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1 Introduction

Likelihood evaluation and �ltering in applications involving dynamic state-space models require the

calculation of integrals over unobservable state variables. When models are linear and stochastic

processes are Gaussian, required integrals can be calculated analytically via the Kalman �lter.

Departures entail integrals that must be approximated numerically. Here we introduce an e�cient

procedure for calculating such integrals: the E�cient Importance Sampling (EIS) �lter.

State-space models are Markovian, thus the integrals they entail in period t are joint in the

period-(t− 1) and period-t state variables st−1 and st. The EIS �lter we propose for approximating

these integrals falls under the general classi�cation of a Sequential Monte Carlo (SMC) method,

which dates at least to the Sequential Importance Sampling (SIS) algorithm of Handschin and

Mayne (1969) and Handschin (1970). Inheriting {sit−1}Ni=1 from the period-(t− 1) stage of the

algorithm, SIS entails in period t the construction of conditional Importance Sampling (IS) densities

{g
(
st|sit−1

)
}Ni=1 from which draws {sit}Ni=1 are obtained and passed to period t + 1. An extension

known as a Sampling Importance Resampling (SIR) algorithm obtains by resampling {sit}Ni=1 with

probabilities determined by corresponding IS weights {ωit}Ni=1 before passing to period-(t+ 1).

SIS and SIR algorithms are intuitive and easy to implement, but are often numerically ine�cient:

they can produce large Monte Carlo (MC) standard deviations for �ltered estimates (likelihood

functions and/or expected values of state variables). Extensive e�orts have been made to extend

baseline SIS/SIR algorithms with the goal of enhancing numerical e�ciency; for surveys, see Ristic

et al. (2004), Cappe et al. (2007), the collection of papers in Doucet et al. (2001a), and the collection

housed at http://www.sigproc.eng.cam.uk/smc/papers.html.

The root ine�ciency of SIS/SIR algorithms stems from their use of conditional IS samplers to

approximate joint integrals in (st−1, st), and from the fact that the conditioning draws {sit−1}Ni=1 are

generated absent information available in period t. Signi�cant e�orts towards achieving e�ciency

enhancements entail the introduction of a resampling step for st−1 that takes into account period-t

information. A leading example is the Auxiliary Particle Filter (APF) of Pitt and Shephard (1999),

which preserves the inherent tractability of SIR algorithms by imposing two key restrictions: resam-

pling is limited to the initial swarm {sit−1}Ni=1 (generated absent time-t information); and period-t IS

densities are constructed via local Taylor series approximations of the model's measurement density.

1



As discussed, e.g., in Geweke (1989, 2007), local approximations often exhibit thinner tails than

targeted integrands, resulting in large (occasionally unbounded) MC variances.

Here we seek to attain maximum e�ciency by constructing sequential IS densities that in period

t are tailored to the joint integral in (st, st−1) associated with likelihood evaluation. The densities

are continuous in both st and st−1, and are constructed using the EIS methodology developed by

Richard and Zhang (2007). The objective of EIS is to produce global approximations to targeted

integrands, thus minimizing MC variances (or equivalently, maximizing e�ciency) over the full range

of integration. Though the EIS principle is generic, its implementation is more demanding than

that of particle �lters; but as illustrated below, it is capable of producing dramatic e�ciency gains

in challenging applications.

Our focus here is on the achievement of near-optimal e�ciency for likelihood evaluation. Exam-

ple applications involve the analysis of Dynamic Stochastic General Equilibrium (DSGE) models,

and are used to illustrate the relative performance of the particle and EIS �lters. In a companion

paper (DeJong et al., 2010) we focus on �ltering, and present an application to the bearings-only

tracking problem featured prominently, e.g., in the engineering literature.

As motivation for our focus on the analysis of DSGE models, a brief literature review is help-

ful. The pioneering work of Sargent (1989) demonstrated the mapping of DSGE models into lin-

ear/Gaussian state-space representations amenable to likelihood-based analysis achievable via the

Kalman �lter. DeJong et al. (2000) developed a Bayesian approach to analyzing these models. Sub-

sequent work has involved the implementation of DSGE models towards a broad range of empirical

objectives, including forecasting and guidance of the conduct of aggregate �scal and monetary policy

(following Smets and Wouters, 2003).

Prior to the work of Fernandez-Villaverde and Rubio-Ramirez (2005, 2009), likelihood-based

implementation of DSGE models was conducted using linear/Gaussian representations. But their

�ndings revealed an important caveat: approximation errors associated with linear representations

of DSGE models can impart signi�cant errors in corresponding likelihood representations. As a

remedy, they demonstrated use of the bootstrap particle �lter developed by Gordon, et al. (1993) for

achieving likelihood evaluation for non-linear model representations. But as our examples illustrate,

the numerical ine�ciencies noted above su�ered by the particle �lter can be acute in applications

involving DSGE models. By eliminating these ine�ciencies, the EIS �lter o�ers a signi�cant advance
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in the empirical analysis of DSGE models.

2 Likelihood Evaluation in State-Space Representations

Let st denote a d×1 vector of latent state variables, yt denote an n×1 vector of observable variables,

and denote {ys}ts=1 as Yt. State-space representations consist of a state-transition density f(st|st−1)

coupled with a measurement density f(yt|st).1 Since this representation is recursive, the likelihood

function f(YT ) factors sequentially as

f (YT ) =

T∏
t=1

f (yt|Yt−1) , (1)

where f(y1|Y0) = f(y1). Evaluation of the period-t likelihood f(yt|Yt−1) takes as input the period-

(t − 1) �ltering density f(st−1|Yt−1) (or an approximation thereof), and requires joint integration

in st and st−1, conditionally on Yt:

f (yt|Yt−1) =

∫ ∫
f (yt|st) f(st|st−1)f (st−1|Yt−1) dst−1dst. (2)

The recursive updating of �ltering densities follows from Bayes' theorem, and is given by

f (st|Yt) =
f (yt|st)
f (yt|Yt−1)

·
∫
f (st|st−1) f (st−1|Yt−1) dst−1, (3)

initialized by f(s0|Y0) = f(s0). The integral in (3) represents the period-t predictive density

f(st|Yt−1), which appears explicitly in Kalman �lter (KF) derivations. The updating of �ltering

densities constitutes the cornerstone of all �ltering algorithms. Likelihood evaluation is achieved

by evaluating (2) and (3) sequentially from period 1 to T . In turn, �ltering is achieved via the

calculation of

E[m(st)|Yt] =

∫
m(st)f (st|Yt) dst (4)

for any function m(st), including st itself.

1This formulation incorporates the implicit conditional independence assumptions that st⊥⊥Yt−1|st−1 and
yt⊥⊥(st−1, Yt−1)|st, which validate subsequent density operations. These assumptions can be relaxed trivially, e.g.,
as in dynamic control environments.
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3 Particle Filters

3.1 General Principle: Sequential Importance Sampling

Here we present a brief summary of particle �lters in order to provide context for the EIS �lter (for a

detailed overview, see Ristic et al., 2004). Particle �lters (PFs) are Sequential Importance Sampling

(SIS) or Resampling (SIR) algorithms wherein �ltering densities are approximated sequentially using

mixtures of Dirac measures (δ(0) = 1; δ(x) = 0 for x 6= 0):

f̂ (st|Yt) =
N∑
i=1

ωit · δ
(
st − sit

)
, (5)

where {sit}Ni=1 denotes a swarm of particles drawn from a period-t Importance Sampling (IS) density,

and {ωit}Ni=1 denotes the corresponding IS weights (normalized such that
∑N

i=1 ω
i
t = 1). The swarm

{sit}Ni=1 constitutes the discrete support over which f̂ (st|Yt) is de�ned. Once established, this

support remains �xed; in this sense approximations constructed in subsequent periods are de�ned

as conditional on the supports established in the current and past periods. This conditionality is

common to all PFs.

In period t, PFs propagate inherited particles sit−1 with counterparts s
i
t drawn from a (sequential)

IS density gt(st|sit−1). The latter is meant to approximate the integrand in the PF-likelihood integral,

which obtains by substituting the period-(t− 1) �ltering density approximation in (5) � lagged by

one period � into the likelihood integral in (2):

f̂ (yt|Yt−1) =

N∑
i=1

[
ωit−1

∫
f (yt|st) f

(
st|sit−1

)
dst

]
. (6)

Corresponding IS weights are given by

ω̃it = ωit−1
f(yt|sit)f(sit|sit−1)

gt(sit|sit−1)
, (7)

and the period-t �ltering density approximation is given by (5) with the normalized weights

ωit =
ω̃it∑N
j=1 ω̃

j
t

, (8)
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whose denominator also represents the period-t likelihood estimate

f̂ (yt|Yt−1) =

N∑
j=1

ω̃jt . (9)

With reference to (3), (7) and (8) constitute the updating step of the �ltering density of SIS and

SIR algorithms.

3.2 Selection of Importance Densities

3.2.1 The Optimal Choice

It follows from (7) that the optimal IS density for st|st−1 � that which minimizes the MC vari-

ance of the corresponding IS likelihood estimate conditionally on st−1 � obtains from the reverse

factorization (when computable) of the numerator:

g∗t (st|st−1) = f (st|st−1, Yt) =
f(yt|st)f(st|st−1)
f(yt|st−1, Yt−1)

. (10)

In this case the period-t weights are given by

ω̃it = ωit−1f
(
yt|sit−1, Yt−1

)
, (11)

and do not depend on {sit}Ni=1. It follows that the MC variance of the likelihood estimate in (9)

would be zero, conditionally on {sit−1}Ni=1; the sampler g∗t (st|st−1) is referenced as the conditionally

optimal particle �lter (OPF). In all but special cases, the reverse factorization in (10) is not tractable

analytically, rendering g∗t (st|st−1) as unavailable for MC simulation; for examples of special cases,

see Doucet et al. (2000, 2001b).

