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Abstract

We consider the theory of killing and regeneration for continuous-time

Monte Carlo samplers. After a brief introduction in Chapter 1, we be-

gin in Chapter 2 by reviewing some background material relevant to this

thesis, including quasi-stationary Monte Carlo methods. These methods

are designed to sample from the quasi-stationary distribution of a killed

Markov process, and were recently developed to perform scalable Bayesian

inference.

In Chapter 3 we prove natural sufficient conditions for the quasi-limiting

distribution of a killed diffusion to coincide with a target density of in-

terest. We also quantify the rate of convergence to quasi-stationarity by

relating the killed diffusion to an appropriate Langevin diffusion. As an

example, we consider a killed Ornstein–Uhlenbeck process with Gaussian

quasi-stationary distribution.

In Chapter 4 we prove convergence of a specific quasi-stationary Monte

Carlo method known as ‘ReScaLE’. We consider the asymptotic behavior

of the normalized weighted empirical occupation measures of a diffusion

process on a compact manifold which is also killed at a given rate and

regenerated at a random location, distributed according to the weighted

empirical occupation measure. We show that the weighted occupation

measures almost surely comprise an asymptotic pseudo-trajectory for a

certain deterministic measure-valued semiflow, after suitably rescaling the

time, and that with probability one they converge to the quasi-stationary

distribution of the killed diffusion.

In Chapter 5 we introduce the Restore sampler. This is a continuous-

time sampler, which combines general local dynamics with rebirths from

a fixed global rebirth distribution, which occur at a state-dependent rate.

In certain settings this rate can be chosen to enforce stationarity of a given

target density. The resulting sampler has several desirable properties:

simplicity, lack of rejections, regenerations and a potential coupling from



the past implementation. The Restore sampler can also be used as a

recipe for introducing rejection-free moves into existing MCMC samplers

in continuous time. Some simple examples are given to illustrate the

potential of Restore.

We conclude the thesis in Chapter 6 with some concluding comments and

open questions for future work.
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Chapter 1

Introduction

Monte Carlo methods emerged in the middle of the twentieth century, originally in

the context of simulating neutron trajectories at Los Alamos, and have since become

a fundamental tool in scientific computing. Such methods reduce the problem of

computing intractable integrals to the simulation of random draws from probability

distributions. It turns out that even though the desired quantities are deterministic,

such stochastic algorithms can massively outperform their deterministic counterparts,

especially as the dimension of the problem increases.

The broad goal of Monte Carlo methods is to draw samples from a given probabil-

ity distribution π. For instance, π might be a Bayesian posterior distribution arising

from some scientific inquiry. A great breakthrough for Bayesian inference, and Monte

Carlo methods more broadly, was the development of Markov chain Monte Carlo

(MCMC), beginning in the 1950s. MCMC significantly expanded the class of scien-

tific models which were amenable to Bayesian analysis, providing simple and elegant

algorithms to obtain draws from a given target.

Today, over 60 years on from the original Monte Carlo revolution, a new revolution

is taking place. With the monumental advances in data gathering and data storage

technology, the size of modern data sets are now of a scale inconceivable to the original

developers of Monte Carlo methods. Often referred to nebulously as the problem

of ‘Big Data’, the result is that many of the traditional, established methods are

becoming increasingly unsuitable. For example, the seemingly innocuous operation

of evaluating a posterior density pointwise is no longer feasible when the data set is

extremely large, as such an operation involves iterating over the entire data set.

As such, many new algorithms have emerged over the last twenty years to address

these challenged posed by modern data sets. One particular class of methods – which

is the focus of this thesis – is the class of continuous-time Monte Carlo methods. The

methods discussed in this thesis are all exact methods, meaning that the algorithms
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all target the exact form of the target distribution, albeit potentially asymptotically.

Numerous approximate methods exist to perform inference for large data sets; two

representative examples are stochastic gradient methods, as described in Welling and

Teh [2011], or deterministic approximation methods such as INLA Rue et al. [2009].

We will not discuss such methods in this thesis.

Despite the fact that computers are fundamentally discrete machines, continuous-

time methods have nevertheless shown considerable promise in tackling the challenges

associated with large data sets. As will be reviewed in Chapter 2, continuous-time

processes have long had application in Monte Carlo, but it is only in very recent years

that we have seen the development of genuinely continuous-time algorithms. Such

algorithms include piecewise-deterministic Markov chain Monte Carlo (PDMCMC),

Fearnhead et al. [2018], Bouchard-Côté et al. [2018], Bierkens et al. [2019] and quasi-

stationary Monte Carlo (QSMC), Pollock et al. [2016], Kumar [2019].

Broadly speaking, the motivation behind continuous-time Monte Carlo is twofold.

First, it is often more straightforward to construct nonreversible processes in contin-

uous time, typically by augmenting the target with a momentum variable. Nonre-

versible processes often converge to equilibrium faster than reversible processes; see,

for instance, Bierkens [2016]. Secondly, in terms of large data sets, continuous-time

methods often only require access to a small number of data points per iteration,

without compromising the exactness of the method. This can provide massive com-

putational advantages, see Pollock et al. [2016], Bierkens et al. [2019].

With both PDMCMC and QSMC methods, an object of fundamental importance

is an inhomogeneous Poisson process defined by a rate. Suppose we have a continuous-

time Markov process X = (Xt) evolving on a state space E, and a measurable function

κ : E → [0,∞). We can define a random time τ∂ as follows:

τ∂ := inf

{
t ≥ 0 :

∫ t

0

κ(Xs) ds ≥ ξ

}
,

where the random threshold ξ ∼ Exp(1) is independent ofX. For both PDMCMC and

QSMC methods, inhomogeneous Poisson processes with such arrival times are crucial

for ensuring convergence to stationarity of the process. Indeed, these times function as

the continuous-time analogue to the acceptance–rejection step in traditional Markov

chain Monte Carlo samplers.

In this thesis, we will begin by studying the class of quasi-stationary Monte Carlo

methods. These methods make use of killing in continuous time in such a way that
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the resulting quasi-stationary distribution coincides with the target π. Namely, when

τ∂ is defined as above, π is such that

Pπ(Xt ∈ · |τ∂ > t) = π, t ≥ 0.

The goal of QSMC methods is to then sample from such a quasi-stationary distribu-

tion.

QSMC methods debuted with the ScaLE algorithm of Pollock et al. [2016], where

it was shown that these methods allowed for the principled use of subsampling, one

technique which can be used to address the issue of large data sets. The ScaLE

algorithm is one of the few algorithms which can make use of subsampling without

incurring error. We will consider the fundamental convergence theory related to

QSMC in Chapter 3, and consider an alternative implementation of QSMC based on

stochastic approximation and prove its validity on compact spaces in Chapter 4.

After studying the theory of QSMC methods in Chapters 3 and 4, we will then

discuss a novel continuous-time sampler, which we have called the Restore sampler

in Chapter 5. This is a new continuous-time Monte Carlo method, which naturally

exhibits regeneration times. These are times at which the underlying process ‘starts

again’, and the presence of such times provides numerous theoretical and practical

benefits.

1.1 Thesis outline

Broadly speaking, the aim of this thesis is to expand the existing theory for continuous-

time Monte Carlo methods, focusing on the mechanisms of killing and regeneration

based on inhomogeneous Poisson processes. We will give theoretical results which are

immediately applicable for QSMC methods in Chapters 3 and 4, and in Chapter 5

we contribute a novel continuous-time sampler.

In Chapter 2 we will discuss the background needed for the rest of the thesis. We

will briefly survey the development of Markov chain Monte Carlo, and then focus on

two main points: regeneration, and continuous-time methods. I will then discuss the

basic theory of quasi-stationarity, especially for diffusions, and then discuss quasi-

stationary Monte Carlo methods. Finally, I will discuss regenerative processes, which

will play a pivotal role later in the thesis.

The focus of Chapters 3 and 4 will be to provide fundamental theory to further

our understanding of QSMC algorithms. In Chapter 3 we give some fundamental

theoretical results which extend the somewhat rudimentary theory provided in the
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original QSMC article Pollock et al. [2016]. Namely, we formulate sufficient conditions

under which the quasi-stationary distribution of a killed diffusion process coincides

with a density function of interest. We also prove a result concerning the spectral

gap, which provides useful heuristic guidance regarding rates of convergence.

In Chapter 4 we address the practical issue of implementing QSMC, and prove

that an alternative sample path approach is also valid in the context of QSMC.

The resulting QSMC method is known as ReScaLE (Regenerating ScaLE), whose

computational properties have been studied in the work of Kumar [2019]. In Chapter 4

we prove convergence of the ReScaLE algorithm to the quasi-stationary distribution,

in the compact state space setting. To do this we will make use of the ‘ODE method’,

following the path laid out in Benäım et al. [2002] and Benäım et al. [2018].

In Chapter 5, we will discuss the Restore sampler. This is a novel continuous-time

sampler, constructed by introducing regeneration times to an underlying fixed Markov

process. The novelty of the Restore sampler is that it gives a recipe for aligning the

local dynamics defined by a given Markov process and global dynamics given by a

fixed rebirth distribution, in such a way as to cause π-stationarity. This can be done

in settings where neither the local nor global dynamics are themselves π-invariant. In

this chapter we construct the Restore sampler, and then prove π-invariance in several

settings. We complement this with some theoretical results, including a coupling

from the past implementation, and a result on a truncated version of the algorithm.

Finally, we demonstrate the potential of the sampler by giving some simple examples.

Finally, in Chapter 6 I will sum up the work of this thesis and present some dis-

cussion and limitations of this work, and give some open problems for future research.
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Chapter 2

Background

2.1 Introduction

In this chapter I will survey some fundamental background material relevant for the

work of this thesis.

I will first discuss Monte Carlo methods, in particular mentioning regenerative

methods and continuous-time methods.

I will then present the basic theory of quasi-stationarity. I will then discuss the

recent class of quasi-stationary Monte Carlo (QSMC) methods, which are the subjects

of Chapters 3 and 4.

Finally, I discuss a class of continuous-time Markov processes known as ‘regener-

ative processes’, which appear in Chapter 4 as auxiliary processes but are central to

Chapter 5.

2.2 Monte Carlo inference

Many practical problems can be reduced to the computation of an integral. Direct

approaches to evaluating such integrals analytically or otherwise can be cumbersome

and time-consuming. It turns out that with modern computing power, a stochastic

algorithm, based loosely on repetition and averaging, can provide very good estimates

at a fraction of the cost.

For example, suppose I simultaneously threw ten (fair) 6-sided dice. What is

the probability that the sum equals precisely 42? Of course, this can be calculated

exactly. In this case, the most straightforward approach – using probability generating

functions – would involve finding the coefficient of x42 in (x+x2 +x3 +x4 +x5 +x6)10.

On the other hand, it is very straightforward to simulate virtual realisations of dice
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rolls, and simply use, say, the proportion of 42s out of several thousand games as a

reasonable estimate.

Within Bayesian statistics, the goal is to understand a posterior distribution of

the form

π(x) = C π0(x)
N∏
i=1

fi(x), (2.1)

for some functions π0, f1, . . . , fN . Here π0 represents the prior distribution, encoding

our prior beliefs about the state of the system. The fi are the likelihood functions

corresponding to the statistical model under scrutiny, representing the data we have

gathered. C is the normalising constant, and the posterior reflects our updated beliefs

having conducted the experiment.

Historically, priors and likelihoods were chosen so that the resulting posteriors π

were conjugate, that is, falling within the same family of ‘nice’ distributions as the

prior π0. Thus, since the posteriors were guaranteed to be well-understood, most

quantities of interest such as quantiles or moments were immediately available.

It was not until the advent of general purpose Monte Carlo algorithms that this

constraint of conjugacy was removed. If we are able to draw samples X1, . . . , Xn from

π , then we can unbiasedly estimate any integral π(f) (for reasonable functions f)

via the sample average
1

n

n∑
i=1

f(Xi). (2.2)

The original development of Monte Carlo methods is typically attributed to Stanislaw

Ulam and John von Neumann in the late 1940s, as described in Robert and Casella

[2011]. The name ‘Monte Carlo’ was suggested by Nicholas Metropolis, in reference

to the casino in Monaco that Ulam’s uncle would frequent, as reported in Metropolis

[1987].

2.2.1 Markov chain Monte Carlo

The great breakthrough for Bayesian inference was the development of Markov chain

Monte Carlo (MCMC). π is the target density, assumed to be positive. The idea

behind MCMC is to construct a Markov chain whose invariant distribution coincides

with the target distribution π. Then, assuming we can simulate the chain, and under

sufficient regularity conditions, we can use runs of the Markov chain as approximate

draws from π.

Mathematically, the development of MCMC brought about a paradigm shift in

the theory of Markov chains. In traditional probability theory, the particular problem
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or model under scrutiny presents the mathematician with a Markov chain. The goal

is then to understand the chain: its recurrence structure, its limiting behaviour, its

stationary distribution (if one exists). MCMC turned this on its head: we begin

with a desired distribution π, and build a chain with π as its stationary distribution.

Then, we prove that the chain indeed converges to π, and ideally understand its rate

of convergence to π.

The most famous MCMC algorithm is the celebrated Metropolis–Hastings (MH)

algorithm, Metropolis et al. [1953], Hastings [1970]. At each step of the algorithm a

new location is proposed, given the current location x, according to a density q(x, ·),
the proposal kernel. This proposal is then accepted with a certain probability, or

rejected. Define the acceptance probability α(x, y) to be

α(x, y) :=
π(y)q(y, x)

π(x)q(x, y)
∧ 1, (2.3)

for each x, y. The general Metropolis–Hastings algorithm is given in Algorithm 1.

Algorithm 1 Metropolis–Hastings

1: initialise: X0 = x0, i = 0
2: while i < n do
3: i← i+ 1
4: simulate Yi ∼ q(Xi−1, ·)
5: with probability α(x, y)
6: Xi ← Yi
7: else
8: Xi ← Xi−1

9: return X1, . . . , Xn.

It can be proven under mild conditions (see Robert and Casella [2004]) that the output

X1, . . . Xn forms a π-reversible Markov chain, that is irreducible and aperiodic, so by

the ergodic theorem, the sample average as in (2.2) can be used to approximate π(f).

The MH algorithm is an incredibly elegant algorithm for sampling approximately

from π. It is very flexible; applicable for both discrete and continuous state spaces,

and requires only pointwise evaluations of the target density (which need not even

be normalised). Despite its simplicity, it is surprisingly effective. As such, over half a

century later the Metropolis–Hastings algorithm — even in vanilla form, as presented

in Algorithm 1 — is still enduringly popular and widely used by practitioners.

Popular choices of the kernel q(x, y) include a mean-zero distribution centered

around the current location x, leading to Random Walk Metropolis (RWM), or al-
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ternatively choosing q(x, y) to be independent of x – so at each iteration we propose

from a fixed distribution – leading to what is known as the Independence Sampler.

In practice, however, there are several issues which need to be overcome in order

for MH to be effective.

1. One particularly prominent issue is burn-in. Early samples from the Markov

chain will not be distributed according to the stationary distribution; standard

results concerning exactness of MCMC algorithms are asymptotic results, which

are valid only as the number of steps n→∞. Practically, this means it is not

clear how long to run the chain to ensure convergence to equilibrium. Related to

this is the mathematical issue of reversibility. The MH chain, by construction, is

always reversible. It has been shown, however, that non-reversible processes can

converge to equilibrium much faster than reversible processes; see for instance

Bierkens [2016], Diaconis et al. [2000].

2. The output of an MCMC algorithm is a realisation of a Markov chain, and

the observations are not (in general) independent. This poses an issue when

attempting to describe the variance of the estimators obtained.

3. One increasingly prominent issue is the fact that MCMC algorithms are inher-

ently sequential, which means that they are not amenable to straightforward

parallelisation, as would be suitable for modern computing architecture.

4. For complicated target densities the MH chain can have a tendency to get ‘stuck’

in regions of the state space: acceptance probabilities can become prohibitively

low, rendering the sampler highly inefficient. The chain exhibits many rejec-

tions, where it simply remains stationary for long periods of time and fails to

adequately explore the target.

5. In today’s digital age it is not uncommon to encounter vast data sets, with the

value of N in (2.1) taking values in the million, billions, or even more. In this

setting, pointwise evaluation of π – which is required multiple times in every

iteration of the MH algorithm – is expensive, or in some cases impossible.

The work of this thesis is generally motivated by a desire to overcome (some

of) these hurdles. Quasi-stationary Monte Carlo methods, for instance, the topics

of Chapters 3, 4, are designed to tackle issues 3 and 5. The Restore sampler of

Chapter 5, is a simple and straightforward sampler that, we hope, can contribute to

the overcoming problems 1 through 4.
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I will now go on to discuss one line of research which has aimed to overcome the

first three of the issues mentioned above.

2.2.2 Regeneration

Consider a discrete-time Markov chain X = (Xn)n≥0. Intuitively, a regeneration time

for X is a stopping time at which the chain ‘starts afresh’, and goes on to evolve

independently from the past with an identical law. For a discrete state-space Markov

chain, the hitting times of any fixed state form a sequence of regeneration times.

Processes exhibiting regenerations have been studied extensively in the operations

research literature; see, for instance, the book of Asmussen [2003]. Regenerations

are important in many areas, such as queuing and renewal theory. We focus our

discussion now on regenerations in the context of Monte Carlo inference, which goes

back to Mykland et al. [1995].

Suppose we are in a setting where we know there exists a sequence of almost surely

finite regeneration times T1 < T2 < . . . . It follows then that the tours of the chain

between successive regeneration times are independent and identically distributed.

Provided the chain has the correct invariant distribution, we can look at the variables

Zi =

Ti∑
j=Ti−1+1

f(Xj),

along with the tour lengths Ni = Ti − Ti−1 and then consider

f̂n =

∑n
i=1 Zi∑n
i=1Ni

.

It can be shown using the strong law of large numbers that f̂n will converge almost

surely to π(f). If the chain is observed for a fixed number of tours, burn-in is not

necessary, since the average along each tour has the correct expectation, namely π(f).

Moreover since the pairs (Zi, Ni) are independent and identically distributed (i.i.d.),

the discrepancies
√
n(f̂n − π(f))

converge to a normal N(0, σ2
f ) in distribution (provided the variances are finite).

Unlike for traditional MCMC, this asymptotic variance σ2
f is much easier to estimate

in this regenerative setting. Finally, since the tours are genuinely i.i.d., they can be

simulated in parallel.

The study of regeneration in the context of MCMC originates with the work of

Mykland et al. [1995]. In this work a method for introducing regeneration times using
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the technique of Nummelin splitting, Nummelin [1978], is described. A substantive

advance came later in Hobert et al. [2002], where new conditions were formulated

under which the central limit theorem of Mykland et al. [1995] holds, which are

considerably easier to verify in practice. As pointed out in Mykland et al. [1995],

one general issue with regenerative methods is that simply identifying regeneration

times within a sampler is really a means of analysis, and does not in itself speed up

mixing. Brockwell and Kadane [2005] took a slightly different approach. By adding

an artificial atom outside of the space itself, and constructing an augmented target

density, they proposed a new sampler which possesses regenerations. Further work

has been done developing new methods to utilise regenerations, such as Minh et al.

[2012], Nguyen [2015] and Lee et al. [2014].

The use of regeneration times is also integral to the general approach of Meyn and

Tweedie [1993, 1994], and also Rosenthal [1995], to the study of stability and conver-

gence to equilibrium of Markov chains. See also the doctoral thesis of Latuszynski

[2009], where regenerative methods are used to prove various results, including central

limit theorems for uniformly ergodic Markov chains under a second moment condi-

tion. We will return to the topic of regenerations when discussing the closely-related

notion of regenerative processes in Section 2.5.

I will now briefly discuss the related technique of coupling from the past (CFTP),

which goes back to the seminal work of Propp and Wilson [1996]. CFTP is an elegant

technique also proposed to overcome issues related to burn-in. CFTP is an MCMC

technique typically applicable in situations when the chain in question has a strong

sense of stochastic monotonicity, as pointed out in Lee et al. [2014], such as random

walks on finite intervals. Intuitively, the idea is to run the chain from the distant

past (t = −∞) until the present (t = 0), using a sequence of generating random

variables whose distribution is known. If the present value at t = 0 only depends

on a finite number of these generating random variables, since the chain must have

reached its equilibrium state, we have obtained an exact draw from its invariant

distribution. This was debuted for discrete spaces in Propp and Wilson [1996], but has

been extended to more general spaces, such as the multigamma coupler of Murdoch

and Green [1998].

In Chapter 5, we will introduce the Restore sampler, which is a continuous-time

process on a general state space which innately possesses regeneration times, and will

also be amenable to CFTP in certain situations.
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2.2.3 Continuous-time Monte Carlo

MCMC was a major breakthrough for obtaining samples from a given density func-

tions. The Metropolis–Hastings algorithm was and is the primary workhorse for such

methods. Mathematically, it makes use of the (now mature) theory of discrete-time

Markov chains on general state spaces, as described in the book of Meyn and Tweedie

[1993].

However, it was realised that continuous-time processes can be immensely valuable

in the context of MCMC. A very natural context in which they can play a role is in

the choice of proposal kernel q(x, y) in Algorithm 1.

Suppose π is a smooth target density on Rd. Ideally, we would like to choose

a proposal kernel q(x, y) which is well-adapted to the target density π, in that it

naturally drifts towards regions of higher π-mass. One continuous-time process which

does this is the Langevin diffusion, defined as the solution of the following stochastic

differential equation (SDE)

dXt =
1

2
∇ log π(Xt) dt+ dBt, (2.4)

where Bt is a standard Brownian motion on Rd. Under certain conditions on the

target π (see Roberts and Tweedie [1996]), the Langevin diffusion has a unique weak

solution and, most importantly, has invariant density given by π, with the law of the

diffusion at time t converging weakly to π as t→∞.

Thus the law of the Langevin diffusion at a fixed time t, started from a given

position x, would make an excellent proposal kernel q(x, ·). However, except in very

special cases (such as when the target is a Gaussian), we are unable to obtain exact

draws from this kernel, and so a discretised form of (2.4) is used instead. The time-

discretised form of (2.4) can be directly used to approximately sample from π, giving

rise to the Unadjusted Langevin Algorithm (ULA), or it can be nested within an

MH accept-reject step, giving rise to the Metropolis-Adjusted Langevin Algorithm

(MALA), see Roberts and Rosenthal [1998].

Another reason why continuous-time processes are valuable for Monte Carlo infer-

ence is that such processes more naturally exhibit momentum, and as such are often

nonreversible. Since nonreversible processes can possess a sense of directionality, they

can avoid the problem of ‘backtracking’ which plagues reversible methods such as the

vanilla MH algorithm, see Bierkens [2016], Diaconis et al. [2000].

One particularly influential MCMC method which makes use of continuous-time

dynamics is Hamiltonian Monte Carlo (HMC), Duane et al. [1987], Neal [2011], Be-

tancourt [2017]. The idea here is to augment our particle exploring the state space
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with a momentum variable. The joint variables of space and momentum then evolve

together according to Hamiltonian dynamics, a system of ordinary differential equa-

tions (ODEs). Unfortunately, as was the case with the Langevin diffusion, exact

simulation of the Hamiltonian flow is not possible, and so a time discretisation is

used, and an MH accept-reject step is used to correct for the error incurred. HMC

has been demonstrated to be very effective at exploring complex distributions in high

dimensions, and it is precisely the addition of this momentum which enables it to do

so.

The above methods, ULA/MALA and HMC, made use of continuous-time pro-

cesses, but ultimately are still embedded within discrete-time algorithms. In recent

years a new class of continuous-time processes have found application in Monte Carlo

inference, leading to genuinely continuous-time algorithms: piecewise-deterministic

Markov processes (PDMPs).

These processes, first introduced by Davis [1984], follow a deterministic trajectory

(governed by an ODE) for a random amount of time. After this random amount of

time, the process jumps to a new location, and then evolves according to a (possibly

new) ODE, for another random period of time, and so on. Such processes were first

discussed in the context of general Monte Carlo inference in Peters and de With

[2012], and they have been used extensively within the physics literature; see, for

instance Michel et al. [2014, 2015].

Currently, popular PDMP-based methods include the Bouncy Particle Sampler

(BPS) of Bouchard-Côté et al. [2018] and the Zig-Zag sampler of Bierkens et al.

[2019]. In both cases, the particle xt exploring Rd is augmented with a velocity vt.

The particle zt = (xt, vt) moves in straight lines, according to its velocity vector which

is piecewise-constant. For the BPS, the velocity is either confined to the surface of

the unit sphere in Rd, or can take any value in Rd. For the Zig-Zag, the velocity is

limited to the finite set {−1, 1}d, hence the name.

For each of the two methods, there is a (particular) event rate z 7→ λ(z) ∈ [0,∞),

which defines the rate at which switching events occur. Mathematically, the times

are given by T0 = 0, and

Ti = inf

{
t ≥ Ti−1 :

∫ t

Ti−1

λ(zt) dt ≥ ξi

}
, i = 1, 2, . . . , (2.5)

where ξ1, ξ2, . . . are an i.i.d. sequence of Exp(1) random variables.

At the event times, say at Ti, the velocity vector vTi jumps. For the BPS, it is

reflected (in the standard Euclidean sense) in the (hyper-)plane normal to the gradient
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of the log-density at the point xTi . For the Zig-Zag, one of the velocity components

is flipped −1↔ +1. The BPS, in addition, has refreshment events, which occur at a

constant rate, at which the velocity is resampled from some fixed distribution, such as

an isotropic Gaussian on Rd or a uniform on the sphere. This is to ensure ergodicity

of the resulting process.

For each process, the event rate λ is defined in such a way that, given the particular

bounce mechanism, the marginal x-component of the resulting invariant distribution

of the PDMP equals π.

PDMPs have attracted a lot of attention within Monte Carlo research for several

reasons. Firstly, the resulting samplers are nonreversible. The additional momentum

variable precisely allows the particle to move in the same direction for ‘as long as

possible’ before bouncing. In addition, the resulting samplers do not exhibit rejec-

tions; the particle is constantly moving. The equivalent phenomenon would be a very

short inter-bounce time, but post-bounce, the dynamics are such that another rapid

bounce is very unlikely, if not impossible. The Zig-Zag, in addition, is amenable to

subsampling, a computational technique which allows the sampler to handle posterior

distributions comprising a large number of observations efficiently. We will return to

subsampling in Section 2.4.

It is this lack of rejections which showcases the utility of moving into continuous-

time. In discrete time, since there is an inherent lower bound on the amount of time

spent in a given state (namely, 1), certain transitions must be prohibited to avoid

spending too much time in states of low probability. On the other hand, in continuous

time the particle is able to quickly leave poor states, and so no rejection mechanism

is required.

The Restore sampler, which will be described in Chapter 5, is a new continuous-

time sampler which shares many characteristics with the methods described above.

It features event times as in (2.5), which will turn out to be regeneration times as

described above in Section 2.2.2.

We now turn to discuss the probabilistic notion of quasi-stationarity. We return to

continuous-time Monte Carlo in Section 2.4, when we discuss quasi-stationary Monte

Carlo methods.

2.3 Quasi-stationarity

In this section I will introduce the notion of quasi-stationarity and related concepts,

giving basic definitions and some foundational results. This material is largely syn-
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thesised from the book of Collet et al. [2013] and the review paper Méléard and

Villemonais [2012]. For a list of related publications (up to 2015), see the bibliogra-

phy of Pollett [2015].

2.3.1 Definitions and basic properties

The theory of quasi-stationarity concerns the limiting properties of absorbed Markov

processes conditioned on non-absorption. In full generality let us consider a

continuous-time right-continuous Markov process X = (Xt)t≥0 on a measurable state

space X ∪ {∂}, where ∂ /∈ X is some state affixed to X , representing the absorbing

trap. Of course, the theory of quasi-stationarity can also be considered in discrete-

time, mutatis mutandis. Since our subsequent applications are all in continuous time,

I will not discuss discrete-time theory here.

Following the approach of Collet et al. [2013], we take the probability space Ω to be

the space of right-continuous paths in X ∪{∂}, equipped with the cylinder σ-algebra

F which is generated by the coordinate mappings Xt(ω) = ω(t), for each t ≥ 0.

We take the filtration (Ft)t≥0 to be a filtration for which X is adapted. We assume

that we have a family of probability measures (Px)x∈X∪{∂} satisfying the following

properties:

• Px(X0 = x) = 1, for all x ∈ X ∪ {∂}.

• For any measurable set A, the map x 7→ Px(A) is measurable.

• We have the Markov property: for the shift maps (Θt)t≥0, Θt : Ω→ Ω,Θt(ω) =

ω(t+ ·),
Px(Θt(X) ∈ A|Ft) = PXt(A), (2.6)

Px-almost surely, for each x ∈ X ∪ {∂} and measurable A ∈ F .

For a probability measure µ on X ∪ {∂} we write Pµ =
∫
µ(dx)Px. Thus for delta

masses δx, Px and Pδx denote the same object, which we will just write Px.
Let τ∂ denote the absorption time, or killing time, namely

τ∂ := inf{t ≥ 0 : Xt = ∂}.

By convention we put inf ∅ = ∞. Since we will be concerned only with behaviour

up until τ∂, without loss of generality we take it to be absorbing, so Xt = ∂ for all

t ≥ τ∂. However in Chapters 4 and 5 we will consider processes which upon being

killed instantaneously return to X . These processes are reviewed in Section 2.5 below.
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In our applications we will typically take τ∂ to be defined through a killing rate,

κ : X → [0,∞), where κ is a locally bounded measurable function. This situation

arises when the trap ∂ is only accessible from X via jumps at the state-dependent

rate κ. In this case τ∂ can be represented as

τ∂ = inf

{
t ≥ 0 :

∫ t

0

κ(Xs) ds ≥ ξ

}
, (2.7)

where ξ ∼ Exp(1) is independent of X. This is entirely analogous to (2.5).

In this case we typically construct the killed process by defining the laws (P̃x)x∈X
of an unkilled Markov process evolving on X , then using (2.7) to define τ∂, where ξ

is an exogenous independent Exp(1) random variable. This setting is often referred

to as soft killing (in contrast to hard killing, which typically refers to instantaneous

killing at a boundary).

Throughout we will often work with the sub-Markovian semigroup {Pt : t ≥ 0}
on X , defined for appropriate functions f : X → R as

Ptf(x) = Ex[f(Xt)1{τ∂ > t}].

With this definition, we note that the semigroup property still holds, by the Markov

property (2.6); namely, for bounded measurable functions f , x ∈ X and any s, t ≥ 0,

Pt+sf = Ps(Ptf).

In the case when τ∂ arises as in (2.7) for a killing rate κ, we may write this

semigroup as {P κ
t : t ≥ 0}, and we have the following Feynman–Kac representation:

P κ
t f(x) = Ex[f(Xt)1{τ∂ > t}] = Ẽx

[
f(Xt) e−

∫ t
0 κ(Xs) ds

]
,

where Ẽx is the law of the underlying unkilled process. The latter equality follows

since, conditional on (Xs : s ∈ [0, t]), τ∂ is the first arrival time of an inhomogeneous

Poisson process with rate function s 7→ κ(Xs).

We now define quasi-stationary distributions.

Definition 2.3.1. A probability measure π on X is a quasi-stationary distribution if

for each t ≥ 0 and measurable set B ⊂ X ,

Pπ(Xt ∈ B|τ∂ > t) = π(B).

A closely related concept is that of a quasi-limiting distribution.
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Definition 2.3.2. A probability measure π on X is a quasi-limiting distribution if

for each x ∈ X , for each measurable set B ⊂ X ,

Px(Xt ∈ B|τ∂ > t)→ π(B), as t→∞.

Remark 2.3.3. There is no unified terminology in the literature regarding the defi-

nition of a quasi-limiting distribution. This definition is consistent with Kolb and

Steinsaltz [2012] and equation (3.6) of Collet et al. [2013], but it differs from that

of Méléard and Villemonais [2012] and Champagnat and Villemonais [2017], where a

quasi-limiting distribution π is one where there exists some initial distribution ν such

that

Pν(Xt ∈ B|τ∂ > t)→ π(B)

for each measurable subset B. This alternative definition is in fact equivalent to π

being quasi-stationary (Proposition 1, Méléard and Villemonais [2012]). Definition

2.3.2 given above is often referred to in the literature as a Yaglom limit.

Proposition 2.3.4. Let π be a quasi-limiting distribution. Then π is a quasi-

stationary distribution.

Proof. This is analogous to the proof of Proposition 1 of Méléard and Villemonais

[2012], which we include for completeness. Take any x ∈ X . Since π is a quasi-limiting

distribution, we know that for any bounded measurable function f : X → R,

π(f) = lim
t→∞

Ex[f(Xt)|τ∂ > t] = lim
t→∞

Ex[f(Xt)1{τ∂ > t}]
Px(τ∂ > t)

= lim
t→∞

Ptf(x)

Pt(1X )(x)
.

For fixed s ≥ 0, we apply this with f(z) = Pz(τ∂ > s) = Ps(1X )(z) for z ∈ X . By the

definition of a quasi-limiting distribution and the Markov property,

Pπ(τ∂ > s) = lim
t→∞

Pt+s(1X )(x)

Px(τ∂ > t)
= lim

t→∞

Px(τ∂ > t+ s)

Px(τ∂ > t)
.

Similarly, now taking f(z) = Pz(Xs ∈ A, τ∂ > s) for a fixed measurable subset A ⊂ X ,

Pπ(Xs ∈ A, τ∂ > s) = lim
t→∞

Px(Xt+s ∈ A, τ∂ > t+ s)

Px(τ∂ > t+ s)
· Px(τ∂ > t+ s)

Px(τ∂ > t)

= π(A)Pπ(τ∂ > s).

From this we can conclude that Pπ(Xs ∈ A|τ∂ > s) = π(A). So π is quasi-stationary.
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When the process X is initialised from a quasi-stationary distribution π, by defi-

nition this means that the distribution of Xt – conditional on survival – is also equal

to π, for all t ≥ 0. Thus we might hypothesise that the rate of killing – i.e. the rate

of transfer to ∂ – is constant over time. Indeed, this is exactly the case, and so when

started from quasi-stationarity, the killing time τ∂ has an exponential distribution.

Theorem 2.3.5. Let π be a quasi-stationary distribution. Then there exists a con-

stant λ ≥ 0, which depends on π, such that for each t ≥ 0,

Pπ(τ∂ > t) = e−λt.

Remark 2.3.6. We may refer to this value of λ corresponding to π as the killing rate

or extinction rate associated with π.

Proof. This can be found, say, in [Collet et al., 2013, Section 2.3] and we include it

here for completeness.

Similarly to above, consider the function f(z) = Pz(τ∂ > t) for z ∈ X , where

s ≥ 0 is fixed. Analogous calculations to the above proof show that for fixed t ≥ 0,

Pπ(τ∂ > t+ s) = Pπ(τ∂ > s)Pπ(τ∂ > t).

