏

p=1

G(Yp, Yp+1)
))

= E
K
π

(
ϕ′(Y0, Y1)

n−1∏

p=0

G(Yp, Yp+1)
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× dπ
dπLn−1

(Y1) E
K
(Y0,Y1)

(
ϕn(Y0, . . . , Yn+1)

n−1∏

p=1

G(Yp, Yp+1)
))

.

Finally using (14) we arrive at

E
L
(π×K)2

(
ϕ′(Yn+1, Yn)ϕn(Yn+1, . . . , Y0)

)

= E
L
(π×K)2

(
ϕ′(Yn+1, Yn)

dπ
dπLn−1

(Yn)

×E
K
(Yn+1,Yn)

(
ϕn(Y0, . . . , Yn+1)

n−1∏

p=1

G(Yp, Yp+1)
))

.

Since this formula holds true for any ϕ′ we conclude that for any (y0, y1) ∈ E

E
K
(y0,y1)

(
ϕn(Y0, . . . , Yn+1)

n−1∏

p=1

G(Yp, Yp+1)
)

=
dπLn−1

dπ
(y1) E

L
(π×K)2

(
ϕn(Yn+1, . . . , Y0)

∣∣ (Yn+1, Yn) = (y0, y1)
)
.

This ends the proof of the proposition. 
�

For a given distribution η0 ∈ P(E) we extend the above construction
and define the Feynman–Kac path measures ηn on En = En+1 given for any
fn ∈ Bb(En) by the formulae

ηn(fn) = γn(fn)/γn(1) with γn(fn) = E
K
η0

(
fn(X0, . . . , Xn)

n−1∏

p=0

G(Xp)
)
.

It is also convenient to introduce their updated version

η̂n(fn) = γ̂n(fn)/γ̂n(1) with γ̂n(fn) = E
K
η0

(
fn(X0, . . . , Xn)

n∏

p=0

G(Xp)
)
.

We close this section by presenting a couple of simple formulae which show
that these Feynman–Kac path-measures contain all the desired information
on the conditional distributions (1).

When η0 = δx is concentrated at the single point x ∈ E we write sometimes
η
(x)
n and η̂

(x)
n . In these notations proposition 1 implies that for any x ∈ E

η(x)
n (fn) = E

L
(π×K)2

(
fn

(←
Xn, . . . ,

←
X0

) ∣∣∣
←
Xn = x

)
,

η̂(x)
n (fn) = E

L
(π×L)1

(
fn

(←
Xn, . . . ,

←
X0

) ∣∣∣
←
Xn = x

)
.

It is not difficult to prove that if η0 = δy ×K for some y ∈ S then we have
that
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η̂n(fn) = E
L
π

(
fn

(
(Yn+1, Yn), (Yn, Yn−1

)
, . . . , (Y1, Y0)

) ∣∣∣ Yn+1 = y
)
.

In this situation we can also check that

γn(fn) =
dπLn

dπ
(y) E

L
(π×K)2

(
fn

(
(Yn+1, Yn), (Yn, Yn−1), . . .

. . . , (Y1, Y0)
) ∣∣∣ Yn+1 = y

)
.

from which we conclude that

ηn(fn) = E
L
(π×K)2

(
fn

(
(Yn+1, Yn), (Yn, Yn−1), . . . , (Y1, Y0)

) ∣∣∣ Yn+1 = y
)
. (15)

When choosing a test function fn of the following form

fn
(
(u0, v1), (u1, v2), . . . , (un, vn)

)
= hn(u0, . . . , un)

for some hn ∈ Bb(Sn+1) the above formula readily yields that

ηn(fn) = E
L
π

(
hn(Yn, Yn−1 . . . , Y0)

∣∣ Yn = y
)
. (16)

3 Interacting processes

In this section we present the non linear measure valued equations associated
to the Feynman–Kac path distributions introduced in section 2 as well as
their genealogical path particle approximations. The material here is not new.
These abstract path distribution models have been developed in earlier work
of one of the authors with L. Miclo [6, 7] and M. Kouritzin and L. Miclo
in [5]. For the convenience of the reader we briefly recall in the next two
sections some essentials and we complement these studies with presenting a
novel McKean interpretation which better connects these two studies to the
traditional Metropolis model. We also provide a precise recursive description
of the genealogical path particle model which can be readily implemented on
a computer.