3.2.2 Suboptimal Choices

If the transition density f(st|st−1) is amenable to MC simulation, it provides an operational speci-

�cation of the IS sampler gt(st|st−1). In this case, ω̃it in (7) simpli�es to

ω̃it = ωit−1f
(
yt|sit

)
. (12)
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The Bootstrap Particle Filter (BPF) of Gordon et al. (1993) is a leading example of a PF im-

plemented using f(st|st−1) as an importance sampler. But while straightforward to implement,

f(st|st−1) tends to be ine�cient, particularly if its variance is large relative to that of the measure-

ment density f(yt|st), and also given the presence of outliers. Due to this shortcoming, considerable

e�orts have gone towards the development of importance samplers that approximate the condi-

tionally optimal density g∗t in (10); see Ristic et al. (2004, Section 3.4.2) for references. One such

method is the auxiliary particle �lter, discussed next.

3.3 Auxiliary Particle Filters

As shown in (2), period-t likelihood evaluation requires integration in st and st−1. Yet within the

PF framework, attempts at achieving e�cient (IS) integration in st−1 are constrained by the fact

that the discrete support {sit−1}Ni=1 of the period-(t − 1) �ltering density approximation is kept

�xed in period t. Subject to this operational constraint, the Auxiliary Particle Filter (APF) of

Pitt and Shephard (1999) is designed to relocate the particles {sit−1}Ni=1 in regions of high period-t

likelihood. To do so, the likelihood integral in (6) is reinterpreted as a mixed integral in (st, i),

where i ∈ {1, . . . , N} denotes the index of the period-(t− 1) particles and follows the multinomial

distribution MN(N, {ωjt−1}Nj=1). The corresponding IS target integrand is given by

ϕ (st, i) = ωit−1f (yt|st) f
(
st|sit−1

)
. (13)

In its simplest form, APF employs a mixed IS kernel obtained from (13) replacing f(yt|st) by

its (order zero Taylor series) local approximation f(yt|µ(sit−1)), where µ(sit−1) = E(st|sit−1). The

resulting kernel is given by

kt (st, i) = ωit−1f
(
yt|µ

(
sit−1

))
f
(
st|sit−1

)
, (14)

and its integrating constant is

Dt =
N∑
j=1

ωjt−1f
(
yt|µ

(
sit−1

))
. (15)
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Corresponding IS weights are given by

ωt (st, i) = Dt ·
f(yt|st, Yt−1)

f(yt|µ(sit−1), Yt−1)
. (16)

Let {sjt , ij}Nj=1 denote N i.i.d. draws from the IS sampler kt/Dt. The APF likelihood estimate is

then given by

f̂ (yt|Yt−1) =
1

N

N∑
j=1

ω̃jt , ω̃jt = ωt(s
j
t , i

j), (17)

and the period-t �ltering weights obtain from (8).

As noted by Ristic et al. (2004, Section 3.5.2), if the variance of the transition density is small,

the APF will often be less sensitive to outliers than the BPF; though if it is large, use of the APF

can actually degrade performance. See also Johansen and Doucet (2008, p. 1503) who show that

�...whilst the adaptation may be bene�cial at the time which it is performed it may have a negative

in�uence on the variance at a later point.�

Under special circumstances, higher-order Taylor series approximations of ln f(yt|st) around

st = µ(sit−1) can produce more e�cient versions of the APF. A (theoretical) conditionally optimal

version of the APF, known as the Fully Adapted Particle Filter (FAPF), obtains by substituting

the reverse factorization (10) into (13) and using the latter as mixed IS kernel, in which case the IS

weights in (16) no longer depend on st and have zero MC variance conditionally in {sit−1}Ni=1.

3.4 Illustration of Performance Tradeo�s

As noted, the BPF and APF di�er fundamentally by the way in which they incorporate period-t

information in constructing IS densities. To illustrate how this di�erence yields tradeo�s in e�ciency

and sensitivity to outliers in a context relevant to the applications presented below, we demonstrate

their relative performance in a linear Gaussian version of a Real Business Cycle (RBC) model. Since

the reverse factorization in (10) is available in this case, we can also demonstrate the performance

of the OPF and FAPF, which respectively represent optimal versions of the BPF and APF.

Regarding the model, let (yt, zt, kt) denote output, total factor productivity, and capital (mea-

sured as logged deviations from steady state). The state vector is s′t = (zt, kt), and state transition
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is characterized by

kt = ln (1− αβ) + zt−1 + αkt−1, 0 < α < 1, (18)

zt = ρzt−1 + εt, εt ∼ i.i.d.N
(
0, σ2ε

)
, 0 < ρ < 1. (19)

The measurement equation is

yt = zt + αkt + ut ut ∼ i.i.d.N
(
0, σ2y

)
. (20)

For the sake of simplicity, we focus on the approximation of the period-1 likelihood f(y1), pur-

sued with the initial �ltering density f(s0) represented as the stationary density of s0 (thereby

abstracting from small-sample complications arising from the use of a PF discrete support for

s0). The standard algebra of linear Gaussian models yields analytical expressions for period-1

IS densities, and for MC variation coe�cients (standard derivation/mean) of PF estimates for

f(y1). The derivations are straightforward but tedious; they are omitted here but available at

http://www.pitt.edu/˜dejong/wp.htm.

Using the generic notation f for true (model) densities and g for IS samplers, the IS densities

for the four PF schemes under consideration are given by:

BPF : g (s1, s0|y1) = f (s0) f (s1|s0) (21)

OPF : g (s1, s0|y1) = f (s0) f (s1|s0, y1) (22)

APF : g (s0, s1|y1) = g (s0|y1) f (s1|s0) , with (23)

g (s0|y1) ∝ f (s0) f (y1|s1)
∣∣∣
s1=µ(s0)

(24)

FAPF (KF) : g (s0, s1|y1) = f (s0|y1) f (s1|s0, y1) . (25)

Table 1 reports exact results for the MC variation coe�cients of the PF estimates for N = 1

as a function of the standardized di�erence between y1 and its predictive mean in units of its

predictive standard deviation (results are to be divided by
√
N for N > 1). The parameter values

used to obtain these results are set equal to the posterior means obtained from the RBC model

in Section 5 below, with a critical di�erence: our analytical results indicate that the MC variance
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of the APF likelihood estimate is unbounded for σ2y < 2σ2ε (re�ecting Ristic et al.'s message that

the performance of the APF degrades as the variance of measurement errors becomes small relative

to the variance of stochastic innovations to the state). Thus we had to raise the value of σy and

considered two cases di�ering by the proximity of σy and σε
√

2.

Beginning with the comparison of the BPF and OPF, we �nd that the e�ciency gains realized

by replacing the sampler f(s1|s0) by f(s1|s0, y1) (leaving f(s0) unchanged) are relatively modest,

reducing MC variation coe�cients by less than 20%. Next, the comparison between the BPF and

APF indicates that if σy is not too close to σε
√

2, the APF is less e�cient than BPF for low

standardized values of y1, but signi�cantly more robust against outliers (Table 1.A). However, the

performance of APF degrades rapidly as σy approaches σε
√

2 (Table 1.B). This illustrates that the

APF is vulnerable to thin-tail issues resulting from the use of local IS approximations. Note that

for this linear Gaussian example, implementation of the APF using a second-order Taylor series

approximation of ln f(y1|s1) produces an exact (global) approximation to the IS target integrand,

which is Gaussian in both y1 and s1. Therefore, the second-order APF coincides with FAPF, which

is also the Kalman �lter: its corresponding likelihood estimate has zero MC variance.

We draw two lessons from this example. First, e�ciency gains can be achieved by treating the

likelihood integral (2) as a joint integral in st and st−1, and constructing an IS density for the pair

using period-t information. Second, it is important to replace local with global approximations

in order to avoid thin-tail issues. These lessons motivate implementation of the EIS �lter, which

applies global EIS approximation techniques to the full integrand in (2).

4 The EIS �lter

4.1 Unconditional Optimality

Returning to the likelihood integral (2), consider the (theoretical) reverse factorization of the full

integrand

f (yt|st) f (st|st−1) f (st−1|Yt−1) = f (st, st−1|Yt) f (yt|Yt−1) . (26)

If this factorization were tractable analytically, f(st, st−1|Yt) would constitute the unconditionally

optimal IS sampler for (2): a single draw would produce an estimate of f(yt|Yt−1) with zero MC
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variance. The period-t �ltering density would obtain by marginalization with respect to st−1:

f (st|Yt) =

∫
f (st, st−1|Yt) dst−1. (27)

As illustrated in Section 3.4, these densities obtain analytically for linear Gaussian models and

constitute the KF. They are generally unavailable for more general models, yet provide a useful point

of reference for the EIS �lter which targets unconditional optimality via global approximations of

f(st, st−1|Yt).

4.2 General Principle

The target density kernel to be approximated in (2) is given by

ϕt (st, st−1) = f (yt|st) f (st|st−1) f (st−1|Yt−1) . (28)

Our objective is to construct a joint sampler gt(st, st−1) that approximates ϕt, employing the EIS

principle outlined in Section 4.3. Corresponding (E)IS ratios and likelihood estimates are given by

ωt (st, st−1) =
ϕt(st, st−1)

gt(st, st−1)
, (29)

f̂ (yt|Yt−1) =
1

N

N∑
i=1

ωt
(
sit, s

i
t−1
)
, (30)

where {(sit, sit−1)}Ni=1 denotes N i.i.d. draws from gt.

