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Summary. This article focuses on branching particle interpretations of rare events.
We connect importance sampling techniques with interacting particle algorithms,
and multi-splitting branching models. These Monte Carlo methods are illustrated
with a variety of examples arising in particle trapping analysis, as well as in ruin
type estimation problems. We also provide a rather detailed presentation of the
asymptotic theory of these particle algorithms, including exponential extinction
probabilities, Lp-mean error bounds, central limit theorem, and fluctuation variance
comparaisons.

1 Introduction

The study of rare events is an important and very active area in a variety
of scientific disciplines. In particle physics, rare event problems are often re-
lated to the estimation of non absorption probabilities of a particle evolving in
a trapping medium. These quantities are also connected to the estimation of
the Lyapunov exponent of Schrödinger type operators. In engineering sciences,
these rare event problems arise in the analysis and prediction of major risks,
as such earthquakes, floods, air collision risks, nuclear radiation dispersions.
Studying major risks can undertaken utilising two main approaches, the statis-
tical analysis of collected data and the probabilistic modelling of the processes
leading to the incident. The statistical analysis of extreme values often needs
an extended observation period, due to the very low occurrence probability
of rare events. They are often based on the standard extreme value distri-
butions, like the Gumbel, the Fréchet and the Weibull laws (see for instance
[11, 7], and references therein). The probabilistic approach firstly consists in
modelling the randomness of the underlying system, and secondly in using
some mathematical, or simulation tools, to obtain an accurate estimate.

The use of analytical, and numerical approaches are often based on simpli-
fied, and ad hoc assumptions. On the other hand, the Monte Carlo simulation
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is a practical alternative when the analysis calls for fewer simplifying assump-
tions. Nevertheless, obtaining accurate estimates of rare event probabilities,
say about 10−9 to 10−12 , using traditional techniques really requires a huge
amount of computing time.

Many techniques for reducing the number of trials in Monte Carlo simu-
lation have been proposed, the more promising are based on importance sam-
pling. Importance sampling consists in modifying the underlying probability
distribution in such a way that rare events occur much more frequently. To
use importance sampling, we need to have a deep knowledge of the system
under study; and even in such a case, importance sampling may not reduce
the number of trials. In addition, for large time scale problems, the impor-
tance weightings are also degenerate with respect to the time parameter. This
degeneration reduces considerably the performance and the accuracy of the
Monte Carlo approximation.

An alternative way to increase the relative number of visits to the rare
event, is to use interactive evolution models and trajectory splitting tech-
niques. These two approaches are based on the fact that there exist some
physical potential functions reflecting the rare event regime, or there exist
some intermediate levels that are visited much more often than the rare level.
These intermediate events act as gateways to reach the desired rare level set.
Particle methodologies were first introduced as heuristic algorithms in the be-
ginning of the 1950’s, in biology by M.N. Rosenbluth and A. W. Rosenbluth
[12] for macromolecular simulations, as well as in physics with the article
of T.E. Harris and H. Kahn [8] for particle transmission simulations. Since
this period, the range of applications of these interactive particle ideas have
increased, revealing unexpected connections between a variety of domains, in-
cluding signal processing, financial mathematics, particle physics, biology and
engineering sciences. The application in rare event simulation was firstly intro-
duced in [1] and shortly after has been adapted to the hybrid systems [9]. For
a detailed description of these applications models, and a precise mathema-
tical analysis of these particle methods, the reader is referred to the research
monograph [2], and references therein.

In the present review article, we focus on branching particle interpreta-
tions of rare events. A short description of the paper is as follows. Section 2
sets out a brief description of different types of branching particle methodo-
logies. We connect importance sampling techniques with interacting particle
algorithms, and multi-splitting branching models. We illustrate these Monte
Carlo methods with a variety of examples arising in particle trapping analy-
sis, as well as in ruin type estimation problems. Finally, we end this section
with a description of a more refined interacting particle analysis of rare event
probabilities based on multi-level decompositions of the state-space regions.
The capture of the behavior of the Markov chain between each level needs
the introduction of the random excursions models. This is provided by the
Section 3, in which Markov chain models in abstract path are briefly intro-
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duced. The law of the excursions in the rare regime are described by functional
representations which belong to the class of Feynman-Kac formulas.