3.1 Measure valued models

This subsection deals with the non linear evolution equations associated to the
Feynman–Kac path-measures ηn and their n-th time marginals. First we recall
the path-enlargement technique presented in [7]. This strategy will simplify
the description and the asymptotic analysis of the genealogical tree based
algorithm associated to the interacting Metropolis model.

As in the previously referenced article we consider the sequence of path-
valued random variables

Xn = (X0, . . . , Xn) ∈ En = En+1
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and the potential functions

Gn : (x0, . . . , xn) ∈ En −→ Gn(x0, . . . , xn) = G(xn) ∈ (0,∞).

It is easily verified that under the probability measure P
K
η0 the sequence

X = (Xn)n�0 constitutes a Markov chain taking values at each time n in the
product state space En = (S × S)n+1. At time n = 0 its initial distribution
coincides with η0 and the elementary transitions from En−1 into En are given
by

MK
n

(
(x0, . . . , xn−1), d(x′0, . . . , x

′
n)
)

= δ(x0,...,xn−1)

(
d(x′0, . . . , x

′
n−1)

)
MK(x′n−1, dx

′
n).

Furthermore in these notations the Feynman–Kac distributions can be rewrit-
ten for any fn ∈ Bb(En) as follows

γn(fn) = E
K
η0

(
fn(Xn)

n−1∏

p=0

Gp(Xp)
)

and

γ̂n(fn) = E
K
η0

(
fn(Xn)

n∏

p=0

Gp(Xp)
)

= γn(fnGn).

By the multiplicative nature of the Feynman–Kac distributions and the
Markov property it is not difficult to check that the bounded non nega-
tive measures γn satisfy the linear measure valued equation γn = γn−1Qn
with the bounded operators Qn from Bb(En) into Bb(En−1) are defined by
Qn(fn) = Gn−1 MK

n (fn). It follows that the sequence of probability measures
ηn satisfies the non linear and measure valued equation

ηn+1 = Φn+1(ηn). (17)

The non linear mappings Φn+1 : P(En) → P(En+1) are defined for any
η ∈ P(En) by Φn+1(η) = Ψn(η)MK

n+1 with the Boltzmann–Gibbs transfor-
mations Ψn from P(En) into itself given for any fn ∈ Bb(En) by Ψn(η)(fn) =
η(fnGn)/η(Gn). In what follows we denote by µn ∈ P(E) the time marginals
of the Feynman–Kac path-measures ηn with respect to the terminal values.
Thus, for any f ∈ Bb(E) and n � 0 we have

µn(f) = νn(f)/νn(1) with νn(f) = E
K
η0

(
f(Xn)

n−1∏

p=0

G(Xp)
)
.

In these notations we notice that η0 = µ0 and νn(1) = γn(1). Arguing as
before we also find that the sequence of bounded measures νn satisfy the
linear homogeneous equations νn = νn−1Q with the bounded operator Q
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from Bb(E) into itself defined by Q(f) = GMK(f). In addition the sequence
or probability measures µn satisfies the non linear homogeneous equation

µn+1 = φ(µn) = ψ(µn)MK (18)

with the Boltzmann–Gibbs transformation ψ on P(E) defined for any µ ∈
P(E) and f ∈ Bb(E) by ψ(µ)(f) = µ(fG)/µ(G). Let ε � 0 be a non negative
number such that εG � 1. We notice that the Boltzmann–Gibbs transforma-
tion ψ can be written as ψ(µ) = µSµ. with the collection of Markov kernels
Sµ, µ ∈ P(E), defined by

Sµ(x, . ) = εG(x) δx( . ) +
(
1− εG(x)

)
ψ(µ). (19)

As already mentioned in the introduction the corresponding non linear equa-
tion

µn+1 = µnSµnM
K

can be interpreted as the evolution in time of the distributions of a two-step
non homogeneous Markov chain

Zn
Sµn−−−−−→ Ẑn

MK

−−−−−→ Zn+1 with µn = Law(Zn).