Thus there exists some λ ≥ 0 such that Pπ(τ∂ > t) = e−λt.

Remark 2.3.7. When τ∂ is defined through a killing rate κ as in (2.7), if π is a quasi-

stationary distribution its corresponding rate of killing λ can be easily computed

as

λ =

∫
X
κ(x)π(dx). (2.8)

In general, quasi-stationary distributions are not unique; an absorbed Markov

process can possess an infinity of quasi-stationary distributions, even when the process

is irreducible prior to killing. This is one aspect where the study of quasi-stationarity

differs to the study of stationarity for unkilled Markov processes. For example, in

Martinez and San Martin [1994] it is shown that for a one-dimensional Brownian

motion on [0,∞) killed at 0, with drift, for α > 0,

Xt = Bt − αt, (2.9)

there is a continuum of quasi-stationary distributions, indexed by c ∈ [−α2/2, 0).

The values c < 0 correspond to the asymptotic rate of killing precisely as in Theo-

rem 2.3.5; λ = −c. However by irreducibility (prior to killing) only one of these can

17



be the quasi-limiting distribution, and it is the extremal quasi-stationary distribu-

tion corresponding to c = −α2/2. Of the quasi-stationary distributions, the extremal

quasi-limiting distribution has the fastest decay at infinity, as pointed out in Martinez

et al. [1998] and similarly by Mandl [1961].

Another regard in which the study of quasi-stationarity differs from stationarity is

that the set of conditional measures {P(Xt ∈ · |τ∂ > t) : t ≥ 0} are not consistent, in

the sense that they do not arise as the time marginals of a single stochastic process.

This prevents the use of standard probabilistic techniques such as conditioning and

the Markov property. Instead – as we will see in Chapter 3 – we will make use of R.

Tweedie’s R-theory, Tweedie [1974], and use the semigroup approach pioneered by

Mandl [1961].

2.3.2 Characterisation of quasi-stationary distributions

We now turn to the issue of characterising quasi-stationary distributions. For sim-

plicity of exposition we begin with the case of a finite state space S. In this setting a

Markov process X can be described entirely by its rate matrix. Recall the following

classical result.

Proposition 2.3.8. For an unkilled Markov process with rate matrix Q with entries

{q(i, j) : i, j ∈ S}, a probability measure µ on S is stationary if and only if

µQ = 0.

For a killed Markov process, its corresponding rate matrix will possess rows whose

sum is strictly negative, which reflects how probability mass is escaping. Let us write

κ(i), i ∈ S, for the defect of row i: κ(i) := −
∑

j∈S q(i, j) ≥ 0. The analogous

condition for quasi-stationarity is as follows.

Proposition 2.3.9. For a killed Markov process, a probability measure π on S is

quasi-stationary if and only if it satisfies

πQ = −λπ,

where λ =
∑

i∈S π(i)κ(i), and λ ≤ −q(i, i) for each i ∈ S.

This is proven for countable state spaces as Theorem 4.4 of Collet et al. [2013].

This λ is of course the same as the exponential killing rate in Theorem 2.3.5.

In terms of the sub-Markovian semigroup {P κ
t : t ≥ 0}, what this entails is that

for functions f on S,

πP κ
t f = e−λtπ(f).
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On finite state spaces, the existence of quasi-stationary probability vectors π fol-

lows for certain sub-Markovian generators Q from the Perron–Frobenius Theorem.

The version we state here is from [Méléard and Villemonais, 2012, Section 3].

Theorem 2.3.10 (Perron–Frobenius Theorem). Let {P κ
t : t ≥ 0} be a sub-Markovian

semigroup on a finite state space S such that the entries of P κ
t0

are strictly positive

for some t0 > 0. Then there exists a unique positive eigenvalue ρ of P κ
t0

, which is the

maximum of the moduli of the eigenvalues. ρ possesses left- and right- eigenvectors

π and ψ respectively, that can be chosen to be strictly positive with the following

normalisations:
∑

i∈S π(i) = 1,
∑

i∈S π(i)ψ(i) = 1. Setting λ := − log ρ, the entries

of P κ
t can then be written

pκt (i, j) = e−λtψ(i)π(j) +O(e−γt), i, j ∈ S,

for some γ > λ.

Thus it follows that in the case when P κ
t0

has strictly positive entries for some

t0 > 0, we have the existence of vectors π, ψ and scalar λ as in Theorem 2.3.10

satisfying

lim
t→∞

eλt Pi(Xt = j) = ψ(i)π(j), i, j ∈ S.

It follows that π is the (unique) quasi-limiting distribution, and hence π is quasi-

stationary.

Although we will not make use of it in this work, the vector ψ is intimately related

to the Q-process, which is, heuristically, the Markov chain on S corresponding to

trajectories which are never killed. More precisely, for a sequence 0 < s1 < · · · <
sk < t and points i0, . . . , ik ∈ S, it is possible to define an unkilled Markov process Z

started from i ∈ S with law

P̃i(Zs1 = i1, . . . , Zsk = ik) := lim
t→∞

Pi(Ys1 = i1, . . . , Ysk = ik|τ∂ > t).

Z is an unkilled process with transition rates given by

q̃(i, j) = q(i, j)
ψ(j)

ψ(i)
, i 6= j

q̃(i, i) = λ+ q(i, i).

The details can be found in [Collet et al., 2013, Chapter 3.2]. Under irreducibility

of Q, the resulting Q-process Z is positive recurrent and has stationary distribution

given by (π(i)ψ(i) : i ∈ S).
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2.3.3 Quasi-stationary distributions of killed diffusions

For this thesis we will focus particularly on the quasi-stationary distributions of killed

diffusions. In particular, we focus on the situation when the diffusion process is

killed at a time τ∂ defined via (2.7). Recall that this is often referred to as the

soft killing setting; hard killing typically refers to the situation where the diffusion

is killed immediately upon hitting the boundary of some enveloping set. Some key

contributions in this field are Mandl [1961], Pinsky [1985], Steinsaltz and Evans [2007],

Kolb and Steinsaltz [2012], Champagnat and Villemonais [2017].

Throughout we will be considering diffusions on Rd of the form

dXt = ∇A(Xt) dt+ dBt, (2.10)

where A : Rd → R is a smooth function. This is of course similar to the Langevin

diffusion (2.4), except here we do not assume that exp(2A) is necessarily integrable.

The assumption of gradient-form drifts in (2.10) allows us to employ Hilbert space

theory.

In particular, we can define the measure Γ given by

Γ(dy) = γ(y) dy, γ(y) = exp(2A(y)), y ∈ Rd.

This is the ‘reversing’ measure of this diffusion; on the Hilbert space L2(Γ) the gen-

erator can be realised as a self-adjoint operator.

The (formal) infinitesimal generator of (2.10) killed at rate κ is

−Lκf(x) =
1

2
∆f(x) +∇A(x) · ∇f(x)− κ(x)f(x),

where ∆ denotes the Laplacian and ∇ the gradient operator on Rd. We will make

this precise in Chapter 3. We note that here Lκ is minus the generator, following the

notation of Kolb and Steinsaltz [2012].

In analogue with Proposition 2.3.9, in order to obtain quasi-stationary distribu-

tions for the diffusion (2.10) killed at rate κ, we will be interested in solutions of

Lκf = λf,

for λ > 0. In particular we seek positive integrable solutions f , whose eigenvalue λ

correspond to the base of the L2 spectrum, λ0. This λ0 is the asymptotic rate of

killing associated with the quasi-stationary distribution (Theorem 2.3.5).

A careful analysis in the one-dimensional setting was conducted in Kolb and Stein-

saltz [2012], and some extensions to multi-dimensional settings are given in in [Cham-

pagnat and Villemonais, 2017, Section 4].
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When dealing with diffusions killed at rate κ, one particularly useful object is the

transition sub-density pκ(t, x, y). This has the property that

P κ
t f(x) = Ex[f(Xt)1{τ∂ > t}] =

∫
pκ(t, x, y)f(y) dΓ(y), x ∈ Rd,

for all reasonable f . Its existence follows from the derivation of Demuth and van

Casteren [2000]. We will make use of this throughout this work, and so the main

assumptions (known as ‘BASSA’) are included in Appendix A for convenience.

An important situation is the high killing case, first considered in Theorem 4.3 of

Kolb and Steinsaltz [2012] and extended in Theorem 4.5 of Champagnat and Ville-

monais [2017]. This is the situation when there exists a compact set D0 ⊂ Rd such

that

inf
x∈Rd\D0

κ(x) > λ0.

In this setting, Theorem 4.5 of Champagnat and Villemonais [2017] shows that there

is a unique quasi-stationary distribution π, and in fact convergence of the conditioned

laws to π as in Definition 2.3.2 is exponential.

Intuitively, since the asymptotic rate of killing is λ0, the conditioned process can-

not spend extended periods of time outside of the compact set D0 — hence the

conditioned laws converge to the quasi-stationary distribution.

In the one-dimensional case on [0,∞), Kolb and Steinsaltz [2012] also consider

the low-killing case, when limx→∞ κ(x) exists and limx→∞ κ(x) < λ0. In this case

the important condition is whether or not the unkilled diffusion is recurrent. When

the diffusion is recurrent, there is convergence to quasi-stationarity; otherwise, in the

transient case, the process escapes to infinity.

Outside of these results, to the best of my knowledge, there have been few re-

sults concerning quasi-stationary distributions of diffusions tailored to the soft killing

setting with potentially unbounded killing; most authors focus on hard killing at

boundaries or restrict to only bounded killing rates.

2.4 Quasi-stationary Monte Carlo methods

A significant part of this thesis is concerned with the application of quasi-stationarity

to Monte Carlo problems. In Section 2.2.1 I described the celebrated Metropolis–

Hastings algorithm for obtaining samples from π; recall that the MH algorithm

requires the pointwise evaluation of π at each iteration, in the calculation of the

acceptance probability (2.3).
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This calculation, while seemingly innocuous, can become computationally infea-

sible in modern ‘Big Data’ settings where the number of observations N is large;

pointwise evaluation of the posterior (2.1) is a prohibitive O(N) calculation which

involves looping over the entire data set.

One computational technique developed to get around this bottleneck is subsam-

pling. As the name suggests, the idea of subsampling is to use a subsample of the

data when evaluating the posterior. Instead of using all N data points, a subset of,

say, O(1) is used when computing π. This is the approach of the Stochastic Gradient

Langevin Dynamics (SGLD) method of Welling and Teh [2011]. SGLD is a very in-

fluential and powerful method; however, in practice it is still inexact unless the step

sizes shrink, in the sense that the time discretisation employed introduces some bias;

the algorithm does not target the exact posterior π.

Direct approaches based around subsampling a random subset of the N terms in

(2.1) to obtain an estimate of the product have also been proposed, although this

results in unacceptably large errors in the target distribution unless the subset itself

is O(N); see, for instance, the discussions in Bardenet et al. [2017].

On the other hand, in recent work, Pollock et al. [2016], a new paradigm was

proposed, quasi-stationary Monte Carlo (QSMC). The idea is to construct a killed

Brownian motion whose quasi-stationary distribution coincides with π. The article

then proposes algorithms to obtain draws from the quasi-stationary distribution. This

killed diffusion framework allowed for the use of subsampling without incurring bias:

the output of the algorithm is (asymptotically) a set of draws from the exact posterior

π. This algorithm was called ScaLE, for the Scalable Langevin Exact algorithm,

drawing attention to the fact that it is scalable – able to utilise subsampling – while

retaining the exact posterior as its target.

Heuristically, the reason why QSMC methods can employ subsampling without

incurring error is because in the killed diffusion framework, access to the target density

π is only needed through unbiased estimators of ∇ log π. Since π, as in (2.1), is a

(large) product of the form

π ∝
N∏
i=0

fi,

∇ log π will be a (large) sum,

∇ log π =
N∑
i=0

∇ log fi.
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However, large sums can be easily and cheaply estimated in an unbiased fashion; take

I to be a discrete uniform random variable on the set {0, 1, . . . , N} and consider the

estimator

(N + 1)∇ log fI .

It is easily seen that this is unbiased for ∇ log π, and it is O(1) in cost to simulate.

For the full details, the interested reader is referred to Pollock et al. [2016].

Just as MCMC inverted the study of Markov chains by starting from a desired

invariant distribution, so QSMC inverts the study of quasi-stationarity. Set

κ(x) =
∆π

2π
(x) +K,

where K > 0 is a constant chosen to ensure that κ is nonnegative (such a K is assumed

to exist). Given a sufficiently regular target density π on Rd, in Pollock et al. [2016]

it is shown that a Brownian motion killed at rate κ, as in (4.2), possesses π as its

(unique) quasi-stationary distribution. In Chapter 3 we will extend this to a more

general class of diffusions, and remove some of the unnecessary regularity conditions

imposed in Pollock et al. [2016].

Given a stochastic process with a quasi-stationary distribution π, we now turn to

the practical question of how to approximately sample from π.

2.4.1 Simulation of quasi-stationary distributions

There are two broad approaches to obtaining draws from a quasi-stationary distribu-

tion: particle-based methods and sample-path methods; see Groisman and Jonckheere

[2013] for a brief review.

The first approach, using particles, was the approach of the aforementioned ScaLE

algorithm of Pollock et al. [2016]. Intuitively, the idea is to simulate a cloud of N par-

ticles each evolving independently according to some specified underlying dynamics.

On top of this, each particle also experiences killing at a given rate. When a particle

is killed, one of the other particles is selected according to some ‘fitness’ criteria, and

duplicated, so the number of particles remains constant. They then continue to evolve

independently.

These methods are based on the pioneering work of Burdzy et al. [2000], and

are often referred to as Fleming–Viot systems. Such particle methods (in discrete

time) are explored in great detail in the book of Del Moral [2004], and continuous-

time methods in Del Moral and Miclo [2003]. In the context of simulation of quasi-

stationarity distributions, these methods are explored in Villemonais [2011], Groisman

and Jonckheere [2013]; see the references therein.
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This particle approach is also analogous to the sequential Monte Carlo (SMC)

approach, Doucet et al. [2000], Del Moral et al. [2006], to computational Bayesian in-

ference. In the context of ScaLE, the authors were able to leverage the well-established

theory of SMC to establish convergence of their particle system to the quasi-stationary

distribution.

While the ScaLE algorithm has some desirable theoretical and computational

properties, it also suffers several drawbacks. One particularly prominent drawback is

the high complexity of implementing the algorithm. A cursory glance through Pollock

et al. [2016] can convince the reader that the algorithm is (necessarily) involved. This

motivated the search for alternative QSMC methods which would inherit the desirable

properties of exactness and scalability, while avoiding the algorithmically complex

particle approximation approach.

This brings us to the alternative approach to the simulation of quasi-stationary

distributions: sample-path methods, also known as stochastic approximation ap-

proaches. This approach to QSMC takes advantage of the fact that quasi-stationary

distributions can be written as solutions to fixed point equations in measure spaces

(see the later equation (4.16) in Proposition 4.3.12).

These sample-path methods are heuristically as follows. A single trajectory of

the killed process is run. When it is killed, the particle is instantaneously reborn at

a new random location, which is drawn independently from the particle’s empirical

occupation measure up to that point. It then continues to evolve from this new

starting position until it is killed again, at which point it is again reborn, and so on.

The empirical occupation measure of the particle can be seen as an urn process, a

generalisation of the classical Pólya urn of Eggenberger and Pólya [1923]. Indeed,

it exhibits a natural ‘self-reinforcement’; the particle is more likely to revisit states

which are already popular, further increasing their popularity.

The study of this approach to simulate from quasi-stationary distributions has

been studied by various people and remains an area of active research. Its validity was

first demonstrated in Aldous et al. [1988], for finite state spaces in discrete time. Here

the method was studied precisely in the context of urn processes. This was extended

independently by Benäım and Cloez [2015] and Blanchet et al. [2016], where rates of

convergence were also established, both still in finite state spaces and discrete time.

This was extended substantially in Benäım et al. [2018], where general compact state

space settings in discrete time were considered.

In the context of QSMC, this approach to the simulation of quasi-stationary dis-

tributions yields the QSMC method dubbed Regenerating ScaLE (ReScaLE). The
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idea behind ReScaLE is that we simulate a single killed diffusion path, whose quasi-

stationary distribution coincides with the Bayesian posterior π. Here we simulate a

single killed diffusion trajectory, which is killed at a certain rate κ and then regener-

ated according to its empirical occupation measure. We repeat this for a large number

of lifetimes, and then output the overall normalised empirical occupation measure as

a proxy for π.

ReScaLE inherits the key properties that motivate the ScaLE algorithm, and

algorithmically it is significantly more transparent and straightforward, but this is

worthwhile only if the method provably leads to correct results.

Our contribution to this area is Wang et al. [2019b], presented in this thesis

as Chapter 4. We prove that this stochastic approximation method converges to

the quasi-stationary distribution when considering diffusions on compact Riemann-

ian manifolds. Theoretical analysis of stochastic approximation approaches to nu-

merically solving fixed point equations have been well-studied in finite-dimensional

contexts, cf. Kushner and Yin [2003], Benäım [1999], and the references above. At

the time when the work of Chapter 4 was done, there was no theory appropriate for

the measure-valued, continuous-time context of ReScaLE. The purpose of Chapter

4 is to demonstrate this fundamental convergence property in the compact manifold

setting, leaving aside the practical and computational properties of the algorithm.

For a thorough investigation of the computational properties, including application

to tall data, see Kumar [2019].

Since the work of Chapter 4 was first done, several pieces of related work have

since been performed. Mailler and Villemonais [2018] demonstrated convergence of

a class of measure-valued Pólya processes, potentially on noncompact state spaces.

When applied to diffusions, their results extend to noncompact state spaces under

a few key assumptions. These will be discussed in Section 4.6. Even more recently,

Benäım et al. [2019] proved convergence to the quasi-stationary distribution of the

analogous algorithm for a diffusion killed at the boundary of a bounded domain.

The study of such stochastic approximation methods to simulating from quasi-

stationary distributions remains an active research area, and many open questions

remain. Notably, a proof of convergence on noncompact state spaces of general uni-

formly elliptic diffusions with potentially unbounded (soft) killing has yet to be shown.

Outside of QSMC, these methods of approximating quasi-stationary distributions

have also been applied in ecology, see Schreiber et al. [2018] and to the simulation of

the contact process, de Oliveira and Dickman [2005], Dickman and de Oliveira [2005].
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2.5 Regenerative processes and quasi-stationarity

One class of processes which is utilised in the work of the previous analyses, Benäım

and Cloez [2015], Benäım et al. [2018], are resurrected or returned processes, special

cases of regenerative processes. Such processes will play an auxiliary role in Chapter 4

– the ‘Fixed Rebirth processes’ – but will take center stage in Chapter 5, so we take

the time now to briefly review them.

Consider a continuous-time Markov X process on a general state space E ∪ {∂},
where ∂ is some distinguished state. Now fix a probability measure µ, supported on

E. We now heuristically define the µ-regenerative process Xµ: Xµ evolves according

to the law of X, until the first time τ∂ when it hits ∂. At that point it is instan-

taneously reborn; its new location is drawn independently from the distribution µ,

and it continues to evolve from there. The times at which the process is reborn will

precisely be regeneration times, as discussed in Section 2.2.2.

Regenerative processes have had a long history within the Markov process litera-

ture, going back to the very foundations of the field itself in the work of Doob [1945].

In this work, Doob offers the first explicit and general construction of a continuous-

time Markov chain on N = {1, 2, . . . } from a given set of transition rates. In order to

account for the possibility of explosion, a fixed probability vector µ = (p1, p2, . . . ) is

chosen, which dictates the instantaneous rebirth distribution after an explosion. This

is referenced in Rogers and Williams [2000, III.26] as the immediate return procedure.

This is picked up by Feller [1954] to study one-dimensional diffusions. Feller

considers a slight generalisation, the elementary return process, which can spend

an exponential amount of time on the boundary. The general abstract notion of

regenerative processes was then formalised by Smith [1955]. Regenerative processes

have gone on to form the bedrock of many fields of study within probability, such as

the study of renewal processes and queues, [Grimmett and Stirzaker, 2001, Chapter

10], Asmussen [2003].

In the context of this thesis there is a deep connection between regenerative pro-

cesses and quasi-stationary distributions. This was first pointed out by Bartlett

[1960], in the context of birth–death chains on N. Here the stationary distribution of

a regenerative process is used to approximate the quasi-stationary distribution of the

birth–death chain. In the context of diffusions on [0, 1] with absorbing boundaries,

Ewens [1963, 1964] made use of a regenerative processes to study the behaviour of the

diffusion prior to absorption in a population genetics setting. Regenerative processes

are also used (in discrete time, for finite state spaces) in Darroch and Seneta [1965]
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to study quasi-stationarity. There the authors noted that the resulting invariant dis-

tribution ‘depends on [the rebirth distribution] to such an extent that it can be made

into almost any distribution’. This is a problem we pick up for general state spaces

in continuous time in Chapter 5.

More recently, Ferrari et al. [1995], later repeated in [Collet et al., 2013, Section

4.4], used regenerative processes in a very powerful way: to prove the existence of

quasi-stationary distributions on countable state spaces. The authors realised that the

mapping µ 7→ Π(µ) which sends µ to the invariant distribution of the µ-regenerative

process (when it exists) is intimately related to quasi-stationary distributions: quasi-

stationary distributions are fixed points of the mapping µ 7→ Φ(µ); see in this work

Proposition 4.3.12.

This realisation lead on to further work on the approximation of quasi-stationary

distributions, such as Barbour and Pollett [2010, 2012] and the previously mentioned

work on stochastic approximation approaches, Blanchet et al. [2016], Benäım and

Cloez [2015], Benäım et al. [2018]. We, too, will make use of this in Chapter 4.

Finally, we mention the connection between the regenerative processes and the in-

fluential PageRank algorithm of Page et al. [1999], famously implemented for the

search engine Google. The PageRank vector is the invariant distribution of the

discrete-time random PageRank surf on a finite graph G. It can be described as

follows. At each time step, with fixed probability d ∈ [0, 1], the surfer will move to a

random neighbour of their current vertex, chosen uniformly at random. With proba-

bility 1− d, however, the surfer ‘gets bored’ and teleports to a random vertex drawn

from some fixed distribution µ on G. Thus PageRank can be seen as a discrete-time

regenerative process, where the probability of being killed and teleporting is constant

across the graph.

In Chapter 5, we will utilise a resurrected process in a novel way: as the basis of a

new Monte Carlo algorithm for drawing samples from π. Namely, we will formulate

conditions under which we can design a µ-regenerative process in continuous time

which possesses a given target distribution π as its invariant distribution. This we

call the Restore sampler. It is a genuinely continuous-time method, following the

methods discussed in Section 2.2.3, and also naturally possessing regenerations, as

discussed in Section 2.2.2.

We are now ready to begin the main work of this thesis in earnest!
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Chapter 3

Theoretical properties of
quasi-stationary Monte Carlo
methods

3.1 Introduction

In this chapter we establish conditions under which the quasi-limiting distribution

of a killed diffusion process coincides with a density function of interest. We will

also investigate the rate of convergence to quasi-stationarity by comparing to an

appropriate Langevin diffusion. These results are of independent interest and useful

for the results of Chapter 4. This chapter has been published in The Annals of

Applied Probability as Wang et al. [2019a]. The text here is very similar to the

published article, except some arguments are fleshed out in a little more detail and

some typographic errors have been corrected. For example, in Section 3.3.3 some

additional details concerning the generator have been added.

This work was done in collaboration with my supervisors Prof. Gareth Roberts

and Prof. David Steinsaltz, and with Prof. Martin Kolb (University of Paderborn).

3.1.1 Summary of main results

We summarise here the main results of this chapter, leaving the exact mathematical

setting to be explicated in Section 3.3. We will be assuming throughout

Assumption 1. π is a positive, smooth, and integrable function on Rd.

Consider the d-dimensional diffusion X = (Xt)t≥0, defined as the (weak) solution

of the stochastic differential equation (SDE)

dXt = ∇A(Xt) dt+ dWt, X0 = x ∈ Rd, (3.1)
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where W is a standard d-dimensional Brownian motion and ∇ denotes the gradient

operator. We require

Assumption 2. A : Rd → R is a smooth function such that the SDE (3.1) has a

unique non-explosive weak solution.

Suppose we wish to sample from a distribution π on Rd with a Lebesgue density,

which we will also denote by π — the target density — satisfying Assumption 1. We

are typically thinking of applications in which we have a statistical model and observed

data for which π is the Bayesian posterior distribution. We would like to construct a

killing rate κ : Rd → [0,∞) that makes π into the quasi-limiting distribution of the

diffusion X. That is, we define the killing time as in (2.7) via

τ∂ := inf

{
t ≥ 0 :

∫ t

0

κ(Xs) ds ≥ ξ

}
, (3.2)

where ξ is an exponential random variable with parameter 1 independent of X. This

killing time τ∂, when the cumulative hazard function t 7→
∫ t

0
κ(Xs) ds exceeds the (in-

dependent) threshold ξ, is equivalent to the first arrival time of a (doubly stochastic)

Poisson process with rate function t 7→ κ(Xt).

We show that

Px(Xt ∈ E |τ∂ > t)→ π(E) as t→∞

for all x ∈ Rd and Borel-measurable E ⊂ Rd.
(3.3)

To have confidence that this convergence is practically meaningful for a sampling

algorithm, we need in addition to have some control over the rate of the convergence.

Our first result gives natural conditions under which the convergence (3.3) holds.

To begin with, we require the following compatibility condition between the tails

of π and the underlying diffusion:

Assumption 3. ∫
Rd

π2(y)

exp(2A(y))
dy <∞.

Assumption 3 is natural from a statistical point of view. Recall that without

killing, the diffusion X has invariant density proportional to exp(2A) if this quantity

is integrable (and certain regularity conditions hold; see Roberts and Tweedie [1996],

Theorem 2.1). Assumption 3 can then be interpreted as requiring that the likelihood

ratio π(Y )/e2A(Y ) has finite variance when Y ∼ exp(2A). This is what we would need

to assume were we to target π by importance sampling from exp(2A).
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In particular, Assumption 3 holds when the stronger ‘rejection sampling’ condition

holds: that there exists some M <∞ such that

π(y)

exp(2A(y))
< M ∀y ∈ Rd. (3.4)

If exp(2A) is integrable, then this is precisely the condition that would allow us

to sample from π using a rejection sampler with proposal density proportional to

exp(2A). Informally, this demands that the asymptotic tail behavior of the diffusion

be heavier than the tails of the target distribution. In particular, if the diffusion X is

a Brownian motion on Rd (A ≡ 0 in (3.1)), Assumption 3 holds whenever the target

density π is bounded.

We now define the appropriate killing rate κ, to be used to construct the killing

time τ∂ in (3.2). Define κ̃ : Rd → R by

κ̃(y) :=
1

2

(
∆π

π
− 2∇A · ∇π

π
− 2∆A

)
(y), y ∈ Rd (3.5)

where ∆ denotes the Laplacian operator. We require:

Assumption 4. κ̃ is bounded below, and not identically zero.

We will see that the correct killing rate is

κ = κ̃+K, (3.6)

where K := − infy∈Rd κ̃(y), chosen so that κ is non-negative everywhere. If κ̃ is iden-

tically zero, then there is no killing and we are in the familiar realm of stationary

convergence of (unkilled) Markov processes; in fact, X will be a Langevin diffusion

targeting π; see Roberts and Tweedie [1996]. To facilitate the development of intu-

ition, some examples of κ in the case of A ≡ 0 are given in Section 3.1.4. Heuristically,

this form for the killing rate makes π an eigenfunction for the generator of the killed

diffusion, which corresponds to quasi-stationarity; see Section 3.3 for the mathemat-

ical details and further explanation.

The form of the untranslated killing rate in (3.5) also has the natural following

interpretation. Writing U := log π, which we can do since we are assuming π is

positive, and as above thinking of exp(2A) as describing the asymptotic unkilled

dynamics, we can rewrite (3.5) as

κ̃(y) =
1

2

(
∆(U − 2A) +∇U · ∇(U − 2A)

)
. (3.7)

Written this way, we see κ̃ is a measure of the discrepancy between the derivatives

of log π and 2A, and Assumption 4 states that this discrepancy cannot be arbitrarily

negative.
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3.1.2 Convergence to quasi-stationarity

Theorem 3.1.1. Suppose Assumptions 1, 2, 3 and 4 hold. Then X has quasi-limiting

distribution π. That is, the convergence in (3.3) holds.

Remarks

1. This significantly improves on Theorem 1 of Pollock et al. [2016]: their result

only applied to killed Brownian motions, and their complicated condition on the

tails of the target density has been removed. While Brownian motion — A ≡ 0

in (3.1) — is a natural choice of a ‘proposal’ diffusion, with developments in the

exact simulation of diffusions, such as Beskos et al. [2006], there is potential to

consider other diffusions as candidates. In Section 3.2 we consider an Ornstein–

Uhlenbeck process targeting a Gaussian distribution.

2. We are not able to use the recent convergence results of Champagnat and Ville-

monais [2016]. Their approach is via minorisation-type conditions, which do

not hold in our particular non-compact state space setting, and so we cannot

apply their theorem on uniform exponential convergence.

3. Assumption 3 is in fact not a necessary condition. For example in Section 4.6

of Kolb and Steinsaltz [2012] the authors consider cases of low killing on [0,∞),

where λκ0 , the bottom of the spectrum (in our case K; see Section 3.3.3), is

not an eigenvalue in the L2 sense, but convergence to quasi-stationarity still

occurs. Instead, the requirement is that the unkilled process be recurrent. In

the context of quasi-stationary Monte Carlo methods, where we are free to

choose the diffusion, Assumption 3 is a natural condition, since the excluded

cases have zero spectral gap, hence inevitably poor convergence properties.

4. Theorem 3.1.1 also extends the results of Kolb and Steinsaltz [2012]: there

the authors considered only (one-dimensional) cases where limy→∞ κ(y) 6=
λκ0 . For example, our result gives convergence of killed Brownian mo-

tions with polynomially-tailed quasi-stationary distributions: in such cases

lim‖y‖→∞ κ(y) = λκ0 , but the conditions of Theorem 3.1.1 still hold, so we obtain

convergence to quasi-stationarity.

5. We also obtain convergence of the conditional measures Px(Xt ∈ · |τ∂ > t) to

π in total variation distance as t →∞, as shown in the proof of Theorem 7 of

Tuominen and Tweedie [1979].
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3.1.3 Rate of convergence

Our second result helps us to understand the rate of convergence to quasi-stationarity.

Let Z = (Zt)t≥0 be the weak solution of the related SDE

dZt =
1

2
∇ log

(
π2

exp(2A)

)
(Zt) dt+ dWt, (3.8)

with Z0 = x. This is an example of a Langevin diffusion. Under suitable regularity

conditions (see Theorem 2.1 of Roberts and Tweedie [1996]) the law of the diffusion Zt

converges to the distribution on Rd with Lebesgue density proportional to π2/ exp(2A)

as t → ∞. (Assumption 3 guarantees that this is integrable.) Let −LZ denote the

infinitesimal generator of this process and let −Lκ denote the infinitesimal generator

of the process (3.1) killed at rate κ. These operators will be constructed explicitly in

Section 3.3.3 as self-adjoint operators on the appropriate L2 Hilbert spaces.

Writing γ := exp(2A), Γ(dx) := γ(x) dx for the corresponding Borel measure on

Rd, which is the reversing measure of the diffusion X, and ϕ := π/γ, we have the

following result.

Theorem 3.1.2. Under the same conditions as Theorem 3.1.1 the L2 spectra of LZ

and Lκ agree, up to an additive constant. In particular, when LZ has a spectral gap,

the transition kernel of the killed process pκ(t, x, y) satisfies∣∣etKpκ(t, x, y)− ϕ(x)ϕ(y)
∣∣ ≤ Ce−t(λ

Z
1 −λZ0 ),

where λZ1 > λZ0 = 0 are the bottom two eigenvalues of the Langevin diffusion, and the

constant C may depend on x and y. If the drift in (3.1) is bounded then C may be

chosen independent of x and y.

If the measure Γ is such that Γ(Rd) <∞ then for an initial Γ-density ψ ∈ L1(Γ)∩
L2(Γ), ∣∣Pψ(X ∈ E | τ∂ > t)− π(E)

∣∣ ≤ C ′e−t(λ
Z
1 −λZ0 ),

for any measurable E ⊂ Rd, where

C ′ =
2
(∫

ψ(x)2 dΓ(x)
)1/2

Γ
(
Rd
)1/2∫

ψ(x)π(x) dx ·
∫
π(x) dx

.

The additive constant in Theorem 3.1.2 is K; that is, the spectrum of LZ is the

translation of the spectrum of Lκ by +K.
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Theorem 3.1.2 tells us that the stationary convergence of the Langevin diffusion

(3.8) and the quasi-stationary convergence of our killed diffusion occur at the same

exponential rate, given by the equal spectral gaps. Since Langevin dynamics have

been applied widely in computational statistics and the applied sciences, their rates

of convergence have been studied extensively; see, for instance, the recent results of

Dalalyan [2017] and Durmus and Moulines [2017]. Thus for many cases of π we will

be able to accurately describe the rate of convergence in (3.3).

Theorem 3.1.2 also suggests that quasi-stationary Monte Carlo methods relying

on (3.3) may converge relatively slowly for densities which are multimodal. In the

case of A ≡ 0 (killed Brownian motion), if π is multimodal, then π2 will typically

be even more irregular, and the Langevin diffusion targeting π2 will converge only

gradually. On the other hand, quasi-stationary Monte Carlo methods should have

good success targeting densities which are unimodal, such as logconcave densities.

If π is unimodal, π2 will be even more regular and have faster tail decay, leading to

faster convergence of the Langevin diffusion. Such densities appear naturally in the

context of Big-Data Bayesian inference. The Bernstein–von Mises theorem ([van der

Vaart, 1998, Section 10.2]) tells us, for instance, that for large datasets the posterior

distributions are approximately Gaussian.

Remarks

1. A sufficient condition for the existence of a spectral gap (λκ1 > λκ0) is that

lim inf
‖x‖→∞

κ̃(x) > 0. (3.9)

See for instance the proof of Lemma 3.3(v) of Kolb and Steinsaltz [2012], which

carries over into our setting. Furthermore, if lim inf‖x‖→∞ κ̃(x) = +∞ then this

implies that the spectrum is purely discrete (the essential spectrum is empty).

In the case of killed Brownian motion this holds for all exponentially-tailed

densities of the form exp(−β‖x‖α) for some β > 0, α ≥ 1.

