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THEORY OF PROBABILITY
AND ITS APPLICATIONS Number I

SHORT COMMUNICATIONS

ON RANDOM SEARCH FOR A GLOBAL EXTREMUM

& M. ERMAKOV AND A. A. ZHIGLYAVSKil

(Translated by K. Durr)

The problem of searching for a global extremum of a function under sufficiently broad
assumptions has been investigated relatively little. The existing meaningful results pertain
to the simplest methods of random search.

This paper considers more complex probabilistic models by means of which it is
possible to analyze several methods 1 ], [2] suggested because of heuristic considerations
that are highly recommended in the solution of practical problems. These models are
based on the construction of a sequence of probability distributions that converge for a
wide class of functions to a limit distribution concentrated at the global extremum point.
The modeling of these distributions is the content of the corresponding algorithms.

Suppose that X is a compact separable metric space, p is a metric on X, is a
r-algebra of Borel subsets of X, f is a non-negative bounded function on X continuous
at all but a finite number of points, and/z(dx) is a probability measure on B. Consider
the problem of seeking the point x* at which f(x*)=maxxxf(x) from the results of
measuring the r.v. rt (xi) f(xi) + :(x) at points x e X, 1, 2,. ., defined by the optimiz-
ation algorithm.

We assume that
a) for any x eX, g(x) is a r.v. having distribution F(x, d) with zero mean and

concentrated on a finite interval [-d,d], where for any Xl, X2,’" in X the r.v.’s
:(xl), :(x2), are mutually independent;

b) rt(x) => cl > 0 for all x e X with probability 1. The following algorithm can be used
to solve this fairly general problem.

Algorithm 1.
1. Choose a distribution O(0, N-l; dx)= Po(dx) on 3, and set s=0.
2. Model the distribution Q(s, Ns-1; dx) a specified number of times Ns, and obtain

xS), ...(s)
’’&Ns" N (s)3. Set Q(s+ 1, N; dx)=,=1 P, Q(- ) dx), where pS)= rt(x))/y.si(xj,,xi )), and

Qs(y, dx) is a given transition probability (i.e. a probability measure on =" the second
argument for any y X and a -measurable function in the first argument).

4. Set s s + 1, and go to step 2 if s <= Sk.
The quantity x* is estimated by one of the standard methods from the points of the

last iteration. The behavior of Algorithm 1 was investigated in certain special cases
in [1], [3].

The distributions Q(s+ 1, N; dx) are the conditional distributions of the random
elements xl+1) (i=l,. .,N/l,s=0, 1,. .) for fixed values of x), x)"’6(x)),. "’, :, m,. T paper also studies the asymptotic behavior of P(s+ 1, Ns; dx)he

r(s+l)(as N-, s-) the unconditional distributions of the random elements
(i 1,. , N+I, s 0, 1,. ). We shall prove that the distributions P(s + 1, N; dx) con-
verge weakly to ex.(dx)ua distribution concentrated at x*. This convergence follows
from the fact that for large N, the distribution P(s/ 1, Ns; dx) is an approximation to
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ON RANDOM SEARCH FOR A GLOBAL EXTREMUM 137

the distribution fS(x)tz(dx)/x fS(y)tz(dy). Optimization algorithms of this type were first
considered in [4].

Let P(s, Ns_I; dXl,’", dxN.) be the joint distribution of the random elements
xS),’", N,. Then

(1)

P(0, N_I; dXl, dXuo) eo(dXl).., eo(dXNo),

P(s+ 1, N; dx) P(s+ 1, N,; dx, X, X, X).

We shall prove two lemmas.