This chain is realized in a canonical space
(
Ω = EN, F = (Fn)n�0, (Zn, Ẑn)n�0,Pµ0

)

with the McKean measure Pµ0 defined in an symbolic form by

Pµ0

(
(Z0, Ẑ0, . . . , Zn, Ẑn) ∈ d(z0, ẑ0, . . . , zn, ẑn)

)

= µ0(dz0)Sµ0(z0, dẑ0)MK(ẑ0, dz1) . . .

. . . Sµn−1(zn−1, dẑn−1)MK(ẑn−1, dzn)Sµn(zn, dẑn).

Using similar arguments the equation (17) associated to the path measures
ηn ∈ P(En) can be rewritten as follows:

ηn+1 = ηnSn,ηnMK
n (20)

with the collection of selection transition Sn,η, η ∈ P(En), on En defined by
for any xn ∈ En by

Sn,η(xn, . ) = εGn(xn) δxn( . ) +
(
1− εGn(xn)

)
Ψn(η).
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3.2 Genealogical and interacting particle models

The interacting path-particle model associated to the non linear and path-
distribution model (20) is again a two-step genetic type Markov chain taking
values in the product spaces EN

n

ζn = (ζin)1�i�N ∈ EN
n

selection
−−−−−−−−−→ ζ̂n =

(
ζ̂in

)
1�i�N ∈ EN

n

mutation
−−−−−−−−−→ζn+1 ∈ EN

n+1.

During the selection stage each path-particle ζin = (ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n) ∈ En

evolves according to the Markov transition

Sn, 1
N

∑
N
j=1 δζ

j
n

(ζin, . ) = εGn(ζin) δζi
n
( . ) +

(
1− εGn(ζin)

)
Ψ

(
1
N

N∑

j=1

δζj
n

)
( . ).

Since Gn(ξi0,n, . . . , ξ
i
n,n) = G(ξin,n) only depends on the fitness terminal value

ξin,n the distribution in the previous equation can be rewritten as follows:

εG(ξin,n) δ(ξi
0,n,...,ξ

i
n,n)( . ) +

(
1− εG(ξin,n)

) N∑

j=1

G(ξjn,n)
∑N
k=1 G(ξkn,n)

δ(ξi
0,n,...,ξ

i
n,n)( . ).

The mutation mechanism simply consists in extending each selected path

ζ̂in =
(
ξ̂i0,n, ξ̂

i
1,n, . . . , ξ̂

i
n,n

)
∈ En

with an elementary MK-transition, that is

ζin+1 =
(
(ξi0,n+1, . . . , ξ

i
n,n+1), ξin+1,n+1

)

=
(
(ξ̂i0,n, . . . , ξ̂

i
n,n), ξin+1,n+1

)
∈ En+1 = En × E

where ξin+1,n+1 is a random variable with law MK(ξ̂in,n, . ). From the above
construction we also observe that the terminal values

ξin = ξin,n and ξ̂in = ξ̂in,n (21)

of the above path-particles model coincide with the E-valued selection/muta-
tion Markov chain defined in (10). At closer inspection we observe that the
branch of ancestors only changes during the selection stage. These observa-
tions indicate that the path-valued particle model describes the evolution in
time of the genealogical ancestral lines associated to the marginal model (21).
It is convenient at this point to discuss the information contained in the an-
cestral lines. Recalling that each particle is itself a pair particle

ξin = (U i
n, V

i
n) ∈ E = S2,

it is natural to define the two components of each ancestors ξip,n at level p in
the ancestral line at time n
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ξin = (ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n) ∈ En = En+1 = (S × S)n+1

as a pair particle ξip,n = (U i
p,n, V

i
p,n) ∈ S2. In an earlier study [7] we have pre-

sented several strategies to analyze the asymptotic behavior of the occupation
measures of the genealogical tree

