WHAT ARE GENETIC ALGORITHMS? A
MATHEMATICAL PRESPECTIVE*

MICHAEL D. VOSEt

Abstract. This talk presents a “big picture” view of genetic search in a general,
abstract setting. It limits consideration to simple generational versions of time invariant
Markovian GAs (the next generation depends only upon the current population) with
the aim of uncovering, in general terms, their inherent emergent behavior. Along the
way, a few issues related to classical “GA theory” are touched upon so as to sketch the
context out of which the material presented in the remainder of the talk grew, and to
indicate a few of the problems it partially addresses.

1. Introduction. This talk concerns simple generational versions of
time invariant Markovian GAs (the next generation depends only upon the
current population). The introduction briefly touches upon a very few of
the many parts of the mosaic that, historically, has been referred to as “GA
threory”, so as to provide context and contrast for the remainder of the
talk. There results are presented which were motivated by, and partially
respond to, shortcomings of the classical theory. It is assumed throughout
that the audience is acquainted with the jargon commonly used in the field.

2. Intrinsic parallelism and no free lunch. Beginning with John
Holland (if not before) in his book “adaptation in natural and artificial
systems” (1975), the concept of schema was introduced as a mechanism
whereby genetic search could be analyzed and understood. Although sets
of elements, as opposed to individuals, were emphasized, Holland consis-
tently stressed the importance of creating new samples (elements not in the
current or past populations) throughout his development. To summarize
the central ideas:

e Collections of elements (schemata) in the population gain repre-
sentation in rough correspondence to their average fitness.
e An above average schema increases its share of trials exponentially.
e Genetic search rapidly explores sets of schemata of above average
performance which can be produced from each other by relatively
few crossovers, while not significantly slowing the overall search for
better optima.
Presented in harmony with this schema-based view was the conjecture that
by virtue of an element simultaneously belonging to a plethora of schemata
(which is what intrinsic parallelism refers to), a tremendous flow of infor-
mation is available to the genetic paradigm by which it gains tremendous
power.
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This latter point — power flowing from intrinsic parallelism — has been
laid to rest by the “no free lunch” theorem (Wolpert, D. and W. Macready,
1994). The NFL (no free lunch) theorem, roughly speaking, asserts that
all black box search (BBS) strategies have similar performance when con-
sidered over all test functions'. The basic principle is straightforward.
Suppose it is not a priori known what value will be returned by the objec-
tive function; this may be regarded as uncertainty as to what function g is
being optimized. By defining the value to be returned — in an arbitrary way
— when evaluating at a new point in the domain, one can arrange for any
behavior to be manifest while incrementally defining the objective function
as the search progresses. When all points in the finite domain have been
explored, the objective function will have thereby been defined, and no
uncertainty remains as to which function g was to be optimized.

Since the values returned as described above may be arbitrarily chosen,
a GA can be made — through suitable choices — to perform either better or
worse than any (other) BBS strategy applied to a given (typical) function
f.2 Of course, such performance might be manifest only when the GA is
applied to an objective function g which differs from f; the incremental
definition as described above need not result in the determination of f as
the function which the GA was optimizing. In its full generality, the NFL
theorem has the consequence that, on average, the effectiveness of genetic
search is no better than that achieved by enumeration: all BBS strategies
have equivalent performance; they merely exhibit it on different functions.3

3. Building blocks and the schema theorem. The belief in the
power of intrinsic parallelism spawned attendant conjectures, like, for in-
stance, the notion that mutation is an inferior search operator, and the idea
that high cardinality alphabets yield inferior results. For a period of time,
perspectives assuming the central importance of the number of schemata
which survived, or that were processed, or which simply existed (given some
particular representation), became, for better or for worse, dominant.

Popularized by David Goldberg in his book “Genetic Algorithms, in
Search, Optimization, & Machine Learning” (1989), the building block hy-
potheses is the assertion that highly fit, short, low order schemata are
recombined (“processed” by crossover) to lead to better performance (i.e.,
to create new, more highly fit elements). By the light the NFL theorem
sheds, a GA will work well on some problems, poorly on others, and on
average no better than enumeration. Under that light, the building block
hypotheses might best be interpreted as a conjecture as to what kinds of
functions a GA would perform well on: those for which new and better

lfrom a finite domain X to a finite codomain Y.

2Provided performance is measured with respect to the sequence of values encoun-
tered during search, ignoring repeats.

3There are, naturally, conditions and technicalities; they do not, however, detract
from the negative conclusions about the power of intrinsic parallelism.
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elements will be produced, by crossover, from highly fit, short, low order
schemata.

This leads naturally to the question: What new elements are produced
by a genetic algorithm? The schema theorem is an inequality giving a
lower bound on the expected number of instances of schemata in the next
generation. The lower bound is zero, however, for all schemata not already
present in the current population. A little thought will reveal that which
elements outside of the current population become members of the next
generation is crucial to the course of genetic search. To worry about how
many within the current population survive, are processed, or exist, is to
miss an important point.

A devastating consequence follows from the fact that the schema the-
orem does not nontrivially address what proportions, of which strings,
schemata are expected to be comprised. Without such knowledge, sche-
mata utilities become unknown in the next generation. Consequently, the
schema theorem’s ability to predict — even about strings within the current
population — evaporates, in general, after a single generation.

Apparently neglected for some period of time, a paper by Bridges
and Goldberg (“An analysis of reproduction and crossover in a binary-
coded genetic algorithm”) remedied that situation in 1987. A formula
was presented which gave the expected representation of every schema in
the next generation. Although limited to proportional selection, one point
crossover, and zero mutation, their result was progress, in that an inequality
had been sharpened to an equality, and the focus on “how many schemata?”
had been broadened — in terms of proven analytical results — to include the
question “which new schemata?”.

4. Sampling error and facetwise analysis. Facetwise analysis (ig-
noring or eliminating problem aspects; treating the details of their inter-
action as inconsequential) emerged as a popular method to reason (albeit
heuristicly) in the face of complexity and uncertainty. This practice was
fostered by the reality that genetic algorithms are stochastic and nonlinear.