To derive the period-t �ltering density approximation, we partition the EIS sampler as

gt (st, st−1) = gt (st) gt (st−1|st) . (31)

The period-t �ltering density in (3) is then rewritten as

f (st|Yt) =
gt(st)

f(yt|Yt−1)

∫
ωt (st, st−1) gt (st−1|st) dst−1. (32)
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For any given st, the integral in st−1 can be approximated by

ω̄t(st) =
1

N

N∑
i=1

ωt
(
st, s

i
t−1(st)

)
, (33)

where {sit−1(st)}Ni=1 denotes draws from gt(st−1|st). It follows from (30) and (32) that an EIS

estimate of the period-t �ltering density obtains as

f̂ (st|Yt) = gt(st)ω̃t(st), with (34)

ω̃t(st) =

∑N
i=1 ωt

(
st, s

i
t−1(st)

)∑N
i=1 ωt(s

i
t, s

i
t−1)

. (35)

Implementation of this generic principle entails use of the EIS procedure to construct the joint

sampler gt(st, st−1); and the numerical evaluation of ω̃t(st) in period (t+ 1) for the construction of

the period-(t+ 1) EIS sampler. These steps are described in the following two subsections.

4.3 EIS integration

Here we sketch the application of EIS to the target kernel ϕt in (28) assuming an operational

approximation to the �ltering density f(st−1|Yt−1); see Richard and Zhang (2007, hereafter RZ) for

a detailed presentation.

Let ϕ(λ) with λ = (s, s−1) denote the target, where the subscript t is omitted for the ease of

notation (since EIS is applied independently in each period). Implementation of EIS begins with

the pre-selection of a parametric class K = {k(λ; a); a ∈ A} of auxiliary IS density kernels amenable

to MC simulation. The corresponding IS densities and ratios are given by

g (λ|a) =
k(λ; a)

χ(a)
, with χ(a) =

∫
k (λ; a) dλ, (36)

ω (λ; a) =
ϕ(λ)

g(λ|a)
. (37)

The objective of EIS is to select a parameterization â ∈ A that minimizes the MC variance
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of the IS ratio ω over the full support of ϕ. Following RZ a near-optimal solution obtains as the

solution to the minimization problem

(â, ĉ) = arg min
(a,c)

∫
[lnϕ(λ)− c− ln k(λ; a)]2 g(λ|a)dλ, (38)

where c denotes an intercept meant to calibrate the ratio ln(ϕ/k). Equation (38) represents a

standard least-squares problem, except that the auxiliary sampling density g itself depends on a.

An operational MC version, implemented (typically) using R� N draws, is as follows:

Step (`+ 1): Given â`, draw intermediate values {λi`}Ri=1 from g(λ|â`) and solve:

(â`+1, ĉ`+1) = arg min
(a,c)

R∑
i=1

[
lnϕ

(
λi`
)
− c− ln k

(
λi`; a

)]2
. (39)

Before we discuss the pre-selection of K, three points bear mentioning. First, the selection

of the initial value â0 can be based upon an analytically tractable local approximation to ϕ(λ).

In Section 5, we rely upon Extended Kalman Filter (EKF) approximations. Such initial values

generally su�ce to achieve rapid �xed-point convergence (say less than �ve iterations). Second and

most importantly, the EIS �xed-point iterations aim at replacing an initial local approximation of

ϕ(λ) by a global one over its full support. As we shall illustrate in Section 5, it is precisely the

replacement of local approximations by a global EIS approximation that generates (often dramatic)

e�ciency gains resulting from EIS �ltering. Third, to achieve rapid �xed-point convergence {λi`}Ni=1

must be obtained by transformation of a set of Common Random Numbers (CRNs) drawn from

a canonical distribution, i.e. one that does not depend on a (e.g., uniform (0, 1), or standardized

normal draws if g is Gaussian). Note that if EIS is used to produce MC estimates of the likelihood

function itself, then a new EIS sampler must be produced for each new parameter value. In such a

case, reliance upon CRNs ensures continuity of the estimated likelihood function.

Continuing with convergence, it is important to distinguish between �xed-point convergence

of the sequence {â`}, and MC convergence of the subsequent likelihood estimate as N increases.

Fixed-point convergence is assessed by monitoring the {â`} sequence and implementing a stopping

rule, using e.g. a relative-change threshold. The threshold need not be tight as small changes in
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â typically have minimal impact on the accuracy of the corresponding EIS estimates (by far the

largest e�ciency gains obtain through the �rst few iterations). Although there is no guarantee nor

formal proof that the sequence {â`} converges for a given pair (ϕ, k) in general, we have found

repeatedly that it never fails to converge short of a major mismatch between the target ϕ and the

kernel k, in which case failure to converge serves as a signal that the class K needs to be adjusted.

Actually, �xed-point convergence is not critical, since all that matters is that the resulting EIS

sampler delivers numerically e�cient estimates of the likelihood integral. Regarding accuracy, or

more precisely, convergence in distribution of the EIS MC estimate, this follows from standard

regularity conditions for IS, as discussed e.g. by Geweke (1989). Final e�ciency can be assessed

using summary statistics relative to the dispersion of the EIS ratios ω(λi; â).

Finally, as noted above, the pre-selection of K is problem-speci�c. However, once EIS has been

programmed for a particular class K, changes in model speci�cation only require adjusting the

dependent variable lnϕ in the auxiliary regression (39). If K belongs to the exponential family of

distributions, then there exists a natural parametrization in the sense of Lehmann (1986, Section

2.7) which follows from the representation of ln k(λ; a) as a linear function of a �xed-dimensional

vector of su�cient statistics. If, e.g., k(λ; a) denotes a density kernel for an n-dimensional normal

λ ∼ Nn(µ,Ω), then λ together with the lower triangular part of λ ·λ′ constitutes a su�cient statistic

of dimension n+n(n+ 1)/2 and the minimization problem in (39) takes the form of a linear (OLS)

regression of lnϕ(λ) on that su�cient statistic. Once â obtains, it is a trivial matter to transform

it back into a Cholesky recursive factorization of g(λ; â) as needed to produce the draws of λ based

on CRNs. Details for the applications considered here are provided below.

4.4 Filtering Weights

The transfer of �ltering density approximations across periods is the weak link of any �ltering

technique. Under PFs transfer takes the operational form of a swarm of particles {sit−1}Ni=1 together

with period-(t − 1) weights, at the cost of restricting subsequent period-t IS as conditional on

{sit−1}Ni=1. Under EIS �ltering transfer consists of an analytical period-(t − 1) marginal sampler

gt−1(st−1) together with a weight functional ω̃t−1(st−1), as de�ned in (35) lagged by one period.

The challenge in this case is that ω̃t−1(st−1) does not have an analytical form, nor can it be computed

from (35) for any new IS draws of st−1 in period t. There are two possible solutions to this challenge.

13



The �rst applies when the period-(t − 1) EIS sampler �ts its target su�ciently well that the

IS weights ωt−1(s
i
t−1, s

i
t−2) exhibit relatively small MC coe�cients of variation. In such cases, the

solution is to set all weights equal to their arithmetic mean, which amounts to setting ω̃t−1(st−1)

identically equal to one. Following (34), the resulting constant-weight approximation of f(st−1|Yt−1)

is given by gt−1(st−1) itself. This approximation introduces a bias in corresponding EIS estimates

but this can be a small price to pay if it results in large MC variance reduction. Note that the

use of biased estimates has become increasingly common in situations where unbiased estimates

exhibit large sampling variances. See, e.g., Judge et al. (1985, Chapter 3 and 22) for comprehensive

discussions of biased estimation. The applications presented in Section 5 employ constant-weight

approximations, which are validated by comparisons of the Root Mean Squared Errors (RMSE)

associated with BPF and EIS �lter estimates of log-likelihood functions (each of which, as discussed

in Section 4.6, require adjustments for bias induced by the log transformation).

The second solution entails the use of numerical techniques for approximating ω̃t−1(st−1) (e.g.,

interpolation). This would be required in applications wherein di�erences in log-likelihood approxi-

mations across �lters are greater than is attributable to MC error. The use of more �exible weighting

procedures is discussed in Section 6.

4.5 Singular Transitions

Transition identities such as (18) are common across a wide range of state-space models, including

the DSGE models analyzed in Section 5. Obviously, Dirac transitions are not revised by new observa-

tions, thus if f(st|st−1) is singular, then so too will be f(st|st−1, Yt), f(st, st−1|Yt) and f(st−1|st, Yt).

As illustrated in Section 3.4, identities raise no computational issues for the Kalman �lter, which

trivially accommodates singular covariance matrices. Identities are also easily accommodated under

PFs that employ the transition density f(st|st−1) for propagation. This being said, note that even

under the Kalman �lter, identities play a key implicit role. For the example discussed in Section

3.4, it is easy to verify that the density f(st−1|st, Yt) incorporates the identity

kt−1 +
1

α
zt−1 =

1

α
[kt − ln (1− αβ)] , (40)

which obtains form (18) by inversion with respect to kt−1.
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Within EIS (as for any IS procedure) it is critical that the IS sampler shares a common support

with its target density (applying a nonsingular IS sampler to a singular target would produce zero

IS ratios with probability 1). Therefore, let st partition into st = (pt, qt) such that the transition

consists of a set of identities of the form

qt = φ (pt, st−1) , (41)

in combination with a nonsingular transition density f(pt|st−1) 2. Such identities e�ectively reduce

the dimensionality of the likelihood integral (2), which is rewritten as

f (yt|Yt−1) =

∫ ∫
f (yt|st)

∣∣∣∣
qt=φ(pt,st−1)

· f (pt|st−1) f (st−1|Yt−1) dptdst−1. (42)

Note that computation of the period-t �ltering density in (32) requires integration in st−1|st, Yt,

which is singular. This is the same issue noted in the context of (40). The remedy consists of the

application of a transformation of variables from (pt, st−1) into (st, pt−1) to the integral in (42).