2. The Langevin diffusion in (3.8) is precisely the Q-process (the diffusion condi-

tioned never to be killed) defined by the diffusion X and the killing time τ∂. It

is defined as the limit

Qx(A) := lim
T→∞

Px(A|T < τ∂)

for A ∈ σ(Xs : s ≤ t) for some t ≥ 0.
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3. Theorem 3.1.2 is a continuous state-space generalisation of Theorem 1 of Diaco-

nis and Miclo [2014]: there the authors showed that in a finite state-space, rates

of convergence to quasi-stationarity in total variation distance can be bounded

above and below by constant multiples of the rates of convergence to stationarity

in total variation of an appropriate unkilled process.

3.1.4 Examples of κ

In the simple and computationally important case of a killed Brownian motion (A ≡ 0

in (3.1)), κ̃ as defined in (3.5) simplifies down to

κ̃(y) =
∆π

2π
(y), y ∈ Rd.

In the following examples it can be easily checked that the conditions of Theorem

3.1.1 are satisfied.

• Gaussian on Rd. Let σ2 > 0 and π(y) ∝ exp(−‖y‖2/(2σ2)) for y ∈ Rd, where

throughout ‖ · ‖ denotes the Euclidean norm. Then straightforward calculation

gives us that κ̃(y) = 1
2
(σ−4‖y‖2 − σ−2d) for y ∈ Rd and hence

κ(y) =
1

2σ4
‖y‖2, y ∈ Rd.

Since lim inf‖y‖→∞ κ̃(y) > 0 (in fact it’s infinite), we expect exponential rates

of convergence to quasi-stationarity, from condition (3.9). This example is con-

sidered in some detail in the case d = 1 in Section 3.2. This example also gives

the independently interesting result that a Brownian motion on Rd killed at a

quadratic rate will have a Gaussian quasi-limiting distribution.

• Univariate exponential decay. Consider a positive, smooth one-dimensional tar-

get density π with tail decay π ∝ exp(−β|y|) for all y outside of a compact set

E ⊂ R, for some β > 0. We find that for all y ∈ R\E, κ̃(y) = β2, that is, a

positive constant. The killing rate κ will then also be constant asymptotically.

By condition (3.9), we expect exponential convergence to quasi-stationarity.

• Heavy-tailed case. Consider a univariate Cauchy target, π(y) ∝ 1/(1 + y2) for

y ∈ R. Then simple calculation gives κ̃(y) = 3y2−1
(1+y2)2

, for y ∈ R and then

κ(y) =
3y2 − 1

(1 + y2)2
+ 1, y ∈ Rd.

We see here an example where lim inf |y|→∞ κ̃(y) = 0; the sufficient condition for

a spectral gap (3.9) fails and we expect slower convergence.
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3.2 Example: Ornstein–Uhlenbeck process target-

ing a Gaussian density

Before turning to the mathematical technicalities, we offer a mathematically tractable

example that can be readily simulated: a killed Ornstein–Uhlenbeck process targeting

a Gaussian distribution. For simplicity of presentation we discuss the univariate case

d = 1. Analogous results hold in the multivariate case, but the notation is more

cumbersome, and the calculations more involved.

Throughout this section, we write N (µ, σ2) with µ ∈ R, σ2 > 0 to denote the

univariate Gaussian distribution with mean µ and variance σ2.

In (3.1) we let A(y) = −(ν − y)2/(4τ 2) for each y ∈ R, where ν ∈ R, τ 2 > 0 are

fixed. This defines a diffusion X as the weak solution of

dXt =
1

2τ 2
(ν −Xt) dt+ dWt, X0 = x. (3.10)

The Ornstein–Uhlenbeck process X has a N (ν, τ 2) stationary distribution; the cor-

responding density function is proportional to exp(2A).

Fix µ ∈ R and σ2 > 0, and let the target density be

π(y) = exp

{
− 1

2σ2
(y − µ)2

}
for each y ∈ R, the (unnormalised) density of a N (µ, σ2) random variable. We note

that the regularity conditions — Assumptions 1 and 2 — hold.

The untranslated killing rate computed from (3.5) is for each y ∈ R given by

κ̃(y) =
1

2

(
(y − µ)2

σ4
− 1

σ2
+

(ν − y)(y − µ)

τ 2σ2
+

1

τ 2

)
. (3.11)

We now assume

τ 2 > σ2; (3.12)

that is, the invariant distribution of the underlying diffusion has tails that are heav-

ier than those of the target distribution. This makes the leading coefficient in the

quadratic (3.11) positive, so that κ̃ is bounded below, meaning that Assumption 4

holds. In this case we will have a spectral gap (since the limit of the killing at infinity

is +∞; see (3.9), so we expect quasi-stationary convergence to occur at an exponential

rate. Completing the square in (3.11) gives the minimum value

K := − inf
y∈R

κ̃(y) =
(µ− ν)2

8τ 2(τ 2 − σ2)
+
τ 2 − σ2

2τ 2σ2
. (3.13)
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In Section 3.3.3 we will identify K with λκ0 , the bottom of the L2-spectrum of the

generator of the killed diffusion, and so K is also the asymptotic rate of killing (see

Lemma 4.2 of Kolb and Steinsaltz [2012]). We see from (3.13) that K is strictly

positive, as general spectral theory predicts. Adding K to κ̃ and rearranging, we

obtain the killing rate

κ(y) =
τ 2 − σ2

2τ 2σ4

(
y −

{
µ+ ν

2
+

τ 2

τ 2 − σ2

(
µ− µ+ ν

2

)})2

(3.14)

for y ∈ R.

It remains to check Assumption 3. By direct calculation,

π2

exp(2A)
(y) ∝ exp

{
− 1

2

2τ 2 − σ2

σ2τ 2

(
y − 2µτ 2 − νσ2

2τ 2 − σ2

)2}
.

Our assumption (3.12) guarantees this will be integrable, and in fact proportional to

the density of the Gaussian distribution

N
(

2µτ 2 − νσ2

2τ 2 − σ2
,

σ2τ 2

2τ 2 − σ2

)
. (3.15)

So Theorem 3.1.1 allows us to conclude that π is the quasi-limiting distribution of

our Ornstein–Uhlenbeck process (3.10) killed at rate (3.14), as long as (3.12) holds.

Since π2/ exp(2A) is the density of a Gaussian distribution, it follows that the

corresponding Langevin diffusion (3.8) is another Ornstein–Uhlenbeck process, albeit

with stationary distribution given by (3.15). In Metafune et al. [2002], the authors

explicitly computed the Lp spectra of Ornstein–Uhlenbeck operators, and by applying

their Theorem 3.1 we find that the L2 spectrum of LZ is given by

Σ
(
LZ
)

=

{
λZn =

n(2τ 2 − σ2)

2σ2τ 2
: n = 0, 1, 2, . . .

}
.

By Theorem 3.1.2, this coincides (up to an additive constant) with the spectrum of

our killed process (3.10). In particular, the spectral gap of our killed process is

λZ1 − λZ0 =
2τ 2 − σ2

2σ2τ 2
=

1

σ2
− 1

2τ 2
.

For this example there are two mechanisms influencing the convergence to quasi-

stationarity: the drift of the underlying diffusion (3.10), along with the killing (3.14)

and subsequent conditioning on survival. It is interesting to note that the spectral gap

is maximised when τ 2 →∞, in which case the drift is 0. When in addition µ = ν, we

see that the killing is also maximal, as measured by, say, the asymptotic killing rate
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Figure 3.1: Estimates of the conditioned laws Px(XT ∈ · |τ∂ > T ) for the process
(3.10) with parameters ν = 2, τ 2 = 4 started at x = 3 for various T . The dashed
black line shows the quasi-stationary density, a Gaussian density with mean and
variance µ = −1, σ2 = 2 respectively.

(3.13). This limit case τ 2 → ∞ corresponds to the case of killed Brownian motion

(A ≡ 0 in (3.1)). This suggests that the rate of convergence to quasi-stationarity is

determined more by the killing mechanism than by the underlying drift. However,

depending on the method of implementation, a greater rate of killing could lead to

reduced computational efficiency.

This simple example is amenable to simulation, as shown in Figure 3.1. The figure

shows estimates of the conditional distributions Px(XT ∈ · |τ∂ > T ) for T = 1, 5, 10, 20

for the choices ν = 2, τ 2 = 4, µ = −1, σ2 = 2, and initial value X0 = x = 3.
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3.3 Mathematical preliminaries

3.3.1 Definitions

Fix d ∈ N. Let ∇ denote the gradient operator; the d-dimensional vector with

components ∇i = ∂/∂xi, i = 1, . . . , d. We will denote the Laplacian operator by

∆ :=
∑d

i=1
∂2

∂x2i
. We are given functions A : Rd → R and π : Rd → [0,∞) that satisfy

Assumptions 1, 2 and 3. For brevity we write

γ := exp(2A).

π is our target density, which need not be normalised. In a slight abuse of notation

we will also write π for the Borel probability measure on Rd with Lebesgue density

proportional to π.

Let C ≡ C([0,∞),Rd) denote the space of continuous functions mapping [0,∞)→
Rd, and let ω be a typical element. For each t ≥ 0 let Xt : C → Rd be the coordinate

mapping Xt(ω) = ω(t), and let C := σ({Xt : t ≥ 0}) be the cylinder σ-algebra. For

any x ∈ Rd let P̃x be the measure on (C, C) such that under P̃x, X = (Xt)t≥0 is the

weak solution to (3.1).

Define κ : Rd → [0,∞) by

κ(y) := κ̃(y) +K, ∀y ∈ Rd,

where κ̃, defined in (3.5), is required to satisfy Assumption 4, so that K :=

− infy∈Rd κ̃(y) is finite. We augment our probability space to include an indepen-

dent unit exponential random variable ξ, and define killing at rate κ as in (3.2),

denoting this augmented space by (Ω,F ,Px).
We define L2(Γ) ≡ L2(Rd,Γ) to be the Hilbert space of (equivalence classes of)

Borel-measurable square-integrable functions f, g : Rd → R with respect to the inner

product

〈f, g〉L2(Γ) =

∫
Rd
f(y)g(y) dΓ(y)

where the measure Γ is given by dΓ(y) = γ(y) dy, with dy denoting Lebesgue measure

on Rd. We denote the corresponding norm by ‖ · ‖L2(Γ).

Define ϕ : Rd → R by

ϕ :=
π

exp(2A)
,

which is smooth and positive. By construction we have that ϕ is integrable with

respect to Γ: ∫
Rd
ϕ(y) dΓ(y) =

∫
Rd
π(y) dy <∞.
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We will generally be working in the function space L2(Γ), as this is the space on

which the generator of the killed diffusion can be realised as a self-adjoint operator,

which we will do explicitly in Section 3.3.3. As such, we will want consider densities

with respect to Γ – rather than Lebesgue measure – and hence we will work with ϕ,

rather than directly with π. Of course in the case of killed Brownian motion, A ≡ 0,

π and ϕ coincide.

Following this line of thought, Assumption 3 states that indeed ϕ ∈ L2(Γ):

‖ϕ‖2
L2(Γ) =

∫
Rd

π2(y)

exp(2A(y))
dy <∞.

Without loss of generality we can rescale π so that this quantity is 1.

3.3.2 The killed Markov semigroup

Our results depend on the spectral theory of self-adjoint linear operators on Hilbert

spaces. The proof of Theorem 3.1.1 avoids the heavy machinery of this theory by

drawing on R. Tweedie’s R-theory, which provides some of the results of operator

theory most relevant to asymptotics of stochastic processes in a somewhat probabilis-

tic package. We review the essential theory in Section 3.3.3, but it will be required

only for the proof of Theorem 3.1.2.

The diffusion X killed at rate κ has a formal infinitesimal generator −L̃κ described

by

L̃κ = − 1

2 exp(2A)
∇ · exp(2A)∇+ κ = −1

2
∆−∇A · ∇+ κ. (3.16)

Under Assumption 4, this formal differential operator can be realized as a positive

self-adjoint operator Lκ on an L2 Hilbert space. It is this theory that we defer to

Section 3.3.3.

Straightforward calculation shows that

L̃κϕ = Kϕ. (3.17)

So ϕ is an eigenfunction of the formal differential operator L̃κ with eigenvalue K.

Since we have assumed that ϕ is in L2(Γ), we have that since κ is continuous and
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not identically zero,

K

∫
ϕ(y)2 dΓ(y) =

∫
ϕ(y)L̃κϕ(y) dΓ(y)

= −1

2

∫
|∇ϕ(x)|2 dΓ(y) +

∫
κ(y)ϕ(y)2 dΓ(y)

≥
∫
κ(y)ϕ(y)2 dΓ(y)

> 0.

Thus we conclude that K > 0. These manipulations will be rigorously justified in

subsequent sections when we formally construct the generator on the appropriate

domain and establish that L̃κ acting on smooth compactly supported functions is

essentially self-adjoint.

Recall from Tuominen and Tweedie [1979] that a finite non-negative measurable

function f with
∫
f(x) dx > 0 is said to be λ-invariant for a continuous-time semi-

group (Pt)t≥0 if for all t > 0,

f(x) = eλtPtf(x) for almost every x

and a σ-finite non-trivial measure ν is λ-invariant for continuous-time (Pt)t≥0 if for

all t > 0,

ν(A) = eλtνPt(A) for every measurable A.

Analogous notions of R-invariance of functions and measures are similarly defined for

discrete-time processes as well; the requirement t > 0 is replaced with t ∈ N, and eλt

is replaced is replaced by Rt.

All we need for present purposes is the following lemma:

Lemma 3.3.1. The sub-Markovian semigroup {P κ
t : t ≥ 0}of the killed process X has

a unique self-adjoint generator that is an extension of −L̃κ on smooth compactly sup-

ported functions. π is a λ-invariant measure for this semigroup, and ϕ a λ-invariant

function, for λ = K.

Except for some technical complications, which we will describe in the context of

presenting the operator-theory framework in Section 3.3.3, this should be reasonably

intuitive. We have already pointed out in (3.17) that ϕ is an eigenfunction of the

generator with eigenvalue −K. Direct calculation shows that L̃κ is symmetric with

respect to the measure Γ; that is, for f, g ∈ L2(Γ) in the domain of L̃κ we have that

〈L̃κf, g〉L2(Γ) = 〈f, L̃κg〉L2(Γ).
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Heuristically, since our assumptions ensure that the generator of the killed diffusion

Lκ is symmetric, using (3.17) we obtain the following manipulations, for any non-

negative test function f ∈ L2(Γ),

Eπ[Lκf(Y )] =

∫
π(y)Lκf(y) dy =

∫
ϕ(y)Lκf(y) dΓ(y)

=

∫
Lκϕ(y)f(y) dΓ(y) = K

∫
ϕ(y)f(y) dΓ(y)

= KEπ[f(Y )].

Bearing in mind that Lκ is minus the generator of the killed diffusion, this shows that

started in π the process will remain in π, except with a mass loss at rate K. That is

to say, π is quasi-stationary. For an unkilled diffusion, if π were stationary, we would

expect a similar expression to hold for any appropriate f , except with the right-hand

side being exactly zero, reflecting the fact that the mass is preserved.

If we think of the adjoint operator — acting on measures — as acting on densities

with respect to Γ, we have (P κ
t )∗g = (P κ

t )g. On the other hand, if g is a density with

respect to Lebesgue measure the action is

P κ
t g = γP κ

t (g/γ). (3.18)

3.3.3 Operator theory

This section gives the mathematical background necessary for the proof of Theorem

3.1.2 in Section 3.5. Readers interested in the proof of Theorem 3.1.1 can move

straight to Section 3.4.

Our operator L̃κ on C∞c (Rd), smooth compactly supported functions, is a symmet-

ric semibounded operator, and therefore has a self-adjoint extension, for instance the

Friedrichs extension, see [Davies, 1995, Section 4.4]. As a matter of fact our operator

is essentially self-adjoint – proven in Section 3.5.1 – and thus has a unique self-adjoint

extension Lκ, so its completions are self-adjoint.

Recall that (3.16) describes the formal infinitesimal generator of our killed process.

This gives rise to a closable densely-defined positive quadratic form q̃κ on L2(Γ) given

by

q̃κ(f) =
1

2

∫
Rd
∇f · ∇f(y)γ(y) dy +

∫
Rd
κ(y)|f(y)|2γ(y) dy

for f ∈ Dκ, where

Dκ := {f ∈ L2(Γ) : f continuously differentiable, q̃κ(f) <∞}.
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We note that Assumption 4 is essential here. From a probabilistic point of view, we

need κ̃ to be bounded below since a sensible killing rate must be non-negative (which

amounts to putting a bound on the Radon–Nikodým derivative; see [Pollock et al.,

2016, Appendix B]). From a functional-analytic point of view, we also need κ̃ to be

bounded below since we require q̃κ to be closable. The semiboundedness assumption

on κ̃ implies that for all compactly supported, twice differentiable f ∈ C2
c (Rd), q̃κ(f)

is a non-negative quadratic form associated to the symmetric operator L̃κ. By Lemma

1.29, Assertion 2 of Ouhabaz [2005] we therefore conclude that the quadratic form q̃κ

is closable.

Now let us denote the closure of q̃κ by qκ. To this quadratic form there is associated

a unique positive self-adjoint operator Lκ, with dense domain D(Lκ) ⊂ L2(Γ); see

[Ouhabaz, 2005, Section 1.2.3]. For smooth compactly supported functions the action

of Lκ is identical to that of L̃κ.

Let Σ(Lκ) denote the L2(Γ)-spectrum of Lκ. Since Lκ is self-adjoint and positive,

we have that Σ(Lκ) ⊂ [0,∞). We have seen in (3.17) that K ∈ Σ(Lκ); in particular

Σ(Lκ) is non-empty, so let us write λκ0 for the bottom of the spectrum. In fact, we have

that K = λκ0 . This can be seen, for instance, using the arguments of Section 3.5.1,

which are purely abstract and independent of this section, which shows that Σ(Lκ) is

identical to the spectrum of a positive self-adjoint operator translated by the constant

K. Hence K must be the bottom of the spectrum.

It then follows from Theorem XIII.44 of [Reed and Simon, 1978, Section XIII.12],

that λκ0 is a simple eigenvalue, with ϕ being its unique eigenfunction up to constant

multiples. This is akin to a kind of Perron–Frobenius theorem on Hilbert spaces, c.f.

Theorem 2.3.10.

We now make use of the spectral calculus for self-adjoint operators using

projection-valued measures, as discussed in [Davies, 1995, Section 2.5]. This gives

us the existence of a family of spectral projections (Eκ
λ)λ∈[λκ0 ,∞) and allows us to

define φ(Lκ) for Borel-measurable φ : R→ R, via

φ(Lκ)f =

∫
Σ(Lκ)

φ(λ) dEκ
λf,

D(φ(Lκ)) =

{
f ∈ L2(Γ) :

∫
Σ(Lκ)

|φ(λ)|2 d〈Eκ
λf, f〉L2(Γ) <∞

}
,

‖φ(Lκ)f‖2
L2(Γ) =

∫
Σ(Lκ)

|φ(λ)|2 d〈Eκ
λf, f〉L2(Γ) .
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Now the Feynman–Kac representation states that for each t > 0

(e−tL
κ

f)(x) = Ex[f(Xt)1{τ∂>t}]

for f ∈ L2(Γ). Furthermore, for each t > 0 the operator e−tL
κ

is a contraction on

L2(Γ) (cf. the derivation in Demuth and van Casteren [2000]).

The spectral theorem allows us to write the diffusion semigroup as

P κ
t f(x) = Ex[f(Xt)1{τ∂>t}] = e−tL

κ

f(x) =

∫
Σ(Lκ)

e−tλ dEκ
λf(x)

for f ∈ L2(Γ). The (Eκ
λ)λ∈[λκ0 ,∞) are orthogonal projections; in particular, Eκ

λκ0
projects

onto the span of ϕ. We can write

e−tL
κ

f = e−tλ
κ
0ϕ〈f, ϕ〉L2(Γ) +

∫
Σ(Lκ)\{λκ0}

e−tλ dEκ
λf .

Thus

etλ
κ
0 e−tL

κ

f = ϕ〈f, ϕ〉L2(Γ) +

∫
Σ(Lκ)\{λκ0}

e−t(λ−λ
κ
0 ) dEκ

λf . (3.19)

For a given f ∈ L2, we are interested in the convergence to 0 of the integral term in

(3.19). We note here that the convergence in this discussion is convergence in L2(Γ).

Ultimately we will be interested in convergence in L1(Γ); we will return to this issue

later.

We also want to rigorously check that ϕ ∈ D(Lκ). We know that ϕ ∈ L2(Γ) and

that ϕ is a formal eigenfunction of the formal differential operator L̃κ with eigenvalue

K. Let us write Lmin for the formal differential operator L̃κ acting on D(Lmin) =

C∞c (Rd). We write Lmax for the operator with domain

D(Lmax) = {f ∈ L2(Γ) : L̃κf ∈ L2(Γ)}

where the derivatives are understood in the weak sense. Then for f ∈ D(Lmax),

Lmaxf = L̃κf .

By definition of the adjoint L∗min,

D(L∗min) = {f ∈ L2(Γ) : 〈Lminu, f〉 = 〈u, g〉,∀u ∈ C∞c (Rd), for some g ∈ L2(Γ)}.

Then by definition of the weak derivative, we see that Lmax = L∗min. (Note that here

we are crucially using the fact that A is smooth – Assumption 2 – which ensures that

for u ∈ C∞c (Rd), γu ∈ C∞c (Rd) also.)

It follows from our arguments in Section 3.5 that Lmin is essentially self-adjoint,

hence it has a unique self-adjoint extension Lκ, which is equal to its closure L̄min.

This is identical to the operator arising from the quadratic form qκ above.
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We now argue that for any f ∈ D(Lmax) — for instance our ϕ — we have that

f ∈ D(L̄min) = D(Lκ). This is because

L∗min = L̄∗min = L̄min.

The first equality follows from basic facts of closable operators and the second from

essential self-adjointness. But we have seen that L∗min = Lmax above. And so we

conclude that L̄min = Lmax.

This argument rigorously justifies our manipulations in Section 3.3.2 when showing

that K > 0, since

〈ϕ,Lmaxϕ〉 = 〈ϕ,Lκϕ〉 = qκ(ϕ).

3.4 Proof of Theorem 3.1.1

We wish to apply the results of Tuominen and Tweedie [1979]. In order to do this

we first need to check that (P κ
t )t≥0 is “simultaneously φ-irreducible” — that is, the

resolvent kernel is strictly positive for discrete versions of the process discretised with

respect to arbitrary time-steps. Ordinary φ-irreducibility holds for diffusions with

smooth drift and locally bounded volatility by the Stroock–Varadhan Support Theo-

rem, [Pinsky, 1995, Section 2.6]. Simultaneous φ-irreducibility follows then immedi-

ately from Theorem 1 of Tuominen and Tweedie [1979] since our process has a jointly

continuous transition density with respect to the reversing measure; see Remark 1

after this proof.

We now show that (P κ
t )t≥0 is λ-positive, with λ = K, and that the K-invariant

measure is precisely the target density π. This will then imply convergence to quasi-

stationarity by an application of Theorem 7 of Tuominen and Tweedie [1979], which

states that λ-positive processes, when λ > 0, exhibit quasi-limiting convergence as in

(3.3), where the quasi-limiting distribution is the (unique) λ-invariant measure.

By Theorem 4(ii) of Tuominen and Tweedie [1979], showing (P κ
t )t≥0 is λ-positive

is equivalent to showing that each (discrete-time) skeleton chain generated by P κ
h , for

any h > 0, is eλh-positive in the discrete-time sense, as defined in Tweedie [1974]. This

involves showing that each skeleton chain is R-recurrent with R = eλh and that the

corresponding integral of the eλh-invariant function against the eλh-invariant measure

is finite. So let us fix h > 0.

It follows from (3.17) and the Kolmogorov equations that

ehKP κ
hϕ = ϕ.
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This is exactly the definition of ϕ being ehK-invariant for the discrete-time semigroup

generated by P κ
h . By (3.18) the measure π with Lebesgue density γϕ is similarly

ehK-invariant for the discrete-time chain. (Definitions of λ-invariance are included in

Section 3.3.2 for convenience.)

By Assumption 3, ∫
Rd
ϕ(y)π(dy) =

∫
Rd

π2(y)

γ(y)
dy <∞.

Thus by Proposition 3.1 and Proposition 4.3 of Tweedie [1974] the skeleton chain

defined by operator P κ
h , (Xnh)

∞
n=1, is R-recurrent, with R = ehK . Theorem 7 of

Tweedie [1974] then tells us that this skeleton chain is ehK-positive. Since h > 0

was arbitrary, we obtain that (P κ
t )t≥0 is λ-positive, with λ = K. Theorem 4(iii) of

Tuominen and Tweedie [1979] also tells us that ϕ and π are the unique K-invariant

function and measure for (P κ
t ) respectively.

We are now in a position to utilise Theorem 7 of Tuominen and Tweedie [1979].

Since K > 0, killing happens almost surely, hence the key assumption (B) of Theorem

7 of Tuominen and Tweedie [1979] requires simply that
∫
π(y) dy <∞, which is cer-

tainly true. The conclusion of the theorem implies convergence to quasi-stationarity

(3.3); that is, for any measurable E ⊂ Rd there is a set of starting points x of full

Lebesgue measure such that

lim
t→∞

Px(Xt ∈ E |τ∂ > t) =

∫
E
π(y) dy∫

Rd π(y) dy
.

In fact, this convergence holds for every starting point x. Since we have a contin-

uous transition density pκ(t, x, y) (see Remark 1 after this proof), we have for any

measurable set E ⊂ Rd

Px(Xt+1 ∈ E) =

∫
Rd
pκ(1, x, y)Py(Xt ∈ E) dΓ(y).

Since we have convergence for y in some set of full measure, we obtain convergence

for all x ∈ Rd, which completes the desired result. �

Remarks

1. Assumption 3 can be interpreted in terms of spectral theory. It tells us that

ϕ ∈ L2(Rd,Γ), so ϕ is also an eigenfunction of Lκ in the sense of L2 spectral

theory. It is then possible to prove Theorem 3.1.1 analogously to Lemma 4.4

of Kolb and Steinsaltz [2012]. Following the derivation of Demuth and van
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Casteren [2000], it follows that we have a continuous integral kernel pκ(t, x, y)

with Ex[f(Xt)1{τ∂>t}] =
∫
pκ(t, x, y)f(y) dΓ(y). We can then apply Simon [1993]

to see that etλ
κ
0pκ(t, x, y) → cϕ(x)ϕ(y) as t → ∞, where c = ‖ϕ‖−2

L2(Γ) and the

proof of Theorem 3.1.1 can proceed analogously.

2. Our argument here relies fundamentally on self-adjointness of the operators and

subsequent properties such as (3.17) , so there is no way we can circumvent the

assumption of a gradient-form drift in (3.1). In one dimension this always holds,

since we can simply take the integral of the drift function.

3.5 Rates of Convergence

Practitioners hoping to implement quasi-stationary Monte Carlo methods, such as the

ScaLE Algorithm of Pollock et al. [2016], having been reassured that the procedure

indeed converges to the correct distribution, will naturally inquire about the rate

of convergence. Our result in this section draws heavily on the spectral theory for

self-adjoint (unbounded) operators that we have outlined in Section 3.3.3.

When there is a spectral gap, that is, when λκ1 > λκ0 , the integral term will vanish

at an exponential rate. Thus, it suffices to understand the spectrum Σ(Lκ). To do

this we will adapt an idea of Pinsky [2009], to transform our operator into one whose

spectrum is already understood. Here it will be the infinitesimal generator of a certain

Langevin diffusion.

3.5.1 Proof of Theorem 3.1.2

Consider the formal differential operator

L̃κ̃ = − 1

2γ
∇ · γ∇+ κ̃

where κ̃ is defined in (3.5), acting on C∞c (Rd), the set of smooth compactly-supported

functions. This is very similar to the formal differential operator we began with in

(3.16), differing only by an additive constant K, which will have the effect of merely

translating the spectrum accordingly. L̃κ̃ can be realised as a non-negative, self-

adjoint operator Lκ̃ on L2(Γ), by taking the Friedrichs extension of the appropriate

quadratic form as before.

Now let L2(π2/γ) ≡ L2(Rd, π2/γ) denote the Hilbert space of (equivalence classes

of) measurable functions u, v : Rd → R which are square-integrable with respect to

46



the inner product

〈u, v〉L2(π2/γ) =

∫
Rd
u(y)v(y)

π2(y)

γ(y)
dy.

The multiplication operator

Uf =
γ

π
f

is a bounded unitary transformation U : L2(Γ) → L2(π2/γ), with inverse given by

U−1u = π
γ
u.

We now define a second formal differential operator

L̃Z = −1

2
∆− 1

2
∇ log

(
π2

γ

)
· ∇ ,

which is minus the generator of the Langevin diffusion given in (3.8), targeting the

density π2/γ. L̃Z can similarly be realized as a positive, self-adjoint operator LZ on

L2(π2/γ). Our two formal operators are related through

L̃κ̃ = U−1L̃ZU.

We can also conjugate LZ to obtain U−1LZU , a self-adjoint operator on L2(Γ).

Theorem 3.1.2 will be an immediate consequence if we show that in fact U−1LZU =

Lκ̃. This is the same as showing that the following diagram commutes:

L̃Z LZ

L̃κ̃ Lκ̃

Friedrichs ext.

Conjugate with U Conjugate with U

Friedrichs ext.

An operator is said to be essentially self-adjoint if it has a unique self-adjoint ex-

tension, which is given by the closure. From the background in Section 3.3.3 we see

that the diagram commutes, and so Theorem 3.1.2 will follow, if we can show that

L̃κ̃ acting on C∞c (Rd) is essentially self-adjoint. After all, the conjugate U−1LZU is a

self-adjoint extension of L̃κ̃; if the extension is unique it must be the same as Lκ̃.

We apply Theorem 2.13 of Braverman et al. [2002]. The smooth boundaryless

manifold we are working in is simply Rd, with smooth positive measure Γ. In their

notation we take D to be 1√
2
∇, which is elliptic. The formal adjoint D∗ is given by

− 1√
2
(∇ ·+2∇A·). We set V = κ̃, and the resulting operator HV is precisely L̃κ̃.

The result follows immediately if V satisfies their Assumptions A and B, which ask

for a decomposition of V into well-behaved non-negative parts and a mild technical
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condition. Assumption A is immediate by writing

V = κ̃+K︸ ︷︷ ︸
V+

+ (−K)︸ ︷︷ ︸
V−

where clearly V+ ≥ 0 and V− ≤ 0. V− trivially satisfies (ii) of Assumption A since it

is constant.

Assumption B follows from their Theorem 2.3(ii), since our operator acts on scalar

functions. The final condition of Theorem 2.13 is completeness of the metric gTM ,

which is satisfied since it is equivalent to geodesic completeness of the manifold, which

is true for Rd.

Since unitary transformations leave spectra invariant it follows that the L2(Γ)

spectrum of Lκ̃ coincides with the L2(π2/γ) spectrum of LZ , and hence the L2 spectra

of Lκ̃ and LZ coincide after translation by K.

We now would like to extend our proof of L2 convergence to L1 convergence in

the case when there is a spectral gap. Let ψ ∈ L1(Γ) ∩ L2(Γ) be any initial density

(with respect to the measure Γ). For the rest of this section, all norms and inner

products will be with respect to L2(Γ). Writing λκ1 := inf
{

Σ(Lκ) \ {λκ0}
}

, from our

earlier results we have that

‖etλκ0 e−tLκψ − 〈ψ, ϕ〉ϕ‖2 =

∥∥∥∥∫ ∞
λκ1

e−t(λ−λ
κ
0 ) dEκ

λψ

∥∥∥∥2

=

∫ ∞
λκ1

e−t·2(λ−λκ0 ) d〈Eκ
λψ, ψ〉

≤ ‖ψ‖2 · e−t·2(λκ1−λκ0 ). (3.20)

We now link this to L1 convergence. Let H ⊂ Rd be a compact set. From the

Cauchy–Schwarz inequality we know that∫
H

|etλκ0 e−tLκψ(y)− 〈ψ, ϕ〉ϕ(y)| dΓ(y)

≤ ‖etλκ0 e−tLκψ − 〈ψ, ϕ〉ϕ‖ · Γ(H)1/2

≤ ‖ψ‖ · Γ(H)1/2 · e−t(λκ1−λκ0 ).

So we have the appropriate convergence in L1(Γ) on compact sets. We could similarly

obtain convergence for test functions f ∈ L2(Γ), that is∣∣∣〈etλκ0 e−tLκψ, f〉− 〈ψ, ϕ〉〈ϕ, f〉∣∣∣ ≤ ‖ψ‖ · ‖f‖ · e−t(λκ1−λκ0 ). (3.21)

We see that when Γ is a finite measure, we will obtain L1 convergence at this rate

on all measurable sets, not just compact ones. This is the case when the (unkilled)

diffusion has a strong inward drift.
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Now assume that Γ(Rd) <∞ and fix some E ⊂ Rd. Writing Pψ for the law of the

killed process starting from ψ, we have (recalling that
∫
Rd π(x) dx = 〈ϕ, 1〉),

∣∣Pψ(X ∈ E | τ∂ > t)− π(E)
∣∣ =

∣∣∣∣ ∫
E

(
etλ

κ
0 e−tL

κ
ψ(y)

etλ
κ
0Pψ(τ∂ > t)

− ϕ(y)∫
Rd π(x) dx

)
dΓ(y)

∣∣∣∣
=

1

〈ψ, ϕ〉
∫
π(x)dx

∣∣∣∣ ∫
E

(
etλ

κ
0 e−tL

κ

ψ(y)− 〈ψ, ϕ〉ϕ(y)

)
dΓ(y)

−
(∫

E

etλ
κ
0 e−tL

κ

ψ(y) dΓ(y)

)(
etλ

κ
0Pψ(τ∂ > t)− 〈ψ, ϕ〉

∫
π(x)dx

etλ
κ
0Pψ(τ∂ > t)

)∣∣∣∣.
Note that ∫

E
etλ

κ
0 e−tL

κ
ψ(y) dΓ(y)

etλ
κ
0Pψ(τ∂ > t)

=
〈etλκ0 e−tLκψ,1E〉
〈etλκ0 e−tLκψ,1〉

≤ 1,

so ∣∣Pψ(X ∈ E | τ∂ > t)− π(E)
∣∣ ≤ 2‖ψ‖Γ

(
Rd
)1/2

〈ψ, ϕ〉
∫
π(x)dx

e−t(λ
κ
1−λκ0 ). (3.22)

It remains to derive the rate of pointwise convergence for

etλ
κ
0pκ(t, x, y)→ ϕ(x)ϕ(y) as t→∞.