In circumstances where the building block hypothesis was thought ap-
propriate, the idea arose that the GA’s inherent mechanism could be an
internal source of sampling error, potentially interfering with anticipated
outcomes. Selection, for example, might choose unrepresentative parents,
mutation or crossover could produce unrepresentative offspring. From the
schemata perspective, the population size might be too small, setting the
stage for an unrepresentative estimate of schemata utilities. Considerations
like these spawned alternative operators less prone to sampling error, and
also influenced theories of population sizing. Taking the limit, as popula-
tion size goes to infinity, ameliorates these concerns, however. The resulting
dynamics are deterministic and equivalent to that induced by the function
which produces the expected next generation.

In the field of genetic algorithms, this methodology was initiated by
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Holland and carried forward by his students. For example, the central ideas
summarized in section 2, as well as the schema theorem, are statements
about expectations or are justified by an implicit appeal to a trajectory of
expectations (as, for example, the exponential increase in above average
schemata). Not to suggest anything amiss with facetwise analysis, it is
nevertheless fair to say that for a period of time the description of what,
precisely, it established, had too frequently been left to the imagination or
treated in a cavalier manner. The following subsections illustrate fallacious
conclusions based on interpretations of “results” of “GA theory” which too
commonly are made.

5. Static schema analysis. Consider the objective function
{(00,2.7),(01,1.0),(10,1.0),(11,1.1)} and assume the crossover rate X is
0.6. The nontrivial schemata, with their associated fitness, are

0x «—— 1.85
*0 +— 1.85
1x «— 1.05
x1 +— 1.05

The optimal element is over 145% more fit than any other, and the schemata
containing it (0x and *0) are over 76% more fit than their competitors; there
is absolutely no deception (the schemata containing 00 win every “compe-
tition”). Schemata gain representation in correspondence to their fitness,
and above average schemata increase exponentially; thus 0x and %0 — if
initially present in the population — will quickly come to dominate. These
schemata cannot be disrupted by crossover (they are too short), so in the
absence of mutation, the exploratory operators cannot interfere with the
exploitation of these building blocks. Sampling error is a potential problem,
but that can be tamed by choosing population size sufficiently large.

It can safely be concluded in this case that given a zero mutation rate
and an initial population containing fixed nonzero proportions of every
element, a GA will with high probability converge to the optimal, provided
the population size is not too small.

The conclusion of the previous paragraph sounds reasonable. It is false
however. In fact, there exists a function h of the crossover rate X which
increases to infinity as X increases to 1.0, such that the previous paragraph
is false with respect to the function {(00, A(X)), (01,1.0), (10, 1.0), (11,1.1)}.

It is interesting to note, for this example, what the problem is not.
The computation of schema utilities with respect to a uniform population
(equal representation of strings), instead of with respect to the initial pop-
ulation from which convergence to a suboptimal is likely, is not to blame.
Initial populations exist for which the initial conditions hold with respect
to nonuniform schema utilities*, yet convergence to a suboptimal remains

4The optimal element remains over 145% more fit than any other, and the schemata
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the likely event (even though fixed nonzero proportions of every element
are initially present and the population size may be arbitrarily large). The
principal behind the example is the fact that the schema theorem’s ability
to predict — even about strings within the current population — evaporates,
in general, after a single generation.

6. Neglecting finite population effects. Because taking the limit,
as population size goes to infinity, yields a deterministic system whose
dynamics coincide with that induced by the function which produces the
expected next generation, the infinite population model can be used to
determine the expected behavior of a genetic algorithm.

The conclusion of the previous paragraph is slippery, because the state-
ment is so vague. Following are specific interpretations, each of which is a
false assertion.

e The path followed by the infinite population model is the expected
path followed by a GA.

e If the infinite population model converges to a population g, then ¢
is representative of the GA’s steady state distribution (as a Markov
chain).

o If the infinite population model indicates that certain elements are
likely to emerge in early generations, then it is probable for these
elements to likewise emerge during genetic search.

This list of errors is not exhaustive, but these are not uncommon
misconceptions.

Equally illusory is the ignis fatuus that because such notions are false,
the infinite population model is not of fundamental importance to the the-
ory of genetic search.

7. Convergence proofs. Genetic algorithms have been touted as
robust optimization methods, similar to simulated annealing in some sense.
There are differences of course, one of which being that whereas simulated
annealing has a global convergence theory, it is arguably the case that an
unimpeachable convergence theory for the simple genetic algorithm does
not exist.

Even though there are a variety of “convergence results”, those which
apply to a simple GA without requiring its alteration amount to little more
than the following when distilled to their essence:

Visit each state, remembering the best state encountered.
Therefore, as search progresses and every state is eventu-
ally encountered, the best state so far visited will converge

to the best state which could be visited — the global opti-
muin.

containing it (0* and %0) remain over 76% more fit than their competitors when nonuni-
form utilities are computed with respect to the initial population.
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Unless severe restrictions are placed on the objective function, this
virtual tautology, suitably dressed in the language of Markov chains, is the
current state of the art — at least in terms of proven analytical results. To
be fair, the convergence theory for simulated annealing is, from a practical
applied perspective, hardly better.

In light of the no free lunch theorem, this may very well be as it
should be. But the NFL theorem only addresses the sequence of values
encountered during search, ignoring repeats. It does not prohibit a theory
which could relate observed behavior to mathematical objects determined
by the search strategy and the objective function. A nontrivial convergence
theory is beginning to appear in this direction, though it speaks to inherent
emergent behavior and not to function optimization.

8. Framework. As intimated in the introduction, the majority of
theoretical work on genetic search has been facetwise (which, again, is not
to suggest anything amiss with the practice of facetwise analysis). It was
not until recently that more holistic attempts to deal with the complexities
of genetic search were initiated in an attempt to address the shortcomings
of incomplete information. As will become apparent, schemata are left
behind, playing no part in the development. This is not to suggest that
they have no role to play, but their natural place in the general landscape
has yet to be discovered.

The view presented is general and abstract, dealing with a class of
black box search strategies referred to as Random Heuristic Search (RHS).
The simple genetic algorithm is a special case of the algorithms discussed.
The advantage of this approach is to focus on basic principles by which
inherent emergent behavior can be initially approached before delving into
specific details. Even so, the analysis proceeds from simple objects encoding
complete information, rather than a starting point based on preconceived
(traditional) designs or assumptions about what may safely be ignored.