Assuming that φ is one-to-one (on the relevant range), we denote its inverse and Jacobian by

qt−1 = ψ (st, pt−1) , (43)

J (st, pt−1) =

∣∣∣∣∣∣∣∣ ∂∂q′tψ (st, pt−1)

∣∣∣∣∣∣∣∣ , (44)

where || · || denotes the absolute value of a determinant. The likelihood integral in (42) is then

rewritten as

f (yt|Yt−1) =

∫ ∫
f (yt|st) J (st, pt−1) [f (pt|st−1) f (st−1|Yt−1)]

∣∣∣∣
qt−1=ψ(st,pt−1)

dstdpt−1, (45)

and the EIS target ϕt(st, pt−1) is the integrand in (45). Application of the EIS procedure proceeds

exactly as described above, and produces a sampler of the form gt(st, pt−1) = gt(st)gt(pt−1|st). The

�ltering density is now given by

f (st|Yt) =
gt(st)

f(yt|Yt−1)

∫
ωt (st, pt−1) gt (pt−1|st) dpt−1, with (46)

2An alternative factorization of the form qt = φ(st−1) and f(pt|qt, st−1) would be treated in the same way.
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ωt (st, pt−1) =
ϕt(st, pt−1)

gt(st, pt−1)
. (47)

4.6 Bias Correction for Log-Likelihood Estimates

As proved, e.g., by Del Moral (2004) and Chopin (2004), BPF estimates of the likelihood function

are unbiased under fairly weak assumptions. In contrast, EISF estimates of the likelihood obtained

under the constant-weight approximation are biased if the IS weights in (29) or (47) are not constant.

However, classical likelihood-based inference is based on estimates of the log-likelihood function,

and since the log transformation is concave, it induces downward bias for log-likelihood estimates

associated with any �ltering technique. Moreover, the magnitude of these induced biases is an

increasing function of the MC standard deviation of the likelihood estimates. Thus in order to

meaningfully compare numerical e�ciency (on the basis of Root Mean Squared Errors, hereafter

RMSEs) across �ltering techniques (as we shall do below), we must �rst correct for biases induced

by the log transformation.

We use two alternative bias-correction methods: an asymptotic correction based upon a Central

Limit Theorem (CLT); and a �nite-sample correction calculated via a Monte Carlo method. The

asymptotic correction employs the Taylor series expansion

lnx = (x− 1)− 1

2
(x− 1)2 −

[ ∞∑
i=3

(−1)i−1
(x− 1)i

i

]
, |x− 1| < ε. (48)

Let L and L̂N denote the true (unknown) likelihood and its �ltered estimate, respectively. Under a

CLT for L̂N/L

L̂N
L

d−→ N

(
1,
σ2

N

)
, (49)

it follows from (48) that

ln

(
L̂N
L

)
d−→ N

(
− σ2

2N
,
σ2

N

)
. (50)

Thus an asymptotic �rst-order bias correction obtains by adding σ2/(2N) to the log of the likelihood

estimates.

In order to validate this correction it is important to verify that N is su�ciently large to ensure
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that the CLT in (50) applies and that σ2/N is su�ciently small so that higher-order terms derived

from the slow-converging series in (48) can be ignored. This requires producing i.i.d. draws of

the log-likelihood estimates, say {ln L̂N,j}Rj=1 under di�erent seeds and computing, for example, a

Jarque-Bera test statistic for normality. Moreover, these draws can be used to compute a �nite-

sample bias correction as

BC =
1

R

R∑
j=1

ln

(
L̂N,j
L0

)
− ln

(
L̄R
L0

)
, (51)

where L̄R denotes the arithmetic mean of {L̂N,j}Rj=1, and L0 an arbitrary estimate of the (unknown)

likelihood used to control for over�ows.

5 Application to DSGE Models

As noted, Fernandez-Villaverde and Rubio-Ramirez (2005, 2009) showed that approximation errors

associated with linear representations of DSGE models can impart signi�cant errors in corresponding

likelihood representations. As a remedy, they demonstrated use of the BPF developed by Gordon, et

al. (1993) for achieving likelihood evaluation for non-linear model representations. Here we demon-

strate the implementation of the EIS �lter using two workhorse models. The �rst is the standard

two-state real business cycle (RBC) model; the second is a small-open-economy (SOE) model pat-

terned after those considered, e.g., by Mendoza (1991) and Schmitt-Grohe and Uribe (2003), but

extended to include six state variables. Both models share a common statistical structure. The EIS

implementation for that common structure is presented in Section 5.1. The speci�c models are then

described in Section 5.2, and results are presented in Section 5.3.

5.1 A Generic DSGE Model

We use fnN (x|µ,Ω) to denote the density of a normal random variable x ∈ Rn with mean vector

µ and covariance matrix Ω. Let n, d, dp, dq denote the respective dimensions of yt, st, pt and qt.

The class of DSGE models we consider is characterized by the following state-space densities. The

measurement density is given by

f (yt|st) = fnN (yt|µ (st) ,Ωy) , (52)
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where µ(st) denotes a non-linear vector function of st. The transition density consists of a non-

singular density for pt|st−1 and a non-linear transition identity for qt|st−1:

f (pt|st−1) = f
dp
N (pt|Rst−1,Ωp) , (53)

qt = φ (st−1) . (54)

As in Section 4.5, φ is invertible, with inverse and Jacobian denoted by

qt−1 = ψ (qt, pt−1) , J (qt, pt−1) =

∣∣∣∣∣∣∣∣ ∂∂q′tψ (qt, pt−1)

∣∣∣∣∣∣∣∣ . (55)

We applied EIS using a class K of unconstrained Gaussian kernels for λt = (st, pt−1), together

with a constant-weight �ltering density approximation, whereby (46) simpli�es to

f (st|Yt) = gt(st) =(say) f
d
N (st|bt, Pt) . (56)

According to (45), the period-t EIS target is given by

ϕt (st, pt−1) = fnN (yt|µ(st),Ωy) J (qt, pt−1)

×
[
f
dp
N (pt|Rst−1,Ωp) f

d
N (st−1|bt−1, Pt−1)

] ∣∣∣∣
qt−1=ψ(qt,pt−1)

. (57)

As discussed in Section 4.3, this selection of K produces an operational version of EIS whereby

the auxiliary regressions in (39) are linear in λt and the lower triangular part of λtλ
′
t. The only

additional requirement consists of the selection of an initial sampler gt(λt|â0t ) for λt. As described

next, we shall use for that purpose a Gaussian Extended Kalman Filter (EKF) density obtained by

linearization of the non-linear components µ(st) and φ(st−1) in (52) and (54). (For an example of

the use of EKF as a �nal IS sampler, see Durbin and Koopman, 1997.) Selecting an EKF initial

sampler also o�ers the advantage that it serves to illustrate the e�ciency gains produced by the use

of a global EIS Gaussian approximation in place of the local EKF approximation.

The construction of the initial EKF sampler follows the standard algebra of the Kalman �lter;
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this allows us to deal with the (linearized) transition identity through singular Gaussian covariance

matrices. The period-(t−1) �ltering density is approximated by the constant-weight approximation

in (56), lagged by one period. The EKF approximation of the measurement density (52) is

f̂ (yt|st) = fnN (yt|κt +Htst,Σ) , (58)

where κt and Ht obtain by local linear approximation of µ(st) � speci�c details are provided below

for each model. The EKF approximation of the singular transition density obtains by combining

the transition density (53) with a local linear approximation of φ(st−1):

f̂ (st|st−1) = fdN (st|ct + Ftst−1,Ψ) , (59)

φ̂ (st−1) = Atst−1 + dt, (60)

where

ct =

 0

dt

 , Ft =

R

At

 , Ψ =

Ωp 0

0 0

 . (61)

Following standard (E)KF algebra, we combine the approximations of the measurement density

in (58), the transition density in (59), and the lagged �ltering density in (56) into a joint (singular)

normal density for (yt, st, st−1|Yt−1) with mean vector mt and covariance matrix Vt:

mt =


µt|t−1

bt|t−1

bt−1

 , Vt =


Ωt|t−1 HtPt|t−1 HtFtPt−1

Pt|t−1H
′
t Pt|t−1 FtPt−1

Pt−1F
′
tH
′
t Pt−1F

′
t Pt−1

 , (62)

with

bt|t−1 = ct + Ftbt−1, Pt|t−1 = Ψ + FtPt−1F
′
t (63)

µt|t−1 = κt +Htbt|t−1, Ωt|t−1 = Σ +HtPt|t−1H
′
t. (64)

The initial sampler gt(st, pt−1|â0t ) then obtains via marginalization with respect to qt−1, which
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requires deleting the last dq rows and columns in (mt, Vt), and conditioning upon yt. Since the

resulting initial sampler is to be used to produce the initial draws {λi0}Ri=1 in (39), we require its

Cholesky factorization. See Appendix A for details.

In summary the EIS algorithm (Gaussian kernels, constant weights) consists of six steps:

Step 1: Construct the EKF mean vector mt and covariance matrix Vt as in (62).

Step 2: Delete from (mt, Vt) the last dq rows and columns corresponding to qt−1.

Step 3: Condition upon yt to obtain the Cholesky factorization of the initial sampler gt(st, pt−1|â0t ),

as described in Appendix A.

Step 4: Use CRN draws from the initial sampler as input, and compute a fully iterated

global EIS kernel from the sequence of linear least-squares regressions in (39), under the natural

parametrization introduced in Section 4.3, for a total of

nk = (d+ dp) +
1

2
(d+ dp) (d+ dp + 1) (65)

regressors plus an intercept. See Appendix B for details regarding this regression.