ηNn =
1
N

N∑

i=1

δ(ξi
0,n,ξ

i
1,n,...,ξ

i
n,n) −→ ηn

as the size of the population N → ∞. More precisely, from these results and
by (15), we have for any y ∈ S and fn ∈ Bb((S × S)n+1) the almost sure
convergence

lim
N→∞

1
N

N∑

i=1

fn(ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n)

= E
L
(π×K)2

(
fn((Yn+1, Yn), (Yn, Yn−1), . . . , (Y1, Y0))

∣∣ Yn+1 = y
)

as soon as η0 = δy ×K. Notice that in this situation the initial configuration
consists of N independent and identically distributed random pairs

ζi0 = ξi0 = (U i
0, V

i
0 ) = (y, V i

0 ) ∈ S

with common law δy × K. This means that (V i
0 )1�i�N are N independent

and identically distributed random variables with common law K(y, . ). From
this observation we conclude that the first component U i

0,n of all ancestors
coincides with y, that is we have that

ξi0,n = (U i
0,n, V

i
0,n) = (y, V i

0,n).

Furthermore by (16) we have for any hn ∈ Bb(Sn+1) the almost sure conver-
gence

lim
N→∞

1
N

N∑

i=1

hn(U i
0,n, U

i
1,n, . . . , U

i
n,n) = E

L
π

(
hn(Yn, Yn−1, . . . , Y0)

∣∣ Yn = y
)
.

4 Asymptotic analysis

This section focuses on the asymptotic properties of the interacting processes
defined in section 3.1 and section 3.2 as the time horizon and the size of the
systems tend to infinity. The first subsection is concerned with the stability
properties of the non linear measure valued process (18). We provide some
precise estimates of the decays to equilibrium in terms of the contraction co-
efficient associated to the Markov kernel L. In subsection 4.2 we analyze the
asymptotic behavior of the interacting Metropolis particle model and the cor-
responding genealogical tree-based algorithm as the population size tends to
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infinity. We connect this study with the structural and the stability properties
and non linear semigroup φ. We propose some useful uniform estimates with
respect to the time parameter for the convergence of the Metropolis model
towards the desired target distribution.

4.1 Stability properties

In this section we analyze the long time behavior of the Feynman–Kac dis-
tribution flow µn ∈ P(E). Our main result is to describe more precisely and
prove the first theorem 1 stated in the introduction. We start with two techni-
cal lemmas. The first one states that the target distribution is a fixed point of
this flow. The second lemma is concerned with the dynamical structure of the
semigroup φ. We describe the n-th iterates φn in terms of a pair of non homo-
geneous potential/Markov kernels (Gn,Mn). We will use these representation
formulae in section 4.2 to prove uniform convergence theorems for interacting
Metropolis models.

Lemma 2. The distribution (π ×K) is a fixed point of the flow φ, that is

φ(π ×K) = (π ×K).

Proof. By definition of φ we have for any f ∈ Bb(E)

φ(π ×K)(f) =
(
π ×K)(GMK(f)

)
/(π ×K)(G).

We complete the proof by noting that

(π ×K)
(
GMK(f)

)
=

∫
π(dv)L(v, du)K(v, dw) f(v, w)

=
∫

π(dv)K(v, dw) f(v, w) = (π ×K)(f). 
�

Lemma 3. For any µ ∈ P(E), n � 0 and f ∈ Bb(E) we have that

φn(µ)(f) = µ
(
GnMn(f)

)
/µ(Gn)

with the potential functions Gn and the Markov kernels on E defined by

Gn = Qn(1) and Mn(f) = Qn(f)/Qn(1)

with the convention (G0,M0) = (1, Id) and (G1,M1) = (G,MK) for n = 0
and n = 1. In addition for any n � 1 and x = (u, v) we have

Gn+1(u, v) = G(u, v)
dπLn

dπ
(v)

and
Mn(f)(u, v) = E

L
(π×K)2

(
f(Y1, Y0)

∣∣ (Yn+1, Yn) = (u, v)
)
.
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Proof. Since we have for any n � 0

φn(µ)(f) = µ
(
Qn(f)

)
/µ(Qn(1))

the first assertion is clear. To check that Gn and Mn have the form indicated
above we first observe that

Qn(f)(u, v) = E
K
(u,v)

(
f(Xn)

n−1∏

p=0

G(Xp)
)
.