Lemma 1. Let conditions a) and b) hold and let

c) Q,(y, dx)=q(y,x)lz(dx), sup q,(y,x)<=Ms<oo foralls=O, 1,....
x,yX

Then ]’or any s O, 1,... and N 1, 2,...,

(2) P(s+ 1, N; dx) P(s, N_; dz)f(z) P(s, N_; dy)f(y)R(s, N, y; dx),
X

where R(s, Ns, y; dx) O,(y, dx)+ A(s, N; dx); for any s =0, 1,. the generalized (alter-
nating) measures A(s, N; dx) converge in variation to 0 as Ns --> 00 at a rate of order N-;/2
IIA(s, N;. )11 O(NT1/ )(N, - oo).

PROOF. Using (1), we can prove by induction that for any s=0, 1,... the r.v.’s
x(1s) .(s)

,’’" ,,N, are symmetrically dependent. We choose the marginal distribution
P(s + 1, N; dx) as follows (for brevity we write N Ns and M N_):

The last relation can be written in the form (2), where

(3)
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138 S. M. ERMAKOV AND A. A. ZHIGLYAVSKII

Let us show that A(s, N; 0 in variation as N oo. In this case this means ([5], p. 118),
that Jx (N, x)lz(dx)O as Noo, where

(N, x) e(s, M; dye,..., dy)F(y, ds,)
d d

F(ys, d)[f(yl)+ l]q(Y,, x)

{[N-ljl[f(y)+]]--[fxP(S,M;dz)f(z)]-}
To this end, it is sucient for any el>0 and any xX that there exist an

N. N.(e) such that for N N.,
(4) (N,x)<e.

We shall prove this.
Since the random elements x, x for any N are symmetrically dependent,

then so are the r.v.’s (x) f(xs) + (x), 1,. ., N. Hence the r.v.’s ([6], p. 400)
N N-1 ]1 (Xs)) converge in the mean to some r.v. x which is independent of all
the xi, i= 1,2,..., with Ex =E(x)=x P(s,M; dz)f(z). We can formulate this as
follows: for any e2 > 0 there is an N* 1 such that EI-1 < e for N N*. Write
=[f(x)+(x)]qs(X,x). It is clear that esssup(maxxf(x)+d)M=M,.
Using the independence of from x and and conditions a)), we obtain

<[infEx]- E. <

ss sup ss supYI
Thus if we put : cM and N, N*, thn (4) will hold for N N,. Moreover, from
the last chain of inqualities, it follows that IA(s,N; ")I[cT2M,IN--[. From the
cntral limit theorem for symmetrically dependent r.v.’s (see [7]) and the inequality

1 l N-/+ss sup I IP{I l N-/},

which is a consequence of an inequality given in [6], p. 157, it follows that EIN-I--
O(N-1/2) (N oo) and hence IIA(s, N;. )11 O(N-x/=) (N-, o). The lemma is proved.

Lemma 2. Let the following conditions hold:
d) x*, the point at which the function f has a global maximum, is unique and f is

continuous in some neighborhood of this point;
e) /z{B(x)}> 0 for any e>0 and xX, where B(x)={yXlp(x, y)=< e};
f) there exists an eo>0 such that ]:or any e, 0<e=<eo, the set A(e)=

{x X[f(x*)-f(x) <= e} is simply connected and/z{a(e) >0}.
Then the sequence of distributions f" (x) tz (dx)/x f" (z) tt (dz) converges weakly to

the distribution ex.(dx) as m oo.

PROOF. Let Bi B, (x*),

Di=X\Bi={xXlp(x,x*)>-ei}, i=1,2,4, K1 =supf(x).
xD

Choose an arbitrary el>0. From d), it follows that for any el>0 there exists an e2
(0< e2 < el) such that K2=infxB2f(x)> K1. For any m>0, we have

B,\--/ /z(dx)> k/ (dx) (dx).
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ON RANDOM SEARCH FOR A GLOBAL EXTREMUM 139

Passing to the limit (as m c) in the inequality

iD1 D1

we obtain ]-xf(x)(dx)/ f(x)(dx)O, which implies that (c
[(x(x

I ID

Now we choose an arbitrary continuous function (x) on X. Let us show that
lim cm Ix (x)(x)(dx)=(x*). For any >0, there exists an e>0 such that
10(x)-0(x*)l< for O(x,x*)Ne and xeX. Put e4=min{e, e}. Then

By relations (5) and the definition of weak convergence the lemma is proved.
The next assertion follows immediately from Lemma 1.