Step 5: Using CRN draws from gt(st, pt−1|ât), where ât denotes the EIS solution to (39),

compute the IS ratios in (47) and the corresponding period-t likelihood estimate in (30).

Step 6: Marginalize gt(st, pt−1|ât) with respect to pt−1 to obtain the constant-weight approxi-

mation of the period-t �ltering density.

As a rule of thumb, we have found that starting from the initial EKF sampler and using a

number of CRN draws R of the order of 3 to 5 times nk secures fast convergence to a near optimal

value ât, with typically 3 to 4 iterations for the convergence criterion

∣∣∣∣∣∣∣∣ â(`+1)

â(`)
− 1

∣∣∣∣∣∣∣∣
2

< ε, (66)

with ε of the order of 10−4.

In conclusion, relative to EKF the EIS �lter adds an intermediate EIS iterated linear least-

squares auxiliary regression problem to replace the initial EKF local approximation of the target

(57) by a global approximation thereof. As we shall see in Section 5.3, this additional step produces

dramatic e�ciency gains relative to EKF and BPF.
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5.2 Example Models

As noted, implementation of the EIS �lter is demonstrated using two speci�c DSGE models. The

�rst is the RBC model used by Fernandez-Villaverde and Rubio-Ramirez (2005) to demonstrate

implementation of the BPF. The model consists of a representative household that seeks to maximize

the expected discounted stream of utility derived from consumption c and leisure l:

max
ct,lt

U = E0

∞∑
t=0

βt

(
cϕt l

1−ϕ
t

)
1− φ

1−φ

, (67)

where (β, φ, ϕ) represent the household's subjective discount factor, degree of relative risk aversion,

and the relative importance assigned to ct and lt in determining period-t utility.

The household divides its available time per period (normalized to unity) between labor nt and

leisure. Labor combines with physical capital kt and a stochastic productivity term zt to produce a

single good xt, which may be consumed or invested (we use x in place of the usual representation

for output � y � to avoid confusion with our use of y as representing the observable variables of a

generic state-space model). Investment it combines with undepreciated capital to yield kt+1, thus

the opportunity cost of period-t consumption is period-(t+ 1) capital. Collectively, the constraints

faced by the household are given by

xt = ztk
α
t n

1−α
t , (68)

1 = nt + lt, (69)

xt = ct + it, (70)

kt+1 = it + (1− δ)kt, (71)

zt = z∗e
ωt , ωt = ρωt−1 + εt, εt ∼ i.i.d.N(0, σ2ε), (72)

where (α, δ, ρ) represent capital's share of output, the depreciation rate of capital, and the persistence

of innovations to total factor productivity.

Optimal household behavior is represented as policy functions for (xt, it, nt) in terms of the state

(zt, kt). The corresponding policy functions for (ct, lt) follow from identities (69) and (70). Policy

functions are expressed as Chebyshev polynomials in the state variables (zt, kt), constructed using
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the projection method described in DeJong and Dave (2007, Ch. 10.5.2). Given the form of (72),

it is convenient to represent the state variables (zt, kt) as logged deviations from their steady state

(z∗, k∗). Measurements for (xt, it, nt) are assumed to di�er from their policy function values by i.i.d.

Gaussian measurement errors. Thus the model is of the form given by (52) to (55) with n = 3,

dp = dq = 1, and (with all variables presented as logged deviations from steady state):

• s′t = (pt, qt) = (zt, kt),

• y′t = (xt, it, nt),

• µ (st) denoting the policy functions for yt,

• Ωy the diagonal covariance matrix of the measurement errors, with diagonal elements (σ2x, σ
2
i , σ

2
n),

• R = (ρ, 0), Ωp = σ2ε ,

• φ (st−1) denoting the degenerate transition obtained from identity (71) via substitution of

the corresponding policy function, and application of the logged deviation transformation

to (st, st−1) . (Details regarding the construction and inversion of φ (st−1) are presented in

Appendix C.1.)

The second example is a model of a small open economy (SOE), patterned after those considered,

e.g., by Mendoza (1991) and Schmitt-Grohe and Uribe (2003). The model consists of a representative

household that seeks to maximize

U = E0

∞∑
t=0

θt

[
ct − ϕtω−1nωt

]1−γ − 1

1− γ
, ω > 0, γ > 0, (73)

where ϕt is a preference shock that a�ects the disutility of labor e�ort (introduced, e.g., following

Smets and Wouters, 2003). Following Uzawa (1968), the discount factor θt is endogenous and obeys

θt+1 = β (c̃t, ñt) θt, θ0 = 1, (74)

β (c̃t, ñt) =
[
1 + c̃t − ω−1ñωt

]−ψ
, ψ > 0,

where (c̃t, ñt) denote average per capita consumption and hours worked. The household takes these

22



as given; they equal (ct, nt) in equilibrium. The household's constraints are collectively

xt = Atk
α
t n

1−a
t , (75)

dt+1 = (1 + rt) dt − xt + ct + it +
φ

2
(kt+1 − kt)2 , (76)

kt+1 = v−1t it + (1− δ) kt, (77)

lnAt+1 = ρA lnAt + εAt+1, εAt ∼ i.i.d.N(0, σ2A), (78)

ln rt+1 = (1− ρr) ln r∗ + ρr ln rt + εrt+1, εrt ∼ i.i.d.N(0, σ2r ), (79)

ln vt+1 = ρv ln vt + εvt+1, εvt ∼ i.i.d.N(0, σ2v), (80)

lnϕt+1 = ρϕ lnϕt + εϕt+1, εϕt ∼ i.i.d.N(0, σ2ϕ), (81)

where relative to the RBC model, the new variables are dt, the stock of foreign debt, rt, the

exogenous interest rate at which domestic residents can borrow in international markets, vt, an

investment-speci�c productivity shock, and the preference shock ϕt.

The state variables of the model are (dt, kt, At, rt, vt, ϕt); the controls are (xt, ct,it, nt). In this

application we achieve model approximation following Schmitt-Grohe and Uribe (2004). Speci�cally,

we represent all variables as quadratic functions of the states, again expressed as logged deviations

from steady states. Measurements for the logged controls are centered on their respective logged

policy functions. The resulting model is of the form given by (52) to (55) with n = 4, dp = 4,

dq = 2, and (with all variables once again presented as logged deviations from steady state):

• p′t = (At, rt, vt, ϕt),

• q′t = (dt, kt),

• y′t = (xt, ct, it, nt),

• µ(st) denoting the logged policy functions for yt,

• Ωy a diagonal covariance matrix of the measurement errors, with diagonal elements (σ2x, σ
2
c , σ

2
i , σ

2
n),

• R = (Rp, 0) , with Rp denoting a diagonal matrix, with diagonal elements (ρA, ρr, ρv, ρϕ),

• Ωp a 4× 4 diagonal covariance matrix, with diagonal elements
(
σ2A, σ

2
r , σ

2
v , σ

2
ϕ

)
,

• φ(st−1) denoting the bivariate degenerate transition equations obtained directly from the

Schmitt-Grohe/Uribe solution algorithm. (Details regarding the (recursive) inversion of φ(st−1)

are presented in Appendix C.2.)

23



The application of EIS to this six-state model accounting for the degenerate transition requires

10-dimensional EIS in (st, pt−1) as described in Section 4.3.

5.3 Results

Here we present three MC experiments designed to illustrate: (i) Potential biases in EIS likelihood

evaluation, and the relative numerical e�ciency of EIS, BPF and EKF; (ii) Data robustness anal-

ysis; and (iii) numerical continuity and di�erentiability of EIS log-likelihood approximations. Each

experiment involves four data sets, two for each model. For a given model, one data set consists

of arti�cial data generated from an assumed set of parameter (true) values; the second consists of

actual data that align with their theoretical counterparts. Using these actual data and as discussed

further below, we computed posterior modes and standard deviations for both models. Param-

eter values were then set equal to these posterior modes to conduct our experiments under the

real data sets. Both data sets are available at http://www.pitt.edu/˜dejong/wp.htm. Additional

model-speci�c details follow.

RBC Model: The arti�cial data set consists of 100 realizations of {xt, it, nt}, and was con-

structed by Fernandez-Villaverde and Rubio-Ramirez (2005, hereafter FVRR) using the parameter

values reported in row 1 of the RBC panel in Table 2. The actual data set consists of 184 quarterly

US observations on {xt, it, nt}, where it is de�ned as the sum of the consumption of durable goods

and real gross �xed investment, xt is the sum of it and the consumption of non-durable goods, and

nt is total non-farm employment. The data are quarterly, seasonally adjusted and span 1964:I �

2009:IV; output and investment are measured in real per-capita terms, and all series are HP �ltered.

This data set represents an updated version of the actual data set used by FVRR. The source is the

Federal Reserve Bank of St. Louis. Posterior modes for the updated data sets were computed under

the uniform priors chosen by FVRR. Prior intervals, posterior modes and (approximate) posterior

standard deviations are reproduced in rows 2 to 5 of the RBC panel in Table 2.

SOE Model: The arti�cial data set consists of 100 realizations of {xt, ct, it, nt}. It was gen-

erated using three complementary sets of parameter values: (i) aside from the parameters char-

acterizing sources of uncertainty, we used the parameter values calibrated by Schmitt-Grohe and

Uribe (2003, hereafter SGU) to match summary statistics on Canadian data as reported by Men-

doza (1991); (ii) Additional parameters characterizing new sources of uncertainty in the model
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were chosen as those that minimized the sum of squared di�erences between Mendoza's summary

statistics (excluding trade balance) and the statistics implied by the model (standard deviations

for (xt, ct, it, nt), �rst-order serial correlations, and contemporaneous correlations with output); (iii)

Finally, the standard derivations of all measurement errors were set at 0.5%. The corresponding

parameter values are reported in row 1 (2 parts) of the SOE panel in Table 2.