Section 4 describes the Feynman-Kac models which are at the corner of
diverses disciplines. The Feynman-Kac models, in general nonhomogeneous
state spaces, are built with two ingredients: A Markov chain associated with
a reference probability measure, and a sequence of potential functions. From
the pure mathematical point of view, they correspond to a change of proba-
bility on path space associated with a given sequence of potential functions.
From the point of view of physics, they represent for instance the path dis-
tribution of a single particle evolving in absorbing and disordered media (see
for instance [13]). In this interpretation, the potential function represents a
“killing or creation” rate related to the absorbing nature of the medium. In
engineering sciences the use of Feynman-Kac models is of course not res-
tricted to rare event modelling and analysis. They are commonly used in non
linear filtering to represent the conditional distribution of a given random
signal with respect to a sequence of noisy observations delivered by some sen-
sors. Different physical interpretations of the Feynman-Kac models are also
provided in this section. These models have natural particle interpretations
in terms of genealogical tree-based evolutions. The Section 5 is devoted to
particle interpretations of Feynman-Kac models. These particle models can
be sought in many different ways depending on the application we have in
mind. For the analysis of rare events, we have chosen to describe these mo-
dels as an abstract stochastic linearization technique for solving nonlinear and
measure-valued equations. The basic idea is to associate to a given nonlinear
dynamical structure, a sequence of N Markov processes, in such a way that
the N -empirical measures of the configurations converge, as N → ∞ , to the
desired distribution. The parameter N represents the precision parameter,
as well as the size of the systems. In some sense, these particle models can
be regarded as a new approximation simulation technique. All these particle
models are built on the same paradigm: When exploring a state space with
many particles, we duplicate better fitted individuals at the expense of having
light particles with poor fitness die.

Finally, Section 6 is concerned with the asymptotic behavior of the par-
ticle methods when the size of the systems tends to infinity. We provide a
rather detailed presentation of the asymptotic theory, including exponential
extinction probabilities, Lp-mean error bounds, central limit theorem, and
fluctuation variance comparaisons between these particles algorithms.

2 Branching Particle Methodologies

This section sets out a brief description of four different types of branching
particle methodologies and an interacting particle systems algorithm for esti-
mating rare events. The first concerns an original genetic type interpretation
of importance sampling representations of rare event probabilities. The second
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one is concerned with a class of rare event problems arising in physics, and
more particularly in nuclear engineering. We design an interacting particle
interpretation for the evolution of a Markov chain in an absorbing medium.
Special attention is paid to the study of the genealogical structure of these in-
teracting jump particle models. We also connect these trapping problems with
the estimation of the Lyapunov exponent of a Schrödinger type semigroup.
The third and fourth are devoted respectively to an elementary Bernoulli
branching method, and to a more sophisticated branching splitting variant.

2.1 Importance Sampling Branching Models

Let Xn be a Markov chain with transition probabilities Mn(xn−1, dxn) =
P(Xn ∈ dxn|Xn−1 = xn−1) . Suppose we want to estimate the probability
P(A) , that Xn reaches some rare region A of the state space. To fix the ideas,
we can think of a simple random walk starting at X0 = 0 and evolving to the
right with a small probability

P(Xn = Xn−1 + 1) = p = 1 − P(Xn = Xn−1 − 1) < 1/2 . (1)

In this situation for large values of M , the probabilities P(Xn ≥ M) are ex-
tremely small. As we mentioned in the introduction, the importance sampling
methodology consists in changing the whole distribution of the chain Xn so
that to deal with a new random process X ′

n which is “attracted” by the rare
event. If we let M ′

n(xn−1, dxn) be the Markov transitions of X ′
n , and assum-

ing that Mn and M ′
n are mutually absolutely continuous, then we have the

rare event probability representation.

P(Xn ∈ A) = E
(

1A(X ′
n)

n∏

k=1

Gk(X ′
k−1, X

′
k)

)
, (2)

with
Gk(X ′

k−1, X
′
k) =

dMk(X ′
k−1, ·)

dMk(X ′
k−1, ·)

(X ′
k) ,

and for any bounded function f

E(f(Xn)|Xn ∈ A) =
E

(
f(X ′

n)1A(X ′
n)

∏n
k=1 Gk(X ′

k−1, X
′
k)

)

E
(
1A(X ′

n)
∏n

k=1 Gk(X ′
k−1, X

′
k)

) .