Corollary 1. Let conditions a)-c) hold. Then for any s=0, 1,... the distributions
P(s+ 1, Ns; dx) converge in variation as Nso to the limit P(dx), where

(6) Ps+l(dX)=[IxP(dz)f(z)]-llxP(dy)f(y)O(y, dx).

Let us introduce conditions th are sufficient for the distributions defined by (2) and
(6) to converge weakly to e,.(dx) as s.

Theorem 1. Suppose that conditions c)-f) hold; Os(y, dx) (or R(s, Ns, y; dx)) for any
y X converge weakly to ey(dx) as s;

g) for any e > 0 there exist a 6 > 0 and a natural number So such that P(B(x*)) >-_

(or P(s,N_I; B(x*))>-6) for all s>-so
Then the sequence of distributions defined by (6) (or, respectively, by (2)) converges

weakly as s c to ex.( dx).
We carry out the proof for the sequence of distributions (6) (for (2) the proof is

similar). From the sequence (6), choose a convergent subsequence P(dx) (this is possible
by Prokhorov’s theorem [8], p. 37), and denote the limit by Oo(dx) (O0 is a probability
measure on ). From (6) it follows that the subsequence P+(dx) converges weakly to
the distribution O(dx)= Laf(X)Oo(dx) (L1 is a normalization constant) and, similarly,
P+,, (dx) converges weakly to the distribution Om(dx)= L,nf"(X)Oo(dx). Let us show
that there exists a subsequence Ps, converging weakly to e,..

By Theorem 2.2 in [8], the set of all finite intersections of open balls with centers in
a countable dense set in X and with rational radii is a countable set determining conver-
gence. Extract from it the subset 92 consisting of sets of Oa-continuity. Enumerate the

Aelements of 92: 92={ i}i--1. Fix a sequence {em}=0, e,,>0, e,,,_.0. Since
P+,,,(A) -_ O,,(A) for any A 92, there exists a subsequence Rl,,,(dx)= Ps,,+m(dx),
for which ]Rl,,(Aa)-O,(Aa)l<e, for all m=0,1,.... From the sequence
{R-a,m(dx)}=o (k=2,3,’") we extract in similar fashion a subsequence
{Ru,,(dx)}=o, for which IR,,,,(A)- O,,(A)I < era. The diagonal subsequence R,,,,,(dx)
possesses the property [R,,,,,(Ai)- O(Ai)l < e,, for any A 92, m. This subsequence
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140 S. M. ERMAKOV AND A. A. ZHIGLYAVSKII

converges weakly to ex.(dx). Indeed, for any Ai ,
[R,,(A,)- ex.(A,)[ <-[R, (A,)- Q, (A,)[ + Q(A,)- e.(A,)[.

For m >= the first term does not exceed e, and hence as m c tends to zero. The second
term tends to zero by conditions f) and g) of Lemma 2.

Thus there exists a subsequence Ps,(dx) converging to ex.(dx). From (6) it follows
that Ps,/l(dX) converges to the same limit and hence any subsequence of the sequence
Ps(dx) converges to this limit. But this is true also for the sequence itself. The theorem
is proved.

The next two assertions give sufficient conditions for the convergence of the sequence
Ps(dx) to ex.(dx) for two important special choices of the transition probabilities Qs(Y, dx)
(see [3]).

Corollary 2. Suppose that the function f is calculated with no random error,

(7) Os(x,A)= [ l[zeA,f(x)<=f(z)]es(X, dz)+ 1A(X) [ lt(z)<f(x)]es(x, dz),
x .ix

the transition probabilities Ps(x, dz) converge weakly as s o to ex(dz) for all x X,
conditions c)-f) hold and h) the measure tz is absolutely continuous with respect to the
measure Po.