The actual data set consists of 132 quarterly Canadian observations on {xt, ct, it, nt} spanning

1976:I � 2008:IV, and is an updated version of the data set used by Mendoza. Here, xt is de�ned as

GDP, ct as personal expenditures on consumer goods and services, it as business gross �xed capital

formation, and nt is an index of man hours worked by paid workers. Once again, the data are

quarterly, seasonally adjusted, and detrended using the HP �lter. The source of the SOE data set

is Statistics Canada.

Parameters for the actual data set were set at their posterior modes based upon independent

prior normal distributions for each parameter. Aside from parameters that characterize stochastic

uncertainty, prior means were set at the values speci�ed by SGU, and prior standard deviations were

set to re�ect non-trivial uncertainty over these speci�cations. (Note that SGU priors for δ and r∗

are appropriate for annual data and were transformed into priors for quarterly observations.) The

prior means and standard derivations for the AR coe�cients were set at 0.8 and 0.2, respectively.

With two exceptions along ill-behaved dimensions (σr and σi), the prior means for the σ's were set

at 0.5% with standard deviation 0.5%. The likelihood function implies a strong negative correlation

between σr and ρr, thus the prior mean and standard deviation of ρr (0.1% and 0.22%, respectively)

were set so that the posterior mode of ρr remained close to its prior mean. The posterior mode of σi

was di�cult to pin down, so its prior mean was set at 0.5% (like its counterparts) while its standard

deviation was set at 0.05% to force its posterior mode to remain close to its prior mean. Prior

means, prior standard deviations, posterior modes and (approximate) posterior standard deviations

an reproduced in rows 2 to 5 of the SOE panel in Table 2.

Each data set poses a distinct challenge to e�cient likelihood evaluation. In the RBC arti�cial

data set, the standard deviations of the measurement errors (σx,σi,σn) are small relative to σε, which

as we have noted in Sections 3.2 and 3.4 can lead to increased sensitivity to outliers, likely to be

further exacerbated by sample impoverishment. In the RBC actual data set, output and investment

feature two sudden drops of more than 1.5 standard deviations between the third and fourth quarter
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of 1974, and the �rst and second quarter of 1980. Such abrupt changes pose a challenge for �lters

that implement discrete and �xed-support importance samplers, as it is di�cult for such samplers

to generate proposals of states that appear as outliers.

In the SOE data sets, one challenge is the relatively high dimensionality of the state space (six

versus two in the RBC model). A second is the additional non-linearities featured in the model

(relative to the RBC model): e.g., the capital-adjustment cost term φ(kt+1 − kt)2/2 appearing in

(76). As opposed to the applications involving the RBC model, variances of measurement errors

are closely comparable across data sets in this case. Instead, di�erences in data sets stem primarily

from di�erences in the volatility and persistence of the model's structural shocks. In particular,

with the model parameterization associated with the arti�cial data set calibrated to annual data,

and the parameterization associated with the real data set estimated using quarterly observations,

structural shocks are far less persistent, and generally more volatile, in the former case. The upshot

is that in working with the actual data, the state variables are relatively easy to track, and in general

the construction of likelihood approximations is less problematic.

Experiment 1: The �rst experiment is designed to analyze the MC properties of log-likelihood

approximations generated by three �lters: the BPF; the EKF used as the initial IS sampler for EIS

iterations (EKFIS); and the EIS �lter (EISF).3 Setting N = 1, 000, 000 (1M), we generated 100 i.i.d.

BPF log-likelihood estimates using 100 di�erent seeds. Then setting N = R = 100 for the RBC

model and N = R = 200 for the SOE model, we generated 100 i.i.d. EKFIS and EISF log-likelihood

estimates using 100 di�erent sets of CRNs. This was done for each of the four data sets listed in

Table 2 (hereafter RBC-art, RBC-act, SOE-art, SOE-act). The MC means and numerical standard

errors (NSEs) of log-likelihood estimates obtained for all four data sets using all three �lters are

reported in Table 3.A. In addition, the log-likelihood approximations obtained using the BPF and

EISF are illustrated in Figure 1.

Note �rst from Table 3.A that the NSEs associated with the EKFIS are two to four orders of

magnitude larger than those associated with the EISF. This illustrates that the most critical step in

the EISF implementation is the replacement of an initial local (EKF) approximation to the target

ϕt with a global (EIS) approximation. In light of this result, the remainder of our investigation

3We also attempted to analyze the APF. However, the tightly distributed measurement errors associated with the
model parameterizations we examined prevented us from doing so: we frequently encountered numerical over�ows
for APF weights, symptomatic of the thin-tail problem discussed in Section 3.4.
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focuses on the MC sampling properties of the BPF and EISF.

With the exception of RBC-art, NSEs associated with the BPF are between 10 and 60 times

higher than those associated with the EISF; for RBC-art, NSEs di�er by three orders of magnitude.

The large di�erence in the latter case stems from the model's tightly distributed measurement errors,

illustrating that e�ciency gains from adaption are most signi�cant in this situation. Regarding the

MC means of log-likelihoods, these di�er by at most 0.4 across the BPF and EISF.

As discussed in Section 4.6, a meaningful e�ciency comparison of EISF and BPF log-likelihood

estimates requires a correction for biases induced by the log-transformation. The NSEs reported in

Table 3.A are estimates of σN−1/2 in equations (74) and (75), thus an asymptotic �rst-order bias

correction obtains by adding σ2/(2N) to the corresponding means. Bias-corrected means for BPF

and EISF are reported in columns 1 and 3 of Table 3.B. Note that the small NSEs that obtain

for the EISF log-likelihood estimates imply that the biases induced by the log transformation are

negligible in all four cases. As for BPF(1M), with the exception of SOE-art, NSEs above 0.5

raise concerns about the validity of asymptotic bias corrections. Moreover the RBC-BPF(1M)

replications in Figure 1 exhibit left skewness and some kurtosis as con�rmed by signi�cant Jarque-

Bera test statistics for normality (24.1 and 18.5 against a χ2
(2) critical value of 6.9). Therefore, we

also computed �nite-sample bias corrections as in (51). They turn out to be closely aligned with

their asymptotic counterparts. Finite-sample bias corrected means for BPF(1M) are reported in

column 2 of Table 3.B.

Additional statistics reported in Table 3.B are the average variation coe�cients (VARCOF) for

the EIS ratios in (29), and t-statistics for tests of the equality of the EISF and BPF (asymptotic

and �nite-sample) bias-corrected means. The statistics indicate that potential biases induced by

the constant-weight approximation are negligible. In the one case (SOE-act) in which the null of no

bias is rejected at the 5% level, the di�erence between the two means (0.1341) represents less than

0.008% of the BPF log-likelihood estimate.

Returning to the consideration of numerical e�ciency, we supplement the information conveyed

by the NSEs reported in Table 3.A with Root Mean Squared Errors (RMSEs), reported in Table

3.C. These were constructed using the bias-corrected log-likelihood approximations of the BPF

as pseudo-true values. Additional statistics provided in Table 3.C are CPU time (secs) per log-

likelihood evaluation (calculated on a 2.9 GHz desktop computer using MATLAB); and the numbers
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N (1M units) and CPU times (hours) required for the BPF to match the RMSEs associated with

the EISF, assuming N−1/2 convergence.4

Remembering that EISF estimates are based on 100 (RBC) and 200 (SOE) draws, these compar-

isons represent substantial e�ciency gains, illustrating the key tradeo� between bias and variance

reduction that has received considerable attention in the econometrics literature; e.g., see Judge et

al. (1985 Chapters 3 and 22) for a comprehensive exposition of biased estimation.

Experiment 2: The second experiment is designed to assess whether the foregoing results are

somehow particular to the speci�c data sets upon which they are based, and to provide context for

the small NSEs associated with the EISF reported in Table 3.A. Note that the estimates produced

in Experiment 1 are de facto functions of the data set Y and of a set U of CRNs, say ln L̂(Y,U).

In computing NSEs, ln L̂ is treated as a function of U for �xed Y . Here we compute Statistical

Standard Error (SSEs), wherein ln L̂ is treated as a function of Y for a �xed U .

Speci�cally, here we compute SSEs for each of the four mean EISF estimates reported in Table

3.A, column 3. To do so, we �rst �x the sets of CRNs {Ui}100i=1 used for the 100 EISF individual

estimates. Next for each model (parameterized as in Table 2), we generate 100 arti�cial data sets

{Yj,k}100j=1, where k = 1 to 4 indexes the models. For each data set, we replicate Experiment 1, and

record the corresponding means {MEANj,k} and NSEs {NSEj,k}, thus producing 100 statistical

replications of the EISF statistics reported in columns 3 and 4 of Table 3.A. Table 4 reports the

following statistics for k = 1 to 4:

SSEk: Standard deviation of the 100 {MEANj,k}100j=1;

Mean NSEk: Arithmetic mean of the 100 {NSEj,k}100j=1;

Std. dev. NSEk: Standard deviation of the 100 {NSEj,k}100j=1.

Except for RBC-act, the NSEs reported in Table 3.A, column 4 all lie within 2 statistical

standard deviations of their means in Table 4. The di�erence for RBC-act is 5.5 statistical standard

derivations, and appears to result from the large outliers for 1974:IV and 1980:II noted above in the

original data set: the probability of similarly large outliers in the replicated data sets is virtually

4Although we avoided the use of loops in programming BPF, di�erences in computing times are likely to be
compressed using Fortran or C in place of MATLAB.
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zero. Overall, the general message of Table 3 is not sensitive to speci�c features of the data sets

upon which they are based.