9. Representation. Random heuristic search can be thought of as
an initial collection of elements P, chosen from some search space 2 of
finite cardinality n together with some transition rule 7 which from P; will
produce another collection P;,;. In general, 7 will be iterated to produce
a sequence of collections

P55 P55 P

The beginning collection P, is referred to as the initial population, the first
population (or generation) is P;, the second population (or generation) is
P,, and so on. Populations are multisets.

Not all transition rules are allowed. Obtaining a good representation
for populations is a first step towards characterizing admissible 7. Define
the simplex to be the set

A = {<zoy. 0y Tp1>: 1Tz =1, z; >0}
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where angle brackets <---> denote a tuple which is to be regarded as a
column vector and 1 denotes the column vector of all 1s. An element p of
A corresponds to a population according to the following rule for defining
its components

p; = the proportion in the population of the j th element of 2

For example, if Q@ = {0,1,2,3,4,5} then n = 6. The population
{1,0,3,1,1,3,2,2,4,0} is represented by p =< .2,.3,.2,.2,.1,.0 >, given
that

coordinate corresponding element of 2 percentage of P,
Do 0 2/10
D1 1 3/10
Do 2 2/10
D3 3 2/10
Ds 5 0/10
The cardinality of each generation Py, P,... is a parameter r called

the population size. Hence the proportional representation given by p un-
ambiguously determines a population once r is known. The vector p is
referred to as a population vector. The distinction between population
and population vector will often be blurred, because the population size is
usually fixed. In particular, 7 may be thought of as mapping the current
population vector to the next.

To get a feel for the geometry of the representation space, A is shown
in the following sequence of diagrams for n equals 2, 3, and 4. The figures
represent A (a line segment, triangle, and solid tetrahedron). The arrows
show the coordinate axes of the ambient space (the projection of the coordi-
nate axes are being viewed in the second figure, which is three dimensional,
and in the last figure where the ambient space is four dimensional).

In general, A is a tetrahedron of dimension n — 1 contained in an
ambient space of dimension n. Note that each vertex of A corresponds to a
unit basis vector of the ambient space; A is their convex hull. For example,
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the vertices of the solid tetrahedron (right most figure) are at the basis
vectors <1,0,0,0>,<0,1,0,0>, <0,0,1,0>, and <0,0,0,1>. Assuming
that € is the ordered set {0,1,2, 3}, they correspond (respectively) to the
following populations: r copies of 0, r copies of 1, r copies of 2, and r copies
of 3. The center diagram will later be used as a schematic for general A,
representing it for arbitrary n.

It should be realized that not every point of A corresponds to a finite
population. In fact, only those rational points expressible with common de-
nominator r correspond to populations of size r. They are the intersection
of a rectangular lattice of spacing £ with A:

1 1
-X; = —{<zo,...,Tp1>:2; €Z,2; >0, 1Tw=r}
r r

where Z denotes the set of integers. As r — 00, these rational points be-
come dense in A. The next theorem makes this precise. Since, without
a priori knowledge of r, a rational point may represent arbitrarily large
populations, a point p of A carries little information concerning population
size. A natural view is therefore that A corresponds to populations of inde-
terminate size. This is but one of several useful interpretations. Another is
that A corresponds to sampling distributions over : since the components
of p are non negative and sum to 1, p may be viewed as indicating that ¢
is sampled with probability p;.

THEOREM 9.1. Let p € A denote an arbitrary population vector for
population size r, and let £ denote an arbitrary element of A. Then

sup inf [l¢ —pll = O(1/v7)

where the constant (in the “big oh”) is independent of the dimension of A.

In summary, random heuristic search appears to be a discrete dynam-
ical system on A through the identification of populations with population
vectors. That is, there is some transition rule

T:A—A

and what is of interest is the sequence of iterates beginning from some
initial population vector p

p, 7(p), T(p),

This view is incomplete however, because the transitions are in general
nondeterministic and not all transition rules are allowed. In the next sec-
tion the stochastic nature of 7 will be explained and admissible 7 will be
characterized.
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10. Nondeterminism. Given the current population vector p, the
next population vector 7(p) cannot be predicted with certainty because 7
is stochastic. It is most conveniently thought of as resulting from r in-
dependent, identically distributed random choices. Let G : A - A be a
heuristic function (heuristic for short) which given the current population
p produces a vector whose ith component is the probability that the ith
element of (2 is chosen (with replacement). That is, G(p) is that probability
vector which specifies the sampling distribution by which the aggregate of
r choices forms the next generation. A transition rule 7 is admissible if it
corresponds to a heuristic function G in this way. The following diagram
depicts the relationship between p, A, €2, G, and 7 through a sequence of
generations (the illustration does not correspond literally to any particular
case, it depicts how transitions between generations take place in general):

A
. ———I—A—> . ————T———e- . ——~—7-———> .
g g l g t
sample sample sample
N \ VAR . /
Q. N N

The triangles along the top row represent A, one for each of four gen-
erations. Each A contains a dot representing a population. These same
populations are also represented in the second row with dots; 7 maps from
one to the next. The transition arrow for 7 is dashed to indicate that it is
an induced map, computed by following the solid arrows. The lower row
of dots represent images of populations under G. Below each is a curve,
suggesting the sampling distribution over {2 which it represents. The line
segments in the bottom row represent {2.

The transition from one generation (upper dot) to the next proceeds as
follows. First G is applied to produce a vector (lower dot) which represents a
sampling distribution (curve) over 2 (line segment). Next, r independent
samples with replacement (represented in the diagram by “sample”) are
made from 2 according to this distribution to produce the next generation.

For example, let 2 = {0, 1,2,3} and suppose the heuristic is

g(p) = <07p172p213p3> /zzpz

Let the initial population be p =< .25,.25,.25,.25 >. Because G(p) =
<0,1/6,1/3,1/2 >, the probability of sampling 0 is 0, of sampling 1 is
1/6, of sampling 2 is 1/3, and of sampling 3 is 1/2. With population
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size r = 100, the transition rule corresponds to making 100 independent
samples, with replacement, according to these probabilities.