This argument does not require us to assume Γ(Rd) < ∞. Following the approach

of Simon [1993], for x, y ∈ Rd let us write gx(y) := eλ
κ
0pκ(1, x, y). First note that

gx ∈ L2(Γ):

‖gx‖2
L2(Γ) = e2λκ0

∫
pκ(1, x, y)pκ(1, x, y) dΓ(y)

= e2λκ0

∫
pκ(1, x, y)pκ(1, y, x) dΓ(y)

= e2λκ0pκ(2, x, x)

<∞,

using symmetry and the semigroup property. By the invariance of ϕ,

〈gx, ϕ〉 = eλ
κ
0

∫
pκ(1, x, z)ϕ(z) dΓ(z) = ϕ(x).

Now for t > 2, x, y ∈ Rd

etλ
κ
0pκ(t, x, y) =

∫ ∫
gx(z)eλ

κ
0 (t−2)pκ(t− 2, z, w)gy(w) dΓ(z) dΓ(w)

=
〈
e−(t−2)Lκe(t−2)λκ0gx , gy

〉
.

By (3.21) this converges to

〈gx, ϕ〉〈gy, ϕ〉 = ϕ(x)ϕ(y),
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with rate given by∣∣etλκ0pκ(t, x, y)− ϕ(x)ϕ(y)
∣∣ ≤ e2λκ0

(
pκ(2, x, x)pκ(2, y, y)

)1/2
e−t(λ

κ
1−λκ0 ). (3.23)

If the drift is bounded then the transition density is bounded as well, so this is

bounded by Ce−t(λ
κ
1−λκ0 ) for a universal constant C. �

3.6 Discussion

In this chapter we have proven natural sufficient conditions for the quasi-limiting dis-

tribution of a diffusion of the form (3.1) killed at an appropriate state-dependent rate

to coincide with a target density π. We have also quantified the rate of convergence to

quasi-stationarity by relating the rate of this convergence to the rate of convergence

to stationarity of a related unkilled process.

As mentioned in the introduction, this framework is foundational for the recently-

developed class of quasi-stationary Monte Carlo algorithms to sample from Bayesian

posterior distributions, introduced in Pollock et al. [2016]. This framework promises

improvement over more traditional MCMC approaches particularly for Bayesian in-

ference on large datasets, since the killed diffusion framework enables the use of sub-

sampling techniques. As detailed in [Pollock et al., 2016, Section 4], these allow the

construction of estimators which scale exceptionally well as the size of the underlying

dataset grows.

Quasi-stationary Monte Carlo methods are likely to be particularly effective com-

pared to established Monte Carlo methods for Bayesian inference for tall data; that

is, where parameter spaces have moderate dimension (allowing diffusion simulation

to be feasible) but where data sizes are high. This includes the ‘Big-Data’ context

where data size is so large it cannot even be stored locally on computers implement-

ing the algorithm. This is because subsampling can take place ‘offline’ with only the

subsets being stored locally. This adds significantly to the potential applicability of

quasi-stationary Monte Carlo methods.

Our approach in this present work is also slightly more general than that of Pol-

lock et al. [2016] in that we allow for a non-zero drift term in our diffusion (3.1). This

raises the question of how to select among several possible drift functions the one

that results in the most practical computational outcomes? While a detailed answer

to this question is beyond the scope of this present work, we suggest the following

guidelines. There is a critical trade-off between overall killing and the essential rate

of convergence described in (3.3). As mentioned in the example of Section 3.2, higher
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rates of killing will tend to increase the essential rate of convergence, while increas-

ing the computational burden imposed by simulating killing events. Depending on

the implementation details, this trade-off could go either way in terms of optimality.

When scalable estimators for the killing events are available, such as in Pollock et al.

[2016], it would be sensible to choose a drift that makes the killing rate high, for

instance choosing a Brownian motion, so A ≡ 0. Of course, any Gaussian process al-

lows straightforward simulation of the unkilled dynamics, and the choice of Brownian

motion also simplifies Assumptions 3 and 4. Formally answering this question of the

choice of drift would be an interesting avenue for future exploration.

We comment briefly now on some of our assumptions. Assumption 3 is generally

straightforward to verify, especially in light of the stronger ‘rejection sampling’ for-

mulation in (3.4). For instance, if A is uniformly bounded below then Assumption 3

holds if π is a bounded density function.

Assumption 4 is generally the most challenging. When A ≡ 0 this is mostly

straightforward to verify, especially since densities on Rd are often convex in the tails.

Verifying Assumption 4 in general can be done using the equivalent expression for κ̃ in

(3.7), by comparing the decay of derivatives 2A with those of log π. Indeed, ensuring

a practically useful form of κ̃ – so that verification of Assumption 4 is straightforward

– could influence the choice of A in the first place.

In practice, Assumption 4 also involves computing a lower bound for κ̃. It is actu-

ally not necessary to compute the precise value of infy∈Rd κ̃(y); our results still hold if

K in (3.6) is replaced by any constant such that the resulting κ is non-negative every-

where. Intuitively, taking a larger constant K amounts to merely adding additional

killing events according to a homogeneous, independent Poisson process.

Depending on the choices of π and A, κ̃ can be a convex function in the tails,

even in cases of non-zero A, as in our example of Section 3.2. A precise recipe for

computing K in general is currently unavailable; readers interested in these more

implementational details are encouraged to look at Pollock et al. [2016].

We conclude this discussion by indicating some potential future directions. As

mentioned above, there are important questions of how to choose the underlying dif-

fusion to optimize the computation for a given target density. One could also consider

extensions of this work to entirely different underlying processes, such as jump dif-

fusions or Lévy processes. Finally, another potential question is the exploration of

alternative approaches to that described in Pollock et al. [2016] for the simulation

of quasi-stationary distributions, such as the stochastic approximation approaches as
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discussed in Blanchet et al. [2016] and Benäım et al. [2018]. This is the topic of

Chapter 4.
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Chapter 4

An approximation scheme for
quasi-stationary distributions of
killed diffusions

4.1 Introduction

In this chapter we consider a stochastic approximation algorithm to approximate the

quasi-stationary distribution of a killed diffusion on a compact manifold. This is

motivated by one particular QSMC method: Regenerating ScaLE (ReScaLE), whose

computational properties were explored in the work of Kumar [2019].

The work of this chapter has recently been accepted for publication in Stochastic

Processes and their Applications as Wang et al. [2019b]. This work was done in

collaboration with my supervisors Prof. Gareth Roberts and Prof. David Steinsaltz.

4.2 Introduction

In this work we assume that we are working on a compact, boundaryless, connected,

d-dimensional smooth Riemannian manifold M , as in Benäım et al. [2002]. We have

a particle X = (Xt)t≥0 evolving on M in continuous time, according to the solution

to the stochastic differential equation (SDE)

dYt = ∇A(Yt) dt+ dWt (4.1)

between regeneration events, where A : M → R is a smooth function and W is a

standard Brownian motion on M . Regeneration events occur at a state-dependent

rate κ(Xt−), where κ : M → [0,∞) is a given smooth, positive function, which we

will refer to as the killing rate. At a regeneration event, say at time T , the particle is
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instantaneously ‘killed’ and ‘reborn’: its location is drawn (independently) from its

normalized weighted empirical occupation measure µT , where for all t ≥ 0, µt is given

by

µt =
rµ0

r +
∫ t

0
ηs ds

+

∫ t
0
ηsδXs− ds

r +
∫ t

0
ηs ds

where r > 0, η· : R+ → R+ and a probability measure µ0 on M are fixed. The

resulting process X is clearly non-Markovian. The addition of the µ0 term has the

benefit of regularising the µt around t = 0, as well as providing practical flexibility

for the resulting Monte Carlo algorithm. The weight function η· similarly provides

additional practical flexibility; a straightforward choice would be constant ηs ≡ 1,

but see Remark 4.3.2 for a nonconstant alternative.

4.2.1 Main results

The goal of this chapter is to characterize the asymptotic behavior of the measure-

valued process (µt)t≥0, and to show that it converges to the quasi-stationary distri-

bution for the original killed process. We proceed in two steps, following the “ODE

method” (cf. Benäım [1999], Kushner and Yin [2003]), which has been used to prove

convergence of similar reinforced processes, for instance in Benäım and Cloez [2015],

Benäım et al. [2018, 2002], Kurtzmann [2010]. The ODE method proceeds by two key

steps. First, showing that a certain deterministic semiflow Φ converges to the appro-

priate limit, in our case the quasi-stationary distribution π. Second, showing that,

following a suitable deterministic time change ζt := µh(t), the stochastic evolution of

the measures (ζt)t≥0 shadows Φ in an appropriate sense, to be defined below. From

these two properties almost-sure convergence of µt to the quasi-stationary distribution

can be deduced.

The present chapter extends previous related work in considering a continuous-

time diffusive process on a compact manifold (rather than, say, a discrete-time Markov

chain), which experiences ‘soft killing’ according to a smooth state-dependent killing

rate (rather than instantaneous ‘hard killing’ at a boundary). In this setting of soft

killing, a generic killing time τ∂ has the form

τ∂ = inf

{
t ≥ 0 :

∫ t

0

κ(Xs) ds ≥ ξ

}
, (4.2)

where ξ ∼ Exp(1) is independent of the process X, as seen previously, rather than

the first hitting time of some forbidden set of states as in the hard killing case.
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Theorem 4.2.1. Under Assumptions 5, 6, 7 and 8 detailed in Section 4.3.1, we have

with probability 1, that for each T > 0,

lim
t→∞

sup
s∈[0,T ]

dw
(
ζt+s,Φs(ζt)

)
= 0 (4.3)

where dw is a metric that metrises weak-* convergence of probability measures given

in (4.4) and Φ is the semiflow defined in Section 4.4.

Remark 4.2.2. In Benäım [1999], a map t 7→ ζt that satisfies (4.3) for each T > 0 is

called an asymptotic pseudo-trajectory for the measure-valued semiflow Φ.

In Section 4.4 we define the semiflow Φ, and proceed to show that it has a global

attractor π, which is the unique quasi-stationary distribution of the diffusion (4.1)

killed at rate κ.

In particular, Theorem 4.2.1 leads to the following corollary:

Corollary 4.2.3. Under the conditions of Theorem 4.2.1, we have that almost surely,

limt→∞ µt = π in the sense of weak-* convergence.

That is, we have limt→∞ µt(f) = π(f) for any continuous f : M → R.

While our results above hold for any appropriate given killing rate which satisfies

our assumptions, in the ReScaLE algorithm the killing rate κ is chosen so that the

quasi-stationary distribution π equals the Bayesian posterior distribution of interest;

see the expression (3.6), cf. the work of Chapter 3. Corollary 4.2.3 tells us that in

this setting we can draw approximate samples from π by running the regenerating

process X and outputting µt for a large t as a proxy for π.

Figure 4.1 shows the output of two independent simulations on the unit circle

M = R/(2πZ) parameterised by θ ∈ [0, 2π), which is amenable to straightforward

simulation and visualisation. The underlying diffusion is a Brownian motion (A ≡ 0 in

(4.1)), and the quasi-stationary distribution is trimodal with density function π(θ) =

(0.3+sin2(1.5θ))/(1.6π) with respect to the Riemannian measure. The corresponding

killing rate, calculated using (3.6) is κ(θ) = 2.25(2 cos2(1.5θ)−1)/(0.3 + sin2(1.5θ)) +

K, with K = 1.75.

The simulations were done using a simple Euler discretisation scheme where time

was discretised into intervals of length 0.05. The plots are oriented so that θ = 0 is

due east, with θ = π/2 being due north, and so on. We have chosen r = 1000, µ0 to

be the uniform distribution over M and ηs ≡ 1. The plots shows
∫ t

0
δXs− ds/t for t =

25, 100, 1000, 106, split into 50 evenly-spaced bins. The quasi-stationary distribution

π is the dashed line.
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Figure 4.1: Example on the circle. The circle is parameterised by θ ∈ [0, 2π), with due
east corresponding to θ = 0. The underlying diffusion is a Brownian motion, and we
have chosen r = 1000, µ0 to be the uniform distribution on M and ηs ≡ 1. The quasi-
stationary distribution π(θ) = (0.3 + sin2(1.5θ))/(1.6π) is the dashed line. We have
plotted

∫ t
0
δXs− ds/t discretised into 50 evenly-spaced bins, for t = 25, 100, 1000, 106.

The two columns are two independent runs.
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We see that there is a significant amount of variability for the small time values, as

the initial rebirths are drawn mostly from the uniform distribution µ0. These discrep-

ancies are largely smoothed out by t = 1000 and certainly by t = 106,
∫ t

0
δXs− ds/t

closely resembles the quasi-stationary distribution π.

This present work closely follows the approaches of Benäım et al. [2002] and the re-

cent Benäım et al. [2018] in order to prove our limiting result Theorem 4.2.1. Benäım

et al. [2002] shows an analogous characterization for the normalized occupation mea-

sures of a self-interacting diffusion on a compact space, where the empirical occupation

measure influences the present behavior of the diffusion through its drift term. In our

work, the influence of the occupation measures is felt through jumps, which occur at a

state-dependent rate. In Benäım et al. [2018], the authors prove a discrete-time ana-

logue of our above result; their underlying Markov process is a discrete-time Markov

chain evolving on a compact space, rather than a diffusion. In [Benäım et al., 2018,

Section 8.3], the authors do suggest a continuous-time extension of their work: a dif-

fusive process that is killed instantaneously when hitting the boundary of an open set.

This is not the same as the present work; we are assuming a boundaryless manifold,

and instead of hard killing at a boundary, killing occurs at a smooth state-dependent

rate κ as in (4.2). The key difference in the proposed setting of [Benäım et al., 2018,

Section 8.3] is that in their case, the state space is no longer compact, and hence addi-

tional arguments ensuring almost sure tightness of the empirical occupation measures

are needed.

We follow generally the path mapped out by Benäım et al. [2002, 2018], Kurtz-

mann [2010], often referred to as the “ODE method”, cf. Benäım [1999], Kushner

and Yin [2003]. To understand the particular continuous-time dynamics we employ

techniques similar to those of Wang et al. [2019a], Kolb and Steinsaltz [2012]. For

example, to handle the killing mechanism we make use of the transition subdensity of

the killed diffusion and the corresponding resolvent operator; see Lemmas 4.3.4, 4.3.5

and 4.3.8. The continuous-time setting also provides a natural interpretation of the

weights ηs in terms of the distribution of the rebirth ‘times’; see Remark 4.3.2. An-

other contribution of this work is the analysis of the deterministic semiflow in Section

4.4, where we transform to an auxiliary Markov process and apply an appropriate

drift condition.

The earliest version of a similar analysis that we are aware of is the convergence

proof of Aldous et al. [1988] for the finite-state-space discrete-time setting. Benäım

and Cloez [2015] and Blanchet et al. [2016] expanded this work to derive rates of

convergence and central limit theorems. These analyses rely upon special techniques,
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such as those in Kushner and Yin [2003], applicable only to finite-dimensional prob-

ability distributions.

The structure of the chapter is as follows. In Section 4.3 we lay out the math-

ematical setting and describe the assumptions that we are making. We also define

the fixed rebirth process and prove some of its key properties which are crucial for

later defining the semiflow. In Section 4.4 we define and analyse the deterministic

semiflow Φ and prove that π is a global attractor. In Section 4.5 we prove that

our normalized weighted occupation measures almost surely comprise an asymptotic

pseudo-trajectory for Φ, concluding the convergence proof.

4.3 Preliminaries

4.3.1 General background

We first describe our assumptions and some notation. These assumptions are assumed

to hold throughout the chapter.

Assumption 5. M is a d-dimensional boundaryless C∞ compact connected Riemann-

ian manifold.

We will denote the corresponding Riemannian measure by dx or dy, and the Rie-

mannian inner product of points x and y by x ·y. Let C(M) denote the Banach space

of (bounded) real-valued continuous functions on M equipped with the sup norm,

‖ · ‖∞. Let P(M) denote the space of Borel probability measures on M , equipped

with the topology of weak-* convergence, namely convergence along all bounded con-

tinuous test functions. (This is conventionally called simply weak convergence in

probability theory, but we follow the terminology of Benäım et al. [2018] to avoid

confusion when working with the Banach space C(M) and its dual.) Thus P(M) is

a compact metrisable space, by the Prokhorov theorem, cf. [Dudley, 2002, Theorem

11.5.4].

As M is compact, C(M) is separable, so we may choose a sequence of smooth

functions f1, f2, . . . which are dense in {f ∈ C(M) : ‖f‖∞ ≤ 1}. We define the

metric dw : P(M)× P(M)→ R+ on P(M) by

dw(ν1, ν2) =
∞∑
i=1

1

2i
|ν1(fi)− ν2(fi)|. (4.4)

We also define the total-variation norm for a signed measure µ on M by

‖µ‖1 = sup{|µ(f)| : f ∈ C(M), ‖f‖∞ ≤ 1}.
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Let Ω be the Skorokhod space of càdlàg paths ω : R+ → M , and let F be the

cylinder σ-algebra. Let X = (Xt)t≥0 be the coordinate process, Xt(ω) = ω(t), and

let (Ft)t≥0 be the natural filtration of X.

Assumption 6. The function A : M → R is C∞.

In particular, this implies that A is bounded (since M is compact), and that the

SDE (4.1) on M has a unique strong solution for any initial position.

Given a measurable killing rate κ : M → [0,∞), the corresponding killing time τ∂

is defined as

τ∂ := inf

{
t ≥ 0 :

∫ t

0

κ(Ys) ds ≥ ξ

}
,

where ξ is an independent exponential random variable with rate 1.

Assumption 7. The killing rate κ : M → [0,∞) is C∞ and is uniformly bounded

away from zero: there exists some constant κ
¯
> 0 such that

0 < κ
¯
≤ κ(x) ∀x ∈M. (4.5)

As a continuous function on a compact space κ is necessarily bounded above, say

κ(x) ≤ κ̄ <∞ ∀x ∈M.

Given a killing rate κ which is not strictly bounded away from 0, we can always

add a positive constant everywhere; this will not affect the quasi-stationary behavior

of the process and will ensure that (4.5) holds. The upper bound on the killing rate

will certainly guarantee that the resulting process will be almost surely nonexplosive.

We will later see that given κ, the diffusion (4.1) killed at rate κ has a unique

quasi-stationary distribution (Proposition 4.3.12).

The question of existence and uniqueness of quasi-stationary distributions of killed

diffusions has been studied in depth, for instance in Kolb and Steinsaltz [2012], [Collet

et al., 2013, Chapter 6]. This context of quasi-stationary Monte Carlo methods –

where we are starting from a density π and wish to construct a killed diffusion whose

quasi-stationary distribution coincides with π – is the topic of Chapter 3.

From (3.6) of Chapter 3, if we were to start with a smooth positive density π, the

appropriate choice of κ is given for each y ∈M by

κ(y) :=
1

2

(
∆π

π
− 2∇A · ∇π

π
− 2∆A

)
(y) +K.
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Here ∇ and ∆ are the gradient and Laplacian operators on M , and K is a constant

chosen so that κ satisfies (4.5). In this work we will not necessarily assume we are

starting from π, and take κ to be a general killing rate satisfying Assumption 7.

Fix µ0 ∈ P(M) and r > 0. We fix a weight function η : R+ → R+ satisfying the

following assumptions: Define functions g : R+ → R+ and α : R+ → R+ by

g(t) :=

∫ t

0

ηs ds, αt :=
ηt

r + g(t)
, t ≥ 0.

Assumption 8. η is continuously differentiable with ηt > 0 for all t > 0, and g(t)→
∞ as t→∞. α is differentiable and satisfies αt → 0 as t→∞,

∫∞
0
α2
s ds <∞ and

∞∑
n=1

∫ ∞
h(n)

α2
s ds <∞, (4.6)

where h is defined below.

Since g is strictly increasing (as ηt > 0), continuously differentiable and increases

to ∞, it is a diffeomorphism of R+ → R+. Thus it has a well-defined continuously

differentiable inverse g−1. The function h : R+ → R+ is then given by

h(t) := g−1(ret − r), t ≥ 0.

This function h will be the time change that we shall employ in Section 4.5.

Remark 4.3.1. It follows from Assumption 8 that
∫ t

0
αs ds = log(1 + g(t)/r) → ∞

as t → ∞. Thus these conditions on α are analogous to the typical discrete-time

assumptions on the step sizes in traditional stochastic approximation; cf. [Kushner

and Yin, 2003, Chapter 5]. Since t 7→
∫∞
h(t)

α2
s ds is monotone decreasing, a sufficient

condition for (4.6) to hold is that∫ ∞
0

dt

∫ ∞
h(t)

ds α2
s =

∫ ∞
0

α2
s log(1 + g(s)/r) ds <∞.

Define the normalized empirical occupation measures (µt(ω))t≥0 by

µt(ω) =
rµ0 +

∫ t
0
ηsδω(s−) ds

r +
∫ t

0
ηs ds

where
∫ t

0
ηsδω(s−) ds(A) =

∫ t
0
ηs1A(ω(s−)) ds for each measurable A ⊂ M . In general

we will omit the dependence on ω.
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Remark 4.3.2. For simplicity one may take ηt ≡ 1, then g(t) = t and αt = 1/(r+t) for

all t ≥ 0. Sampling from Z ∼
∫ t

0
ηsδXs− ds/

∫ t
0
ηs ds is then equivalent to simulating

V ∼ Unif([0, 1]) and setting Z = X(V t)−. More generally, for k ≥ 0 one can take

ηt = tk for each t ≥ 0. It is not difficult to check that for this choice of η Assumption

8 is satisfied, and simulating Z ∼
∫ t

0
ηsδXs− ds/

∫ t
0
ηs ds is equivalent to the case of

constant η except with V ∼ Beta(k + 1, 1). Heuristically, choosing a larger value

of k prioritizes the more recent times. The choice of the parameter k to accelerate

convergence is itself an interesting question, which will be explored in future work.

Preliminary simulations involving Brownian motions and unimodal targets seem to

suggest k = 10 might be a reasonable choice.

For any µ ∈ P(M), define the operator −Lµ on twice-differentiable functions by

− Lµf(x) =
1

2
∆f(x) +∇A · ∇f(x) + κ(x)

∫
M

(
f(y)− f(x)

)
µ(dy). (4.7)

Here we choose to use the negative operator in order to comport with the convention

adopted in Kolb and Steinsaltz [2012] and Chapter 3, where it was chosen to make

the corresponding self-adjoint operators positive.

We can define probability measures (Px : x ∈M) with the following properties:

• Px(X0 = x) = 1.

• For all smooth f ∈ C(M)

N f
t := f(Xt)− f(x)−

∫ t

0

(−Lµs)f(Xs−) ds

is a Px-martingale with respect to (Ft).

The existence of such probability measures can be done analogously to Proposition 2.5

of Benäım et al. [2002]. In our case, it is in fact simpler and we can construct Px by

explicitly defining the killing events, as follows. Let ξ1, ξ2, . . . be an i.i.d. sequence

of Exp(1) random variables. Set T0 = 0, X0 = x and given Tn and XTn inductively

define

τn+1 := inf

{
t ≥ 0 :

∫ t

0

κ
(
Y (n+1)
s

)
ds ≥ ξn+1

}
(4.8)

where for each n = 0, 1, 2, . . . , (Y
(n+1)
s )s≥0 is an independent realisation of the solution

to the SDE (4.1) started from Y
(n+1)

0 = XTn . For a careful treatment of defining

diffusions on manifolds, the reader is referred to Stroock [2000].

Then update the path XTn+s = Y
(n+1)
s for s ∈ [0, τn+1). Set Tn+1 = Tn + τn+1

and independently draw XTn+1 ∼ µTn+1 , which only depends on the path before time

Tn+1.
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Remark 4.3.3. The practical simulation of this process, namely of the SDE dynamics

(4.1) and the killing times (4.8), may seem difficult at first glance. For the killing

times, in the present compact setting simulation is actually straightforward, since

one can directly employ Poisson thinning (see [Devroye, 1986, Chater VI.2.4]) as κ

is bounded. Even in noncompact spaces simulation of such times may be performed

without error through layered processes ; this is the case for the ScaLE algorithm

Pollock et al. [2016]. To simulate the SDE, it turns out that through the techniques

of exact simulation Beskos et al. [2006], in many settings the SDE (4.1) can be

simulated on fixed time horizons without error and without resorting to discretization.

A thorough computational analysis of the resulting ReScaLE algorithm, including

applications to large data sets and comparisons to existing methods is the subject of

Kumar [2019].

4.3.2 Fixed Rebirth processes

We now define the fixed rebirth processes and derive some useful properties. These

will be crucial later for defining the deterministic semiflow. It will be convenient to

work on M with the measure

Γ(dy) = γ(y) dy,

where

γ(y) = exp(2A(y)).

Let us write Lκ for minus the generator of the diffusion Y from (4.1) killed at rate

κ and let D(Lκ) ⊂ C(M) be its domain. Such f are twice continuously differentiable,

and we have

−Lκf =
1

2
∆f +∇A · ∇f − κf.

Then we have the identity

e−tL
κ

f(x) = Ex[f(Yt)1{τ∂>t}] = Ex
[
f(Yt)e

−
∫ t
0 κ(Ys) ds

]
. (4.9)

Here (and throughout) τ∂ denotes a general killing time, defined analogously to (4.8)

and Y evolves according to our SDE (4.1) without any killing. The exponentiation

of the operator −Lκ is rigorously justified through the spectral theorem for self-

adjoint operators, and the resulting (sub-Markovian) semigroup (e−tL
κ
)t≥0 is strongly

continuous on C(M). Details may be found in Demuth and van Casteren [2000].

Similarly to Wang et al. [2019a], Kolb and Steinsaltz [2012], we show the existence

of a continuous, positive transition subdensity for the SDE (4.1) killed at rate κ.
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Lemma 4.3.4. The SDE (4.1) killed at rate κ has a C∞ positive transition subdensity

pκ(t, x, y) with respect to Γ, that is,

e−tL
κ

f(x) =

∫
M

f(y) pκ(t, x, y)Γ(dy).

Proof. First, we note that the unkilled diffusion has a smooth positive transition

density p0(t, x, y) with respect to Γ. The existence of this density is described briefly

in Example 9 of [Demuth and van Casteren, 2000, Chapter 1.C], and the details can be

found in [Bismut, 1984, Chapter II]. In particular, the assumptions of Bismut [1984]

are that the manifold M is a C∞ compact connected finite-dimensional Riemannian

manifold (as in our Assumption 5) and that the drift – our ∇A – is a C∞ vector field,

which we are assuming (Assumption 6).

In order to obtain the transition subdensity for the killed diffusion, we make use

of (4.9). By conditioning on the end point we can write

e−tL
κ

f(x) = Ex
[
f(Yt)g(t, x, Yt)

]
=

∫
M

f(y)g(t, x, y)p0(t, x, y)Γ(dy),

where for each t > 0, x, y ∈M ,

g(t, x, y) := Ex
[
e−

∫ t
0 κ(Ys) ds

∣∣Yt = y
]
.

By [Bismut, 1984, Chapter II.d], since κ is bounded C∞, g(t, x, y) is continuous in

x, y and in fact since κ is smooth and nonnegative, g(t, x, y) is jointly continuous over

t, x, y and smooth as a function of x or y. Since κ is nonnegative and bounded above,

we have the bounds e−tκ̄ ≤ g(t, x, y) ≤ 1. In particular g(t, x, y) is positive, and hence

setting for each t > 0, x, y ∈M ,

pκ(t, x, y) = p0(t, x, y)g(t, x, y), (4.10)

we obtain the positive C∞ transition subdensity pκ(t, x, y) with respect to Γ of diffu-

sion (4.1) killed at rate κ. �

Lemma 4.3.5. The resolvent operator R : C(M)→ C(M) given by

Rf(x) =

∫ ∞
0

dt

∫
M

Γ(dy) pκ(t, x, y)f(y)

is a well-defined bounded, positive linear operator.
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Remark 4.3.6. We have defined R as an operator on the Banach space C(M). Its

dual operator acts on the space of finite signed Borel measures on M (cf. [Dudley,

2002, Section 7.4]). Following the standard probabilistic notation we will denote its

dual action on a measure µ by simply µR. That is, µR is the measure defined by

µR(f) =

∫
M

µ(dx)Rf(x).

Proof. R is clearly linear and maps nonnegative functions to nonnegative functions.

It maps continuous functions to continuous functions since pκ(t, x, y) and γ are con-

tinuous. Thus R is a positive linear operator mapping C(M) → C(M). For the

constant function 1 : x 7→ 1 we have

R1(x) =

∫ ∞
0

dt

∫
M

Γ(dy) pκ(t, x, y) =

∫ ∞
0

dtPx(τ∂ > t) = Ex[τ∂]. (4.11)

Since we are assuming that the killing rate is everywhere bounded below by κ
¯
, it

follows that we have the uniform bound over x ∈M ,

Ex[τ∂] ≤ 1/κ
¯
.

Thus since R is positive, it follows that R is bounded. �

We note for future reference that

1

κ̄
≤ inf

x∈M
R1(x) ≤ sup

x∈M
R1(x) ≤ 1

κ
¯

. (4.12)

Remark 4.3.7. Heuristically, the resolvent describes the average cumulative occupa-

tion measure of the killed diffusion over a single lifetime.

Fix a probability measure µ ∈ P(M). We now define the fixed rebirth process

with rebirth distribution µ, abbreviated to FR(µ), to be a Markov process with càdlàg

paths, evolving according to the SDE (4.1) between regeneration events, which occur

at rate κ(Xµ
t ). At such an event the location is drawn independently from distribution

µ. It can be constructed explicitly as in the construction at the end of Section 4.3.1

in the simpler case when XTn+1 ∼ µ for each n. Let (P µ
t )t≥0 denote the semigroup of

this process.

Recall that Y denotes the unkilled process that evolves according to the SDE

(4.1). Since the FR(µ) process exhibits a natural renewal behavior, by conditioning

on the first arrival time τ∂, we see that

P µ
t f(x) =

∫ t

0

Ex
[
κ(Ys)e

−
∫ s
0 κ(Yu) du

]
µP µ

t−sf ds+ Ex
[
f(Yt)1{τ∂>t}

]
. (4.13)
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The second term can be expressed equivalently as in (4.9).

Since κ is continuous and bounded, and the unkilled diffusion semigroup of Y is

strongly continuous (since A is smooth), it follows directly from the relation (4.13)

that (P µ
t )t≥0 is also a strongly continuous semigroup on C(M). This implies that

FR(µ) is a Feller–Markov process. Thus by the Hille–Yosida theorem (Theorem 1.7,

Guionnet and Zegarlinski [2002]), since (P µ
t )t≥0 is a Feller–Markov semigroup, it has

an infinitesimal generator −Lµ defined on a dense domain D(Lµ) ⊂ C(M).

The action of the generator −Lµ on smooth functions agrees with (4.7). Since

κ is bounded and continuous, D(Lµ) will consist of twice continuously differentiable

functions on M , and in fact D(Lµ) is independent of µ.

Lemma 4.3.8. Given µ ∈ P(M), an invariant measure for the FR(µ) process is

given by

Π(µ)(f) =
µRf
µR1

. (4.14)

Proof. Let f ∈ D(Lµ), then it follows that f ∈ D(Lκ). We wish to show that

µRLµf = 0 (Proposition 9.2 of [Ethier and Kurtz, 1986, Chapter 9]). Note by (4.9)

that we can write

Rf =

∫ ∞
0

e−tL
κ

f dt.

Then

−µRLµf = −µ
∫ ∞

0

e−tL
κ

Lµf dt

= µ

∫ ∞
0

e−tL
κ

(
− Lκf + κ

∫
f(y)µ(dy)

)
= µ

(
[e−tL

κ

f ]∞0 + µ(f)

∫ ∞
0

e−tL
κ

κ dt

)
where we used the backward equation (see, for instance, [Ethier and Kurtz, 1986,

Chapter 1], Proposition 1.5),

d

dt
(e−tL

κ

f) = −e−tLκLκf.

Note that by Tonelli’s theorem we can exchange the order of integration to find∫ ∞
0

e−tL
κ

κ dt = E
[ ∫ τ∂

0

κ(Ys) ds

]
= E[ξ] = 1

where ξ ∼ Exp(1) by the definition of our killing construction.
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Thus putting the terms together we have that

−µRLµf = µ(−f + µ(f)1) = −µ(f) + µ(f) = 0.

Thus it follows that Π(µ), which is the normalized version of the measure µR, is an

invariant probability measure for the FR(µ) process. �

Proposition 4.3.9. We have the bound

‖ν1P
µ
t − ν2P

µ
t ‖1 ≤ 2e−tκ¯

for any ν1, ν2, µ ∈ P(M). In particular choosing ν2 = Π(µ) gives the bound

‖νP µ
t − Π(µ)‖1 ≤ 2e−tκ¯ (4.15)

for any ν, µ ∈ P(M). It follows that Π(µ) is the unique invariant probability measure

for the FR(µ) process.

Proof. This will follow straightforwardly from the coupling inequality, see, for

instance, [Roberts and Rosenthal, 2004, Section 4.1]. This states that ‖L(X) −
L(Y )‖1 ≤ 2P(X 6= Y ) for a coupling P of random variables X, Y with laws

L(X),L(Y ) respectively.

Since we are assuming the killing rate κ is bounded below by κ
¯

and the rebirth

distribution is fixed, we can couple two processes started from different initial dis-

tributions at the first arrival time of a homogeneous Poisson process with rate κ
¯
.

�

Lemma 4.3.10. The map Π : P(M)→ P(M) is continuous in the topology of weak-*

convergence.

Proof. We know that R is a bounded linear operator on C(M) by Lemma 4.3.5.

Thus as noted in Remark 4.3.6 it acts dually on the space of finite signed Borel

measures, and is continuous on the dual space. So it must also be weak-* continuous.

Continuity of µ 7→ Π(µ) follows. �

Remark 4.3.11. In fact, since P(M) is a compact metric space it follows that Π :

P(M)→ P(M) is uniformly continuous.

Proposition 4.3.12. µ ∈ P(M) satisfies the fixed point equation

µ = Π(µ) (4.16)

if and only if µ is quasi-stationary for the diffusion Y killed at rate κ.

There exists a unique quasi-stationary distribution π for the diffusion Y killed

at rate κ. Furthermore, π has a strictly positive C∞ density with respect to the

Riemannian measure, which will also be denoted by π.
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Proof. Suppose µ is invariant for Lµ. This means that for all smooth f ,

µLµf = 0;

that is, by (4.14)

1

2
µ(∆f) + µ(∇A · ∇f) + µ(κ)µ(f)− µ(κf) = 0,

which is equivalent to

µLκf = µ(κ)µ(f).

Since µ(κ) > 0 this tells us that µ is a quasi-stationary distribution for X.

Conversely, suppose µ is quasi-stationary for Y . Then

µLκf = λ0µ(f)

for all smooth f and some λ0 > 0. Then choosing f ≡ 1, we find that µ(κ) = λ0,

from which it follows that µLµf = 0. Hence µ is stationary for Lµ.