In the simple random walk example, we can exchange the role of p and q =
1−p. In this case, X ′

n tends to move to the right, and the change of probability
formula (2) holds true with Gk(x, x+1) = p/q < 1 and Gk(x, x−1) = q/p > 1 .

The importance sampling method consists in evolving N independent
copies X

′i of X ′ , and taking the weighted Monte Carlo estimates
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1
N

N∑

i=1

1A(X
′i
n )

[
n∏

k=1

Gk(X
′i
k−1, X

′i
k )

]
−−−−→
N→∞

P(Xn ∈ A)

N∑

i=1

f(X
′i
n )

1A(X
′i
n )

∏n
k=1 Gk(X

′i
k−1, X

′i
k )

∑N
j=1 1A(X

′j
n )

∏n
k=1 Gk(X

′j
k−1, X

′j
k )

−−−−→
N→∞

E(f(Xn)|Xn ∈ A) .

This Monte Carlo method works rather well when the so-called twisted
process X ′

n is well identified and the time parameter n is not too large, but it
cannot be interpreted in any way as a simulation methodology of the process
in the rare event regime. A complementary methodology is to interpret, at
each stage, the local Radon-Nikodym potential functions Gn as birth rates.
These favour the particle transitions X ′

n−1 → X ′
n moving too slowly towards

the rare level set. The corresponding algorithm consists in evolving N -particles
according to a genetic type mutation/selection method:

(X̂
′i
n−2)1≤i≤N

Mutat.−−−−→ (X
′i
n−1)1≤i≤N

Select.−−−−→ (X̂
′i
n−1)1≤i≤N

Mutat.−−−−→ (X
′i
n )1≤i≤N .

• During the selection mechanism, we examine the potential value of each
past transition (X̂

′i
n−2, X

′i
n−1)1≤i≤N and we select randomly N states X̂

′i
n−1

according to the discrete distribution

N∑

i=1

Gn−1(X̂
′i
n−2, X

′i
n−1)∑N

j=1 Gn−1(X̂
′j
n−2, X

′j
n−1)

δX
′i
n−1

.

• During the mutation mechanism, we simply evolve each selected particle
X̂

′i
n−1 with a random elementary transition X̂

′i
n−1 ! X

′i
n ∼ M ′

n(X̂
′i
n−1, ·) .

The particle approximation models are now given by the occupation measures:

1|IN
n |>0 ×

1
|IN

n |
∑

i∈IN
n

f(X̂
′i
n ) −−−−→

N→∞
E(f(Xn)|Xn ∈ A) ,

and the product formula

|IN
n |
N

[
n∏

k=1

1
N

N∑

i=1

Gk(X̂
′i
k−1, X

′i
k )

]
−−−−→
N→∞

P(Xn ∈ A) ,

where |IN
n | represents the cardinality of the set of indices of the particles

having succeeded to enter in A at time n . Furthermore, if we trace back the
complete genealogy of the particles having succeeded to reach the level A at
time n , then we have for any test function fn on the path space

1|IN
n |>0 ×

1
|IN

n |
∑

i∈IN
n

fn(X̂
′i
0,n, · · · , X̂

′i
n,n) −−−−→

N→∞
E(fn(X0, · · · , Xn)|Xn ∈ A) ,



6 Pierre Del Moral and Pascal Lezaud

where (X̂
′i
k,n)0≤k≤n represents the ancestral line of the end-time particle

X̂
′i
n,n = X̂

′i
n . Although, we can prove that P(IN

n = ∅) decreases to 0 ex-
ponentially fast, as N → ∞ , in practice we still need to choose a sufficiently
large number of particles to ensure that a reasonably large proportion arrives
to the target set. The propagation of chaos properties of the interactive par-
ticle models ensure that the random variables X̂

′i
n behaves asymptotically as

independent copies of X ′
n in the rare event regime.

2.2 Interacting Trapping Models

This section is concerned with rare event estimation problems arising in parti-
cle trapping analysis, and nuclear engineering. These probabilistic models also
provide interesting physical interpretations of rare events in terms of inter-
active trapping particles, and the associated genealogical structure. We also
connect these rare event estimations with the analysis of Lyapunov exponents
of Schrödinger operators.