A plausible next generation is therefore 7(p) =<0, .17,.33, .50 > . Note
that the sampling distribution G(p) used in forming the next generation
7(p) depends on the current population p. Going one generation further,
the new population is 7(p) and the sampling distribution for producing the
next generation is given by G(7(p)) ~<0,.07,.28,.64 >. It is therefore
plausible that the second generation could be 72(p) = <0,.07,.28,.65>.

Note the conceptually dual interpretation of A. It serves as both the
space of populations and as the space of probability distributions over (2.
The first natural question is: What is the expected next generation?

THEOREM 10.1. Let p be the current population vector. The expected
next population vector is G(p).

A more specific question is: Given current population p, what is the
probability that the next generation is ¢? Let § € [0, 1] be defined by the
following form of Sterling’s theorem (for z € Z¥)

! = (E)z\/%exp{

€

123:1+ 9}

The function 6(x) appears in the next theorem.
THEOREM 10.2. Let p be the current population vector. The probabil-
ity that q € %X,Tl is the next population vector is

G(p);)™
H((P) _

(qu)'
J 1
o {_r 2 an ggp)j - Z(ln 2mrg; + 12rg; + 9("‘%’)) +0(n r)}

where summation is restricted to indices for which q; > 0 and where r is
the population size.

Theorem 10.2 provides qualitative information concerning probable
next generations. The expression

q;
il
Z g; 1n g(p)]

is the discrepancy of ¢ with respect to G(p) and is a measure of how far
q is from the expected next population G(p). Discrepancy is nonnegative
and is zero only when q is the expected next population. Hence the factor

exp{—qujln g—z%)—]—}

occurring on the right hand side of theorem 10.2 indicates the probability
that g is the next generation decays exponentially (with constant —r) as
the discrepancy between ¢ and the expected next population increases.
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12. Summary. As should be now apparent, the infinite population
model — i.e., the expected next generation operator G — is of fundamental
importance to the theory of random heuristic search in general, and to
simple genetic search in particular (since it is a special case of RHS).

First, it is identical to the heuristic function which specifies the sam-
pling distribution governing the formation of the next generation. In other
words, it repairs the deficiencies inherent in the schema theorem by giving
complete information about the probabilities with which elements occur in
the next generation.

Second, it emerges as the defining component of the transition ma-
trix by which RHS is expressed as a Markov chain. Anything that could
ever be proved about simple genetic search therefore corresponds to some
property of G, which argues for the investigation of G as a mathematical
object. Abstractly, the heuristic corresponding to the simple GA may be
determined by considering the following procedure. This procedure serves
as the definition of what the terms “simple genetic search” and “simple
genetic algorithm” (SGA) refer to:

1. Generate a random population z containing r fixed length binary
strings.
2. Choose, with replacement, parents u and v from z (by any fixed
selection scheme).
e Cross u and v (by any fixed crossover rate and type) to pro-

duce children u’ and v'.
e Mutate u' and v’ (by any fixed mutation rate and type) to

produce u" and v".
e Keep, with uniform probability, one of u" and v" for the next
generation.

3. If the next generation is incomplete, repeat step 2.
4. Replace z by the new generation just formed and go to step 2.

The corresponding heuristic is abstractly defined by
Gi(z) = Pr{i is the result of step 2 | z is the current population}

Concretely, G is explicitly known for a fairly wide range of operators (pro-
portional, ranking, or tournament selection used with arbitrary mutation
masks and arbitrary crossover masks). Moreover, a wealth of information
is beginning to emerge as the role played by the Walsh transform in the
theory of the SGA’s heuristic is becoming clear. In this theory, the Walsh
transform does not, however, appear to have anything to do with schemata,
deception, or representing the objective function (the interested reader is
referred to chapter 2, contributed by Vose and Wright, in the book “Genetic
Algorithms for Pattern Recognition”, 1996).

The remainder of this talk is aimed at uncovering, in general terms,
the inherent emergent behavior of random heuristic search. Towards that
end, presentation of the specific details of G (which would specialize it
to the simple genetic algorithm) will be postponed in favor of pursuing
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The expression

1
Z <ln V2rrg; + 12rq; + 6(rg;) )

measures the dispersion of the population vector g. A minimally disperse
population is homogeneous (r identical population members) and corre-
sponds to ¢ = e; for some ¢ (where e; is the 7th column of the identity
matrix). The corresponding dispersion is O(Ilnr). If n > r, a maximally
disperse population has no duplication (¢ has r nonzero components which
are all 1/r) and dispersion r. The factor

1
exp {—Z (ln 2nrq; + Torg; + 6(rg;) )}

occurring on the right hand side of theorem 10.2 indicates the probability
that g is the next generation decays exponentially with increasing disper-
sion.

The combined effect of the two influences of discrepancy and dispersion
is that random heuristic search is biased towards a less dispurse population
near the expected next generation.

11. Markov Chain. The characterization of random heuristic search
completed in the previous section was in terms of the sequence

p, 7(p), 7(p),

produced by sampling 2. This can be thought of as a sequence of random
vectors (p may be regarded as the random vector which with probability
one assumes only the single value p). Moreover, each random vector in the
sequence depends only on the value of the preceding one. Such a sequence
is called a Markov chain. The matrix defined by

H (g(P)J "
(rg;)!
for p,q € lX’

r, is the transition matriz of the Markov chain. By theo-
rem 10.2, Qp,q is the probability that 7(p) = ¢. The definition of 7 in the
previous section rests ultimately on {2 as the induced map

sample Q

G(p)

This conceptualization can now be replaced by an abstraction which
makes no reference to 2 at all: from current configuration p, produce
g = 7(p) with probability Q, ,.



WHAT ARE GENETIC ALGORITHMS? 263

consequences suggested by the structural properties of the framework just
presented.

13. Large populations. This section is mainly about the relation-
ship between random heuristic search and its heuristic, as population size
goes to infinity. A consequence of the results obtained is a view of a simple
genetic algorithm’s transient and asymptotic behavior in the large popula-
tion case, given a well behaved heuristic.

Before proceeding, RHS algorithms are first classified according to the
behavior of G. An instance of random heuristic search is focused if G is
continuously differentiable and for every p € A the sequence

p, G(p), G(p),

converges. In this case G is also called focused. In terms of search, the latter
condition means that the path determined by following at each generation
what 7 is expected to produce will lead to some state z. By the continuity
of G, such points z satisfy G(z) = z and are therefore fized points of G.
In the case of the simple genetic algorithm, there are no known counter
examples to G being focused when the mutation rate is less than 1/2.
Moreover, Vose and Wright have proved that G is focused if proportional
selection is used, the mutation rate is small, and the objective function has
low epistasis.