By proposition 1 this yields that for any n � 1

Qn(f)(u, v) = G(u, v)
dπLn−1

dπ
(v) E

L
(π×K)2

(
f(Y1, Y0)

∣∣ (Yn+1, Yn) = (u, v)
)

from which we find that

Gn(u, v) = Qn(1)(u, v) = G(u, v)
dπLn−1

dπ
(v)

and for n � 1

Mn(f)(u, v) =
Qn(f)(u, v)
Qn(1)(u, v)

= E
L
(π×K)2

(
f(Y1, Y0)

∣∣ (Yn+1, Yn) = (u, v)
)
.

This ends the proof of the lemma. 
�

We are now in position to state and prove the main result of this section.

Theorem 3. Suppose there exists an integer m � 1 and a finite lm <∞ such
that

Lm(u, . ) � lm Lm(v, . ). (22)

Then, for any n � 0 we have the uniform estimate

β(Mm+n+1) = sup
µ1,µ2

‖φm+n+1(µ1)− φm+n+1(µ2)‖tv

� sup
v

∫
π(du)

∣∣∣∣
dLm+n(u, . )

dπLm+n
(v)− 1

∣∣∣∣ � 2lm β(Ln).

Proof. It is immediate from lemma 3 to check that φn(δx) = Mn(x, . ) for any
x ∈ E and n � 1. This yields that

sup
µ1,µ2

‖φn(µ1)− φn(µ2)‖tv � sup
x1,x2∈S

‖Mn(x1, . )−Mn(x2, . )‖tv = β(Mn).

To check the reverse inequality, one uses the decomposition

φn(µ1)(f)− φn(µ2)(f)

=
∫ (

Mn(f)(x1)−Mn(f)(x2)
) Gn(x1)
µ1(Gn)

Gn(x2)
µ2(Gn)

µ1(dx1)µ2(dx2).
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We conclude that for any n � 1

β(Mn) = sup
µ1,µ2

‖φn(µ1)− φn(µ2)‖tv.

Under our assumptions we also observe that for any y ∈ S and n � m we
have Ln(y, . ) ) πLn and for any y′ ∈ S

dLn(y, . )
dπLn

(y′) ∈ [l−1
m , lm].

Using lemma 3 we prove that for any pair (u, v) ∈ E = S2, f ∈ Bb(E) and
n � 0

Mm+n+1(f)(u, v)− (π ×K)(f)

=
∫

π(dy)K(y, dz)
(

dLm+n(y, . )
dπLm+n

(v)− 1
)
f(y, z).

This yields the estimate

∥∥Mm+n+1

(
(u, v), .

)
− (π ×K)

∥∥
tv

� 1
2

∫
π(dy)

∣∣∣∣
dLm+n(y, . )

dπLm+n
(v)− 1

∣∣∣∣

and the end of the proof of the first inequality is now clear. To prove the final
part of the theorem we use the easily checked inequality

∣∣∣∣
dLn+m(u1, . )

dπLm+n
(v)− 1

∣∣∣∣

�
∫

π(du2)
∣∣∣∣
∫ (

Ln(u1, du)− Ln(u2, du)
) dLm(u, . )

dπLm+n
(v)

∣∣∣∣.

From this equation and under our assumptions we get
∫

π(du1)
∣∣∣∣
dLn+m(u1, . )

dπLn+m
(v)− 1

∣∣∣∣

� 2β(Ln) sup
u∈S

∣∣∣∣
dLm(u, . )
dπLn+m

(v)
∣∣∣∣ � 2lm β(Ln).