Comparing NSEs and SSEs, Table 4 also indicates that statistical uncertainty swamps numerical

inaccuracy. This is critical, because it indicates that numerical inaccuracy does not stand as a barrier

in drawing likelihood-based inferences when using the EIS �lter, a result further underscored in our

�nal experiment.

Experiment 3: Here we analyze the numerical continuity and di�erentiability of log-likelihood

approximations generated by BPF and EISF. We do so using SOE-act, which as reported in Table

3.A is the model for which BPF performs best. The experiment consists of producing log-likelihood

sections for each parameter. Sections obtain by varying one parameter at a time along a 500-point

grid, with all other parameters held �xed at their posterior modes. Thus this experiment requires

500 × 19 = 9, 500 log-likelihood evaluations. Based on the CPU times reported in Table 3.C, this

experiment requires approximately 5.75 hours under EISF(200); under BPF(1M) it would require

approximately 2,470 hours, which is prohibitive. Thus we ran it under BPF with N = 150, 000

(150K), which produces a log-likelihood function of 1717.9816 at the posterior mode with an NSE

of 0.7607. This reduced total CPU time to 210 hours. Note that the NSE under BPF(150K) is

about 4.5 times larger than that under BPF(1M).

Figure 2 illustrates all 19 log-likelihood sections for SOE. For both �lters, log-likelihood values

are indicated by dots; we do not connect the dots because doing so would obfuscate EISF contours.

Clearly, the BPF log-likelihood contours are jagged; this result also holds under BPF(1M), except

that the vertical scale is reduced by a factor of 4.5, ranging approximately from 1717.5 to 1718.5.

The discontinuity of the surface approximations generated by BPF poses challenges to the use

of both classical and Bayesian techniques for obtaining parameter estimates. In addition, this

discontinuity renders as problematic the use of derivative-based methods for computing covariance

matrices associated with a given set of parameter estimates. For example, letting µ denote the

parameter vector targeted for estimation, one means of estimating its posterior covariance matrix

Σµ is via the Laplace approximation

Σ̂−1µ = Σ−1p −
∂2 ln L̂N
∂µ∂µ′

∣∣∣∣∣
µ=µ̂

, (82)
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where Σp denotes the prior covariance matrix and µ̂ the posterior mode of µ. The posterior modes

reported in Table 2 were produced under EISF(100/200) using a BFGS Quasi-Newton method with

a cubic line search procedure (using the BFGS formula to update the Hessian). Corresponding

posterior standard derivations were obtained by direct application of (82). In contrast, numerical

approximations of Σ̂µ failed to be positive-de�nite when constructed under BPF.

6 Future Research

The simple (Gaussian constant-weight) EISF implementation demonstrated here produced dra-

matic e�ciency gains in applications to workhorse DSGE models. The fact that these models (as

is typical in the literature) feature Gaussian state-transition innovations and measurement errors

makes them relatively amenable EIS implementation. However, the narrow measurement errors

associated with their parameterization, coupled with the presence of outliers, renders them as chal-

lenging environments for achieving numerically accurate log-likelihood approximation. Moreover,

the non-linearities embodied in these models are non-negligible, as highlighted by the ine�ciency of

the EKFIS initial sampler. This latter result underscores the �ndings of Fernandez-Villaverde and

Rubio-Ramirez (2005, 2009), which caution that (local) linear representations of DSGE models can

impart signi�cant errors in likelihood estimation.

The e�ciency of the EIS �lter in these settings motivates ongoing research designed to increase

�exibility on two critical counts: (i) allowing for the implementation of more �exible classes K of

importance kernels; and (ii) designing interpolation methods to relax the constant-weight approxi-

mation of ω̃t(st) in (35).

We are currently progressing on these two fronts, and one-dimensional pilot applications have

yielded promising results. For the selection of K, we are investigating the use of mixtures of

Gaussian kernels, which are highly �exible. The EIS auxiliary regressions in (39) become non-linear

in a when using mixtures, but can be solved via Gauss-Newton algorithms implemented using

analytical derivatives under an appropriate parametrization of the mixture. A pilot application to a

univariate stochastic volatility model using 8-term mixtures has delivered high degrees of numerical

accuracy. As for weight interpolation, we are exploring a variety of (potentially high-dimensional)

interpolation techniques (surveyed, e.g., by P�ughaupt, 1993). A one-dimensional pilot application
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to the approximation of a bimodal two-term mixture by a Gaussian kernel using a simpler Dirac

interpolation technique has already proven successful.

A third frontier of exploration concerns the construction of the initial sampler. Since the initial

sampler merely serves to generate a set of MC draws for computing the initial EIS iteration in (39),

it need not itself be a member of pre-selected class K of auxiliary samplers. Here we used the EKF

as an operational initial sampler (which happened to be in K), but more generally, a variety of local

approximation techniques are available as alternatives (e.g., Laplace approximations, as in Tierney

and Kadane, 1986). A potentially simpler approach consists of combining period-(t− 1) EIS draws

{sit−1}Ni=1 with draws of st propagated through the transition density (as in BPF or APF).

7 Conclusion

In conducting likelihood analyses of state-space representations, particle-based �lters o�er two key

advantages: they are easy to implement, and they produce unbiased likelihood estimates (under

fairly weak conditions). However, they can be prone to numerical ine�ciency, particularly in appli-

cations involving narrowly distributed measurement equations, and given the presence of outliers.

Moreover, re�nements designed to deliver improvements in numerical e�ciency are constrained at

best to generate conditionally adapted importance samplers, where conditionality in period t is with

respect to the discrete density used to represent the period-(t− 1) �ltering density. In addition, re-

�nements themselves can be prone to e�ciency problems, as conditional adaptation in early periods

can have a negative impact on numerical e�ciency in subsequent periods.

Here we have presented a �ltering algorithm that targets unconditional optimality. The algo-

rithm features two critical elements. First, in generating period-t approximations, it implements

continuous rather than discrete approximations of �ltering densities, thus enabling the pursuit of

unconditional adaption with respect to (st, st−1). Second, adaption is achieved via implementation

of the EIS algorithm, which produces global rather than local approximations of targeted inte-

grands. As we have demonstrated, the e�ciency of the resulting EIS �lter owes considerably to this

component of the algorithm.

Implementation of the EIS �lter is relatively involved in comparison with particle-based �lters. It

relies upon three auxiliary steps in period t: (i) The construction of an initial sampler for (st−1, st);
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(ii) Iterated auxiliary regressions in (39) in order to transform the initial sampler into a (globally)

e�cient one within a pre-selected class K; and (iii) the construction of a continuous approximation

to the period-t �ltering density. These three steps can be programmed as self-contained procedures.

The particular EIS �lter implementation used in the present paper relies upon three key simpli�-

cations. (i) The initial sampler obtains by application of the extended Kalman �lter principle; (ii)

The class K consists of Gaussian samplers so that the auxiliary EIS regressions in (39) are linear

under the natural parametrization associated with Gaussian kernels; (iii) The (constant-weight)

�ltering density approximation is de�ned as the EIS marginal density of st. Through the implemen-

tation details provided in the paper, including annotated codes available at http://www.pitt.edu/

~dejong/wp.htm, we have sought to reduce barriers to entry regarding its current implementation.

Fernandez-Villaverde and Rubio-Ramirez (2005, 2009) have demonstrated the importance of the

preservation of non-linearities in the context of DSGE models. This �nding is underscored here by

the �nding that the extended Kalman �lter (used as our initial sampler) is numerically ine�cient

relative to the global adaption facilitated via EIS. This motivates our current research agenda, as

outlined in Section 6, wherein we are seeking to develop EIS procedures based on more �exible

families of distributions than that used here. The ultimate goal is to facilitate EIS implementa-

tions using highly �exible samplers that will prove e�cient in applications involving even the most

challenging of targeted integrands.

Appendix A: Cholesky factorization of the initial sampler gt(st, pt−1|â0t )

Deleting time subscripts for the ease of notation, let (m̃, Ṽ ) denote the mean vector and covariance

matrix obtained by deleting the least dq rows and columns from (mt, Vt) in (62). Next, let x′ =

(s′, p′−1), and partition (m̃, Ṽ ) conformably with (y, x) into

m̃ =

m̃y

m̃x

 , Ṽ =

Ṽyy Ṽyx

Ṽxy Ṽxx

 . (83)

It follows that

E (x|y) = m̃x · y + ∆̃xyy, Cov (x|y) = Ṽxx · y, (84)
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with

∆̃xy = ṼxyṼ
−1
yy , m̃x · y = m̃x − ∆̃xym̃y, Ṽxx · y = Ṽxx − ṼxyṼ −1yy Ṽyx. (85)

Next, let L denote the lower triangular Cholesky factorization of Ṽ , partitioned conformably

Ṽ = LL′, L =

Lyy 0

Lxy Lyy

 . (86)

It immediately follows that

∆̃xy = LxyL
−1
yy , Ṽxx · y = LyyL

′
yy, (87)

thus CRN draws of x|y obtain as follows

xi =
(
m̃x · y + ∆̃xyy

)
+ Lyyui, ui ∼ N

(
0, Id+dp

)
. (88)

Appendix B: EIS Optimization for Multivariate Gaussian Kernels

Denote the targeted integrand as ϕ (λ), with λ ∈ Rn. Let K denote a class of Gaussian density

kernels with mean vector m and covariance matrix H−1. Under this initial parametrization, log

kernels in K (ignoring all additive constants) are given by

ln k (λ; ·) = −1

2

(
λ′Hλ− 2λ′Hm

)
. (89)

This immediately suggests introducing the auxiliary parametrization

a′ =
(
d′,−vec′∗(H)

)
, (90)

where d = Hm and vec∗(H) denotes the column vector expansion of the lower triangular part of H.