An instance of random heuristic search is hyperbolic if G is continuously
differentiable and its differential dG, at  has no eigenvalues of unit modulus
when z is a fixed point. In this case G is also called hyperbolic. In the case
of the simple genetic algorithm, it has been proved by Eberlein and Vose
that if proportional selection is used, then the set of fitness functions for
which G is hyperbolic is dense and open (this was Mary Eberlein’s Ph.D.
dissertation). Generic hyperbolicity is believed to be the general case.

An instance of random heuristic search is ergodic if the Markov chain
which represents it is ergodic for all » > 0. In this case G is also called
ergodic. In the case of the simple genetic algorithm, ergodicity is insured
by positive mutation.

The remainder of the talk deals with focused, hyperbolic, ergodic ran-
dom heuristic search. It will turn out that fixed points are particularly
relevant to both the transient (short term) and asymptotic (long term)
behavior.

14. Transient and steady state behavior. The next theorem
shows as r — oo that, with probability converging to 1, the transient
behavior of a population trajectory converges to the path determined by
iterates of G, and the initial transient occupies a time span diverging to
infinity.

THEOREM 14.1. Given k > 0, € > 0 and v < 1, there exists N such
that with probability at least v and for all 0 <t <k

r>N = |ri(z) -G (z)| <e
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Theorem 14.1 suggests (for large r) that some aspects of steady state
behavior may be manifestations of transient behavior when G is focused.
Let 7 be the probability measure corresponding to the steady state distri-
bution of random heuristic search,

m(d) = ) =z [ve 4]

velXxk

where z is the steady state distribution (probability vector) satisfying
T = 2T Q and [ezpression] denotes 1, if ezpression is true, and 0 other-
wise. Thus 7(A) represents the proportion of time that populations spend
in A, averaged over infinitely many generations. Since 7 is, for each pop-
ulation size r, a probability measure over the compact set A, a theorem
of Prokhorov implies that every infinite sequence of 7 (corresponding to a
sequence of r) has an infinite subsequence which converges weakly to some
probability measure 7’. Passing to the subsequence, this means that for
every continuous function A : A — [0, 1],

/hdw — /hdw'

Let & be the set of fixed points of G. The next theorem provides a partial
answer to how transient behavior influences steady state behavior.
THEOREM 14.2. Suppose G is focused and ergodic. For every open set
U containing S,
lim n#(U) = 1

r—00

In the large population case, theorem 14.2 indicates where population
trajectories predominately spend time; near fixed points of G. Moreover,
theorem 14.1 indicates that a trajectory from x moves towards a fixed point
of G by approximately following the path z,G(z),G?(z),... The the next
section investigates how quickly this path approaches a fixed point.

15. Logarithmic convergence. The definition of logarithmic time
to convergence faces several obstacles. Perhaps the most obvious is the
existence of a sequence of initial populations along which the time to con-
vergence diverges to infinity. To circumvent this difficulty, let a probability
density p be given over A and define the probability that the initial popu-
lation is contained in A as

/ p dA
A

where )\ is Lebesgue measure. The task is then to show that for every p
and every € > 0, there exists a set A of probability at least 1 —& such that if
the initial population is in A, then the time to convergence is logarithmic.
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The next difficulty is that, typically, a orbit under G will never reach
the limit it is approaching. It is natural, therefore, to let 0 < § < 1 denote
how close trajectories are required to get to the limit, and then to require
that they do so, within O(—1n4§) generations.

In summary, logarithmic convergence is defined as follows: for every
probability density p and every £ > 0, there exists a set A of probability
at least 1 — ¢ such that for all z € A and 0 < § < 1, the number &
of generations required for ||G*(z) — w(z)|| < & is O(—1né), where w(z)
denotes the limit of Gt(z) as t — oo.

The next theorem makes use of the following technical condition. G
is said to be regular if whenever C' has measure zero, then so does the set
G~1(C). In the case of the simple genetic algorithm, Vose and Wright have
proved that G is regular if the crossover rate is less than 1 and the mutation
rate is strictly between 0 and 1/2 (provided that every string has positive
selection probability).

THEOREM 15.1. If G is focused, hyperbolic, and regular, then G is
logarithmically convergent.

16. Punctuated equilibria. Assuming G is focused, hyperbolic, er-
godic, and regular, the view of RHS behavior that emerges for the large
population case is the following.

As r — 00, and then with probability converging to 1, the initial
transient of a population trajectory converges to following the path deter-
mined by iterates of G, and that transient occupies a time span diverging to
infinity. Consequently, populations will predominately appear near some
fixed point w of G since the path z,G(z),G?(z), ... approaches a fixed point
relatively quickly.

This appears in contrast to the fact that the RHS is an ergodic Markov
chain; every state must be visited infinitely often. This is reconciled in
punctuated equilibria: Random events may eventually move the system to
a population z’ contained within the basin of attraction (with respect to the
underlying dynamical system corresponding to G) of a different fixed point
w'. Since the behavior of random heuristic search is time independent,
the anticipated behavior follows the trajectory z',G(z'), G%(z'),... — as if
z' were the initial population — to reach a new temporary stasis in the
vicinity of w'.

This cycle of a period of relative stability followed by a sudden change
to a new dynamic equilibrium is the picture provided by the results of this
section. It is an open question as to how large r must be before these
qualitative aspects of RHS are typically exhibited in the general case.

It is of interest that this phenomenon (punctuated equilibria) has been
observed in practice when using GAs on optimization tasks. It is not un-
common for a GA to be described as undergoing a period of relative sta-
bility, after which it “discovers” a better solution which transforms the
population. Neither is it uncommon for several such cycles to be manifest
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during long optimization runs. These observations are compatible with
the conjecture that simple genetic search, as commonly used in practice, is
influenced by the fixed points of the underlying dynamical system (corre-
sponding to G on A).