We consider a physical particle Xn evolving in an absorbing medium E,
related to a given potential function G : E → [0, 1] . In the state space regions,
where G = 1 , the particle evolves randomly, and freely, according to a given
Markov transition kernel M(x, dy) . When it enters in other regions, where
G < 1, its life time decreases, and it is instantly absorbed when it visits
the subset of null potential values. For indicator potential function, G = 1A ,
A ⊂ E , this model reduces to a particle evolution killed on the complementary
set Ac = E \A . To visualize these models, Fig. 1 shows a particle evolution on
E = Z killed outside an interval A at a random time T , and Fig. 2 illustrates
the evolution of an absorbed particle in a lattice.

A

T

time axis

E = 7 7

Fig. 1. Evolution of a particle in E = Z killed outside of A .

These probabilistic models arise in particle physics, such as in neutron
collision/absorption analysis [8], as well as in nuclear engineering such as in
the risk analysis of radiation containers shields. In this situation, the radiation
source emits particles, which evolve in an absorbing shielding environment. In
this context, the particle desintegrates when it visits the obstacles. The precise
probabilistic model associated to these physical evolutions are discussed in
Section 4.2.
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G=0

G<1

G<1

G=0

G<1

Fig. 2. Evolution of a particle in an absorbing medium.

If we let T be the first time the particle is absorbed, then we are interested
in the rare event probabilities

P(T > n) =
∫

En+1
η0(dx0)G(x0)M(x0, dx1)G(x1) · · ·M(xn−1, dxn)G(xn) .

In the above formula, we integrate over all the particle paths (x0, · · · , xn) ∈
En+1 . The distribution η0 represents the initial law of X0 , G(x0) is the prob-
ability that the particle at x0 is not killed, M(x0, dx1) is the distribution of
the transition from x0 to x1 , G(x1) is the probability that the particle at
x1 is not killed, and so on. For large values of the time parameter n , these
probabilities are extremely small. In some sense, we have that

P(T > n) = P(T > 0)
n∏

i=1

P(T > p|T > p − 1) ≈ e−nλ , (3)

for some constant λ > 0, which reflects the strength of the obstacles. This
constant corresponds to the logarithmic Lyapunov exponent of the integral
Schrödinger type semigroup, G(x, dy) = G(x)M(x, dy) . For more details, the
reader is referred to [5].

To estimate these constants, and these rare event probabilities, we evolve
N interacting particles, ξn = (ξi

n)1≤i≤N ∈ EN , according to the following
rules

ξn = (ξi
n)1≤i≤N

trapping/selection−−−−−−−−−−−→ ξ̂n = (ξ̂i
n)1≤i≤N

evolution−−−−−−→ ξn+1 = (ξi
n+1) .

During the trapping transition, each particule ξi
n survives with a probabil-

ity G(ξi
n), and in this case we set ξ̂i

n = ξi
n . Otherwise, with a probability

1 − G(ξi
n) , the particle is absorbed, and instantly another randomly chosen

particle in the current configuration duplicates. More precisely, when the par-
ticle ξi

n is absorbed, we chose randomly a new particle ξi
n according to the

discrete Gibbs measure
N∑

j=1

G(ξj
n)

∑N
k=1 G(ξk

n)
δξj

n
.

During the evolution step, each selected particule ξ̂i
n evolves randomly accor-

ding to the Markov transition M . The rare event probabilities are approxi-
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1
n

n
N

A

time axis

n+1n

N=7

Fig. 3. Interacting particle with indicator potential function G = 1A .

mated by the product formula

PN (T > n) =
n∏

p=0

(
1
N

N∑

i=1

G(ξi
p)

)
→ P(T > n)

= P(T > 0)
n∏

i=1

P(T > p|T > p − 1) .

In the case of indicator potential function G = 1A, we notice that the em-
pirical mean potentials corresponds to the population of evolving transitions
which have not been absorbed. In Fig. 3, we illustrate an example with N = 7
and N−1

∑N
i=1 1A(ξi

n+1) = 2/7 .
For long time horizon, we also have a particle interpretation of the Lya-

punov exponent λ, previously introduced in (3)

− 1
n + 1

n∑

p=0

log

(
1
N

N∑

i=1

G(ξi
p)

)
≈ λ.

In the birth and death interpretation, we can trace back the complete
genealogy of a given particle ξi

n . If we let

1

n
N

A

n

n
1

i
q,n

q,n
N

q

p

0

0,n
i i

p,n i
n

q,n

Fig. 4. Genealogical tree associated with the interactif trapping model.
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ξi
0,n ← ξi

1,n ← · · · ← ξi
n−1,n ← ξi

n,n = ξi
n

be the ancestral line of the particle with label i, at time n , then we have for
any test function fn on the state space En+1 ,

1
N

N∑

i=1

fn(ξi
0,n, ξi

1,n, · · · , ξi
n,n) −−−−→

N→∞
E (f(X0, · · · , Xn)|T ≥ n) .