This ends the proof of the theorem. 
�

We end this section with some comments on the stability properties pre-
sented in theorem 3. When an m-iterate Lm satisfies the regularity condition
(22) for some finite lm <∞ we first observe that

β(Lm) = sup
u,v∈S

‖Lm(u, . )− Lm(v, . )‖tv � (1− 1/lm).

From this observation we conclude that
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β(Ln) �
[n/m]∏

p=1

β(Lm) � (1− 1/lm)[n/m]

where [a] stands for the integer part of a number a ∈ R. This yields the
uniform estimate

β(Mn+1) = sup
µ1,µ2

‖φn+1(µ1)− φn+1(µ2)‖tv � 2lm β(Ln) � 2lm (1−1/lm)[n/m].

This estimate gives a way to calibrate in practice the convergence of the non
linear Feynman–Kac model to the desired limiting distribution. Nevertheless
this bound is rather crude and the regularity condition we have made on L
is often related to a compactness assumption on the state space S. For these
two reasons it may be more judicious in some instances to use the estimates
presented in theorem 3.

4.2 A Convergence theorem

In this final section we analyze the convergence of the interacting Metropolis
model and its genealogical tree structure when the size of the systems tends to
infinity. We recall that the path-particle approximating measures associated
to the genealogical tree based algorithm

ζin = (ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n)

described in section 3.2 are defined by

ηNn =
1
N

N∑

i=1

δ(ξi
0,n,ξ

i
1,n,...,ξ

i
n,n).

We also recall that their n-time marginals correspond to the particle approx-
imating measures associated to the interacting particle Metropolis model ξin.
They are given by

µNn =
1
N

N∑

i=1

δξi
n
.

These particle approximating distributions can be regarded as the occupation
measures associated to an interacting particle approximation of a class of
Feynman–Kac distribution flow. Next we quote without proof a preliminary
technical lemma which holds for general particle approximating models of this
type. The Lp mean error estimates presented here have been proved originally
in [6] for general Feynman–Kac evolution equations of the form (18) with a
selection transition kernel of the form (19) with ε = 0. The extension to a
more general class of transitions has been developed in [5]. The application
of these Lp-estimates for path-valued particles and related genealogical tree
based models can be found in [7]. In our context and using the dynamical
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structure properties of the semigroup φ presented in lemma 3 these estimates
take the following form. We slight abuse notations and we write E

(N)( . ), for
the expectation with respect to the law of the particle model ξin with initial
distribution µ⊗N0 .

Lemma 4. For any p � 1, n � 0 and for any f ∈ Bb(E) with ‖f‖ � 1 we
have

√
N E

(N)
(
|µNn (f)− µn(f)|p

)1/p � cp

n∑

p=0

sup
x1,x2

(
Gp(x1)/Gp(x2)

)2
β(Mp)

for some universal constant cp whose values only depend on the parameter
p � 1. In addition for any fn ∈ Bb(En) with ‖fn‖ � 1 we have

√
N E

(N)
(
|ηNn (fn)− ηn(fn)|p

)1/p � cp

n∑

p=0

sup
x1,x2

(
Gp(x1)/Gp(x2)

)2
.

This lemma connects the convergence of the particle approximating mea-
sures ηNn and µNn with the oscillations of the potential functions Gn and the
contraction properties of the Markov kernels Mn.

In theorem 3 we have presented two estimates of β(Mn) in terms of the
regularity properties of the pair (π, L). In particular when the m-iterate Lm

satisfies the inequality (22) for some finite constant lm < ∞ then we have
seen that

β(Mn+1) � 2lm (1− 1/lm)[n/m].

Our next objective is to analyze the oscillations of the non homogeneous
potential functions Gn. To this end we need to strengthen the regularity con-
dition we made on L. When (22) is met we recall that L has a unique invariant
measure ν = νL ∈ P(E).

Lemma 5. For any n � 0 and for any x, x′ ∈ E we have

Gn(x) � gnGn(x′).