Existence and uniqueness of the quasi-stationary distribution π follows from The-

orem 1.1 of Champagnat and Villemonais [2016]. For each t > 0, the transition

subdensity pκ(t, x, y) is strictly bounded away from 0; we have that for fixed t > 0,

we can find some ε > 0 such that pκ(t, x, y) > ε, for all x, y ∈M . Then the Assump-

tion (A) of Theorem 1.1 of Champagnat and Villemonais [2016] is easily verified.

In addition, it follows from the existence of the transition subdensity pκ(t, x, y)

that π must also be absolutely continuous with respect to the Riemannian measure:

Since it is the quasi-stationary distribution of the diffusion Y , by basic properties of

quasi-stationary distributions (e.g. Theorem 2.2 of Collet et al. [2013]) there exists

some λκ0 > 0 such that for each measurable A ⊂M and t > 0,

π(A) = Pπ(Yt ∈ A |τ∂ > t) =

∫
M

π(dx)

∫
A

dy γ(y)etλ
κ
0pκ(t, x, y).

In particular this implies that π is absolutely continuous with respect to the Rie-

mannian measure; hence π has a density with respect to it, which we will also denote

by π. Thus the density π satisfies for each t > 0,

π(y) =

∫
M

π(dx) etλ
κ
0pκ(t, x, y)γ(y), (4.17)

for almost every y ∈ M . But since pκ(t, x, y) is positive and smooth, it follows that

the density π is continuous – so (4.17) holds for all y ∈ M – and then the density π

is smooth, and also positive everywhere. �

Remark 4.3.13. As noted in Section 4.3, in the context of Monte Carlo the quasi-

stationary distribution π will be chosen to coincide with a distribution of interest by

choosing κ according to (3.6).
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4.4 Deterministic Flow

4.4.1 Basic properties

We are now in a position to define the deterministic measure-valued flow that will

characterise the asymptotic behavior of the normalized occupation measures (µt)t≥0.

Recall, as in Benäım [1999], that on a metric space E a semiflow Φ is a jointly

continuous map

Φ : R+ × E → E,

(t, x) 7→ Φ(t, x) = Φt(x)

such that Φ0 is the identity on E and Φt+s = Φt ◦ Φs for all s, t ∈ R+.

We would like to define a semiflow Φ on the space E = P(M) of probability mea-

sures with the topology of weak-* convergence, which is a metric space. In particular

we want t 7→ Φt(µ) to solve the measure-valued ordinary differential equation (ODE)

ν̇t = −νt + Π(νt), ν0 = µ, (4.18)

in the weak sense, meaning that for any test function f ∈ C(M)

Φt(µ)f = µf +

∫ t

0

(
− Φs(µ)f + Π(Φs(µ))f

)
ds.

We define such a semiflow by adapting the approach of [Benäım et al., 2018,

Section 5] to our present setting. As noted in Lemma 4.3.5, the operator R is a

bounded linear operator mapping from the Banach space C(M) to itself. This allows

us to define, for any t ≥ 0, the bounded linear operator etR : C(M) → C(M),

whose dual acts on the space of finite signed Borel measures, equipped with the

total-variation norm.

This allows us to define, for each t ≥ 0, the probability measures

Φ̃t(µ) :=
µetR

µetR1
.

The map t 7→ Φ̃t(µ) satisfies the weak measure-valued ODE

ν̇t = νtR− (νR1)νt = (νtR1)(−νt + Π(νt)), ν0 = µ.

To get a solution to our actual ODE (4.18) we employ a suitable time change, imitating

Blanchet et al. [2016] and Benäım et al. [2018]. Similarly to Benäım et al. [2018], for

t ≥ 0 set

sµ(t) :=

∫ t

0

Φ̃s(µ)R1 ds

so ṡµ(t) = Φ̃t(µ)R1 = EΦ̃t(µ)[τ∂] > 0, so t 7→ sµ(t) is strictly increasing.
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Lemma 4.4.1. ṡµ(t) ≥ 1/κ̄ > 0 for all µ ∈ P(M) and t > 0. Thus in particular

sµ(t)→∞ as t→∞ for any µ ∈ P(M).

Proof. Immediate since the function x 7→ Ex[τ∂] is uniformly bounded below by 1/κ̄

since the killing rate is bounded above by κ̄. �

For a fixed µ ∈ P(M), since sµ is a strictly increasing, differentiable map R+ → R+

we can define an inverse mapping τµ, and compose

Φt(µ) = Φ̃τµ(t)(µ).

Recall that we have equipped the space P(M) with the weak-* topology, which is

a compact metric space.

Proposition 4.4.2. Φ is an injective semiflow on P(M), and for each µ ∈ P(M)

t 7→ Φt(µ) is the unique weak solution to (4.18).

Proof. This is identical to the proof of [Benäım et al., 2018, Proposition 5.1]. �

4.4.2 Stability of π

Recall that we are interested in working with respect to the measure Γ(dy) = γ(y) dy

where γ = exp(2A). From Proposition 4.3.12, we see that there is a (unique) quasi-

stationary distribution π which is a fixed point of Π, which also has a density with

respect to the Riemannian measure, which we also denote by π. Set

ϕ := π/γ

which is a smooth function.

We now list some basic facts about π and ϕ which can all be verified through

routine manipulations. There exists λκ0 > 0, which describes the asymptotic rate of

killing, such that

Lκϕ = λκ0ϕ.

ϕ is bounded above and bounded away from 0 since by Proposition 4.3.12, π is both

bounded above and bounded away from zero.

Writing

β :=
1

λκ0
it follows that

Rϕ = βϕ,

πR = βπ
(4.19)
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where this final identity holds both in terms of π as a measure, and pointwise as

density functions.

We wish now to analyse the asymptotic behavior of the semiflow Φ defined in

Section 4.4. To do this we will derive a drift condition for a reweighted version of the

Markov process.

Since ϕ is bounded above and away from zero, consider the bounded linear oper-

ator L : C(M)→ C(M) given by

L =
1

ϕ
(R− β)ϕ.

Thus by exponentiation L generates a Markov semigroup (Kt)t≥0. For each t ≥ 0,

Ktf =
1

ϕ
exp(t(R− β))(ϕf).

We can also define the kernels (K̃t)t≥0,

K̃t := ϕKt(f/ϕ) = exp(t(R− β))f.

For the process defined by (Kt)t≥0 it can easily be seen from (4.19) that the

measure πϕ given by (πϕ)(f) =
∫
f(x)ϕ(x)π(x) dx is an invariant measure. Since ϕ

is bounded, we see that πϕ is in fact a finite measure. In what proceeds, without loss

of generality we rescale ϕ so that πϕ(1) = 1.

We would like to show that this process is V -uniformly ergodic, with V = 1/ϕ.

We do this using a drift condition from Theorem 5.2 of Down et al. [1995]: for

a continuous-time irreducible aperiodic Markov process with extended generator L,

assume it satisfies for constants b, c > 0 and petite set C

LV ≤ −cV + b1C , (4.20)

then the process is V -uniformly ergodic. Heuristically, a petite set is a set from which

the Markov process leaves with a common minorizing measure. The precise definition

is carefully presented in [Down et al., 1995, Section 3]. For our present purposes, since

we have a positive continuous transition subdensity pκ(t, x, y), it is enough to note

that compact sets (and hence the entire space) are petite.

Proposition 4.4.3. The drift condition (4.20) holds.

Proof. Recall we have set V = 1/ϕ. Then for β = 1/λκ0 ,

LV =
1

ϕ
(R− β)1 =

1

ϕ
(E·[τ∂]− β) = −βV + V E·[τ∂] ≤ −βV + b
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where b is an upper bound for V (x)Ex[τ∂] for all x, which exists since V is bounded

above and κ is bounded away from 0. Note our entire space is compact, hence petite.

Thus the drift condition holds. �

Remark 4.4.4. We note that since the entire space M is compact hence petite, the

drift condition (4.20) can be trivially satisfied by choosing V ≡ 1, the constants

b = c = 1 and C = M . However we have kept the choice V = ϕ in the proof since

this choice is suggestive of how one might generalise this to noncompact spaces.

By [Down et al., 1995, Theorem 5.2] this implies V -uniform ergodicity: There

exist constants D and 0 ≤ ρ < 1 such that for all x ∈M :

sup
|g|≤V

|Kt(x, g)− πϕ(g)| ≤ V (x)Dρt.

Multiplying through by ϕ(x) and relabeling ϕg as f , we see that the condition |g| ≤
V = 1/ϕ is equivalent to |f | ≤ 1, hence proving uniform ergodicity: For any x ∈M

sup
|f |≤1

|K̃t(x, f)− ϕ(x)π(f)| ≤ Dρt.

Thus we will have, for any initial distribution µ,

sup
|f |≤1

|µK̃tf − µ(ϕ)π(f)| ≤ Dρt. (4.21)

Proposition 4.4.5. We have convergence Φ̃t(µ) → π as t → ∞ in total variation

distance, uniformly in µ .

Proof. Let ϕ∗ := minx∈M ϕ(x), which is positive, since ϕ is a continuous positive

function on a compact set. We find that for any t ≥ (log 2D − logϕ∗)/ log ρ−1 we

have by (4.21)

µK̃t1 ≥ µ(ϕ)−Dρt ≥ ϕ∗
2
.

Since

Φ̃t(µ) =
µK̃t

µK̃t1
,

we have then for any probability measure µ and continuous f with |f | ≤ 1

|Φ̃t(µ)f − π(f)| ≤
(
µK̃t1

)−1 [∣∣µK̃tf − µ(ϕ)π(f)
∣∣+ |π(f)| ·

∣∣µ(ϕ)− µK̃t1
∣∣]

≤ 2

ϕ∗
·
[
1 + |π(f)|

]
Dρt

≤ 4D

ϕ∗
ρt.
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Finally, we see that this convergence carries over to the semiflow Φ.

Theorem 4.4.6. We have convergence Φt(µ)→ π as t→∞ uniformly in µ in total

variation distance.

Proof. This follows from Proposition 4.4.5 and the fact that ṡµ(t) is bounded above

by 1/κ
¯

uniformly in µ and t, as in Lemma 4.3.5. The boundedness of this derivative

ensures that its inverse τµ satisfies for all µ ∈ P(M) and t ≥ 0

τµ(t) ≥ κ
¯
t.

�

Remark 4.4.7. In the language of Benäım [1999], this shows that π is a global attractor

of the semiflow Φ.

4.5 Asymptotic Pseudo-Trajectories

4.5.1 Basic properties and definitions

We now wish to relate the stochastic behavior of the normalised weighted empirical

measures

µt =
rµ0 +

∫ t
0
ηsδXs− ds

r +
∫ t

0
ηs ds

to the deterministic behavior of the flow defined in Section 4.4.

Definition. ([Benäım, 1999, Section 3]) For a metric space (E, d), given a semiflow

Φ on E, a continuous function w : [0,∞) → E is an asymptotic pseudo-trajectory of

Φ if for all T > 0,

lim
t→∞

sup
s∈[0,T ]

d
(
w(t+ s),Φs(w(t))

)
= 0.

Recall that by Assumption 8, since g is continuously differentiable, strictly in-

creasing and g(t)→∞ as t→∞, it is a diffeomorphism of R+ → R+. Thus we can

define its inverse function g−1 : R+ → R+, which is also continuously differentiable

and satisfies g−1(t)→∞ as t→∞. Let

ζt := µh(t)
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for all t ≥ 0, where we defined h(t) := g−1(ret − r). We will show that almost surely

t 7→ ζt is an asymptotic pseudo-trajectory of the semiflow Φ defined in Section 4.4.

Since
d

dt
µt = αt

(
− µt + δXt−

)
, (4.22)

applying the chain rule and product rule for derivatives yields

d

dt
ζt =

(
− ζt + Π(ζt)

)
+
(
δXh(t−)

− Π(ζt)
)
. (4.23)

Looking at the first bracket, we recognize the flow from Section 4.4. Thus to formally

show that ζt approximates the flow, we need to control the second bracket. We also

note here for future reference that

∂

∂t
Π(µt)f = αt

(
− µtRf
µtR1

+
Rf(Xt−)

µtR1
+
µtRf
µtR1

− µtRf · R1(Xt−)

(µtR1)2

)
=

αt
µtR1

(
Rf(Xt−)−R1(Xt−)Π(µt)f

)
.

(4.24)

We formalize this intuition by the approach of [Benäım et al., 2002, Proposition

3.5] and [Kurtzmann, 2010, Lemma 5.4]. It is proven in Theorem 3.2 of Benäım

[1999] that asymptotic pseudo-trajectories must be uniformly continuous. Conversely,

Theorem 3.2 of Benäım [1999] also tells us that a uniformly continuous path ζ is an

asymptotic pseudo-trajectory if and only if every limit point of the time shifts Θtζ in

the topology of uniform convergence on compact sets is itself a trajectory of the flow.

We defineM(M) to be the space of Borel signed measures on M , equipped with the

weak-* topology, which can be metrized analogously to (4.4). Let C(R+,P(M)) and

C(R+,M(M)) be the spaces of continuous paths mapping R+ into P(M) andM(M)

respectively, each equipped with the topology of uniform convergence on compact

subsets of R+. As usual, for each t ≥ 0 we define Θt : C(R+,P(M))→ C(R+,P(M))

to be the shift map given by [
Θtζ
]
s

= ζt+s, s ≥ 0.

Defining the retraction Φ̂ : C(R+,P(M)) → C(R+,P(M)) as in Benäım [1999] and

[Benäım et al., 2002, Proposition 3.5] by

Φ̂(ζ)(s) = Φs(ζ0), s ≥ 0,

showing that ζ is an asymptotic pseudo-trajectory of Φ is then equivalent to showing

that the limit points of {Θtζ}t≥0 are fixed points of the retraction Φ̂.
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We also define in analogue to Benäım et al. [2002] the operator LF :

C(R+,P(M))→ C(R+,M(M)) by

LF (ν)(s) = ν(0) +

∫ s

0

F (ν(u)) du, s ≥ 0,

with F (ν) := −ν + Π(ν), which will be used in the subsequent proof.

Define the collection of signed measures

εt(s) :=

∫ t+s

t

(
δXh(u−)

− Π(ζu)
)

du

for all t, s ≥ 0. We note that for each t ≥ 0, εt(·) ∈ C(R+,M(M)).

Theorem 4.5.1. Suppose ζ : R+ → P(M) is a continuous path as described above.

Then ζ is an asymptotic pseudo-trajectory for Φ if and only if we have the following

condition:

For any T > 0 and smooth f ∈ C(M)

lim
t→∞

sup
s∈[0,T ]

|εt(s)f | = 0. (4.25)

Remark 4.5.2. Theorem 3.2 of Benäım [1999] assumes relative compactness of the

image of the path ζ. By Prokhorov’s theorem (see [Dudley, 2002, Theorem 11.5.4]),

relative compactness in P(M) is equivalent to tightness, which trivially holds in our

present compact setting.

Proof. Given continuous f with ‖f‖∞ ≤ 1, we have

|ζt+sf − ζtf | ≤ 2|s|

since
d(ζtf)

dt
= −ζtf + f(Xh(t−)).

Hence we have uniform continuity.

Suppose the condition (4.25) holds for any T > 0 and smooth f ∈ C(M). This says

that εt(·) converges to 0 in C(R+,M(M)). Consider the family {Θtζ}t≥0. Suppose ζ̃

is a limit point of this family in C(R+,P(M)). Analogously to Benäım et al. [2002],

we can use (4.23) and the definition of εt to write

Θtζ = LF (Θtζ) + εt(·). (4.26)
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Since we are assuming precisely (4.25), and since LF is continuous, taking t→∞ in

(4.26) along the appropriate subsequence we obtain ζ̃ = LF (ζ̃). This shows that the

limit path ζ̃ is a fixed point of LF , that is,

ζ̃s = ζ̃0 +

∫ s

0

F (ζ̃u) du, s ≥ 0.

By uniqueness of the flow this implies that ζ̃s = Φs(ζ̃0) for all s ≥ 0, that is, ζ̃ is a

fixed point of the retraction Φ̂. This concludes the proof of the sufficiency of condition

(4.25).

Conversely, suppose ζ is an asymptotic pseudo-trajectory for Φ. By definition,

this means that for each T > 0, as t→∞,

sup
s∈[0,T ]

dw
(
ζt+s,Φs(ζt)

)
→ 0. (4.27)

By the representation (4.26) we would like to show that for each T > 0,

sup
s∈[0,T ]

dw
(
Θtζ(s), LF (Θtζ)(s)

)
= sup

s∈[0,T ]

dw

(
ζt+s, ζt +

∫ s

0

F (ζt+u) du

)
→ 0

By (4.27), it is sufficient to control dw(LF (Θtζs),Φs(ζt)) uniformly over s ∈ [0, T ].

By the definition of the flow Φ, this will follow if we can control

sup
s∈[0,T ]

dw

(∫ s

0

F (ζt+u) du,

∫ s

0

F (Φu(ζt)) du

)
. (4.28)

Since F is uniformly continuous (since Π : P(M) → P(M) is uniformly continuous;

Remark 4.3.11), (4.28) can be made arbitrarily small by choosing t sufficiently large

because of (4.27).

Thus by (4.26) we conclude that εt → 0 in C(R+,M(M)), that is, (4.25) must

hold for any T > 0 and smooth f ∈ C(M) as required. �

The goal now is to establish the requirements of Theorem 4.5.1 almost surely. So we

need to establish (4.25).

4.5.2 Poisson Equation

To show that (4.25) holds, inspired by [Benäım et al., 2002, Section 5.2] and [Benäım

et al., 2018, Section 6.2], we will measure the discrepancy between the cumulative

occupancy and the quasi-stationary distribution by a solution to the Poisson equation

− f + Π(µ)f = −Lµg. (4.29)
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Fix any µ ∈ P(M). Define for f ∈ C(M),

Qµf :=

∫ ∞
0

(
P µ
t f − Π(µ)f

)
dt.

Lemma 4.5.3. For any µ ∈ P(M), Qµ is a bounded linear operator mapping C(M)

to itself, and

‖Qµf‖∞ ≤
2‖f‖∞
κ
¯

for any µ ∈ P(M) and f ∈ C(M).

Proof. Qµf is continuous since f is continuous and (P µ
t ) is Feller. From (4.15), we

have that

|Qµf(x)| ≤
∫ ∞

0

‖P µ
t (x)− Π(µ)‖1‖f‖∞ dt ≤ 2‖f‖∞

∫ ∞
0

e−tκ¯ dt =
2‖f‖∞
κ
¯

uniformly over x ∈M and µ ∈ P(M). �

Recall that −Lµ is the generator of the FR(µ) process. By the basic properties of

infinitesimal generators (see, for instance, Guionnet and Zegarlinski [2002]), we have

that for any t > 0, f ∈ C(M), that
∫ t

0
P µ
s f ds ∈ D(Lµ), and (−Lµ)

∫ t
0
P µ
s f ds =

P µ
t f − f . Then

P µ
t f(x) = f(x) + (−Lµ)

∫ t

0

P µ
s f(x) ds. (4.30)

Proposition 4.5.4. Given f ∈ C(M), Qµf ∈ D(Lµ), and g = Qµf solves the

Poisson equation (4.29).

Proof. Without loss of generality, assume Π(µ)f = 0; just replace f with f −Π(µ)f .

Then taking t → ∞ in (4.30) and using Proposition 4.3.9 we see by closure of −Lµ
that Qµ ∈ D(Lµ), and that Π(µ)f = f −LµQµf . Thus (4.29) is satisfied by g = Qµf .

�

Remark 4.5.5. By basic properties of generators of Feller processes (cf. [Revuz and

Yor, 1991, Section VII.1]), we similarly have that for f ∈ D(Lµ),

− f + Π(µ)f = −QµLµf. (4.31)

Remark 4.5.6. Note that we can think of the operator

Kµ : f 7→ f − Π(µ)f

as a projection operator since it is linear and idempotent (K2
µ = Kµ).

76



4.5.3 Bounding the discrepancy

Using our solution to the Poisson equation, we now rewrite the discrepancy term, and

decompose it using Itô’s formula. Making the change of variables u← h(u) we write

εt(s)f =

∫ t+s

t

(f(Xh(u−))− Π(ζu)f) du

=

∫ h(t+s)

h(t)

(−Lµu)Qµuf(Xu−)αudu.

Consider now a time-dependent function f : R ×M → R, written as fs(x). For

simplicity we will take the notation ∇ and ∇2 to refer to the gradient with respect

to the coordinates of M , and f ′s to be the time derivative ∂ft/∂t
∣∣
t=s

. We now apply

Itô’s formula for general semimartingales (as formulated, for instance, as Theorem

14.2.4 of Cohen and Elliott [2015]), taking advantage of the fact that all quadratic

covariation terms are 0 for the Brownian motion that is driving our process Xt:

ft(Xt)− f0(X0) =

∫ t

0

∇fu(Xu−) · dXu +
1

2

∫ t

0

∇2fu(Xu−) du+

∫ t

0

f ′u(Xu−) du

+
∑

0<u≤t

(
fu(Xu)− fu(Xu−)−∇fu(Xu−) ·∆Xu

)
.

Using the formula (4.7) for Lµ we find

ft(Xt)− f0(X0) =

∫ t

0

(−Lµu)fu(Xu−) du+

∫ t

0

∇fu(Xu−) · dWu +

∫ t

0

f ′u(Xu−) du

+
∑

0<u≤t

(
fu(Xu)− fu(Xu−)

)
−
∫ t

0

κ(Xu−)

∫ (
fu(y)− fu(Xu−)

)
µu(dy) du,

where Wu is a Wiener process on M .

We apply this formula now to the function fs(x) = Qµsf(x)αs. By Proposition

4.5.4, Qµsf ∈ D(Lµs), and so in particular Qµsf is twice continuously differentiable.

Thus fs(x) is indeed twice continuously differentiable with respect to x. We rearrange

the terms to obtain

εs(t)f =

∫ h(t+s)

h(t)

(−Lµu)Qµuf(Xu−)αudu

= ε(1)
s (t)f + ε(2)

s (t)f + ε(3)
s (t)f + ε(4)

s (t)f + ε(5)
s (t)f,

(4.32)
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where

ε
(1)
t (s)f = Qµh(t+s)f(Xh((t+s)−))αh(t+s) −Qµh(t)f(Xh(t−))αh(t),

ε
(2)
t (s)f =

∫ h(t+s)

h(t)

Qµuf(Xu−)
dαu
du

du,

ε
(3)
t (s)f = −

∫ h(t+s)

h(t)

∂

∂u

(
Qµuf

)
(Xu−)αu du,

ε
(4)
t (s)f = −N f

h(t+s) +N f
h(t),

ε
(5)
t (s)f = −Jfh(t+s) + Jfh(t),

and N and J are the local martingales

N f
t :=

∫ t

0

∇Qµuf(Xu−)αu · dWu,

Jft :=
∑

0<u≤t

(
Qµuf(Xu)αu −Qµuf(Xu−)αu

)
−
∫ t

0

duκ(Xu−)

∫
µu(dy)

(
Qµuf(y)αu −Qµuf(Xu−)αu

)
.

Theorem 4.5.7. The conditions of Theorem 4.5.1 hold almost surely. This implies

that t 7→ ζt is almost surely an asymptotic pseudo-trajectory for Φ.

Proof. To establish (4.25) we will use the decomposition (4.32) and consider the five

error terms individually.

4.5.3.1 ε
(1)
t (s)f and ε

(2)
t (s)f

Using the bound from Lemma 4.5.3, we see that

|ε(1)
t (s)f | ≤ ‖Qµh(t+s)f‖∞αh(t+s) + ‖Qµh(t)f‖∞αh(t)

≤ 4κ
¯
−1‖f‖∞(αh(t+s) − αh(t)),

|ε(2)
t (s)f | ≤

∫ h(t+s)

h(t)

‖Qµuf‖∞
dαu
du

du

= 2κ
¯
−1‖f‖∞(αh(t+s) − αh(t)).

Since h(t)→∞ as t→∞ and αt → 0 as t→∞ by Assumption 8, we see that both

terms decay to 0 as t→∞.
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4.5.3.2 ε
(3)
t (s)f

By the same argument as in the proof of Lemma 5.5 of Benäım et al. [2002] we have

∂

∂t
Qµt = −

(
∂

∂t
Kµt +Qµt

∂

∂t
(−Lµt)

)
Qµt , (4.33)

where Kµf = f − Π(µ)f . While our −Lµ is not the same as their operator Aµ, the

same proof holds, since it relies only upon the Poisson equation (4.29) and (4.31).

Applying (4.22) to the definition (4.7) of Lµt we obtain

− ∂

∂t
Lµtf(x) = κ(x)αt

(
f(Xt−)− µt(f)

)
.

From (4.24) we obtain an upper bound∥∥∥∥α−1
t

∂Kµt

∂t
Qµtf

∥∥∥∥
∞
≤
∣∣∣∣ 1

µtR1

∣∣∣∣ (∥∥RQµtf(Xt−)
∥∥
∞ +

∣∣Π(µt)R1(Xt−)
∣∣) ,

so by Lemma 4.5.3 and the bounds (4.12) we see that there is a constant C (depending

on the upper and lower bounds on κ) such that

sup
x∈M

∣∣∣∣∣∂Qµt

∂t
f(x)

∣∣∣∣∣ ≤ C‖f‖∞αt.

This implies that

|ε(3)
t (s)f | ≤ C‖f‖∞

∫ ∞
h(t)

α2
u du.

Since the definite integral from 0 to∞ is finite by Assumption 8, it follows immediately

that ε
(3)
t (s)f decays to 0 as t→∞.

4.5.3.3 ε
(4)
t (s)f

We now turn to the first of the two martingale terms. Similarly to Proposition 5.3 of

Kurtzmann [2010], our goal is to control the quadratic variation and then apply the

Burkholder–Davis–Gundy inequality.

The quadratic variation of the martingale N f
t is bounded by∫ t

0

‖∇Qµsf(Xs)‖2
∞ α

2
u ds .

We can bound this by means of the inequality

‖∇P µ
t f‖∞ ≤

C1‖f‖∞√
t

, for t sufficiently small, (4.34)
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for some constant C1. Such an inequality was shown to hold in the proof of Lemma 5.1

of Benäım et al. [2002] for diffusive processes on compact manifolds without jumps.

To see that this inequality also holds in the present setting, consider the expression

for the semigroup (4.13):

P µ
t f(x) =

∫ t

0

Ex
[
κ(Ys)1{τ∂>s}

]
µP µ

t−sf ds+ Ex
[
f(Yt)1{τ∂>t}

]
.

With this representation, it suffices to show that an inequality of the form (4.34) for

the killed semigroup given in Lemma 4.3.4. This will ensure that our resulting bound

(4.34) is uniform over µ.

By (4.10), since |g(t, x, y)| ≤ 1 uniformly, and since we know that such an inequal-

ity holds for diffusive processes on compact manifolds without jumps, it suffices to

show that

‖∇xg(t, ·, y)‖∞ ≤
C√
t

(4.35)

for some constant C uniformly over y, for all t sufficiently small. By the Girsanov–

Cameron–Martin formula Elworthy [1982] we can write

g(t, x, y) = Qt

[
e−

∫ t
0 κ(Ys) dsG(Y )

]
where for s ∈ [0, t], Ys = (1− s/t)x+ (s/t)y + Ŵs, where under Qt, Ŵ is a standard

Brownian bridge with Ŵ0 = Ŵt = 0. G(Y ) is given by

G(Y ) = exp

(
A(y)− A(x)− 1

2

∫ t

0

∆A(Ys) ds− 1

2

∫ t

0

‖∇A(Ys)‖2 ds

)
,

since our drift is assumed to be of a gradient form ∇A. Having now expressed Y

with explicit dependence upon the initial position x, we can calculate ∇xg(t, ·, y).

Since the functions κ and A are assumed smooth (hence they and their derivatives

are bounded uniformly), we can conclude that a bound of the form (4.35) holds. In

fact, the bound we obtain is actually uniform over small t, and does not blow up as

t→ 0.

Armed with (4.34), we then have∫ ∞
0

‖∇P µ
t f‖∞ dt ≤ C2‖f‖∞, (4.36)

for some constant C2, obtained by considering separately the integrals over (0, t0) and

(t0,∞). Applying (4.34) bounds the former, while the semigroup property allows the
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latter piece to be bounded by∫ ∞
t0

‖∇P µ
t f‖∞ dt ≤

∫ ∞
0

‖∇P µ
t0(P

µ
t (Kµf))‖∞ dt

≤ C1√
t0

∫ ∞
0

‖P µ
t (Kµf)‖∞ dt.

Here we replaced f with Kµf = f −Π(µ)f since Π(µ)f is a constant so ∇Π(µ)f = 0.

This final term can be bounded just as in Lemma 4.5.3.

Since ∇Qµf =
∫∞

0
∇P µ

t dt, (4.36) immediately implies a universal bound

‖∇Qµuf‖∞ ≤ C3‖f‖∞.

for smooth f . This gives us a bound for the quadratic variation of

C2
3‖f‖2

∞

∫ t

0

α2
s ds.

The Burkholder–Davis–Gundy inequality then implies the existence of a constant C4

such that for any δ > 0

Px
(

sup
s∈[0,T ]

|ε(4)
t (s)f | ≥ δ

)
≤ C4‖f‖2

∞
δ2

∫ ∞
h(t)

α2
s ds.

Using (4.6) from Assumption 8, it follows from the Borel–Cantelli lemma that

almost surely, for any δ > 0 and T > 0,

lim sup
n→∞

sup
s∈[0,T ]

|ε(4)
n (s)f | ≤ δ. (4.37)

Thus for any δ > 0 we may find N sufficiently large so that for any t ≥ N − T ,

sup
s∈[0,T ]

∣∣ε(4)
t (s)f

∣∣ ≤ sup
s∈[0,1]

∣∣ε(4)
btc(s)f

∣∣+ sup
s∈[0,T+1]

∣∣ε(4)
btc(s)f

∣∣+ sup
s∈[0,1]

∣∣ε(4)
bt+T c(s)f

∣∣ ≤ δ.

Since δ > 0 is arbitrary, it follows that almost surely for every T

lim
t→∞

sup
s∈[0,T ]

|ε(4)
t (s)f | = 0.

4.5.3.4 ε
(5)
t (s)f

The final error term is a jump martingale term. We use the same approach as above

for ε
(4)
t (s)f . For this jump martingale the quadratic variation is

∑
0<u≤t

(
Qµuf(Xu)αu −Qµuf(Xu−)αu

)2

,
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where the sum is over jump-points u ∈ (0, t]. The squared jump at time u is bounded

by

16‖f‖2
∞κ¯
−2α2

u,

making use of Lemma 4.5.3. The expected quadratic variation is then the expectation

of the predictable variation, which is bounded by

E
[ ∫ t

0

κ(Xu)α
2
u du

]
≤ κ̄

∫ t

0

α2
u du. (4.38)

Thus the total quadratic variation is bounded, and as before we conclude that almost

surely

lim
t→∞

sup
s∈[0,T ]

|ε(5)
t (s)f | = 0.

4.5.3.5 Concluding the proof

We have shown that the five discrepancy terms all converge to 0 uniformly on

compact sets as t→∞ almost surely. Thus condition (4.25) holds almost surely and

the proof is complete. �

4.5.4 Proof of Corollary 4.2.3

This follows from Theorem 4.2.1 and Remark 4.4.7, since limit sets of asymptotic

pseudo-trajectories are attractor free sets, and so will be contained in the global

attractor of Φ, which is {π}. These relationships are spelled out in [Benäım, 1999,

Section 5]. �

4.6 Subsequent work

After the work described in this chapter was first presented online in August 2018,

several related pieces of work have since been done. In Mailler and Villemonais [2018],

the authors consider measure-valued Pólya processes (MVPP). These processes are

measure-valued urns, whereby at each discrete time step a point is drawn from the

urn, then depending on the point drawn a new (measure-valued) entry is added to

the urn, which itself could be random.

In the case when the weights ηt ≡ 1 are constant, the ReScaLE algorithm as

studied in this chapter is precisely such an MVPP. Mailler and Villemonais [2018]

prove a general convergence result for the almost sure convergence of MVPPs, using

the techniques of stochastic approximation.
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In the context of stochastic approximation of quasi-stationary distributions as in

this chapter, they prove convergence of the algorithm (when the weights ηt ≡ 1 are

constant) on possibly noncompact state spaces, provided the killing κ is uniformly

bounded, and there is at least linear drift back to the center of the space. Namely,

the diffusion is the solution of the SDE

dXt = b(Xt) dt+ dBt,

where b : Rd → Rd satisfies

lim sup
‖x‖→∞

〈b(x), x〉
‖x‖

< −3

2
‖κ‖1/2

∞ .

This work demonstrated – for the first time – that indeed extensions to noncom-

pact spaces are possible for such algorithms. However, several desirable situations

are still excluded. For example, the case of Brownian motion on Rd with isotropic

Gaussian quasi-stationary distribution falls out of this framework, since, firstly, it has

no drift, and secondly, its killing rate is quadratic (hence unbounded). This general

case of potentially unbounded killing with or without drift conditions remains an

open question.

In very recent work, Benäım et al. [2019], the authors consider a similar algorithm

to the one studied in this chapter, except there is no soft killing, but hard killing at

the boundary of an open bounded domain D ⊂ Rd. They similarly prove almost sure

weak-* convergence of the normalised empirical occupation measures to the quasi-

stationary distribution.

The key innovation in this work is to handle the fact that D, since open, is not

compact, and so the sequence of empirical occupation measures is not automatically

tight. This is done by considering the ‘distance from the boundary’ as a function on

[0,∞) and making use of an elegant coupling.
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Chapter 5

The Restore sampler

In the previous two chapters we have focused on QSMC methods, and in particular in

Chapter 4 on the method known as ReScaLE. QSMC methods have shown promise

for Bayesian inference in tall data settings, however several issues remain.

For ReScaLE, one prominent issue is the necessity of storing the trajectory of the

process, in order to draw samples from the empirical occupation measure. This is

implemented typically using the theory of diffusion bridges; see Kumar [2019] for the

details. While the resulting algorithm is entirely valid, this is the major bottleneck for

current implementations of ReScaLE. This motivates the following: instead of using

the empirical occupation measure, we ‘freeze’ the rebirth distribution, and use what

we called the FR(µ) process in Chapter 4. Of course, we will need to check that we

can still derive a valid sampler in the sense of π-stationarity.

The topic is this chapter is to describe when such a process can be used as a

continuous-time Monte Carlo sampler and to provide some supporting theory and

simple examples.

The work of this chapter was done in collaboration with my supervisors

Prof. Gareth Roberts and Prof. David Steinsaltz, and in addition with Dr. Murray

Pollock (University of Warwick).

5.1 Introduction

In this chapter we introduce the Restore sampler (Randomly Exploring STOchasti-

cally REnewing). The Restore sampler has three ingredients:

• (the law of) a continuous-time Markov process Y on a state space E, referred

to as the interarrival process ;

• a locally bounded nonnegative function κ : E → R+ = [0,∞), the killing rate;
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• a probability measure µ on E; the rebirth distribution.