Accounting for symmetry, the transformation from (H,m) into a is one-to-one (positive de�niteness

of H is not an issue for the applications in Section 5). It follows from (89) that the corresponding
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vector of su�cient statistics is given by

z′ = T ′(λ) = (λ′,
1

2
λ21, λ2λ1,

1

2
λ22, . . . , λnλ1, . . . , λnλn−1,

1

2
λ2n). (91)

The EIS auxiliary regression in (39) is then linear in a and its solution obtains by OLS of y = lnϕ(λ)

on (1, z′).

Appendix C: Construction and Inversion of the Degenerate Transitions φ(st−1)

Here we characterize the inversion of (54), repeated here for convenience:

qt = φ (pt−1, qt−1) .

Recall that the goal of inversion is to obtain

qt−1 = ψ (qt, pt−1) , J (qt, pt−1) =

∣∣∣∣∣∣∣∣ ∂∂q′tψ (qt, pt−1)

∣∣∣∣∣∣∣∣ .

C.1 RBC Model

Under the RBC model, qt specializes to qt = ln kt/k∗, and in light of (71) the speci�c form of (54)

is

eln kt/k∗ = i (ln kt/k∗ , ln zt/z∗) + (1− δ) eln kt−1/k∗ , (92)

where the policy function i (ln kt/k∗ , ln zt/z∗) is a Chebyshev polynomial. We achieve inversion in

ln kt−1/k∗ via a projection method wherein we postulate a third-order polynomial of the form

ln kt−1/k∗ = ψ (ln kt/k∗ , ln zt−1/z∗) , (93)

and specify the parameters of this polynomial such that

eln kt/k∗ − i (ln kt/k∗ , ln zt/z∗) + (1− δ) eψ(ln kt/k∗ , ln zt−1/z∗) = 0 (94)
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holds. Given the optimized speci�cation

ln kt−1/k∗ = ψ∗ (ln kt/k∗ , ln zt−1/z∗) , (95)

the Jacobian

J (kt, zt−1) =

∣∣∣∣∣∣∣∣ ∂∂ktψ (kt, zt−1)

∣∣∣∣∣∣∣∣ (96)

obtains analytically.

C.2 SOE Model

Under the SOE model, qt specializes to q′t = (dt, kt), where here for ease of notation dt and kt

are represented as logged deviations from steady state values. Since the model is solved using the

second-order approximation technique of Schmitt-Grohe and Uribe (2004), (54) is quadratic in its

arguments. Moreover, it turns out that for all parameterizations of the model we considered, the

coe�cient associated with dt−1 that appears in the identity for kt is of the order 10−8, and thus is

safely set to zero. The upshot is that the quadratic system to be inverted in this case is triangular

in qt−1.

Let
(
s1t−1

)′
=
(
kt−1, p

′
t−1
)
; then the identity for kt is given by

kt = Ck + Lks
1
t−1 +

1

2
s1′t−1Qks

1
t−1. (97)

Partitioning Lk and Qk conformably with
(
kt−1, p

′
t−1
)
as

Qk =

 Q11
k Q12

k

Q21
k Q22

k

 , Lk =

 L1
k

L2
k

 , (98)

we note that Q11
k > 0 for all parameterizations under consideration. Thus the inversion of (97) is

given by the solution

k∗t−1 =
−bk +

√
b2k − 4akck

2ak
, (99)
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with

ak =
1

2
Q11
k , (100)

bk = L1
k +Q12

k pt−1, (101)

ck = Ck + L2
kpt−1 +

1

2
p′t−1Q

22
k pt−1 − kt. (102)

Next, replacing kt−1 by k
∗
t−1 in the identity for dt, we obtain

dt = Cd + Ldst−1 +
1

2
s′t−1Qdst−1. (103)

Inversion in dt−1 yields the solution

d∗t−1 =
−bd +

√
b2d − 4adcd

2ad
, (104)

with

Qd =

 Q11
d Q12

d

Q21
d Q22

d

 , Ld =

 L1
d

L2
d

 , (105)

and

ad =
1

2
Q11
d , (> 0) , (106)

bd = L2
d +Q12

d s
1
t−1, (107)

cd = Cd + L2
ds

1
t−1 +

1

2
s1′t−1Q

22
k s

1
t−1 − dt. (108)

Note that the solutions
(
k∗t−1, d

∗
t−1
)
in (99) and (104) are in terms of the largest roots of their

corresponding quadratic forms, since kt is monotone and increasing in kt−1, and dt is monotone and

increasing in dt−1.

Finally, the Jacobian of this triangular inversion is given by

J (qt, pt−1) =
(
b2k + 4akck

)− 1
2 ·
(
b2d + 4adcd

)− 1
2 . (109)
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Table 1. MC Variation Coe�cients for RBC First-Period
PF Likelihood Estimates (N = 1)

Standardized y1 BPF OPF APF FAPF & KF

1.A: α = 0.36, β = 0.99, ρ = 0.98, σy = 0.007, σε = 0.0004

0 1.51 1.36 1.72 0.0
0.6 1.70 1.54 1.75 0.0
1.2 2.36 2.17 1.83 0.0
1.8 3.85 3.55 1,97 0.0
2.4 7.29 6.72 2.17 0.0
3.0 16.2 14.8 2.45 0.0

1.B: α = 0.36, β = 0.99, ρ = 0.98, σy = 0.0057, σε = 0.0004

0 1.72 1.50 2.83 0.0
0.6 1.93 1.70 3.06 0.0
1.2 2.65 2.36 3.87 0.0
1.8 4.30 3.89 5.61 0.0
2.4 8.14 7.28 9.34 0.0
3.0 18.2 16.2 17.8 0.0

Table 2. Parameter Values

RBC Model

α β φ ϕ δ ρ σε σx σi σn

Art. Data 0.4 0.99 2 0.357 0.01961 0.95 0.007 1.58e-04 8.66e-4 0.0011
Prior Max. 0 0.75 0 0 0 0 0 0 0 0
Prior Min. 1 1 100 1 0.05 1 0.1 0.1 0.1 0.1
Post. Mode 0.3561 0.9938 3.3631 0.2006 0.0109 0.9842 0.0053 0.0060 0.0007 0.0017
Post. S.D. 1.4e-04 1.9e-05 1.9e-02 4.4e-03 2.5e-05 3.7e-03 4.3e-04 3.8e-04 4.0e-04 9.0e-05

SOE Model

γ ω ψ α φ r∗ δ ρA σA

Art. Data 2 1.455 0.11135 0.32 0.028 0.04 0.1 0.53 0.0089
Prior Mean 2 1.455 0.11 0.32 0.028 0.007 0.025 0.8 0.005
Prior S.D. 1 0.2 0.001 0.05 0.01 0.025 0.025 0.2 0.005
Post. Mode 2.49 1.33 0.11 0.23 0.039 0.02 0.02 0.82 0.0019
Post. S.D. 0.0086 0.0213 0.0059 0.0047 0.0133 0.0010 0.0031 0.0177 0.0003

ρr σr ρv σv ρϕ σϕ σx σc σi σn

Art. Data 0.37 0.001 0.89 0.001 0.3 0.0152 0.005 0.005 0.005 0.005
Prior Mean 0.8 0.0022 0.8 0.005 0.8 0.005 0.005 0.005 0.005 0.005
Prior S.D. 0.2 0.0005 0.2 0.005 0.2 0.005 0.005 0.005 0.0005 0.005
Post. Mode 0.79 0.0022 0.87 0.001 0.86 0.0031 0.0038 0.0065 0.0046 0.0058
Post. S.D. 0.1099 0.0129 0.01329 0.0002 0.0145 0.0004 0.0006 0.0006 0.0010 0.0005
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Table 3.A. MC Means and Standard Deviations of Log-Likelihood Estimates

BPF(1M) EISF(100/200) EKFIS(100/200)

Mean NSE Mean NSE Mean NSE

RBC art 1299.9492 0.5287 1300.0674 0.0005 1283.8614 4.0279
RBC act 2305.2687 0.9139 2305.6589 0.0151 2305.2988 0.3486
SOE art 1293.8399 0.7134 1294.1197 0.0229 1253.0159 4.6041
SOE act 1718.1814 0.1699 1718.3298 0.0165 1696.6785 3.7189

Table 3.B. Bias Corrected Means of Log-Likelihood Estimates and Auxiliary Statistics

BPF(1M) BFF(1M) EISF(100/200) VARCOF t-stat. t-stat.
asympt. �n.-sample asympt. asympt. �n.-sample

RBC art 1300.0890 1300.0716 1300.0674 0.000051 0.4078 0.0794
RBC act 2305.6863 2305.5804 2305.6590 0.00063 0.2986 - 0.8588
SOE art 1294.0944 1294.0713 1294.1200 0.0043 - 0.3572 - 0.6781
SOE act 1718.1958 1718.1958 1718.3299 0.0029 - 7.8961 - 7.8961

Table 3.C. Relative Numerical E�ciencies

RMSE CPU (secs) BPF-EISF equivalent

BPF(1M) EISF(100/200) BPF(1M) EISF(100/200) N(1M) CPU(hours)

RBC art 0.5287 0.0216 375 0.55 599 62.4
RBC act 0.9139 0.0312 695 1.34 858 165.6
SOE art 0.7134 0.0307 678 0.65 540 101.7
SOE act 0.1699 0.0211 936 2.18 65 16.9

Table 4. EISF for Repeated Samples

EISF-NSE

SSE Mean NSE Std. dev. NSE

RBC art 19.8978 4.9e-4 1.2e-4
RBC act 1.1483 0.0113 6.9e-4
SOE art 17.6041 0.0417 0.0365
SOE act 15.6710 0.0134 0.0028
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