In addition suppose there exists some integer m � 1 and a pair of finite
constants lm, kπ <∞ such that

Lm(u, . ) � lm Lm(v, . ) and
dν
dπ

(u)
dπ
dν

(v) � kπ (23)

where ν = νL is the invariant distribution of L. In this situation we have for
any n � (m + 1) the uniform estimate

Gn(x)/Gn(x′) � g l2m kπ .
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Proof. Using lemma 3 we have for any x, x′ ∈ E

Gn(x)
Gn(x′)

=
Qn(1)(x)
Qn(1)(x′)

=
E
K
x

(∏n−1
p=0 G(Xp)

)

E
K
x′
(∏n−1

p=0 G(Xp)
) � gn

This ends the proof of the first assertion. To prove the uniform estimate we
observe that for any u, v ∈ S

1
lm

dLm(v, . )
dπ

(u) � dν
dπ

(u) =
∫

ν(dy)
dLm(y, . )

dπ
(u) � lm

dLm(v, . )
dπ

(u).

Therefore for any n � 0 and u ∈ S we find that

l−1
m

dν
dπ

(u) � dπLn+m

dπ
(u) =

∫
πLn(dv)

dLm(v, . )
dπ

(u) � lm
dν
dπ

(u).

We conclude that for any n � 0 and u, v, u′, v′ ∈ S

Gn+m+1(u, v)
Gn+m+1(u′, v′)

=
G(u, v)
G(u′, v′)

dπLn+m

dπ
(v)

dπ
dπLn+m

(v′)

� g l2m
dν
dπ

(v)
dπ
dν

(v′) � g l2m kπ.

This completes the proof of the lemma. 
�

Theorem 4. Suppose the pair (π, L) satisfies the regularity conditions (23)
for some m � 1 and some pair of finite constant (lm, kπ). Then for any n � 0
and f ∈ Bb(E) with ‖f‖ � 1 we have the Lp-mean error estimates

E
(N)

(
|µNn+m+1(f)− (π ×K)(f)|p

)1/p � cp
aπ,L√
N

+ bL β(Ln)

for some universal constant cp < ∞ which only depends on the parameter p
and

aπ,L � (m + 1)g2m + 2m(gl3mkπ)2 and bL � 2lm.

In addition for any fn ∈ Bb(En) with ‖fn‖ � 1 we have that
√
N E

(N)
(
|ηNn (fn)− ηn(fn)|p

)1/p � cp d(n)

with
d(n) � (m + 1)g2m + 2

(
(n−m) ∨ 0

)
(gl3mkπ)2.

Proof. From the potential oscillation estimates presented in lemma 5 we ob-
tain the upper bound

n+m+1∑

p=0

sup
x1,x2

(
Gp(x1)/Gp(x2)

)2
β(Mp)

�
m∑

p=0

sup
x1,x2

(
Gp(x1)/Gp(x2)

)2 + (gl2mkπ)2
n∑

p=0

β(Mm+p+1).
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Since G0 = 1 and G1 = G we have

m∑

p=0

sup
x1,x2

(
Gp(x1)/Gp(x2)

)2 � (m + 1)g2m.

Using the contraction estimates stated in theorem 3 this implies that

n+m+1∑

p=0

sup
x1,x2

(
Gp(x1)/Gp(x2)

)2
β(Mp) � (m + 1)2m + 2lm(gl2mkπ)2

∑

p�0

β(Lp).

Noting that

∑

p�0

β(Lp) =
∑

q�0

(q+1)m−1∑

p=qm

β(Lp) � m
∑

q�0

β(Lm)q =
m

1− β(Lm)
� mlm

it is now evident that

n+m+1∑

p=0

sup
x1,x2

(
Gp(x1)

/
Gp(x2)

)2
β(Mp) � (m + 1)g2m + 2ml2m(gl2mkπ)2.

The end of the proof of the first estimate is now a simple application of
lemma 4 and theorem 3. The second estimate is proved along the same lines
of arguments and the end of the proof is now straightforward. 
�
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