The Restore process X is a continuous-time Markov process heuristically defined as

follows.

Run the continuous-time Markov process Y . In addition, at rate t 7→ κ(Yt), the

particle teleports: the particle is instantaneously killed and then reborn at a new

location drawn (independently) from µ. Then continue to evolve the continuous-time

Markov process Y from there.

The Restore process is a continuous-time Markov process which combines local

dynamics given by the stochastic process Y and global dynamics given by the rebirth

distribution µ. Given Y and µ, we will show that in certain situations it is possible to

select the killing rate κ in such a way that the resulting Restore process X will possess

a given target density π as its invariant distribution. Thus the Restore process can be

used as the basis for a new Monte Carlo algorithm for sampling from a given density

function π.

An example of how one might simulate the Restore process via Poisson thinning,

[Devroye, 1986, Chapter 6.2], in the case when the killing rate κ is uniformly bounded

above by M , is given in Algorithm 2. L(Yt|x) denotes the law of the process Yt, given

Y0 = x. The output is a (random) collection of times, along with the value of the

Restore process at those times. Values of the process at intermediate times – if desired

– can typically be obtained, depending on the process Y .

Algorithm 2 Bounded Restore: κ ≤M .

1: initialise: X0 = x0, t0 = 0, i = 0
2: while ti < T do
3: i← i+ 1
4: ti ← ti−1 + τi−1, where τi−1 ∼ Exp(M)
5: simulate Zi ∼ L(Yτi−1

|Y0 = Xi−1)
6: with probability 1− κ(Zi)/M
7: Xi ← Zi
8: else
9: Xi ∼ µ

10: end while
11: return pairs (ti, Xi)

We see the novelty and potential of the Restore sampler lies in the following main

points:

• The Restore sampler is a general recipe to combine the local dynamics given

by the interarrival process Y and the global dynamics given by the rebirth
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distribution µ in such a way that the resulting process has a specified invariant

distribution. It is flexible, suitable for both discrete and continuous state spaces.

In particular, it is able to do this in settings where neither the local dynamics

nor the global dynamics are themselves π-invariant. For example, we will see in

Section 5.6 an example where the process is a highly unstable diffusion process.

• After the work has been done in setting up the process – notably ensuring that

the killing rate is nonnegative – the resulting algorithm is simple to implement.

See, for instance, Algorithm 2.

• The Restore process naturally exhibits regenerations at each rebirth event, that

is, times at which the process ‘starts afresh’. This means that the resulting

process is easy to analyse mathematically. For instance, under some additional

assumptions a central limit theorem and coupling from the past implementation

to obtain exact draws from π are easily derived. Practically speaking, the

regenerative structure means that the process does not suffer from the issue of

burn-in and can be straightforwardly implemented in parallel.

• The Restore sampler also provides a simple recipe for introducing rejection-free

moves to existing samplers. This can be done in cases where standard MCMC

algorithms may exhibit poor mixing. This is discussed in Section 5.3.3.

5.1.1 Previous work

We briefly mention some connections with existing methods; see also Sections 2.2.2,

2.2.3, 2.5.

Metropolis–Hastings algorithms, as discussed in Section 2.2.1, can typically be

classified as being either local or global. Local versions are algorithms where the

proposal kernel q(x, ·) is in some sense localised around x, so the process tends to

make small moves. Examples include random walk Metropolis (RWM), where q(x, ·)
is a Gaussian centered around x, or the MALA algorithm, Roberts and Rosenthal

[1998]. Global algorithms, by contrast, are ones where the proposals q(x, ·) have

little dependence on x, such as the independence sampler, where the proposal kernel

q(x, ·) ≡ q(·) is entirely independent of x.

Local algorithms are typically effective at exploring individual modes of the target

π, but often struggle to move between modes. On the other hand, global algorithms

may be able to move around the state space at large, but struggle with exploration

of individual modes and may exhibit very high rejection rates. As such, local and
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global algorithms are often combined to create hybrid chains, see for instance Tierney

[1996], by combining several π-invariant MCMC algorithms.

By contrast, the Restore sampler gives a natural way to combine local dynamics –

the Markov process Y – and global dynamics – jumps distributed according to µ – in

such a way that the resulting process is π-invariant. Crucially, for Restore neither the

local nor global dynamics need themselves be π-invariant, increasing the flexibility

substantially.

The Restore sampler also has direct connections with many previous samplers. In

the most basic case, when the interrarival process Y is constant, the Restore sampler

reduces to the classical rejection sampler or importance sampler, see Section 5.4.1.

As a nonreversible continuous-time processes with a state-dependent Poisson

clock, the Restore sampler has a natural affinity with the class of PDMP methods,

as decribed in Section 2.2.3 and with QSMC methods, Section 2.4 and Chapter 3.

In each case a state-dependent Poisson clock is used to drive the underlying Markov

process towards equilibium. For PDMP methods, when the clock rings the particle’s

velocity jumps, resulting in a ‘bounce’ for the process. For QSMC methods, the parti-

cle is killed, and in the case of ReScaLE (Chapter 4) reborn according to its empirical

occupation measure. For Restore, when the clock rings the particle is also killed and

reborn, but according to a fixed measure µ.

Thus since the rebirth measure is fixed these times are regeneration times, as

discussed in Section 2.2.2. Thus the Restore sampler gains the benefits which accrue

from possessing such times, for instance lack of burn-in issues, parallelisability, and

so on. However, if the process is constructed poorly, it may exhibit a rapid succession

of short lifetimes which can pose a computational burden; its effect on the variance

is studied in Section 5.4.2.

The Restore sampler can also be seen as a continuous-time version of the hy-

brid sampler in Murdoch [2000], where an independence sampler is combined with

a random walk Metropolis sampler, which can be seen as ‘global’ and ‘local’ moves

respectively. However, the crucial difference with Restore is that in our case, neither

the global nor local dynamics need to be themselves π-invariant.

As an instance of a regenerative process (see Section 2.5), the Restore sampler

also continues this line of inquiry into such processes. To the best of our knowledge,

this is the first time a continuous-time regenerative process has been used directly in

the context of Monte Carlo. As mentioned in Section 2.5, Darroch and Seneta [1965]

noted that for (discrete-time, finite state space) regenerative processes, the invariant
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distribution could be ‘made into almost any distribution’. The work of this chapter

demonstrates that for continuous time and general state spaces, this is also the case.

Finally, we reiterate the connection between the Restore sampler and the Page-

Rank algorithm, Page et al. [1999]. Recall that for the discrete-time random Page-

Rank surf on a finite graph G, at each step with a fixed probability d ∈ [0, 1] the

surfer moves to a random uniform neighbouring vertex, otherwise teleports to a new

location drawn from a fixed probability measure µ. The Restore sampler generalises

this by moving into general state spaces in continuous time, and by allowing the

‘teleport’ rate to vary with spatial location.

We turn now to formally define the Restore process and state the main results of

the chapter.

5.2 The Restore process

First we formalise the heuristic definition of the Restore process given in the intro-

duction. We define the process first in a general, abstract framework.

Let (E,m) be a measure space, where the state space E is a Radon topological

space with its Borel σ-algebra E and m is a Radon measure on E . Examples of such

spaces are second countable, locally compact Hausdorff spaces such as Euclidean space

Rd equipped with Lebesgue measure. We assume that we are given a right process

Y = (Ω′,F ′,F ′t, Yt,P0
x) evolving on E. The precise definition of a right process can be

found in [Sharpe, 1988, Chapter 20]. Intuitively, right processes are an abstract class

of continuous-time, right-continuous strong Markov processes, which includes most

practically useful processes, such as diffusions, Feller processes, right-continuous ODE

flows and jump processes.

As usual, for a general initial distribution µ, we write P0
µ =

∫
E
µ(dx)P0

x.

Let κ : E → R+ = [0,∞) be a locally bounded measurable function, the killing

rate. Define the killing time τ∂ as follows:

τ∂ := inf

{
t ≥ 0 :

∫ t

0

κ(Ys) ds ≥ ξ

}
, (5.1)

where ξ is an exponential random variable with parameter 1 independent of Y . Set

inf ∅ =∞.

Fix a probability measure µ on (E,m), which will be the rebirth distribution. Fix

an initial point x0 ∈ E. Let (Y (0), τ (0)) be a realisation of (Y, τ∂) under P0
x0

, that is,

with Y0 = x0. Let (Y (i), τ (i)) for i = 1, 2, . . . be i.i.d. realisations of (Y, τ∂) under P0
µ,

namely with Y0 ∼ µ.
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Set T0 = 0, and for each n = 1, 2, . . . , set

Tn =
n−1∑
i=0

τ (i).

Then we define the Restore process X = (Xt)t≥0 to be the process given by

Xt =
∞∑
i=0

1[Ti,Ti+1)(t)Y
(i)
t−Ti .

This defines a process X = (Ω,F ,Ft, Xt,Px) with state space (E,m). For its semi-

group we will write {P µ
t : t ≥ 0}. For an arbitrary initial distribution ν, as usual we

set Pν =
∫

dν(x)Px.
We will refer to this process as the Restore process with interarrival dynamics Y ,

killing rate κ and rebirth distribution µ.

Proposition 5.2.1. Assume that Y is a right process on the Radon space (E,m) with

Radon measure m, κ : E → R+ is a locally bounded measurable function and µ is a

probability measure on E. Then the resulting Restore process X = (Ω,F ,Ft, Xt,Px)
with interarrival dynamics Y , locally bounded nonnegative killing rate κ and rebirth

distribution µ defines a right process with state space (E,m). In particular, X is

right-continuous and strong Markov. Moreover, Tn →∞ almost surely.

Proof. The killing time can be realised using the approach of [Sharpe, 1988, Chapter

61], as a subprocess generated by the decreasing right multiplicative functional m

(see [Sharpe, 1988, Chapter 57]), defined by

mt := exp

(
−
∫ t

0

κ(Ys) ds

)
, t ≥ 0.

Since Y is right-continuous and κ is locally bounded, m is indeed a right multiplicative

functional. Then by Theorem 61.5 of Sharpe [1988], the killed process is another right

process.

Then the above construction of X by ‘gluing together’ copies of the killed process

can be rephrased using the technique of concatenation of processes in [Sharpe, 1988,

Chapter 14]. Since the killed process is a right process, Exercise 14.17 of Sharpe

[1988] shows that the resulting Restore process X is also a right process.

The final statement follows from the fact that we are assuming κ is locally bounded,

hence Eµ[τ∂] > 0 and it follows that Tn → ∞ almost surely, since the lifetimes are

independent and identically distributed.
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In order for the Restore process to be useful in the context of Monte Carlo, we

would like to choose the dynamics in such a way that the resulting process has a given

density function π as its invariant distribution.

5.2.1 Chapter overview

We begin by stating a general version of our invariance result, which in Section 5.3

will be specialised and proven in three particular settings: countable state spaces,

for symmetric diffusions and jump processes; see Theorems 5.3.2, 5.3.7, 5.3.11. In

particular the generator Q and its adjoint Q∗ will be given full definitions later.

Framework result. Assume that we are given a positive target density π with

respect to m on E, a rebirth density µ with respect to m on E, and an interarrival

right process Y with infinitesimal generator Q with adjoint Q∗. We assume that there

is a constant C > 0 such that the killing rate κ : E → R+ given by

κ(x) :=
Q∗π(x)

π(x)
+ C

µ(x)

π(x)
, x ∈ E, (5.2)

is nonnegative for each x ∈ E.

Under a range of settings and assumptions, to be detailed in Section 5.3, the

resulting Restore process with interarrival dynamics Y , killing rate κ and rebirth dis-

tribution µ has invariant density π.

Remark 5.2.2. Because of the presence of the constant C, in practice we do not require

µ or π to be normalised in order to compute κ.

Remark 5.2.3. Heuristically, this result is true because the generator of the Restore

process Lµ is like

Lµf(x) = Lf(x) + κ(x)

∫ (
f(y)− f(x)

)
µ(dy),

and the choice of κ in (5.2) is one that makes (Lµ)∗π = 0. However, we have not

found a single formalisation that covers all the settings of interest: discrete state,

continuous jump process, and diffusion. This is because the Restore process is not

necessarily a Feller process; given a function f with compact support, the semigroup

P µ
t (f) at a fixed time does not necessarily decay to zero outside compact sets, as

the process can jump very quickly back to the centre of space. Hence we address

these settings individually in Section 5.3. The particular theorems are formulated

and proved as Theorems 5.3.2, 5.3.7, and 5.3.11.
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Recall that a nonnegative random variable is non-lattice if it is not concentrated

on a set of the form {δ, 2δ, . . . } for any δ > 0.

Theorem 5.2.4. Suppose that the Restore process X, as in the conclusion of Proposi-

tion 5.2.1, is defined on a metric space E, its semigroup P µ
t maps continuous functions

to continuous functions for each t ≥ 0, has a unique stationary distribution π, that

Eµ[τ∂] < ∞, and that the lifetimes are non-lattice. Then for any bounded function

f : E → R, we have almost sure convergence of the ergodic averages

1

t

∫ t

0

f(Xs) ds→ π[f ],

as t→∞.

Proof. By Theorem 1.2 of [Asmussen, 2003, Chapter 6], and uniqueness of the sta-

tionary distribution, it follows that

π[f ] =
Eµ[
∫ τ (0)

0
f(Xs) ds]

Eµ[τ (0)]
.

The result then follows from standard renewal arguments; splitting f into positive

and negative parts, and utilising the renewal structure of the Restore process.

This invariance allows us to use the Restore process as the basis of a new Monte

Carlo algorithm for sampling from π. Under some stronger assumptions in Section 5.4,

we will establish the following.

• A central limit theorem for the Restore process. This is straightforwardly de-

rived, following Hobert et al. [2002], since the Restore process naturally exhibits

regeneration times, at which the subsequent evolution is independent of the past

and identically distributed. This enables us to obtain variance estimates.

• A coupling from the past implementation, as pioneered by Propp and Wilson

[1996]. When applicable, this allows us to obtain exact draws from the target

π. We also show that the classical rejection sampler is a special case of this

coupling from the past implementation.

In Section 5.5, we discuss some practical issues related to the simulation of Restore.

• We discuss one possible choice of rebirth distribution µ which minimises the

killing rate, and the tuning of the constant C in (5.2).
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• When the killing rate κ is unbounded, simulation of the event times is in general

difficult. We provide a result in the diffusion setting concerning the bias incurred

when implementing Restore with a truncated version of the killing rate.

In Section 5.6 we give some simple examples of the Restore sampler to demonstrate

its potential.

5.3 Invariance

Suppose we are given a probability measure π on E, the target density. We would

like to construct a Restore process X whose invariant distribution coincides with π.

In this section we give conditions in several settings under which this is possible.

We consider the following settings: when (E,m) is a countable space, when the

interarrival process Y is a symmetric diffusion, and when the interarrival process is a

jump process.

5.3.1 Countable state space setting

Suppose E is a countable set equipped with counting measure m. This is certainly a

Radon space (with the discrete topology). We view probability measures on (E,m)

as (possibly infinite) row vectors, which are Radon–Nikodym derivatives with respect

to m.

We assume that the underlying process Y on E is nonexplosive and is defined by

a conservative rate matrix Q0 = (q0(i, j) : i, j ∈ E). Such processes are certainly

right-processes. We do not need to assume reversibility of Y . Let µ be the rebirth

distribution.

Given a constant C > 0, set

κ(i) :=
(πQ0)(i)

π(i)
+ C

µ(i)

π(i)
, i ∈ E. (5.3)

Assumption 9 (Assumptions for discrete spaces). (E,m) is a countable state space

equipped with counting measure m. π is a strictly positive probability density on

E. The underlying process Y is irreducible and nonexplosive and is defined by a

conservative rate matrix Q0. We assume that the constant C > 0 in (5.3) is chosen

such that κ(i) ≥ 0 for all i ∈ E.

Let us write for i ∈ E, λ(i) := −q(i, i) for the holding rates of the Q0 chain. Note

then that we can rewrite κ as

κ(i) =

∑
j 6=i π(j)q0(j, i)− λ(i)π(i) + Cµ(i)

π(i)
, i ∈ E. (5.4)
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Remark 5.3.1. Given this alternative expression for κ, we see that a sufficient condi-

tion for κ(i) ≥ 0 is that

Cµ(i) ≥ λ(i)π(i), i ∈ E.

Alternatively, if the underlying process is already π-invariant, so πQ0 ≡ 0, then the

first term in (5.3) is identically zero and any C > 0 and µ are valid.

Under Assumption 9, the resulting Restore process X with interarrival dynamics

Y , killing rate κ and rebirth distribution µ is another nonexplosive continuous-time

Markov chain on (E,m) and we can write down its rate matrix explicitly.

Define a new transition rate matrix as follows: Qκ = (qκ(i, j) : i, j ∈ E) is a rate

matrix corresponding to the rebirth events given by

qκ(i, i) = −κ(i)(1− µ(i)), i ∈ E,

qκ(i, j) = κ(i)µ(j), i, j ∈ E, i 6= j.

Then the Restore process X with interarrival dynamics Y , killing rate κ and rebirth

distribution µ has explicit rate matrix given by

Qµ = Q0 +Qκ.

Theorem 5.3.2 (Discrete space Restore). Suppose that Assumption 9 holds. Then

the Restore process X with interarrival dynamics Y , killing rate κ and rebirth distri-

bution µ has unique invariant distribution π.

Proof. Since Y is irreducible, it follows that the Restore process X is irreducible. We

can directly verify that

πQµ = 0.

Since X is nonexplosive, by Proposition 5.2.1, it is fully determined by its rate matrix

Qµ. Since it is also irreducible, it has unique invariant distribution π.

5.3.1.1 Example

Suppose we are given an irreducible discrete-time stochastic matrix P 0 = (p0(i, j) :

i, j ∈ E), with p0(i, i) = 0 for each i ∈ E, and fix a target density π. We give now a

recipe to construct a Restore process with π as its invariant measure.

Fix a positive rebirth distribution µ. We will use P 0 to define the jump chain of the

continuous-time Markov chain Y , so we need to define the holding rates (λ(i), i ∈ E).

We will make use of the expression (5.4), and without loss of generality we will take
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C = 1 (since we could just multiply the holding rates by a fixed constant). Note that

q0(i, j) = λ(i)p0(i, j) for each i, j ∈ E with i 6= j, and q0(i, i) = −λ(i) for i ∈ E.

To ensure nonnegativity of κ, we choose the holding rates

λ(i) :=
µ(i)

π(i)
, i ∈ E.

This now fully specifies the rate matrix of the chain Y . We need to assume that the

chain Y is nonexplosive; this holds if for instance, the λ(i) are uniformly bounded

above or P 0 defines a recurrent discrete-time Markov chain.

In this case the killing rate κ can be written as

κ(i) =

∑
i 6=j π(j)λ(j)p0(j, i)

π(i)
=

∑
j 6=i µ(j)p0(j, i)

π(i)
.

As a concrete example, take (E,m) to be the integers Z with counting measure.

Take the interarrival process Y to be the simple symmetric random walk on Z in

continuous time, which transitions from state i ∈ Z to states i−1 and i+1 each with

rate 1, and has no other transitions. Fix a target distribution π on Z. In this setting,

πQ0(i) = π(i− 1)− 2π(i) + π(i+ 1), i ∈ Z,

and so the first term in (5.3) will be negative if and only if

π(i) >
π(i+ 1) + π(i− 1)

2
,

which will typically hold only for a finite number of i ∈ Z.

In this case a straightforward sufficient condition for κ to be nonnegative is to

choose a µ and C such that

Cµ(i) ≥ 2π(i), i ∈ E.

5.3.2 Symmetric diffusions

We now consider Restore when the underlying process is a symmetric diffusion on

E = Rd. For a smooth C∞ function A : Rd → R consider the stochastic differential

equation (SDE)

dYt = ∇A(Yt) dt+ dBt, Y0 = x, (5.5)

on Rd where B is a standard Brownian motion on Rd. Define the smooth function

γ : Rd → R by

γ(y) = exp(2A(y)), y ∈ Rd,
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and define a measure Γ on Rd by

dΓ(y) = γ(y) dy,

where dy denotes Lebesgue measure on Rd. We are thus working on (E,m) = (Rd,Γ).

This is an example of a Radon space with a Radon measure.

Assumption 10 (Underlying process). A : Rd → R is a smooth C∞ function, and the

SDE (4.1) has a unique weak solution. The process Y has a continuous symmetric

transition density p0(t, x, y) on (0,∞) × Rd × Rd with respect to Γ, which satisfies

the BASSA conditions of Demuth and van Casteren [2000], which are restated in

Appendix A. In particular, the diffusion is Feller, hence a right process.

The semigroup of the diffusion Y is given for each t ≥ 0 by

E0
x[f(Yt)] =

∫
p0(t, x, y)f(y) dΓ(y) (5.6)

for functions f where this integral makes sense. Under Assumption 10, the semigroup

(5.6) maps C0(Rd) – continuous functions vanishing at∞ – into C0(Rd) and is strongly

continuous on C0(Rd) with generator −L0. Hence we can also write the semigroup as

E0
x[f(Yt)] = [exp(−tL0)f ](x).

The action of the generator on smooth compactly supported f is given by

−L0f =
1

2
∆f +∇A · ∇f.

Note that we are writing L0 for minus the generator, as is done in Demuth and van

Casteren [2000].

Under Assumption 10, the semigroup is also strongly continuous on

Lp(Γ) :=

{
f : Rd → R measurable,

∫
Rd
|f(x)|p dΓ(x) <∞

}
,

for each 1 ≤ p < ∞; see Theorem 2.5 of Demuth and van Casteren [2000], restated

in Appendix A. When we want to emphasise the underlying function space we may

write −L0
p for the corresponding generators on Lp(Γ) and D(L0

p) ⊂ Lp(Γ) for their

respective dense domains.

We now assume that the target distribution and rebirth distributions are defined

by density functions with respect to Γ denoted ϕ, µ ∈ L1(Γ) respectively:
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Assumption 11 (Densities). The target density ϕ ∈ L1(Γ), is positive on Rd and

is twice continuously differentiable with
∫
ϕ dΓ = 1. The rebirth density µ ∈ L1(Γ)

and is nonnegative with
∫
µ dΓ = 1. Furthermore, ϕ, µ ∈ L2(Γ) and we have that

ϕ ∈ D(L0
2).

Remark 5.3.3. Let us emphasise that we are writing ϕ and µ for densities with respect

to the measure Γ, which may not necessarily be Lebesgue measure. Later on we will

write π := ϕγ for the density with respect to Lebesgue measure.

For our proofs we take ϕ, µ to be normalised, but as noted previously this knowl-

edge is not necessary in practice because of the constant C which appears in the

killing rate.

Because L0 is a self-adjoint operator on L2(Γ), a sufficient condition for ϕ ∈ D(L0
2)

is that L0ϕ ∈ L2(Γ). This follows from the arguments presented in Section 3.3.3.

We can now define the killing rate κ. First, define the partial killing rate κ̃, via

κ̃(x) :=
1

ϕ(x)

(
1

2
∆ϕ(x) +∇A · ∇ϕ(x)

)
, x ∈ Rd.

This is consistent with the expressions of Chapter 3.

We define the actual killing rate κ as follows. Set for a given constant C > 0,

κ(x) := κ̃(x) + C
µ(x)

ϕ(x)
, x ∈ Rd. (5.7)

Assumption 12 (Killing rate). The function κ is continuous, and C is chosen such

that κ ≥ 0.

Remark 5.3.4. By Proposition 4.3.12, we know that in many settings ϕ is quasi-

stationary if and only if it is the invariant distribution of the Restore process with

rebirth distribution ϕ. Thus our previous Assumption 4 in Chapter 3 can be seen as

a special case of Assumption 12 in the case ϕ = µ.

Under Assumptions 10, 11, 12, the process Y killed at rate κ (without rebirths)

can be defined and analysed using Theorem 2.5 of Demuth and van Casteren [2000]

(see Appendix A). This gives us a sub-Markovian semigroup {exp(−tLκ) : t ≥ 0}
with symmetric, continuous kernel pκ(t, x, y). pκ(t, x, y) is thus a sub-density. The

corresponding semigroup is strongly continuous on C0(Rd) and on Lp(Γ) for any

1 ≤ p < ∞. The generator −Lκ = −L0−̇κ extends −L0 − κ. As before, when

we want to make explicit which Lp(Γ) space we are using, for 1 ≤ p < ∞, we will

write −Lκp for the generator of the strongly continuous semigroup on Lp(Γ), with

corresponding domain D(Lκp) ⊂ Lp(Γ).
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Remark 5.3.5. It follows from Assumption 11 that ϕ ∈ D(Lκ2), since both ϕ, µ ∈ L2(Γ)

and formally Lκϕ = Cµ.

We have one final technical assumption.

Assumption 13 (Technical conditions on ϕ, µ). We have that

ϕ ∈ D(Lκ1), Lκ1ϕ = Cµ. (5.8)

Furthermore, µ is such that∫
dΓ(x)µ(x)E0

x

[
sup
t∈[0,1]

∣∣∣κ(Yt)e
−

∫ t
0 κ(Ys) ds

∣∣∣] <∞. (5.9)

The condition (5.8) is fairly abstract, and so might be difficult to verify in a

particular case, or in a general class of processes that one may want to consider. For

many purposes we may replace it with the following sufficient condition: Set

π := ϕγ.

We write W 2,1(Rd) for the Sobolev space of measurable functions on Rd whose first

and second derivatives are integrable with respect to Lebesgue measure on Rd.

Lemma 5.3.6. Assume that Assumptions 10, 11, 12 hold. Suppose that the drift is

at most linear in the tails: we can bound |∇A(x)| ≤ K|x|, for x outside some compact

set, some K > 0. Assume that Assumption 10 holds. Suppose ϕ is smooth, and that

π ∈ W 2,1(Rd). In addition, we require that∫
Rd
|∇A(x) · ∇π(x)| dx <∞,

∫
Rd
|∆A(x)π(x)| dx <∞.

Then (5.8) holds.

Proof. See Appendix A

Alternatively, another sufficient condition for (5.8) that Γ is a finite measure. This

is the case whenever the underlying diffusion Y is positive recurrent, say a stable

Ornstein–Uhlenbeck process. Then under ϕ ∈ L2(Γ) and µ ∈ L2(Γ), ϕ ∈ D(Lκ1) with

Lκ1ϕ = Cµ is automatic, since in that case L2 convergence implies L1 convergence.

The condition (5.9) is needed so that we can differentiate under the integral. A

necessary condition for (5.9) to hold is that
∫

dΓ(x)µ(x)κ(x) < ∞, so in particular

µ cannot have tails which are too heavy relative to ϕ. From a computational point
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of view, this is reasonable since otherwise the rebirth mechanism would be highly

inefficient; the Restore process would tend to be killed very rapidly. Of course, a

sufficient condition for (5.9) is that∫
dΓ(x)µ(x)E0

x

[
sup
t∈[0,1]

κ(Yt)

]
<∞.

Theorem 5.3.7. Under Assumptions 10, 11, 12, 13, the Restore process X with

interarrival dynamics Y , killing rate κ and rebirth distribution µ has invariant dis-

tribution ϕ.

Proof. See Appendix A.

5.3.2.1 Examples

We now give some examples of diffusions which satisfy the assumptions of Theorem

5.3.7.

Sufficient conditions ensuring BASSA (Assumption 10, Appendix A) are given in

Example 2 of [Demuth and van Casteren, 2000, Chapter 1.C]. In our present setting

when we consider diffusions defined by (4.1), these conditions can be written as

exp(A(x)) ≥ c−1 exp(−c|x|2), ∀x ∈ Rd, (5.10)

c−1 ≤ exp(A(x)− A(y)) ≤ c, ∀x, y ∈ Rd : |x− y| ≤ c−1(1 + |x|)−c, (5.11)

for some c > 0.

Let | · | denote the `2 norm on Rd.

Proposition 5.3.8. The SDE (4.1) with A = α|x|2 for any α ∈ R satisfies BASSA.

Remark 5.3.9. In this case ∇A(x) = 2αx is linear. α < 0 corresponds to a (stable)

Ornstein–Uhlenbeck process, α = 0 is a Brownian motion and α > 0 is an unstable

Ornstein–Uhlenbeck process which drifts into the tails.

Proof. (5.10) clearly holds in this setting. The second condition (5.11) can be seen

from the reverse triangle inequality:∣∣|x|2 − |y|2∣∣ = (|x|+ |y|)
∣∣|x| − |y|∣∣ ≤ (|x|+ |y|)|x− y|

≤ |x|+ |y|
c(1 + |x|)c

≤ 2|x|
c(1 + |x|)c

+
1

c2(1 + |x|)2c
.

This is uniformly bounded over x ∈ Rd for c > 1.
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5.3.3 Jump processes

The Restore process is inherently a continuous-time process, and so the underlying

process Y must be a continuous-time object. Suppose, however, we are given a

a discrete-time Markov transition kernel P on (E,m), with action on measurable

functions f : E → R and measures ν on E given by

Pf(x) =

∫
f(y)p(x, y) dm(y), x ∈ E,

νP (dy) =

∫
ν(dx) p(x, y) dm(y),

(5.12)

for some integral kernel p(x, y) on E×E, whenever these integrals make sense. Since

we have an integral kernel p(x, y), we will also think of νP as a measurable function

given by

νP (y) :=

∫
ν(dx) p(x, y)

for a measure ν on E, provided this makes sense.

It is straightforward to embed P into continuous time, by specifying a measurable

function λ : E → R+, the holding rates, as was seen in Section 5.3.1. We take the

jump chain to be defined by the discrete-time Markov kernel P , and just take the

holding times to be independent Exp(λ(x)) times, when currently at state x.

Such a process will be a continuous-time jump process on E, meaning it has right-

continuous, piecewise-constant sample paths. Provided they are nonexplosive, such

processes are determined by the transition kernel of the jump chain and the holding

rates. See for instance, [Ethier and Kurtz, 1986, Chapter 4.2].

Suppose π, µ are two densities on E with respect to m, the target density and

rebirth density respectively, where we assume π is positive. Suppose we are given

a transition kernel P on E and holding rates λ : E → R+. We now construct the

Restore process. Given a constant C, define the killing rate κ to be

κ(x) :=

∫
m(dy)π(y)λ(y)p(y, x)− λ(x)π(x) + Cµ(x)

π(x)
, x ∈ E. (5.13)

Assumption 14 (Jump process Restore). P is a transition kernel with a density as in

(5.12), λ : E → R+ is measurable, strictly positive. π is a positive probability density

with respect to m, µ is a probability density with respect to m, and
∫
λ(x)π(x)m(dx) <

∞. The constant C is such that κ ≥ 0 on E. κ is locally bounded, and we have that∫
(λ(x) + κ(x))2π(x)m(dx) <∞.
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Note that such jump processes are right processes (Exercise 14.18 of Sharpe

[1988]).

This construction can also be extended to kernels P which do not possess a density

as in (5.12). For example, the classical Metropolis–Hastings kernel is of the form

P (x, dy) = α(x, y)q(x, y) dm(y) + (1− j(x))δx(dy),

where 0 ≤ α(x, y) ≤ 1 are the acceptance probabilities, q(x, y) is a transition density

(so
∫
q(x, y) dm(y) = 1 for each x ∈ E), and

j(x) :=

∫
α(x, y)q(x, y) dm(y)

are the jump probabilities. Because of the presence of the delta mass δx(dy), such

kernels cannot possess straightforward densities. However in continuous-time, these

rejected moves associated with the delta mass are not visible, and so we can modify

the killing rate as follows: we replace the term (πλ)P (x) in (5.13) by∫
dm(y) π(y)λ(y)α(y, x)q(y, x) + λ(x)(1− j(x))π(x).

Returning to the construction of the Restore process, we will take the interarrival

dynamics to be given by the jump process defined by P and λ, the killing rate to

be κ and the rebirth distribution µ. The resulting Restore process X is another

continuous-time jump process, and so we describe its jump chain and holding rates.

This will provide a method to simulate the process.

At x ∈ E, the transition kernel P µ(x, dy) of the jump chain is given by

P µ(x, dy) =
λ(x)

λ(x) + κ(x)
P (x, dy) +

κ(x)

λ(x) + κ(x)
µ(y) dm(y).

The overall holding rates in continuous time are given by

λ̄(x) = λ(x) + κ(x), x ∈ E,

that is, at x ∈ E, by the Markov property, the time until the next jump is an

Exp(λ̄(x)) time.

Remark 5.3.10. Rather than working in terms of densities, and a killing function κ, a

more general approach would be to make use of a killing measure. We do not consider

this particular generalisation in this work.

Theorem 5.3.11. Assume that Assumption 14 holds, and that the interarrival dy-

namics defined by P and λ are nonexplosive. Then the resulting Restore process X is

a nonexplosive jump process with invariant distribution π.
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Proof. Nonexplosivity follows from Proposition 5.2.1, and the fact that the interar-

rival process is assumed nonexplosive.

Let us write {Qµ
t : t ≥ 0} for the continuous-time semigroup for the Restore pro-

cess X. Our goal is to show that for any continuous bounded function f : E → R,

πQµ
t f = π(f), for each t ≥ 0. To do this we compute the time derivative of the

mapping t 7→ πQµ
t f and show that it is 0. By time-homogeneity and the semigroup

property, it is sufficient to compute this derivative at t = 0. This was the approach

similarly used to prove π-invariance of the Bouncy Particle Sampler in the supple-

mentary material of Bouchard-Côté et al. [2018].

By conditioning on the first jump, we obtain the following representation (cf.

equation (4.24) of Moyal [1957]),

Qtf(x) = e−λ̄(x)tf(x) +

∫ t

0

ds λ̄(x)e−λ̄(x)sP µ[Qt−sf ](x)

= e−λ̄(x)tf(x) +

∫ t

0

ds λ̄(x)e−λ̄(x)(t−s)P µ[Qsf ](x).

From this representation we can calculate the derivative,

dQtf(x)

dt
= −λ̄(x)e−λ̄(x)tf(x) + λ̄(x)P µ[Qtf ](x)

−
∫ t

0

ds λ̄2(x)e−λ̄(x)(t−s)P µ[Qsf ](x).

From this we can easily calculate that at t = 0, d
dt
πQtf = 0, using the definitions

of λ̄ and κ. The exchange of integration and differentiation is justified since we are

assuming that π(λ̄2) <∞.

For applications we may further want to know when our sample paths can be used

to approximate the stationary distribution.

Theorem 5.3.12. Assume that Assumption 14 holds. In addition, suppose that the

kernel P is Harris recurrent, and that the sum λ+κ is uniformly bounded away from

zero. Then for bounded measurable f , the ergodic averages t−1
∫ t

0
f(Xs) ds converge

almost surely to π(f).