17. Empirical evidence. This section considers a few computational
examples for the simple genetic algorithm. Unlike the previous section
whose results were based on arbitrarily large populations, the phenomena
documented here were observed subject to a constraint on r. These exam-
ples took r &~ y/n. Further empirical study is required (or better theorems
need to be proved) to sort out the required linkage between search space
size and population size in order for the behavior presented below to typ-
ically emerge. The conjecture that a logarithmic coupling (or some power
of a log) might be appropriate for a wide class of objective functions is not
incompatible with the empirical evidence.

When considering emergent behavior, perhaps the most fundamental
question is: Where in A is the simple genetic algorithm at time ¢ ? Since the
state space A has dimensionality too large for direct visualization (except
in the case ¢ = 2), alternate means of monitoring the progression from
one generation to the next are required. A primitive means of reducing
dimensionality is by measuring distance from populations to a reference
point, say to the center 1/n of A. The following graph shows what this looks
like for string length 4, a random fitness function, (one-point) crossover
rate 0.8, and mutation rate 0.01. Motivated by theoretical observations
following theorem 10.2, the vertical axis measures distance as discrepancy,

distance(z,y) = Z z;In I3
Yj

and the horizontal axis spans 1,000 generations. This example has popula-
tion size 4 and corresponding state space of 3,876 populations in a simplex
of dimension 15. The initial population p is random, and subsequent gen-
erations are produced by 7.
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Certainly populations equidistant from 1/n (i.e., with equal entropy)
need not be near each other, but nevertheless there may be relatively few
regions where the SGA is spending most of its time. One natural way to
explore this is to locate regions where it seems reasonable that the SGA
could be spending time, and then plot distance from the current population
to such a place. The result should be essentially flat since at a typical
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generation (abscissa), the distance to one of these regions (ordinate) should
be small.

Candidate regions are suggested by the discussion following
theorem 10.2. Likely next generations are strongly related to the expected
next generation. Near a fixed point, expected behavior is for the next gen-
eration to be near the current one, so fixed points of G may indicate areas
where there is little pressure for change. It is plausible that the SGA could
spend more time near such regions of A.

One method of locating attracting fixed points is by iterating G. The
following series of graphs shows generations (horizontal) versus distance
to the stable fixed point to which iterates of G converge (vertical). The
initial population p is random, and subsequent generations are produced
by 7. The fitness function is random, a (one-point) crossover rate of 0.8
and mutation rate of 0.01 is used, and 1,000 generations are spanned. The
string length £ begins at 4, increasing by 2 with each graph. The population
size is approximately /n.
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Given the complexity of these graphs, one might suspect fixed points of
G do not help explain emergent behavior after all. However, the possibility
remains that the SGA is particularly adept at seeking out fixed points of
G, more so than is the method of iterating G to locate them. The plateaus
in these graphs suggest populations which could be concentrated in some
localized region of A, perhaps a region near a fixed point not found by
iterating G. Extending the domain of G to the real affine space containing
the simplex, using a minimization method to locate fixed points — whether
stable or not — and then measuring distance to the nearest fixed point
results in the following.
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The majority of fixed points are unstable, outside the simplex, and
near a vertex. The instability of population p within A near such a fixed
point may be counterbalanced by the preference of RHS for populations
having low dispersion. Another counterbalancing influence is the coarseness
of the lattice %X ;. of points available to populations for occupation. Since
G(p) is nearly p, the influence of discrepancy favors the next generation
being identical to p, and this influence grows with increasing coarseness of
the lattice. Even though overall the graphs are much lower, indicating a
typical population’s proximity to some fixed point, a few regions remain far
from any fixed point. The next series of graphs is as the previous, except
the fixed point equations were considered over complez space.
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All graphs exhibit small height now that complex fixed points are in-
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cluded. Even though these examples are anecdotal, they are representative
of several thousands of random cases.

It should not be supposed that irregularities in the graphs indicate
an inability of fixed points to partially explain behavior. Finding fixed
points is a difficult task exacerbated by high dimensionality which increases
exponentially with £. It is unlikely that all relevant fixed points have been
found. v
On the other hand, it is equally uncertain whether fixed points will
continue to exert such a pronounced influence over emergent behavior as
string length increases. Uncertainty revolves around the linkage between
population size and string length. Whereas the large population case is
fairly well understood (there the answer is yes), the small population case
is not, and it is precisely that case which is the more interesting one from
the point of view of search/optimization.

A natural question is whether the graphs presented in this section
would retain their general appearance if, while leaving the fitness functions
unchanged, alternate initial populations or different seeds for the random
number generator were used. The answer is typically yes; sufficiently many
fixed points corresponding to each fitness function were found so that popu-
lations are generally nearby. This begs the question of whether, with many
fixed points available, a random point in A would be close to one of them.
If that were the case, then these graphs have little meaning. The following
sequence of graphs address this issue. Distance is measured to the nearest
fixed point from random points having the same entropy distribution as
populations in the previous graphs.

8
6

4 z

2 . s

0 e -~ et

] 1 M ) N I d 0 v 1
g 200 400 600 800 1000
4
2] e .
0 :

I ] I v |
g0 200 400 .. 1000
4]

2]

0-
| v ] v | N | v 1 v |
0 200 400 600 800 1000

18. Summary. The evidence presented seems to indicate that simple
genetic search is particularly adept at locating regions in the vicinity of
fixed points of G. This picture is conjectural, however, since no theorems
were proved. Although smaller population sizes, r = O(Inn) for example,
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may seem more realistic, there is insignificant difference between 3log, n
and +/n for the string lengths considered (3 < ¢ < 9).

While different in important respects, the results presented here are
reminiscent of the large population case. The increased influence of the
dispersion term (in theorem 10.2) on transition probabilities, given smaller
r, may contribute to increased importance of unstable and complex fixed
points located near vertices of A. Because G is continuous, such fixed points
locate regions where there is decreased pressure for change. The natural
preference of RHS for low dispersion may counterbalance the instability of
the underlying dynamical system (corresponding to G) for populations in
such regions. Moreover, the coarseness of the lattice of points available for
occupation also serves to counterbalance the instability.

19. Small populations: Signal and noise. The previous consid-
erations may seem, from a practitioner’s viewpoint, academic. There are
several reasons for this. One is that it is the initial transient (or first few)
of the small population case that is of primary interest. Another is that
s/he has a problem to solve, and wants an answer: Should a GA be used?
If genetic search is being used, then how can it be made effective?

