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Particle methods for rare event Monte Carlo

The use of branching processes to estimate small probabilities

Summary:

The design of such schemes was (until recently) poorly understood.

Design should be based on subsolutions to an associated HJB
equation.

Obtain necessary and su¢ cient conditions for asymptotically optimal
performance.
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Example: A tandem queue with server slow-down
(Ethernet control)

pn = P fQ2 exceeds n before Q = (0; 0)jQ(0) = (1; 0)g :

Also, analogous non-Markovian model.
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Model problem and large deviation scaling

As a general Markov model one can consider iid random vector �elds�
vi (y); y 2 Rd

	
, and the process

X ni+1 = X
n
i +

1
n
vi (X ni ); X n0 = x :

De�ne

H(y ; �) = log E exp h�; vi (y)i ; L(y ; �) = sup
�2Rd

[h�; �i � H(y ; �)]

X n(i=n) = X ni ; piecewise linear interpolation for t 6= i=n:
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Model problem and large deviation scaling (cont�d)

Under conditions fX n(�)g satis�es a Large Deviation Principle with rate
function

IT (�) =
Z T

0
L(�; _�)dt

if � is AC and �(0) = x , and IT (�) =1 else.

Heuristically, for T <1,
given �, small � > 0 and large n

P

(
sup

0�t�T
kX n(t)� �(t)k � �

)
� e�nIT (�):
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Model problem and large deviation scaling (cont�d)

Let C = f trajectories that hit B prior to A g. To estimate:

pn(x) = P fX n 2 C jX n(0) = xg :
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Model problem and large deviation scaling (cont�d)

Under mild conditions:

�1
n
log pn(x)! inf fIT (�) : � enters B prior to A before T ;T <1g = (x):
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Some estimation generalities

1 For standard Monte Carlo we average iid copies of 1fX n2Cg. One
needs K � en samples for bounded relative error [std dev/pn(x)].

2 Alternative approach: construct iid random variables �n1 ; : : : ; �
n
K with

E�n1 = pn(x) and use the unbiased estimator

q̂n;K (x)
:
=
�n1 + � � �+ �nK

K
:

3 Performance determined by variance of �n1 , and since unbiased by
E (�n1)

2.
4 By Jensen�s inequality

�1
n
log E (�n1)

2 � �2
n
log E�n1 = �

2
n
log pn(x)! 2(x):

5 An estimator is called asymptotically e¢ cient if

lim inf
n!1

�1
n
log E (�n1)

2 � 2(x):
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Splitting type schemes

Pure branching methods (also called multi-level splitting)

Branching with killing [RESTART, DPR]

Interacting particle systems (Del Moral et. al.)
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Construction of splitting estimators

Pure branching. A certain number [proportional to n] of splitting
thresholds C nr are de�ned which enhance migration, e.g.,

A single particle is started at x that follows the same law as X n, but
branches into a number of independent copies each time a new level is
reached.
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Construction of splitting estimators (cont�d)

The number of new particles M can be random (though independent of
past data), and a multiplicative weight wi is assigned to the ith
descendent, where

E
MX
i=1

wi = 1:
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Construction of splitting estimators (cont�d)

Evolution continues until every particle has reached either A or B. Let

Mn
x = total number of particles generated

X nj (t) = trajectory of jth particle,
W n
j = product of weights assigned to j along path

Then

�n =

M n
xX

j=1

1fX nj 2CgW
n
j
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Subsolutions for branching processes

Now consider the asymptotic rate of decay as a function of y :

(y) = lim
n!1

�1
n
log pn(y)

= inf fIT (�) : �(0) = y ; � enters B prior to A before T ;T <1g :

Let
H(y ; �) = �H(y ;��)

[recall H(y ; �) = log E exp h�; vi (y)i ]:
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Subsolutions for branching processes (cont�d)

(y) is a weak-sense solution to the PDE
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Subsolutions for branching processes (cont�d)

Subsolutions should satisfy (in the viscosity sense)
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Statement of results

Implementation and Performance for Pure Splitting [analogous
results for RESTART, etc.]:

Consider a continuous function W and suppose splitting levels are the
level sets fW (y) � i log EM=ng, where EM is the mean number of
particles per split.

Then the number of particles needed to construct a single sample �n1
grows subexponentially if and only if W is a viscosity subsolution.

Given u = EM, consider particular scheme that randomizes between buc
and buc+ 1 and uses weights wi = 1=u. Then

lim inf
n!1

�1
n
log E (�n1)

2 � W (x) + (x):
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Remarks

Subsolutions for interesting models (networks with feedback,
non-Markovian systems, serve-the-longer discipline, server-slowdown
dynamics, open/closed networks, path-dependent events) known.

When available the Freidlin-Ventsel quasipotential can be used to
construct subsolutions with optimal value.

Subsolutions for importance sampling must be at least piecewise
classical sense.
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