The definition of Harris recurrence is given in [Meyn and Tweedie, 1993, Chapter

9].

Proof. Consider the probability density function with respect to m given by

ξ(x) = Z−1π(x)(λ(x) + κ(x)), x ∈ E,
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where the normalising constant Z :=
∫
πλ dm+ C. It is easy to see that this indeed

defines a probability density, since∫
κ(x)π(x) dm(x) = C.

A straightforward calculation then shows that for the transition kernel of the jump

chain P µ,

ξP µ = ξ.

That is, ξ is an invariant distribution for the jump chain. Since the kernel P is

Harris recurrent, the jump chain of X, defined by the kernel P µ(x, dy), is also Harris

recurrent. This is because writing τA for the first return time to A and τ∂ for the first

rebirth event for the P µ jump chain, we have that

Pµ(τA < τ∂) > 0,

provided A has positive mass, since P is assumed Harris recurrent and the killing rate

κ is locally bounded. This entails then that from any initial position, hitting the set

A is certain, implying Harris recurrence (see Proposition 9.1.1 of Meyn and Tweedie

[1993]).

Since ξ is invariant for the jump chain, which is Harris recurrent, ξ also defines

the almost sure limit of the ergodic averages of the jump chain, see Theorem 17.1.7

of Meyn and Tweedie [1993].

Moving to continuous time, since the process is nonexplosive, it follows that π ∝
ξ/λ̄ must be the almost sure limit of the ergodic averages for the continuous-time

process. One way to see this is to decomponse the ergodic averages into sums of the

form
1

Tn

n∑
m=0

f(Xm)τm =
1

Tn

n∑
m=0

f(Xm)

λ̄(Xm)
Em,

where (Xm) denotes the jump chain, Tn are the jump times, τm ∼ Exp(λ̄(Xm)) are the

holding times and (Em) are an i.i.d. sequence of Exp(1) random variables. Consider

then the augmented discrete-time Markov chain (Xn, En)n≥0 with state space E×R+.

This chain is positive Harris, with invariant distribution given by ξ(x)m(dx)⊗ e−y dy

on E × R+, dy denoting Lebesgue measure on R+. We can then apply the ergodic

theorem (Theorem 17.1.7, Meyn and Tweedie [1993]) with function g : E × R+ → R
given by g(x, y) = (f(x)/λ̄(x))y.
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In this setting, practical simulation of the Restore process is straightforward,

even when the killing rate is unbounded, since the interarrival process Y is piecewise-

constant. See Algorithm 3 for one possible implementation.

Algorithm 3 Jump process Restore.

1: initialise: X0 = x0, t0 = 0, i = 0
2: while ti < T do
3: i← i+ 1
4: simulate τ

(1)
i−1 ∼ Exp(λ(Xi−1)), τ

(2)
i−1 ∼ Exp(κ(Xi−1))

5: τi−1 ← τ
(1)
i−1 ∧ τ

(2)
i−1

6: ti ← ti−1 + τi−1

7: if τ
(1)
i−1 < τ

(2)
i−1 then

8: Xi ∼ P (Xi−1, ·)
9: else

10: Xi ∼ µ

11: end while
12: return pairs (ti, Xi)

Algorithm 3 can be seen as a continuous-time variant of standard Metropolis–

Hastings; at each iteration we ‘propose’ a move according to P (Xi−1, ·), which is

either accepted or rejected, depending on two exponential clocks. Upon rejecting a

move, rather than remaining at Xi−1 instead we move to a new location drawn from

µ.

Before turning to an example, we close this section with a discussion of a tech-

nique presented in Douc and Robert [2011], which bears similarities with our present

method. The approach of Douc and Robert [2011] is to rewrite the ergodic average

estimate of a test function h arising from an MH chain (Xi)
N
i=1 as

1

N

M∑
i=1

nih(zi),

where (zi)
M
i=1 corresponds to the ‘jump chain’ of accepted moves of the MH chain, and

(ni)
M
i=1 are (conditionally) geometric random variables, corresponding to the number

of times a proposed move from each zi is rejected.

This is similar to our approach, in the sense that we begin with a discrete-time

process, with kernel P , which may not be π-invariant (much like their zi), and we

make use of weights to correct this bias. Although we work in continuous time rather

than discrete time, our weights are holding times, hence (conditionally) exponentially

distributed, akin to the (ni) which are (conditionally) geometricially distributed.
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However, a crucial difference is that our approach is more flexible, in that we do

not assume that the jump chain P is necessarily arising as the jump chain of some

given MH kernel. To compensate for this fact, we additionally introduce regenerations

into the process.

With regards to the main contribution of Douc and Robert [2011] in terms of

variance reduction, it is an interesting question for future research whether or not an

analogous ‘Rao–Blackwellization’ technique could be applied to Restore and subse-

quently attain a reduced variance.

5.3.3.1 Example

An example where Assumption 14 is easily checked is when P corresponds to a Markov

chain which is already π-invariant, for instance the kernel of an appropriate MCMC

algorithm targeting π. In this case we can easily embed P into continuous time

without changing the asymptotic dynamics; just take the holding rates λ ≡ 1.

In this case the killing rate reduces to

κ(x) = C
µ(x)

π(x)
, x ∈ E,

and we see that any choice of C > 0 will ensure nonnegativity of κ. This gives a

recipe to introduce rejection-free moves to a discrete sampler in continuous time.

For example, suppose we are in a setting where the target π is multimodal, and

we have a rough idea of where the modes are (e.g. through preliminary runs of some

Monte Carlo method), but our sampler struggles to move between the modes and

find the relative weights. Then we could take µ to be supported on the modes we

have found, and the resulting Restore sampler would then jump between them. For

an example of this, see Section 5.6.3.

5.4 Limiting properties

In this section we consider some limiting properties of the Restore process. We will

not a priori assume that X has invariant distribution π, but will work in the abstract

framework of Proposition 5.2.1.

5.4.1 Coupling from the past

Recall the general Restore setting of Proposition 5.2.1: the underlying process Y is a

right process evolving on a Radon space (E,m), we have a locally bounded measurable
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function κ : E → R+ and we a probability measure µ on E. We consider the Restore

process X with these dynamics. We will write {P µ
t : t ≥ 0} for its semigroup.

Under the following (fairly strong) assumption, we will have direct access to the

stationary distribution of the Restore process.

Assumption 15 (Coupling from the past). There exists some κ
¯
> 0 such that m-

almost everywhere,

κ ≥ κ
¯
> 0.

We write ‖ · ‖∞ for the sup norm of a bounded function and ‖ · ‖1 for the total

variation norm signed measures; given a signed measure ν,

‖ν‖1 = sup{|ν(f)| : f bounded, measurable , ‖f‖∞ ≤ 1}.

Proposition 5.4.1 (Uniform ergodicity). Assume the basic conditions of Proposition

5.2.1 hold, and that X is irreducible. Under Assumption 15, the Restore process X

is uniformly ergodic in that there exists a unique invariant distribution π such that

‖νP µ
t − π‖1 ≤ 2e−tκ¯ ,

for any initial distribution ν and t ≥ 0.

Proof. Fix any two arbitrary initial distributions ν1, ν2 on E. Then we can easily

couple two copies of the Restore process X with initial distributions ν1 and ν2 respec-

tively which meet at the first arrival time of a homogeneous Poisson process of rate

κ
¯

and evolve identically thereafter. Thus by the well-known coupling inequality,

‖ν1P
µ
t − ν2P

µ
t ‖1 ≤ 2e−tκ¯. (5.14)

The Markov property (i.e. the semigroup property) then shows that for any ini-

tial distribution ν, (νP µ
t )t≥0 forms a Cauchy sequence in the space of probability

measures equipped with the total variation norm. By completeness, there exists a

limiting probability distribution π, which must also be a stationary distribution, by

the Markov property and the fact that P µ
t is a contraction in ‖ · ‖1. That is, we have

that πP µ
t = π for any t ≥ 0. By irreducibility, this invariant distribution is unique.

Thus taking ν1 = ν and ν2 = π in (5.14) the Proposition is proven.

In fact under Assumption 15 we can do even better than uniform ergodicity and

employ Coupling From the Past (CFTP), a technique pioneered by Propp and Wilson

[1996] to obtain exact draws from the stationary distribution π.
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Theorem 5.4.2 (Coupling from the past). Under the conditions of Proposition 5.2.1

and Assumption 15, consider the Restore process X with interarrival dynamics Y ,

modified killing rate

κ′ := κ− κ
¯
≥ 0,

and rebirth distribution µ. Suppose X is irreducible and has initial distribution

X0 ∼ µ.

Let T ∼ Exp(κ
¯

) be independent of X. Then

XT ∼ π,

where π is the unique invariant distribution of the process.

Proof. This follows from the technique of coupling from the past Propp and Wilson

[1996]. For the Restore process with killing rate κ, at the arrival times of a homo-

geneous Poisson process of rate κ
¯

we can couple all processes started from all initial

positions. Since the time reverse of a homogeneous Poisson process is also a homo-

geneous Poisson process, we can instead imagine initialising X0 ∼ µ and evolving an

exponential time T into the future with modified killing rate κ′.

In the case when κ is bounded above, one implementation is given in Algorithm 4

below.

Algorithm 4 Bounded Restore: κ ≤M , with CFTP.

1: draw run time: T ∼ Exp(κ
¯
)

2: initialise: X0 ∼ µ, t0 = 0, i = 0
3: i← i+ 1
4: ti ← ti−1 + τi−1, where τi−1 ∼ Exp(M − κ

¯
)

5: while ti < T do
6: simulate Zi ∼ L(Yτi−1

|Xi−1)
7: with probability 1− (κ(Xi)− κ

¯
)/(M − κ

¯
)

8: Xi ← Zi
9: else
10: Xi ∼ µ
11: i← i+ 1
12: ti ← ti−1 + τi−1, where τi−1 ∼ Exp(M − κ

¯
)

13: end while
14: simulate Z ∼ L(YT−ti−1

|Xi−1)
15: return Z, which is drawn exactly from π
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This CFTP implementation can be seen as a continuous-time version of the multi-

gamma coupler of Murdoch and Green [1998] or of the hybrid scheme of [Murdoch,

2000, Section 3]. The multigamma coupler is a discrete-time MCMC algorithm that

can be run when there is a uniform minorising function r for the proposal den-

sity; f(y|x) ≥ r(y) for all x, y. Then at each iteration, with a fixed probability

ρ :=
∫
r(y) dy, all points are coupled together and drawn from r(·).

However unlike the multigamma coupler, here we are not identifying (via a uniform

minorisation condition) times at which an existing sampler couples all paths, but

rather building a new process with this property. The novelty here lies in that we

are theoretically able to choose the rebirth distribution µ, subject to the assumptions

detailed above. By contrast, in for the multigamma coupler and related methods,

the regenerative distribution (denoted r in Murdoch and Green [1998]) is typically

unknown or difficult to sample from. The approach of Murdoch [2000] is essentially to

alternate between two different MCMC dynamics, such as random walk Metropolis–

Hastings and the Independence sampler, in order to induce uniform ergodicity and

gain the benefits from both local and global moves. This is not dissimilar to Restore,

however with Restore we do not require the two dynamics to be individually π-

invariant.

5.4.1.1 Example: classical rejection sampler

We show that the classical rejection sampler can be seen as a special case of the CFTP

implementation of the Restore process with trivial interarrival process. A similar

result can be established for the independence sampler version of the Metropolis–

Hastings algorithm, as is shown in Murdoch and Green [1998].

Let π, µ be density functions on E with respect to m. We take Y to be the trivial

stochastic process on E which given its initial position Y0, has constant sample paths:

almost surely, Yt = Y0 for all t ≥ 0. Define the killing rate

κ(x) = C
µ(x)

π(x)
, x ∈ E, (5.15)

for any constant C > 0. If we were to implement the classical rejection sampler

targeting π from µ we would require the following condition:

π(x) ≤Mµ(x), x ∈ E, (5.16)

for some (finite) constant M . The classical rejection sampler targeting π from µ

repeatedly draws Xn independently from µ, and accepts it with probability

π(Xn)/(Mµ(Xn)),
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otherwise rejects it and tries again with a new Xn+1 ∼ µ. The final accepted value

Xn is an exact draw from π.

Theorem 5.4.3. Under (5.16), the CFTP implementation of the Restore process

(Theorem 5.4.2) with constant interarrival dynamics, killing rate κ as in (5.15) and

rebirth distribution µ is identical to classical rejection sampling targeting π from µ.

Proof. We see that (5.16) holds if and only if Assumption 15 holds with

κ
¯

= C/M.

Under this condition in the CFTP implementation (Theorem 5.4.2) we run the

Restore process with killing rate

κ′ = κ− κ
¯

= C
µ

π
− C

M

for a time T ∼ Exp(C/M).

We can simulate this Restore process iteratively by drawing for each n = 1, 2, . . . ,

Xn ∼ µ. We have two competing independent exponential clocks, T ∼ Exp(C/M)

and Tn ∼ Exp(κ′(Xn)).

If T < Tn, all trajectories have coupled and so we terminate the algorithm and

output Xn, which is an exact draw from π. By the theory of competing exponentials

this occurs with probability

C/M

C/M + C
(
µ(Xn)
π(Xn)

− 1
M

) =
π(Xn)

Mµ(Xn)
.

This is exactly the probability of acceptance for the classic rejection sampler.

If T ≥ Tn then we iterate again and draw Xn+1 ∼ µ. By the memoryless property

of the exponential distribution we have again two independent exponential clocks as

before.

If (5.16) doesn’t hold, provided there is a unique invariant distribution π we can

still use ergodic averages to estimate π(f) for any bounded f . Suppose we run the

Restore process with constant interarrival dynamics, killing rate κ as in (5.15) and

rebirth distribution µ for n complete lifetimes. The corresponding ergodic average is

1

Tn

n∑
i=1

f(Xi)τ
(i),

where Xi ∼ µ are i.i.d., conditional on Xi, τ
(i) ∼ Exp(Cµ(Xi)/π(Xi)) are independent

and Tn =
∑n

i=1 τ
(i). Thus the estimator of π(f) can be seen as an importance

sampling–type estimator with randomised importance weights; note CE[τ (i)|Xi] =

π(Xi)/µ(Xi).
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5.4.2 Central Limit Theorem

In this subsection we give a central limit theorem for the Restore process. Our

approach here is inspired by Hobert et al. [2002], who considered regenerative methods

for MCMC (in discrete time).

We fix a measurable function f : E → R.

Assumption 16 (Central limit theorem). We assume the basic conditions of Propo-

sition 5.2.1. Furthermore we assume that X is irreducible,

Eµ[τ 2
∂ ] <∞, (5.17)

and that our function f : E → R satisfies

Eµ

[(∫ τ∂

0

f(Xs) ds

)2
]
<∞.

A sufficient condition for Assumption 16 to hold is that f is a bounded function

and we have simply the second moment condition (5.17). In turn, a sufficient condition

for (5.17) is that Assumption 15 holds, since in that case τ∂ can be stochastically

dominated by an Exp(κ
¯
) random variable.

Under Assumption 16 we will see that a central limit theorem holds. This can be

easily done since the lifetimes of the Restore process, by construction, are independent

and identically distributed.

As in the construction of Restore in Section 5.2, set T0 = 0, let (Tn) be the

successive rebirth times and let (τ (i)) be the lifetimes. We take the initial distribution

X0 ∼ µ. Set for each i = 0, 1, 2, . . . ,

Zi :=

∫ Ti+1

Ti

f(Xs) ds.

By construction the (Zi) are independent and identically distributed, with finite first

and second moments.

We can apply the strong law of large numbers to the following numerator and

denominator:

∫ Tn
0
f(Xs) ds

Tn
=

∑n−1
i=0 Zi∑n−1
i=0 τ

(i)
→

Eµ
[∫ τ (1)

0
f(Xs) ds

]
Eµ[τ (1)]

almost surely as n→∞.
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Let us write

π(f) :=

Eµ
[∫ τ (1)

0
f(Xs) ds

]
Eµ[τ (1)]

.

When the process is ergodic, this corresponds to the invariant distribution of the

Restore process. It follows immediately that the random variables

Zi − τ (i)π(f), i = 0, 1, 2, . . .

are independent and identically distributed and have mean 0 under Eµ.

Now we set, in analogue with the expression given in Hobert et al. [2002],

σ2
f :=

Eµ
[(
Z1 − τ (1)π(f)

)2
]

(
Eµ[τ (1)]

)2 . (5.18)

This numerator is finite by Assumption 16.

Theorem 5.4.4 (Central limit theorem). We have that

√
n

(∫ Tn
0
f(Xs) ds

Tn
− π(f)

)
d→ N

(
0, σ2

f

)
. (5.19)

Proof. The left-hand side of (5.19) can be written

√
n

( ∑n−1
i=0 Zi∑n−1
i=0 τ

(i)
− π(f)

)
=

1√
n
· n∑n−1

i=0 τ
(i)

n−1∑
i=0

(
Zi − τ (i)π(f)

) .

By the strong law of large numbers and the continuous mapping theorem, n/
∑n−1

i=0 τ
(i)

converges almost surely to (Eµ[τ (i)])−1, and in distribution also.

Hence by applying Slutsky’s lemma and the central limit theorem to the indepen-

dent and identically distributed mean zero random variables (Zi − τ (i)), we see that

(5.19) holds.

Let us write τ̄n := n−1
∑n−1

i=0 τ
(i) and f̄n :=

∫ Tn
0 f(Xs) ds

Tn
. Similar to Hobert et al.

[2002], our σ2
f can be consistently estimated by

σ̂2
f :=

∑n−1
i=0

(
Zi − f̄nτ (i)

)2

nτ̄ 2
n

.

This is because the difference between σ̂2
f and∑n−1

i=0

(
Zi − τ (i)π(f)

)2

nτ̄ 2
n
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converges to zero almost surely as n → ∞, and the latter is a consistent estimator

for σ2
f .

We can use this to get an estimate of the efficiency of Restore. If we let

vπ(f) :=

∫ (
f(x)− π(f)

)2
dπ(x),

then we can set the effective sample size neff to be

neff :=
vπ(f)

σ2
f

,

which we may be able to estimate.

We see from (5.18), that the denominator (Eµ[τ (1)])2 will have a significant influ-

ence on the overall variance. If Eµ[τ (1)] is small, the resulting variances of individual

lifetimes may be unacceptably large, and as such practically speaking it is important

to choose the rebirth distribution in such a way that the lifetimes are (on average)

not too short. In particular, this means aiming to avoid regions of particularly high

killing.

5.5 Simulation

We consider now some practical questions related to the Restore process.

5.5.1 Minimal rebirth distribution

In this section we assume that we are given some fixed interarrival process, a positive

target density π on E and a rebirth density µ on E, which are both normalised.

The most difficult aspect of implementing the Restore sampler is checking that

the killing rate is nonnegative, as in Assumption 12; we need for some κ
¯
≥ 0

κ(x) = κ̃(x) + C
µ(x)

π(x)
≥ κ

¯
≥ 0, x ∈ E, (5.20)

where κ̃ is a function mapping E → R which is specified by the underlying dynamics

of the interarrival process.

In order to satisfy (5.20), given the target π and κ̃ we must choose an appropriate

rebirth distribution µ and corresponding constant C. Heuristically, κ̃(x) corrects for

the local trend in π(Yt+δt) when Yt = x. As such, κ̃ will be negative around the modes

of π (this is essentially stating the maximum principle for the generator of Y ). Thus

the support of µ must include neighbourhoods of the mode(s) of π.
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One natural choice of rebirth distribution is to minimize the number of rebirth

events by choosing the minimal µ that makes (5.20) possible. Namely, we would like

to choose some minimal rebirth distribution µ∗ and corresponding constant C∗ such

that the killing rate is given by

κ∗ := κ̃+ C∗
µ∗

π
= κ̃ ∨ κ

¯
. (5.21)

This is entirely analogous to the choice of bounce rate for the Bouncy Particle Sampler

of Bouchard-Côté et al. [2018] and the canonical switching rate of the Zig-Zag in

Bierkens et al. [2019].

In order to satisfy (5.21), the appropriate choice of density µ∗ with respect to the

measure m on E is

µ∗(x) := (C∗)−1[0 ∨ (κ
¯
− κ̃(x))]π(x), (5.22)

where

C∗ :=

∫
E

[0 ∨ (κ
¯
− κ̃(x))]π(x) dm(x),

assuming that this quantity is finite. While this normalising constant will generally

be intractable, the algorithm does not require its precise numerical value: we will

only need to evaluate the right-hand side of (5.21) point-wise, and be able to sample

from µ∗.

Proposition 5.5.1 (Minimal rebirth distribution). Let µ∗, C∗ be defined as above for

some fixed κ
¯
≥ 0, where we assume µ∗ is integrable and normalised. Let µ,C be any

(normalised) probability measure on E and positive constant respectively such that

(5.20) holds. Then µ∗ minorises µ, in the sense that there exists some ε > 0 such

that for all measurable B ⊂ E,

µ(B) ≥ εµ∗(B), (5.23)

and we have that

C ≥ C∗.

Proof. From the assumption that (5.20) holds, we must have that κ ≥ κ∗ pointwise,

from which it follows that for each x ∈ E,

Cµ(x) ≥ C∗µ∗(x),

which establishes (5.23), and by integrating both sides over E it follows that C ≥
C∗.
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How to obtain samples from µ∗ is in general not obvious, and is reminiscent of

sampling from minorising measures as in Murdoch and Green [1998]. µ∗ is generally

compactly supported and supported around the modes of π; its support is contained

within the set

{x ∈ E : κ̃(x) < κ
¯
},

and so often simulation is possible through straightforward rejection sampling.

Examples of the minimal rebirth distribution will be given for two isotropic den-

sities on Rd in Sections 5.6.1.1 and 5.6.2.1, along with their limit as the dimension d

increases.

5.5.2 Tuning the parameter C

Another practical consideration is the tuning of the parameter C. In order for Restore

to have the correct invariant distribution, the constant C in (5.2) needs to be chosen

so that the killing rate κ is nonnegative everywhere. However beyond this restriction,

any value of C is permissible.

The constant C also has a useful practical interpretation: as is shown in proof of

Theorem 5.3.7, C = Eµ[τ∂], the average lifetime when started from µ.

How one should choose C in practice to optimise convergence is an interesting

question. In terms of computational cost, one would like to minimise the killing rate,

since simulating the event times is one of the main computational costs. In this sense,

choosing C as small as possible – for instance the minimal C∗ along with the minimal

rebirth distribution µ∗ of Section 5.5.1 – would be one choice, when sampling from

µ∗ is feasible.

On the other hand, if one is implementing the CFTP version of Restore from Sec-

tion 5.4.1, it is the lower bound κ
¯

which dictates the rate at which trajectories couple:

we would prefer κ
¯

to be as large as possible to accelerate the coupling of trajectories.

Making κ
¯

larger would require choosing a larger value of C. The interaction between

these two objectives – minimising C to reduce the killing rate, while increasing C to

maximise the lower bound – is nontrivial.

When the interarrival process is already π-invariant, tuning C is even more open,

since any nonnegative value of C can be used. In this case, since we want to make use

of both the local and global dynamics, a sensible way to tune C would be to choose it

such that the average rate of teleports matches the rate of mixing of the interarrival

process. In particular, looking at the average rate of teleports (the number of teleports

divided by the total stochastic process time) is practically feasible, since it does not
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assume that µ or π in (5.2) are normalised, and is immediately available from pilot

runs. This approach is inspired by the recent Caputo and Quattropani [2019], who

prove for the PageRank surfer on random (finite) graphs, the resulting mixing time

depends on the interplay between the rate of mixing of the underlying walk and the

teleport probability.

The interesting problem of formulating an optimal choice of C remains an open

question.

5.5.3 Truncated killing

Another practical issue for implementing Restore is the issue of simulating the life-

times τ (i) as in (5.1). In case of countable states spaces, Section 5.3.1, or jump

processes, 5.3.3, this is straightforward, since t 7→ κ(Xt) is piecewise constant. When

κ is a uniformly bounded function simulation is also straightforward, since we can

make use of Poisson thinning ([Devroye, 1986, Chapter 6.2]); see Algorithm 2.

We consider now the diffusion case, as in Section 5.3.2. In this case κ is typically

unbounded. In some cases using layered processes it is still possible to simulate

τ∂ exactly, as with the techniques of Pollock et al. [2016]. These are technically

demanding, so in this section we consider the alternative of truncating the killing

rate. Namely, we fix some upper bound M , and work with the truncated killing rate

κM := κ ∧M.

This will introduce some bias, a discrepancy between the invariant distribution and

π, but we will show how this bias may be explicitly quantified.

In order to prove our result we will need to assume the following.

We assume that the interarrival process Y is a diffusion on Rd satisfying BASSA,

and that κ is continuous. We also assume that Assumption 15 holds, namely that we

have a lower bound

κ ≥ κ
¯
> 0.

Recall that under Assumption 15, τ∂ can be stochastically dominated by an exponen-

tial random variable with rate κ
¯
, and hence all moments of τ∂ are finite.

In order to avoid pathologies we assume that

M > inf
x∈E

κ(x). (5.24)
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We consider now the Restore process X with interarrival process Y , rebirth distri-

bution µ and truncated killing rate κM , for some given truncation level M satisfying

(5.24).

Throughout this section we will only be interested in the behaviour of the Restore

process before the first rebirth event. As the rebirth distribution µ will not play a

significant role we will consider the unkilled process Y , and explicitly augment it

with a first rebirth time. We will simply write Ex for the law of the unkilled process

Y started from x, and consider the first arrival time τ∂ to be a random variable defined

by (5.1).

Let us write κe
M for the excess killing over level M , that is,

κe
M := κ− κM .

τ∂ is the first rebirth event of the Restore process with killing rate κ, defined by (5.1).

Then by Poisson superposition, we can write

τ∂ = τM ∧ τ e
M , (5.25)

where τ, τM , τ
e
M are the first arrival times of inhomogeneous Poisson process with rate

functions t 7→ κ(Yt), t 7→ κM(Yt) and t 7→ κe
M(Yt) respectively, where these Poisson

processes are independent conditional on the path t 7→ Yt.

In particular, τM and τ e
M can be written as

τM = inf

{
t ≥ 0 :

∫ t

0

κM(Ys) ds ≥ ξ1

}
, (5.26)

τ e
M = inf

{
t ≥ 0 :

∫ t

0

κe
M(Ys) ds ≥ ξ2

}
, (5.27)

where ξ1, ξ2 ∼ Exp(1) are independent of each other and of the underlying process Y .

Since we are assuming Assumption 15 holds, by the arguments of Section 5.4.1 it

follows that the Restore process with killing rate κ has a unique invariant distribution

π, and from Section 5.4.2, π can be written as

π(f) =
Eµ
[∫ τ∂

0
f(Ys) ds

]
Eµ[τ∂]

,

where here Y is the unkilled process and τ∂ is defined as in (5.1). We can rewrite this

by exchanging the order of integration. Consider the resolvent operator, which maps
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measurable functions to measurable functions,

Rf(x) :=

∫ ∞
0

dtEx[f(Yt)1{τ∂ > t}]

=

∫ ∞
0

dtEx
[
f(Yt)1{τM > t}1{τ e

M > t}
]
,

where the second equality holds by (5.25). Note that given a bounded measurable

function f , Rf is also a bounded measurable function, since we can bound

|Rf(x)| ≤ ‖f‖∞Ex[τ∂] ≤ ‖f‖∞ κ
¯
−1.

Thus by Fubini’s theorem, we can write

π =
µR
µR1

,

in analogue with expressions given in Wang et al. [2019b] and Benäım et al. [2018].

Similarly, the Restore process with truncated killing rate κM is still uniformly

ergodic and possesses a unique invariant distribution πM , which can be represented

in a similar way. Write

πM =
µRM

µRM1
,

where for bounded measurable f ,

RMf(x) =

∫ ∞
0

dtEx[f(Yt)1{τM > t}].

Our goal now is to bound the total variation distance

‖πM − π‖1,

as a function of M .

Theorem 5.5.2. We have the following bound on the bias.

‖πM − π‖1 ≤
4
∫∞

0
Pµ(τ e

M ≤ t) exp(−tκ
¯

) dt

Eµ[τ∂]
.

Proof. We have that

πM − π =
(µR1)µRM − (µRM1)µR

(µRM1)(µR1)

=
µR1(µRM − µR) + (µR1− µRM1)µR

(µRM1)(µR1)
.
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So we would like to bound

|µRf − µRMf |

for arbitrary bounded measurable f .

For any nonnegative bounded measurable f ,

|µRf − µRMf | ≤
∫
µ(dx)

∫
dt |Ex[f(Yt)1{τM > t}1{τ e

M > t}]

− Ex[f(Xt)1{τM > t}]|

≤
∫
µ(dx)

∫
dtEx

[
f(Yt)

(
1− 1{τ e

M > t}
)

1{τM > t}
]

≤ ‖f‖∞
∫
µ(dx)

∫
dtEx[1{τ e

M ≤ t, τM > t}]

= ‖f‖∞
∫
µ(dx)

∫
dtPx(τ e

M ≤ t, τM > t).

Since we are assuming that we have a lower bound κ
¯

on the killing rate, and Assump-

tion 5.24 holds, we can stochastically bound τM ≤ τ ′ where τ ′ ∼ Exp(κ
¯
) and τ ′ is

independent of everything else. So continuing the chain of inequalities,

≤ ‖f‖∞
∫
µ(dx)

∫
dtPx(τ e

M ≤ t, τ ′ > t)

= ‖f‖∞
∫
µ(dx)

∫
dtPx(τ e

M ≤ t)Px(τ ′ > t)

= ‖f‖∞
∫
µ(dx)

∫
dtPx(τ e

M ≤ t) e−tκ¯.

A universal upper bound on this quantity is ‖f‖∞/κ
¯
.

For for a given continuous nonnegative bounded f with ‖f‖∞ ≤ 1 we get the

following bounds.

|πMf − πf |

≤
µR1‖f‖∞

∫
µ(dx)

∫
dtPx(τ e

M ≤ t) e−tκ¯ +
∫
µ(dx)

∫
dtPx(τ e

M ≤ t) e−tκ¯|µRf |
(µRM1)(µR1)

≤
∫
µ(dx)

∫
dtPx(τ e

M ≤ t) e−tκ¯

µRM1
+

∫
µ(dx)

∫
dtPx(τ e

M ≤ t) e−tκ¯

µRM1

=
2
∫
µ(dx)

∫
dtPx(τ e

M ≤ t) e−tκ¯

µRM1

≤
2
∫
µ(dx)

∫
dtPx(τ e

M ≤ t) e−tκ¯

µR1

Since this bound is valid for only nonnegative bounded f , in order to bound ‖πM−π‖1

we pick up an additional factor of 2.
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Remark 5.5.3. To use this bound we need to further bound

Px(τ e
M ≤ t).

Intuitively, if κM is a reasonable approximation for κ, then κe
M is low, and hence τ e

M

tends to be large, and so this bound is tighter.

Proposition 5.5.4. Fix a rebirth distribution µ. We have that∫ ∞
0

dtPµ(τ e
M ≤ t) e−tκ¯ → 0 as M →∞. (5.28)

Thus by Theorem 5.5.2 as M →∞,

‖πM − π‖1 → 0.

Proof. The event
{
τ e
M ≤ t

}
is contained in the event

{
sups≤t κ(Ys) ≥M

}
. Thus, for

any fixed x

lim
M→∞

Px(τ e
M ≤ t) = Px

 ∞⋂
M=1

{τ e
M ≤ t}


≤ Px

(
sup
s≤t

κ(Ys) =∞

)

≤ Px

(
sup
s≤t
‖Ys‖ =∞

)
since κ is locally bounded

= 0 since Y is nonexplosive.

By the Dominated Convergence Theorem it follows that

lim
M→∞

∫ ∞
0

dt e−tκ¯

∫
E

dµ(x)Px (τ e
M ≤ t) = 0,

which is precisely (5.28).

In order for Theorem 5.5.2 to be of practical use, we will further need bounds on

Px(τ e
M ≤ t), (5.29)

which will vary given the particular situation; given the choice of the underlying

diffusion Y , target π and rebirth distribution µ.
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The rate at which the probabilities (5.29) decay as a function of M will crucially

depend on the rate at which the killing rate κ grows. Thus we define the following,

L(M) := sup{` > 0 : ∀x ∈ [−`, `]d ⊂ Rd, κ(x) ≤M},

which for a given truncation level M defines the largest hypercube on which no

truncation occurs.

The rate at which L(M) grows as M →∞ will crucially dictate the rate at which

the error decays. Then let

H(M) := [−L(M), L(M)]d ⊂ Rd,

and let

TM := inf{t ≥ 0 : Yt ∈ Rd\H(M)}

be the first hitting time of the unkilled diffusion Y of the complement of H(M).

Clearly we must have

TM ≤ τ e
M .

Thus it follows that∫ ∞
0

Px(τ e
M ≤ t) e−κ¯t dt ≤

∫ ∞
0

Px(TM ≤ t) e−κ¯t dt.

To proceed from here we require knowledge of the distribution of the hitting

times TM for the underlying diffusion Y . At this point we will specialise to the case

of Brownian motion, however a similar analysis can be performed in any situation

where we have analogous bounds on the hitting times.

By the reflection principle of one-dimensional Brownian motion, we know that for

any a > 0,

P

(
sup

0≤s≤t
|Bs| > a

)
≤ 2P(Mt > a) = 4P(Bt > a) = 4

(
1− Φ

(
a√
t

))
.

Here Φ denotes the standard univariate normal cumulative distribution function. For

a multidimensional standard Brownian motion, it follows that

P0 (TM ≤ t) ≤ 4d

(
1− Φ

(
L(M)√

t

))
.

This is because leaving a hypercube is the same as having some component leaving

the interval [−L(M), L(M)].
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We now make use of the well-known bound for the normal cumulative distribution

function: for each λ > 0,

1− Φ(λ) <
1√
2πλ

e−λ
2/2.

This leads to the bound∫ ∞
0

P0(TM ≤ t) e−κ¯t dt ≤ 4d√
2π

∫ ∞
0

√
t

L(M)
e−L(M)2/(2t)e−κ¯t dt.

This integral can be evaluated analytically1, to obtain

=
4d√
2π

√
π

2κ
¯

(
√

2 +
1

L(M)
√
κ
¯

)
e−
√

2κ
¯
L(M)

=
2d

κ
¯

(
1 +

1

L(M)
√

2κ
¯

)
e−
√

2κ
¯
L(M).

So for large values of M we have a bound that decays like

e−
√

2κ
¯
L(M).

This can be used to give practical suggestions of how large to choose M in order to

balance the bias and variance of the algorithm’s output.

Suppose we are able to obtain n i.i.d. draws X1, . . . , Xn ∼ πM , say by running

the CFTP algorithm a total of n times.

So for a bounded test function f , we estimate π(f) by
n∑
i=1

f(Xi)

n
.