Then the sequence of distributions defined by (6) converges weakly to ex.(dx).

PROOF. From conditions e) and h), it follows that Po(A(8)) > 0 for any 8 > 0, while
from (7) it follows that Ps(A(8)) =>. -> Po(A, 8)) for any 8 > 0 and s 0, 1,. .. Using
conditions d) and f) we see that g) is valid. All the conditions of Theorem 1 are fulfilled.
The corollary is proved.

In order to model the random element r/s with distribution Os(y, drls) defined by (7),
it is first necessary to derive an independent realization ’s of the random element with
distribution Ps(Y, ds) and to set s ’s if f(srs) ->_ f(y) and r/s y if f(’s) < f(y).

Corollary 3. Suppose that X c R n, n >= 1, tz txn[ (Ixn is Lebesgue measure), the
conditions c)-f) and h) hold, the measures Os(y, dx) are defined according to the formula

(8) Os( y, dx) cs(y)fl- p (fll x y) tzn dx),

where p is a continuous symmetric distribution density in R with bounded support, fls > O,
s=o/3s < c, and c(y)[/3" x(fl-il(x y))lzn(dx)]-1

Then the sequence of distributions Ps(dx) defined by (6) weakly converges to ex.(dx).

PROOF. Under the above assumptions, the distributions Ps(dx), s-> 1, have con-
tinuous densities with respect to Lebesgue measure. Denote them by ps(x). From (8) it
follows that ps(x)>0 for any s->0 and for those x X for which f(x)# O. Let us show
that g) holds. Take a fixed 8 > 0. From (6) and the fact that p has compact support it
follows for any s and e that

(9) Ps+l(A(e + es)) >= Ps(A(e)),

where the quantity es 0 is determined in terms of the extent of the support of the density, and Y,so es =const Ys0/3<. Choose So so that sso es < 8/2 and let 81=
Po(A(8/2)). For any s >= so,

(10) Ps(A(8)) > A + et >- A =81

and hence condition g) holds. The corollary is proved.
In order to model the random vector /s with distribution Qs(y, drls) defined by (8),

it is necessary to determine an independent realization ’s of the random vector distributed
with density o, to verify that y +/3s’s X (if not, to determine a new realization r) and
to take r/s y +/3s’s.
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ON RANDOM SEARCH FOR m GLOBAL EXTREMUM 141

Just as Theorem 1, Corollaries 2 and 3 may be reformulated for the sequence (2).
Let us do it for Corollary 3.

Corollary 4. Let the conditions in Lemma 1 and Corollary 3 hold. Then there exists
a sequence o" natural numbers Ns (Ns - oo as s o) such that the sequence of distributions
P(s+ 1, Ns; dx) defined by formula (2) converges weakly to ex.(dx).

PROOF. We can repeat the proof of Corollary 3, changing only formulas (9) and
(10). We require that Ns be so large that for any s, instead of (9) we have the inequality
Ps+I(A(e+ es))>=P(A(e))(1-,$), where 0< < 1, and that

__
0 < c (this is possible

by Lemma 1). Instead of (10) we have the inequalities

Ps(A(i$))>=Pso A + 8t (1-$t)->$1 I-I (1-st).

To complete the proof it remains to use the known fact: if 0 < < 1 for all s O, 1,
and Eo <, then .I-Io (1 s) > O.

In conclusion we point out that the efficiency of the algorithms in this paper is borne
out by calculations carried out by the authors with the goal of finding the extremum of
certain functions described in the literature as test functions.

The authors believe that the main results of the paper are the techniques that make
it possible to construct and investigate algorithms for the global search for an extremum
that are based on models of a sequence of measures converging to a g-measure concentrated
at the global extremum point.

Received by the editors
April 6, 1981
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