In general, I believe it can be shown that categorical answers to ques-
tions like these are of comparable hardness to finding the optimum by
enumeration (again, there is no “free lunch”). The best one can hope for is
results concerning a specific class of functions, and even then, the problem
of deciding whether a general function belongs to the class is a hard prob-
lem. Nevertheless, it is quite likely that simple qualitative results providing
insight into the general mechanism of RHS for all population sizes are near
at hand.

Consider, for example, the following asymptotic result (as r — o0).
Let ¢ = G(p) and let C be an n by n — 1 matrix having orthonormal
columns perpendicular to h = <,/qo,. .-, /qn-1 >.

THEOREM 19.1. If G maps into the interior of A, then for any open
subset U of 1+,

Pr{r(p) € G(p)+U//7 } = (2m) ("= D/2 / eV /2 dy + o(1)
CTdiag(h)~1U

If an error term was provided for this result (i.e., an explicit form for
“o(1)” in terms of r and n), a fairly simple decomposition of 7 into a deter-
ministic signal component, given by G, and a stochastic noise component,
given by the multinormal distribution, would result.

If one does not mind the multinomial distribution, theorem 10.2 shows,
for any r, that 7(p) is given by a single sample from a multinomial distri-
bution having mean G(p). Again, G(p) emerges as the deterministic signal.
The stochastic noise component is given by the multinomial distribution.

Note how, in this decomposition into signal and noise, the signal is
invariant in the sense that it is independent of population size. The noise
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is partially characterized by the following theorem.
THEOREM 19.1. Let £ denote expectation.

E(lm(p) = G(0) 1) = (1= 11 G(p) II*)/-

What complicates the small population case is threefold. First, as r
decreases, the noise component increases. Second, the relative influence
of dispersion grows. Third, the lattice of allowable values for population
vectors, % X, becomes increasingly coarse, as fewer points, located in lower
dimensional faces of A, become available for occupation. Genetic search
is conducted in a low dimensional “skeleton” of A which constrains the
system’s ability to follow the signal.

It is of interest to understand which directions, or pathways through
this skeleton, are more probable than others. In particular, one would like
to know what strings are typically encountered while traversing the path-
ways. At this point, there are no proven simple answers (there is, of course,
the Markov chain, but that quickly becomes unwieldy as r increases).

20. Metalevel chain. Assuming simple genetic algorithms are adept
at locating regions in the vicinity of fixed points of G, the transition proba-
bilities from one such region to another are significant. In that case, simple
genetic search could be modeled by a Markov chain over the fixed points.
If the transition probabilities from temporary stasis in the vicinity of one
fixed point to temporary stasis near another can be determined, then some
aspects of the punctuated equilibria could in principle be analyzed.

The goal of constructing a meta level Markov chain, as described in
the previous paragraph, has been achieved for general random heuristic
search (subject to the technical conditions that G is hyperbolic, ergodic,
and has a complete Lyapunov function), but only in the large population
case.

Let p = zo,...,zr be a sequence of points from A, referred to as a
path of length k from zo to xx. The cost of p is

| P | = Qgq,2, S ol 0 7SS
where
Uj
au’v = ’U] ].n -—
2 G(u);
and it is assumed that G maps A into its interior so as to avoid division by
zero. Let the stable fixed points of G in A be {wy,...,w,} and define

Puwiw; = inf{|p|:pisa path from w; to w;}

Let C. be a Markov chain defined over {1,...,w} with ¢ — j transition
probability (for ¢ # j)

exp{—r Puw; Wi + O(T)}
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Up to the uncertainly in the o(r) terms, the desired Markov chain is C,.

As section 4 demonstrates, C, cannot possibly be appropriate for small
r, because unstable, complex, and stable fixed points outside A make no
contribution to C,. Nevertheless, the form of the transition probabilities
above is instructive. The likelihood of a transition from 7 to j is determined
by the minimal cost path from w; to w; where a path incurs cost to the
extent that it is made up of steps which end at a place differing from where
G maps their beginning. By theorem 10.2, this roughly corresponds to the
probability of the most likely sample path leading from w; to w; in the
Markov chain with transition matrix (). In other words, when r is large,
and aside from the dispersion being unimportant, behavior is determined
by a single sample path, rather than a sum over sample paths.

Is not unthinkable that in order to make significant progress in the
small population case, the particular nature of G will have to be brought
into play; perhaps general properties (hyperbolicity, ergodicity, etc.) will
not suffice. Either way, this points to the pivotal importance of G — either
in terms of its general properties, or else in terms of the details of its specific
nature — and argues for its study as an abstract mathematical object.

21. The SGA’s heuristic. This section presents a special case of
the simple genetic algorithm’s heuristic. It is not feasible to summarize
a nontrivial part of all that is currently known, so simple definition of a
particular case will have to do for this talk. For simplicity, the binary
case will be described (Koehler, Bhattacharyya, and Vose have extended
results to the general cardinality case) and only proportional selection will
be considered.

For positive integer £, the set of length ¢ binary strings is the Cartesian
product

Q = Zog X +++ X Zo
|

£ times

Since the /-digit binary representations of integers in the interval [0,2¢)
coincide with the elements of 2, they are regarded as being the same.
Elements of Z; form a finite field under the operations of addition and
multiplication modulo 2

&0 1 110 1
00 1 0/]0 O
1(1 O 110 1

These operations are extended to Q by applying them coordinate-wise. By
convention, ® takes precedence over @, and both bind more tightly than
operations which are not modulo 2.

For z € Q, let T abbreviate 1 @ z. In standard computer science
nomenclature, @ is erclusive-or on integers, ® is and, and z — T is not.
Note that ® distributes over @.
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Let o be the permutation matrix defined by
(or)iy = [1@J=4]

The permutation o} corresponds to applying the map ¢ — i @ k to sub-
scripts. That is,

Ok <Zoy-- sy Tn—1> = <To@k)---»T(n—1)@k >

22. Selection. The symbol s will be used for three equivalent
(though different) things. This overloading of s does not take long to
get used to because context makes meaning clear. The benefits are clean
and elegant presentation and the ability to use a common symbol for ideas
whose differences are often conveniently blurred.