In some sense, the genealogical tree, associated with interaction trapping
model, represents the path strategy used by the Markov particle to stay alive
up to time n . Returning to the indicator potential function example, a model
of a random tree is represented in Fig. 4.

N

1

n

n

i
p,n

G<1

G=0

G=0

G=0 G<1

i
n

0,n
i

G<1

Fig. 5. Genealogical tree model in the lattice example.

In the lattice example, the genealogical tree models correspond to a spider
web type strategy, as such illustrated in Fig. 5

2.3 A Bernoulli Splitting Technique

In contrast to importance sampling type algorithms, in the trajectory split-
ting methodology, the step-by-step evolution of the system follows the original
probability measure. Entering the intermediate states, which is usually charac-
terized by crossing a threshold by a control parameter, triggers the splitting of
the trajectory. The current system state is held, and a number of independent
subtrajectories are simulated from that state.

For example, let us consider (m + 1) sets Bi such that

Bm+1 ⊂ Bm ⊂ · · · ⊂ B1 .

When the rare event A coincide with Bm+1 , we have the product formula

P(A) = P(A|Bm)P(Bm|Bm−1) · · ·P(B2|B1)P(B1). (4)

On the right hand side of (4, each conditioning event is “not rare”. The branch-
ing splitting technique proceeds as follows. Make a {0, 1} Bernoulli trial to
check whether or not the set event B1 has occured. If B1 has occured, then we
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split this trial in R1 Bernoulli additional trials, and for each of them we check
again wether or not the event B2 has occured. This procedure is repeated at
each level. More precisely, each time the event Bi has occured, we sample Ri

trials and we repeat this splitting technique each time Bi+1 has occured. If
an event level is not reached, neither is A , then we stop the current retrial.
Using R0 independent replications of this procedure, we have then considered
R0R1 · · ·Rm trials, taking into account for example, that if we have failed to
reach a level Bi at the i-th step, the Ri · · ·Rm possible retrials have failed.
An unbiased estimator of P(A) is clearly given by the quantity

P̂ =
NA

R0
∏m

i=1 Ri
,

where NA is the total number of trajectories having reached the set A . It can
be proven [10] that in some sense the optimal simulation is obtained if

m = ,−0.6275 log P (A) − 1-, P(Bi|Bi−1) ≈ 1/5, Ri = 5.

Nevertheless, in practice the trajectory splitting method may be difficult to
apply. For example, the case of the estimation of the probability of a rare event
in dynamical system is more complex, since the difficulty to find theoretically
the optimal Bi , and Ri for each level i . Furthermore, the probability to
reach Bi varies generally with the state of entrance in level Bi−1 . Finally, but
not the least, the conditional probabilities P(Bi|Bi−1) are of course generally
unknown! In this sense, this rather crude splitting strategy is of pure academic
interest.

2.4 Branching Splitting Models

The branching strategy, we are about to describe, is rather close in spirit to
the Bernoulli splitting method described above. The essential difference is that
it enters the random evolution of the process in the rare event region. To be
more precise, we consider a Markov process evolving in some state space, in
such a way that a given region, or a particular site, say O , is visited infinitly
often. Our objective is to estimate the probability P(A) to reach a rare level A
before returning to O . For instance, if TA represents the first hitting time of
A , and TO the first return time to O , then P(A) = P(TA < TO) . We proceed
as shown in Fig. 6. If the first level B1 is reached before going back to O ,
then we split the path into R1 trials; otherwise, if we are back to O , we stop
the exploration. At the next step we evolve each of these R1 paths, starting
from its entrance state in B1 . If a path hits B2 , before returning to O , then
it is again splitted into R2 trials; otherwise we stop its exploration. We repeat
the branching transition at each level Bk . Finally, a path from level Bm that
succeed to reach A (before returning to O) is considered as a success, and it is
stopped. An implicit, and technical assumption is that the level (i+1) cannot
be reached from level (i−1) without entering previously the intermediate level
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O

3
B 2

B1

A=B4
B

Fig. 6. Example with Ri = 2 at each level

i . This condition is clearly met, if we consider a decreasing sequence of level
set A = Bm+1 ⊂ Bm ⊂ · · · ⊂ B1 .