We roughly estimate the error as∣∣∣∣ n∑
i=1

f(Xi)

n
− π(f)

∣∣∣∣ ≤ ∣∣∣∣ n∑
i=1

f(Xi)

n
− πM(f)

∣∣∣∣︸ ︷︷ ︸
≈ 1√

n

+ |πM(f)− π(f)|︸ ︷︷ ︸
≤‖f‖∞‖πM−π‖TV

≈ O

(
1√
n

)
+ exp

(
−
√

2κ
¯
(L(M))2

)
.

In order to balance these two terms, it is advisable to choose n and M such that

1√
n
∼ exp

(
−
√

2κ
¯
L(M)

)
⇒ log n

2
√

2κ
¯

∼ L(M).

So this gives some indication of how to choose M , given n. This will achieve an error

of order roughly O(n−1/2). The cost in n will be roughly O(n log n).

1https://www.wolframalpha.com/input/?i=int_0%5Einfty+%5Csqrt+(t)+exp(-a%2F(2t))+

exp(-t)dt
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5.6 Examples

We now give some examples to illustrate the Restore sampler. Throughout, we write

| · | for the Euclidean norm on Rd and Tr for the matrix trace.

5.6.1 Multivariate Gaussian

We describe the Restore sampler for targeting a multivariate Gaussian on Rd. Namely,

when

π(x) ∝ exp

(
−1

2
(x− ν)>Σ−1(x− ν)

)
, x ∈ Rd.

Here ν ∈ Rd and Σ is a positive definite symmetric d× d covariance matrix.

We take the underlying diffusion to simply be a standard Brownian motion; A ≡ 0

in (5.5). This will certainly satisfy the BASSA assumptions, Assumption 10.

It is easily calculated that

κ̃(x) =
1

2

(
(x− ν)>Σ−2(x− ν)− Tr

(
Σ−1

))
, x ∈ Rd.

This is nonpositive on the ellipsoid

H =
{
x ∈ Rd : |Σ−1(x− ν)|2 ≤ Tr

(
Σ−1

)}
, (5.30)

and grows quadratically to infinity as |x| grows. Since π is bounded above, provided

our chosen rebirth density µ is continuous and positive on H, we will be able to find

a constant C such that Assumption 12 holds.

For the technical Assumption 13, we can make use of Lemma 5.3.6 to verify (5.8).

Since κ is quadratic and we are dealing with a standard Brownian motion, a sufficient

condition on µ for (5.9) is that it has at least, say, exponentially decaying tails.

5.6.1.1 Minimal rebirth distribution

One natural choice of rebirth distribution is the minimal rebirth distribution µ∗ of

Section 5.5.1 and corresponding choice of constant C∗. We now derive the limiting

shape of the minimal rebirth distribution as the dimension d→∞. We take

κ
¯

= 0.

In order to obtain an explicit representation, we will consider the isotropic case,

and consider the radial component. Namely, consider a d-dimensional standard Gaus-

sian target.

πd(x) =
1

(2π)d/2
e−|x|

2/2, x ∈ Rd.
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As above, we will take the underlying process Y to be a standard Brownian motion

on Rd, giving the following partial killing rate,

κ̃d(x) =
1

2
(|x|2 − d), x ∈ Rd.

Recall that the surface area element in d-dimensions is given by

Sd−1(r) =
dπd/2

Γ(d/2 + 1)
rd−1.

The minimal rebirth distribution µ∗ is supported on the ellipsoid H as in (5.30),

which in this case is simply

Hd = {x ∈ Rd : |x|2 ≤ d}.

Let us write r = |x|. Consider the following function, the product of πd, −κ̃ and Sd−1,

µ∗u,d(r) =
1

2
(d− r2)

de−r
2/2

2d/2Γ(d/2 + 1)
rd−1, r ≥ 0. (5.31)

Written as a function of the radial component, the minimal rebirth density µ∗d will be

proportional on H to µ∗u,d. (Here the subscript u signifies ‘unnormalised’.)

Direct differentiation shows that the maximum of µ∗u,d occurs when

r2 = d+
1

2
−
√

2d+
1

4
.

We will use this to set the scaling,

r(s) = s+

√
d+

1

2
−
√

2d+
1

4
. (5.32)

This
√
d-shift reflects how the bulk of the probability mass of standard Gaussians

‘moves out at rate
√
d’.

Since the radial component must be nonnegative, (5.32) is valid when

s ≥ −

√
d+

1

2
−
√

2d+
1

4
.

But since we will be considering the limit as d → ∞, (5.32) will eventually be well-

defined for all s ∈ R.

We can now state the limiting shape of the minimal rebirth distribution.
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Figure 5.1: A plot of the function µ∗u,∞ from Theorem 5.6.1, the limiting shape of the
radial component of the minimal rebirth distribution for a standard Gaussian target.

Theorem 5.6.1. For a standard d-dimensional standard Gaussian target, with un-

derlying process Brownian motion and κ
¯

= 0, we have the following limit for the

radial component of the unnormalised minimal rebirth distribution.

As d→∞, for each s ∈ R,

d−1/2µ∗u,d(r(s))→
1√
πe

(√
2

2
− s

)
exp(−s2) exp(

√
2s) ∨ 0 =: µ∗u,∞(s).

Proof. Substitute (5.32) into (5.31) and carefully manipulate the resulting expression,

using Stirling’s formula to expand the Gamma function.

This limiting shape is plotted in Figure 5.1.

Remark 5.6.2. We can use this to estimate the cost of this Restore sampler. Using

the constant C in the killing rate as an estimate of the cost of introducing rebirths,

we can calculate here that

C∗d =

∫
(−κd(x))πd(x) dx =

∫
µ∗u,d(r) dr ≈ d1/2

∫
µ∗u,∞(s) ds.

So the cost of introducing the rebirths scales roughly like d1/2.
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5.6.2 Cauchy posterior

We now give a univariate example where π has heavy tails and is multimodal. This

simple example is based on Example 3.1 of Murdoch [2000]. We take

π̄(x) ∝
n∏
i=1

1

1 + (yi − x)2
,

for some observations (y1, . . . , yn) ∈ Rn, with respect to Lebesgue measure on R. (We

use the notation π̄, since in the notation of Section 5.3.2, the symbol π is reserved for

the target density with respect to the measure Γ.)

This can be thought of as the posterior distribution for i.i.d. Cauchy(x) data, with

an improper uniform prior on R for x. In Example 3.1 of Murdoch [2000], the author

considered this density with a N(0, 1002) prior on x. We choose to use a uniform

prior since in this case the posterior π has polynomially decaying tails.

We will take the same data as Murdoch [2000], namely n = 3 and observations

(1.3,−11.6, 4.4). The resulting posterior is plotted in Figure 5.2.

In Murdoch [2000], a method was given to couple MCMC chains started from

different initial locations, by using a mixture of random walk Metropolis moves inter-

spersed with occasional independence sampler moves. Our approach with Restore is

very similar. However, there are crucial differences. Firstly, our target π̄ has heavy,

polynomially-decaying tails, whereas Murdoch [2000] takes a Gaussian prior, giving

exponential decay in the tails. Secondly, for the rebirth distribution we take the min-

imal rebirth distribution of Section 5.5.1, which is compactly supported. Thus we do

not need to tune the proportion of local versus global moves; this is done automati-

cally by the event rate. And most significantly, neither our local nor global dynamics

are themselves π̄-invariant. By choosing local dynamics which rapidly explore the

tails we will obtain a straightforward recipe, using CFTP, to obtain exact draws from

the target.

We would like to use the diffusion form of Restore described in Section 5.3.2. Since

our target has heavy tails, we will need a diffusion which is rapidly able to enter the

tails.

As such, for our underlying process, we will take the following diffusion: an un-

stable Ornstein–Uhlenbeck process, described by the SDE

dYt = Yt dt+ dBt, (5.33)

where B is a standard univariate Brownian motion. We showed in Section 5.3.2.1

that this diffusion satisfies the BASSA conditions (Assumption 10). This diffusion,
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Figure 5.2: The heavy-tailed multi-modal target distribution π of (5.6.2).

like a stable Ornstein–Uhlenbeck process, is also a Gaussian process with known

finite-dimensional distributions, and so can be simulated easily without error.

This diffusion accelerates into the tails, and so produces via CFTP an exact draw

from heavy-tailed invariant distribution π in finite time.

Through routine, but slightly cumbersome, calculations, we arrive at the partial

killing rate,

κ̃(x) =
n∑
i=1

−1 + (yi − x)2

(1 + (yi − x)2)2
+ 2

 n∑
i=1

(yi − x)

1 + (yi − x)2

2

+
n∑
i=1

2(yi − x)2

1 + (yi − x)2
−

n∑
i=1

2yi(yi − x)

1 + (yi − x)2
− 1.

(5.34)

This is plotted in Figure 5.3. As expected, κ̃ is negative precisely in the vicinity of

the local maxima of π. We can see that in this case the partial killing rate is bounded

above; a global upper bound is given by

M = 16.

Analytically, we know that the limiting value of κ̃(x) as |x| → ∞ is 5.
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Figure 5.3: κ̃ for the Cauchy example as in (5.34). The blue line is the value κ
¯

= 4.

For our subsequent CFTP implementation we will take the lower bound

κ
¯

= 4.

For the rebirth distribution we will take the minimal rebirth distribution µ∗ from

Section 5.5.1, with κ
¯

= 4. This is plotted in Figure 5.4. We take the corresponding

value of C = C∗ as in (5.21), so that the resulting killing rate is

κ(x) = κ̃(x) ∨ 4,

where κ̃ is defined in (5.34).

Practically, we need to draw samples from µ∗. For this simple example, this can

be done through straightforward rejection sampling from a uniform distribution on

the interval [−11.8, 5], since we know this interval contains the support of µ∗.

Assumptions 11 and 12 are easily seen to be satisfied. Assumption 13 is relatively

easy to check. We can use the sufficient integral conditions of Lemma 5.3.6 for (5.8),

and since κ is bounded (5.9) is immediate.

By construction, we have that the killing rate κ satisfies

4 ≤ κ(x) ≤ 16, x ∈ R,
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Figure 5.4: The minimal rebirth distribution µ∗ for the Cauchy example with lower
bound κ

¯
= 4. Its precise definition is given in (5.22). In this case draws from µ∗ can

be obtained easily by rejection sampling from a uniform distribution.
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Figure 5.5: 30,000 samples obtained from the CFTP implementation. This an i.i.d.
sample from π. The true posterior π is plotted in red.

so Assumption 15 holds.

We now have all the ingredients to apply the CFTP implementation to obtain

exact i.i.d. draws from π. Implementation is straightforward since the killing rate is

bounded above so we can make use of Poisson thinning; see Algorithm 4.

A histogram consisting of 30,000 draws from the CFTP implementation are plot-

ted in Figure 5.5. This took a matter of seconds to obtain. These were obtained

by running the CFTP algorithm 30,000 times (independently), and so the resulting

sample is i.i.d.

5.6.2.1 Minimal rebirth distribution

We can perform an analysis for the minimal rebirth distribution of a heavy-tailed

multivariate Cauchy distribution, as was done for the multivariate Gaussians in Sec-

tion 5.6.1.1.

Again we will want a radially symmetric density, so we take

πd(x) =
Γ((1 + d)/2)

Γ(1/2)πd/2(1 + |x|2)(1+d)/2
, x ∈ Rd.

This is a multivariate Cauchy density.
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Using an unstable Ornstein–Uhlenbeck process as in (5.33), except this time on

Rd, we find that the partial killing is given by

κ̃d(x) =
1 + d

2(1 + |x|2)2
· (3|x|2 − d) +

|x|2 − d
1 + |x|2

, x ∈ Rd.

We will take again κ
¯

= 0. Then as in Section 5.6.1.1, the radial component unnor-

malised minimal rebirth density is given by

µ∗u,d(r) = (−κ̃d(r))πd(r)Sd−1(r) ∨ 0, r ≥ 0.

In this setting, the relevant scaling is r
√
d/3. We obtain the following.

Theorem 5.6.3. For the symmetric multivariate Cauchy target, with an unstable OU

process (5.33) as the underlying process and κ
¯

= 0, we have the following limit for

the minimal rebirth distribution.

As d→∞, for each r ≥ 0,

√
dµ∗u,d

(
r

√
d

3

)
→ −9

√
2√
π

1

r6
exp

(
− 3

2r2

)(
r4

3
+
r2

2
− 3

2

)
∨ 0 =: µ∗u,∞(r).

Proof. This is just a matter of carefully working through the algebra, and making

use of Stirling’s formula.

The limiting shape is plotted in Figure 5.6. By solving the polynomial, we can

calculate that the root of µ∗u,∞ is at r =
√

6/2.

Remark 5.6.4. We can now estimate the value of C∗d to get a sense of the cost of

adding rebirths.

C∗d =

∫
(−κd(x))πd(x) dx =

∫
µ∗u,d(r) dr =

∫
µ∗u,d

(
s

√
d

3

)√
d

3
ds

≈ 1√
3

∫
µ∗u,∞(s) ds.

So in this case the cost of adding rebirths is roughly constant as the dimension d

increases.

5.6.3 Jump process: correcting a poor approximation

We give an example where Restore is able to correct a poor approximation of the

target π. This example is meant to emulate situations where the practitioner has

some sense of approximately where the modes of the target lies, but does not possess
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Figure 5.6: The limiting shape µ∗u,∞ for the radial component of the minimal rebirth

distribution for multivariate Cauchy targets. The root is at r =
√

6/2.
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Figure 5.7: The target density π and rebirth density µ for the jump Restore example.

knowledge of their widths or relative weights. We take a univariate example for con-

venience and clarity of presentation, but this could easily extend to more complicated

multivariate settings.

In this section we write φ(·; ν, σ2) for the univariate Gaussian density with mean

ν ∈ R and variance σ2 > 0. We take the following target density π on R:

π(x) = 0.1φ(x;−22, 32) + 0.3φ(x;−1, 0.22) + 0.6φ(x; 15, 12), x ∈ R.

For the rebirth density µ, we take

µ(x) =
1

3

(
φ(x;−29, 0.12) + φ(x; 3, 12) + φ(x; 10, 12)

)
, x ∈ R.

These are both plotted in Figure 5.7.

This is a situation where simple implementations of both random-walk Metropolis

and the independence sampler with µ as a proposal are highly inefficient. RWM is able

to explore individual modes, but the large separation of the modes means the sampler

is unable to cross from one mode the other. The independence sampler struggles since
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Figure 5.8: A weighted histogram of the Restore run, taking into account holding
times.

µ is not aligned well with π: the sampler experiences very high rejection rates and is

unable to explore the modes.

We implement the jump process variant of the Restore sampler as described in

Section 5.3.3.1. We take the underlying process Y to be RWM with variance 1 embed-

ded in continuous time, with constant holding rate 1. The algorithm is implemented

as in Algorithm 3. We took the constant C = 1 in the killing rate.

We ran the Restore sampler for 300,000 steps of the jump chain. Restore is able to

correct the discrepancy between the rebirth distribution and the target, and explore

all three modes. The corresponding weighted histogram is in Figure 5.8. Since the

process is continuous-time, we cannot naively plot a histogram of the outputted values

of the chain, but must also take into account the holding times.

In Figure 5.9 we have plotted the continuous-time trajectory of the first 50,000

jump steps of this run. This includes teleports, and the stochastic process time

elapsed was about 27,000. Among these 50,000 steps, a proportion of roughly 0.46

132



Figure 5.9: The continuous-time trajectory of the first 50,000 steps of the jump
Restore sampler. The proportion of teleport moves was roughly 0.46. The red points
are the teleport moves.

were teleport moves.

Because µ and π are not quite aligned, the sampler does exhibit rapid sequences

of teleports, which correspond to rejections in a discrete-time setting. However, be-

cause of the non-teleport RWM moves, it is sometimes then able to move into the

neighbouring mode and explore it.
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Chapter 6

Conclusions and further work

In this thesis we have studied the theory relating to killing and regeneration in the

context of continuous-time Monte Carlo samplers.

In Chapters 3 and 4 we focused on quasi-stationary Monte Carlo methods, where

the idea is to construct a killed diffusion whose quasi-stationary distribution coincides

with a target distribution of interest. This study was motivated by recent work of

Pollock et al. [2016], where such methods were shown to scale well with the data size,

while retaining exactness.

In Chapter 3 we provided some theoretical results to shore up the quasi-stationary

theory in Pollock et al. [2016]. For general reversible diffusions, we gave conditions

under which the quasi-stationary distribution of the killed diffusion coincides with a

given target density. This simplifies and extends the theory given in Pollock et al.

[2016]. We also gave a result on the spectral gap.

In Chapter 4 we considered an alternative implementation of QSMC, inspired by

the sample path method of Aldous et al. [1988], Blanchet et al. [2016], Benäım et al.

[2018]. The resulting QSMC method has been dubbed ReScaLE, whose computa-

tional properties have been explored in the doctoral work of Kumar [2019]. In this

chapter we provided the first proof of the convergence of such stochastic approxima-

tion methods to the quasi-stationary distribution in continuous-time on a continuous

state space. We focused on compact spaces, but this topic has subsequently been

studied further in Mailler and Villemonais [2018] and Benäım et al. [2019]. However,

the general case of diffusions on noncompact state spaces with potentially unbounded

killing still remains an open problem.

QSMC methods have shown promise for tackling tall data problems, but several

issues remain. For ReScaLE, the need to sample from the past trajectory poses a

practical issue.
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In Chapter 5 we pulled these strands together and introduced the Restore sampler.

By fixing the rebirth distribution of ReScaLE, we overcome one of its key bottlenecks.

We gave conditions under which the Restore process, an instance of a regenerative

process, can be constructed to have a given target density as its invariant distribution.

We proved various theoretical results related to the resulting sampler and gave some

simple examples to demonstrate its potential.

We believe that the Restore sampler shows promise both as a new sampler in

its own right, and as a recipe for potentially improving the mixing of existing sam-

plers. This is because of its simplicity, and the desirable properties which follow from

the presence of regenerations: the lack of burn-in issues, relatively straightforward

variance estimates and its parallelisable nature.

However, of course, the Restore sampler as is has its limitations, presenting chal-

lenges and open questions for future research.

• While the global moves introduced are never rejected, in practice we may ex-

perience very short lifetimes. When one rebirth event is immediately followed

by another, this can be seen as a kind of ‘rejection’.

• In practice the selection of the constant C in (5.2) can be difficult. The calcula-

tions involved in finding κ̃, and then computing C can be onerous, especially as

the dimension of the problem increases. There is the practical question of find-

ing an appropriate value when implementing the sampler, and the associated

theoretical question of what the optimal value is.

• The selection of µ is also a nontrivial problem. While we have suggested a

natural choice of rebirth distribution in Section 5.5, in practice it may be very

difficult to sample from. An interesting future development would be to take

µ as an approximation of π, obtained via, say some preliminary MCMC simu-

lations, or some general approximation such as INLA, Rue et al. [2009], then

using Restore to correct the bias.

• We considered in Chapter 5 diffusions and jump processes for the underlying

process. Another class of potential processes would be PDMPs or ODE flows.

• Since the event rate has been modified compared to ReScaLE, the Restore

sampler is no longer amenable to subsampling, and so it is not necessarily

suitable for tall data problems.
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• Of course, a thorough analysis of the computational properties of Restore via

more detailed examples still needs to be done.

Overall, I believe the study of continuous-time methods in the context of Monte

Carlo is very valuable for improving existing Monte Carlo samplers and proposing

new ones. Such methods have already proven popular for tackling the difficult data

problems of the current age and I believe there are many more interesting and practical

results and algorithms remaining to be discovered.
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Appendix A

Symmetric diffusions

A.1 Basic Assumptions

For convenience we list here the Basic Assumptions of Stochastic Spectral Analysis

(BASSA) from [Demuth and van Casteren, 2000, Chapter 1.B].

E is a second countable locally compact Hausdorff space with Borel σ-algebra E ,

equipped with a Radon measure m. A function f : E → C belongs to C0(E) if for

each ε > 0, there is a compact set K such that |f(x)| ≤ ε for each x /∈ K. C0(E) is

always equipped with the supremum norm.

The function p0(t, x, y) defined on (0,∞)×E×E is a function such that (t, x, y) 7→
p0(t, x, y) is continuous, and satisfies the following assumptions:

1. Markov property:∫
p0(s, x, y)p0(t, z, y) dm(z) = p0(s+ t, x, y), s, t > 0, x, y ∈ E,

and ∫
p0(t, x, y) dm(y) ≤ 1, t > 0, x ∈ E.

2. Feller property: for each f ∈ C0(E), the function

x 7→
∫
p0(t, x, y)f(y) dm(y)

belongs to C0(E).

3. Continuity: for each f ∈ C0(E) and for each x ∈ E, we have

lim
t↓0

∫
p0(t, x, y)f(y) dm(y) = f(x).

4. Symmetry: for each t > 0, x, y ∈ E, p0(t, x, y) = p0(t, y, x).
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Under BASSA, p0(t, x, y) is the kernel of a Feller semigroup, and we denote the

L2(E,m) generator of the semigroup by −L0. Given p0(t, x, y) satisfying BASSA,

then there exists a strong Markov process (Ω,F , θt, Yt,Px) associated with it which

has Px-almost surely càdlàg sample paths.

Then the semigroup {exp(−tL0) : t ≥ 0} is given by

[exp(−tL0)f ](x) =

∫
p0(t, x, y)f(y) dm(y) = Ex[f(Yt)],

whenever this integral makes sense.

A.2 Theorem 2.5 of Demuth and van Casteren [2000]

In this subsection we state the relevant parts of Theorem 2.5 of Demuth and van

Casteren [2000].

Let V : E → [0,∞] be a Borel measurable function on E. The function V is said

to belong to K(E), the Kato class, if

lim sup
t↓0

sup
x∈E

∫ t

0

(∫
p0(t, x, y)V (y) dm(y)

)
ds = 0.

V is said to belong to Kloc(E) if 1BV belongs to K(E) for all compact subsets B of

E. Clearly bounded functions V belong to K(E).

Theorem A.2.1 (Theorem 2.5 of Demuth and van Casteren [2000]). We assume

that p0(t, x, y) is a transition density satisfying BASSA, and that V = V+ − V− is a

Borel measurable function defined on E such that V− ≥ 0 belongs to K(E) and such

that V+ ≥ 0 belongs to Kloc(E). Then the following statements hold.

• There exists a closed, densely defined linear operator LV = L0+̇V in C0(E),

extending L0 + V , which generates a strongly continuous positivity-preserving

semigroup
{

exp
(
−tLV

)
: t ≥ 0

}
in C0(E). Every operator exp(−tLV ), t > 0

is of the form[
exp

(
−tLV

)
f

]
(x) =

∫
pV (t, x, y)f(y) dm(y), f ∈ C0(E),

where pV (t, x, y) is a continuous function in (t, x, y) on (0,∞) × E × E which

satisfies the Chapman–Kolmogorov identity:

pV (s+ t, x, y) =

∫
pV (s, x, z)pV (t, z, y) dm(z),

for t > 0, x, y ∈ E. Furthermore, pV (t, x, y) is symmetric ([Demuth and van

Casteren, 2000, p52]).
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• The operator exp
(
−tLV

)
is given via the Feynman–Kac formula:

[
exp

(
−tLV

)
f

]
(x) = Ex

exp

(
−
∫ t

0

V (Yu) du

)
f(Yt)

 .
• The semigroup

{
exp

(
−tLV

)
: t ≥ 0

}
acts as a strongly continuous semigroup

in Lp(E,m) for each 1 ≤ p <∞.

• In L2(E,m), the family
{

exp
(
−tLV

)
: t > 0

}
is a self-adjoint positivity-

preserving strongly continuous semigroup with a self-adjoint generator.

• The Feynman–Kac semigroup in L2(E,m) coincides with the semigroup corre-

sponding to the quadratic form EV with domain

D
(
EV
)

= D
(

(L0)1/2
)
∩ D

(
V

1/2
+

)
and defined by

EV (f, g) = 〈(L0)1/2f, (L0)1/2g〉 − 〈V 1/2
− f, V

1/2
− g〉+ 〈V 1/2

+ f, V
1/2

+ g〉,

where f, g ∈ D(EV ).

A.3 Proof of Lemma 5.3.6

Recall that we write W 2,1(Rd) for the Sobolev space of measurable functions on Rd

whose first and second derivatives are integrable with respect to Lebesgue measure on

Rd, equipped with the corresponding Sobolev norm. Precise definitions can be found

in Adams [1975].

First note that the fact that π ∈ W 2,1(Rd) along with the integral assumptions

imply that ∫
Rd
ϕ(x)κ(x) dΓ(x) <∞,

since we can write

ϕκγ =
1

2
∆π −∇A · ∇π −∆Aπ + Cµγ.

Now, as in the proof of Theorem 3.18 of Adams [1975], let f be a fixed smooth,

nonnegative (take the square if necessary), compactly supported function on Rd, a

mollifier, with the following properties: for x ∈ Rd,

139



• f(x) = 1 if |x| ≤ 1,

• f(x) = 0 if |x| ≥ 2,

• |Dαf(x)| ≤M (constant) for all 0 ≤ |α| ≤ 2.

Here we use the standard multi-index notation for derivatives; see Adams [1975] for

the details.

We can now define for each n ∈ N,

ϕn := fn · ϕ,

here · denotes the pointwise product and fn(x) := f(x/n), x ∈ Rd.

Since ϕ is smooth, the ϕn are a sequence of smooth, compactly supported functions

with the following properties: πn := γ · ϕn converges to π = γ · ϕ pointwise and in

W 2,1(Rd) (see the proof of Theorem 3.18, Adams [1975]), and we have ϕn ≤ Mϕ

pointwise, uniformly over n. This in particular implies that ϕn converges to ϕ in

L1(Γ).

We can write

−γL0ϕn =
1

2
∆πn −∇A · ∇πn −∆Aπn.

From this we see that −γL0ϕn converges in L1(Rd) – Rd equipped with Lebesgue

measure – to
1

2
∆π −∇A · ∇π −∆Aπ.

Convergence of the first term is immediate since πn converges to π in W 2,1(R).

Convergence of the third term follows since π converges to π pointwise, with

πn ≤Mπ, so we can make use of the dominated convergence theorem.

Convergence of the second term ∇A · ∇πn is obtained by the following argument.

We have

∇A · ∇πn = fn∇A · ∇π + π∇A · ∇fn. (A.1)

Of the two terms on the right-hand side, the first converges in L1(Rd) to ∇A · ∇π
straightforwardly; for instance by dominated convergence; the mollifiers are uniformly

bounded by M .

For the second term of (A.1), first note that ∇fn(x) = n−1∇f(x/n), which is

bounded (in each component) by M/n, and the support of ∇fn is by construction

within the set Bn := {y ∈ Rd : n ≤ |y| ≤ 2n}. Thus we have

|π(x)∇A · ∇fn(x)| ≤ π(x)K|x|Mn−1 1Bn(x) ≤ 2KMπ(x).
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Here we used the bound on the drift |∇A(x)| ≤ K|x|. Thus we can use once more

dominated convergence to establish that π∇A · ∇fn is converging in L1(Rd) to the

zero function. This establishes the convergence of the second term ∇A · ∇πn.

Now by rewriting the terms, we have that −L0ϕn converges to

1

2
∆ϕ+∇A · ∇ϕ

in L1(Γ).

Thus since L0 is a closed operator, and the sequence of smooth compactly sup-

ported function πn belongs to D(L0
1) for each n, we have established that ϕ ∈ D(L0

1).

Finally, since
∫
πκ dΓ <∞, and we have that πn ≤Mπ, we have that

∫
πnκ dΓ→∫

πκ dΓ.

Thus

Lκπn → L0π + κπ = Cµ

in L1(Γ). This shows that ϕ ∈ D(Lκ1) and Lκ1ϕ = Cµ, concluding the proof of

Lemma 5.3.6.

A.4 Proof of Theorem 5.3.7

We want to prove that ϕ is an invariant distribution for the Restore process X with

interarrival dynamics Y , killing rate κ as defined in (5.7) with rebirth distribution µ.

We are in the setting (E,m) = (Rd,Γ).

Since we are assuming (Assumption 4) that κ is continuous, hence bounded on

compact sets, and nonnegative, it is easy to see that the potential V = κ belongs to

Kloc(Rd), as defined in Appendix A.2. We are assuming that our underlying process

Y satisfies BASSA (Assumption 10), hence we can apply Theorem 2.5 of Demuth and

van Casteren [2000], reproduced above as Theorem A.2.1.

Thus we obtain the existence of a semigroup {exp(−tLκ) : t ≥ 0} with continuous,

symmetric kernel pκ(t, x, y) on (0,∞)×Rd×Rd. This semigroup is strongly continuous

on C0(Rd) as well as Lp(Γ) for each 1 ≤ p <∞.

We know that the Restore process X is a strong Markov process by Proposition

5.2.1. Let {P µ
t : t ≥ 0} denotes its semigroup.

Our goal is to consider for appropriate functions f ,

t 7→ ϕP µ
t f :=

∫
dΓ(x)ϕ(x)[P µ

t f ](x) = Eϕ[f(Xt)].

We will compute the time derivative and show that is it 0. By time homogeneity, it

is sufficient to show that the derivative is 0 at t = 0. This was the method used to
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prove ϕ-invariance of the Bouncy Particle Sampler in the supplementary material of

Bouchard-Côté et al. [2018].

The Restore process naturally exhibits a renewal-process like behaviour since the

individual lifetimes are independent and identically distributed. So we will seek a

renewal-like representation of the semigroup P µ
t by conditioning on the first arrival

τ∂. Since κ is locally bounded, τ∂ is absolutely continuous on R+, hence will possess

a density with respect to Lebesgue measure on R+.

Since κ is nonnegative, the semigroup exp(−tLκ) can also be expressed as

[exp(−tLκ)f ](x) = Ex
[
f(Yt)1{τ∂ > t}

]
,

where τ∂ is defined as in (4.2) for each f where the integral is well-defined.

Note that we have

− Lκϕ = −L0ϕ− κϕ = −Cµ. (A.2)

This equation holds formally, where we view Lκ and L0 as formal differential opera-

tors, and rigourously as the L1(Γ) generator by Assumption 13. Since we additionally

assume that in Assumption 13 that both ϕ, µ ∈ L2(Γ), it follows that (A.2) also holds

rigourously as the L2(Γ) generator.

Consider

Pϕ(τ∂ > t) =

∫
dΓ(x)ϕ(x)

∫
dΓ(y) pκ(t, x, y)

=

∫
dΓ(y)

∫
dΓ(x)ϕ(x)pκ(t, y, x) =

∫
dΓ(y)[exp(−tLκ)ϕ](y).

Here we used Tonelli’s theorem to exchange the order of integration and symmetry

of pκ(t, x, y). The final integral is well-defined since ϕ ∈ L1(Γ) and the semigroup

exp(−tLκ) maps L1(Γ) to itself by Theorem A.2.1. Thus by strong continuity and

the fact that ϕ ∈ D(Lκ1) (Assumption 13) we can differentiate this expression to find

d

dt
Pϕ(τ∂ > t)|t=s =

∫
dΓ(y)[exp(−sLκ)(−Lκϕ)](y)

= −
∫

dΓ(y)[exp(−sLκ)(Cµ)](y)

= −C
∫

dΓ(x)µ(x)[exp(−sLκ)1](x).

Here we have used (A.2) and Assumption 13 and symmetry again.

This shows that the density on R+ with respect to Lebesgue measure of the first

arrival time under Pϕ is given by

h(t) = C

∫
dΓ(x)µ(x)[exp(−tLκ)1](x) = C Pµ(τ∂ > t), t ≥ 0.
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This also shows that C = 1/Eµ[τ∂].

From this we can represent the semigroup of the Restore process started in ϕ as

ϕP µ
t f =

∫ t

0

CPµ(τ∂ > s)µP µ
t−sf ds+ ϕ exp(−tLκ)f

= C

∫ t

0

Pµ(τ∂ > t− s)µP µ
s f ds+ ϕ exp(−tLκ)f.

Our goal is to differentiate this expression with respect to t and show that the deriva-

tive at t = 0 is zero. Now we take f ∈ D(Lκ2) and bounded. From this representation,

we can see that t 7→ ϕP µ
t f is a continuous function.

We wish to compute the time derivative of t 7→ ϕP µ
t f using Leibniz’s rule. Con-

sider

t 7→ Pµ(τ∂ > t) =

∫
dΓ(x)µ(x)

∫
pκ(t, x, y) dΓ(y)

= E0
µ

exp

(
−
∫ t

0

κ(Ys) ds

) .
We would like to compute the time derivative. Because of our technical assumption

(5.9), we can differentiate under the integral sign to obtain

g(s) := − d

dt
Pµ(τ∂ > t)|t=s = E0

µ

[
κ(Ys) exp

(
−
∫ s

0

κ(Yu) du

)]
,

for each s ∈ [0, 1]. g is a continuous function, and will be uniformly bounded over

s ∈ [0, 1].

Thus we obtain in a similar manner to above, the representation

µP µ
t f =

∫ t

0

g(s)µP µ
t−sf ds+ ϕ exp(−tLκ)f.

So t 7→ µP µ
t f is a continuous function.

So now we can compute time derivatives by Leibniz’s rule:

d

dt
ϕP µ

t f

∣∣∣∣
t=s

= C

∫ s

0

g(s− u)µP µ
u f du+ Cµ(1)µP µ

s f + ϕ exp(−tLκ)(−Lκf).

Taking t = 0, we find

d

dt
ϕP µ

t f

∣∣∣∣
t=0

= Cµ(f) + ϕ(−Lκf).
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Since we chose f ∈ D(Lκ2) and using the fact that ϕ ∈ D(Lκ2) (Assumption 11), this

final expression is equal to

Cµ(f) + ϕ(−Lκf) =

∫
dΓ(x) f(x)

(
Cµ(x) + (−L0ϕ)(x)− κ(x)ϕ(x)

)
.

This will equal 0 for any such f if

κ(x) =
−L0ϕ

ϕ
(x) + C

µ(x)

ϕ(x)
, x ∈ Rd,

which is exactly our (5.7). This concludes the proof of Theorem 5.3.7.
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Inst. Henri Poincaré Probab. Stat., 46(3):618–643, 2010. doi: 10.1214/09-AIHP206.

Harold J. Kushner and George Yin. Stochastic Approximation and Recursive Algo-

rithms and Applications, volume 35 of Stochastic Modelling and Applied Probability.

Springer-Verlag, New York, 2 edition, 2003.

150



Krzysztof Latuszynski. Regeneration and Fixed-Width Analysis of Markov Chain

Monte Carlo Algorithms. PhD thesis, University of Warsaw, 2009. URL http:

//arxiv.org/abs/0907.4716.

Anthony Lee, Arnaud Doucet, and Krzysztof Latuszyński. Perfect simulation using
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