First, s € A can be regarded as a selection distribution describing the
probability s; with which i is selected (with replacement) from the current
population for participation in forming the next generation. A selected
element is an intermediate step towards producing the next population,
not typically a member of it. In total, 2r such selections will be made, the
aggregate of which is sometimes referred to as the gene pool.

Second, s : A = Q can be regarded as a selection function which is
nondeterministic. The result s(p) of applying s to p is ¢ with probability
given by the ith component s; of the selection distribution. Of course, for
there to be a nontrivial dependence on p, the selection distribution must
be some function F of p. The function F is referred to as the selection
scheme.

Third, s € A can be regarded as a population vector.

In analogy with survival of the fittest, an integral part of F is a fitness
function f:Q — R which can be used (in a variety of ways) to determine
a selection scheme. The fitness function is assumed to be injective. The
value f(i) is called the fitness of i. Through the identification f; = f(i),
the fitness function may be regarded as a vector.

Proportional selection refers to the selection function corresponding to
the selection scheme

F(z) = fz/ffs

(where f-z denotes diag(f)z). When proportional selection is being used, it
is assumed that the fitness function is positive. Since proportional selection
is homogeneous, without loss of generality f € A.

By letting the heuristic G be the selection scheme, results from previ-
ous sections apply to selection. For example, with population size 27, 7(p)
becomes the gene pool. Invoking theorem 10.1, the expected gene pool is
described by the population vector s = F(p). By definition, the selection
distribution is s = F(p). Hence, as elements of A, the selection distribution
is identical to the expected gene pool.
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23. Mutation. The symbol p will also be used for three different
(though related) things.

First, u € A can be regarded as a distribution describing the proba-
bility u; with which ¢ is selected to be a mutation mask (additional details
will follow).

Second, p : Q —  can be regarded as a mutation function which is
nondeterministic. The result u(z) of applying u to z is @1 with probability
given by the ith component p; of the distribution u. The ¢ occurring in
z @1 is referred to as a mutation mask. The application of u to z is referred
to as mutating .

Third, p € [0,0.5) can be regarded as a mutation rate which implicitly
specifies the distribution u according to the rule

T, _ 1T,
pi = WriA-pttte

The distribution u need not correspond to any mutation rate, although
that is certainly the classical situation. Any element 1 € A whatsoever is
allowed.

The effect of mutating x using mutation mask ¢ is to alter the bits of
z in those positions where the mutation mask ¢ is 1. When mutation is
affected by a rate, the probability of selecting mask ¢ depends only on the
number of 1s that ¢ contains.

If the mutation rate is nonzero (the typical case), then every element
of Q has a positive probability of being the result of u(z). Mutation is said
to be zero if u; = [i = 0]. For arbitrary p € A, mutation is called positive
if u; > 0 for all 3.

24. Crossover. It is convenient to use the concept of partial prob-
ability . Let ( : A — B and suppose that ¢ : A — [0,1]. To say
“¢ = ((a) with partial probability ¢(a)” means that £ = b with probabil-
ity 3_,[¢(a) = 8] ¢(a).

The description of crossover parallels the description of mutation given
in the previous section; the symbol X will be used for three different (though
related) things.

First, X € A can be regarded as a distribution describing the proba-
bility X; with which ¢ is selected to be a crossover mask (additional details
will follow).

Second, X : 2 x @ — Q can be regarded as a crossover function
which is nondeterministic. The result X(z,y) is T ®1® i ®y with partial
probability X;/2 and is y ® i ® i ®  with partial probability X;/2. The
i occurring in the definition of X(z,y) is referred to as a crossover mask.
The application of X(z,y) to z,y is referred to as recombining  and y.

The arguments z and y of the crossover function are called parents,
the pair ®i®i®y and y®i®i®z are referred to as their children.
Note that crossover produces children by exchanging the bits of parents in
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those positions where the crossover mask ¢ is 1. The result X(z,y) is called
their child.

Third, X € [0,1] can be regarded as a crossover rate which specifies
the distribution X according to the rule

X

Xc¢; if i>0
1—-X+Xco if i1=0

where the distribution ¢ € A is referred to as the crossover type. Classical
crossover types include 1-point crossover, for which

o 1/(¢-1) if 3ke(0,0).i=2*-1
G = 0 otherwise

and uniform crossover, for which ¢; = 2~¢. However, any element ¢ € A
whatsoever is allowed.
Obtaining child z from parents  and y via the process of mutation
and crossover is called miring and has probability denoted by mg ,(2).
THEOREM 24.1. If mutation is performed before crossover, then

Xk + Xt i - )
Mey(z) = D Hik Tﬁ[(w@i) Bkdk® (y®j)= 7]
i3,k
If mutation is performed after crossover, then
. Xr + XF

mgy(2) = Z,u]—z—[m@)kéBE@y:zéBj]
Jk

The mizing scheme M : A — A is defined by the component equations
M(ac)i = :vTaiMa,-ac

THEOREM 24.2. The heuristic M corresponds to the instance of RHS
which produces elements for the next generation by mizing the results of
uniform choice (with replacement) from the population.

25. SGA’s Heuristic. The simple genetic algorithm’s heuristic is the
composition of mixing and selection

G=MoF
which depends on the three control parameters, f, u, X € A. This completes

the definition of the simple genetic algorithm as an instance of random
heuristic search.
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26. Closing remarks. What is known about the theory of the SGA’s
heuristic has only been hinted at in this talk. The forthcoming book “The
Simple Genetic Algorithm: Foundations and Theory” (Mit Press, in press)
will be a good place for the interested reader to begin.

I would like to indicate where the example of section 1.3.1 (Static
Schema, Analysis) came from. The key is that, in the zero mutation case,
the spectrum of the differential dG, is known explicitly at every fixed point
z which corresponds to an absorbing state of the Markov chain. For further
details, see “Stability of Vertex Fixed Points and Applications” (Vose and
Wright) in the book “Foundations of Genetic Algorithms III” (Whitley &
Vose, Editors).

I owe a lot to friends, colleagues, and the National Science Founda-
tion, for supporting this line of inquiry which so radically departs from the
classical schemata-based “GA theory.” Many have provided inspiration
and companionship along the way, but Alden Wright and Gary Koehler
deserve special mention.