In practice, the simulation time is limited to a given value T , so that we
estimate

P(TA < min(TO, T )) .

Moreover, going back from Bi to O may take a long time, so we can reduce
the computations by freezing the path exploration when it goes back to one,
two or more levels down. Nevertheless, this rather crude strategy induces a
bias, which is difficult to estimate. An alternative approach is the RESTART
method, introduced in [15, 16].

2.5 Interacting Particle Systems Algorithm

In this section we design a genetic, and genealogical tree base model for esti-
mating a rather general class of rare events, following [1]. The main idea be-
hind this evolutionary type algorithm is again to decompose the state space
into a judicious choice of threshold levels. This decomposition reflects the
successive levels the stochastic process needs to cross before entering into the
rare event. More precisely, we consider a strong Markov chain Xn , which is
assumed to start in some set O with a given initial probability distribution.
We associate to a given target set A , the first time the process hits the set
A , namely

TA = inf{n ≥ 0 : Xn ∈ A} .

We use the classical convention inf ∅ = ∞ . We would like to estimate the
quantities

P(TA ≤ T ) and Law((Xn), 0 ≤ n ≤ TA|TA ≤ T ) . (5)

In the above formulas, T is either a deterministic finite horizon time, or the
(finite) entrance time into a recurrent set R when R ∩ O = ∅ (or the first
return time to O , if R = O).
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As previously, before visiting R , or entering into A , the random process
passes through a decreasing sequence of level sets

A = Bm+1 ⊂ Bm ⊂ · · · ⊂ B1 ,

with B1 ∩ (O∪R) = ∅ . To capture the precise behavior of X between the dif-
ferent levels, we consider the random excursions Xn of X between the succes-
sive random times Tn−1 and Tn ,where (Tn)n=1,··· ,m+1 represent the entrance
times of the level sets (Bn)n=1,··· ,m+1 . A synthetic picture of these excursions
is given in the Fig. 7. We observe that these excursions may have different

B
2B1

B3

TR
T4

T3

T2
T1

0

1

2

3

4

R

O

A

Fig. 7. Embedded Markov Chain

random lengths, and we have the decomposition formula

(TA ≤ T ) = (Tm+1 ≤ T ) = (T1 ≤ T, · · · , Tm+1 ≤ T ) .

To check wether or not a given path (xk)p≤k≤q , starting at xp ∈ Bn−1 at time
p , has succeeded to reach the level Bn at time q , it is convenient to introduce
the indicator potential functions Gn defined on the excursion space by

Gn((xk)p≤k≤q) = 1{xq∈Bn}.

With this notation, and for each n we have

(Tn ≤ T ) = (G1(X1) = 1, · · · , Gn(Xn) = 1) =

(
n∏

p=1

Gp(Xp) = 1

)
.

Integrating over all the process excursions, we obtain the following formula

P(Tn ≤ T ) = E
(

n∏

p=1

Gp(Xp)

)
. (6)

More generally, the law of the excursions in the rare event regime are
described by the following formulas

E(f(X0, · · · ,Xn)|Tn ≤ T ) =
E

(
f(X0, · · · ,Xn)

∏n
p=0 Gp(Xp)

)

E
(∏n

p=0 Gp(Xp)
) (7)
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for any bounded test function f .
Functional representation of the form (6), and (7), belong to the class of

Feynman-Kac formulas. A detailed account on these models can be found in
[2], and the references therein. These models have natural particle interpre-
tations, in terms of genealogical tree-based evolutions. An elementary genetic
type approximation model is briefly described as follows: When a particle,
starting at some level, does not succeed to enter into the next one, it is killed.
Otherwise, each time it enters into a closer level of the rare set, it splits into
several offsprings. Between the levels, these offsprings evolve as independent
copies of the stochastic process Xn , until they reach (or not) an even closer
level, and so on.

To be more precise, we evolve N particles according to a two-steps, and
genetic type mechanism:

(ξ1
n, · · · , ξN

n ) selection−−−−−→ (ξ̂1
n, · · · , ξ̂N

n ) mutation−−−−−−→ (ξ1
n+1, · · · , ξN

n+1) (8)

• During the selection, each particle with label i having succeeded to reach
the n-th level is held, and we set ξ̂i

n = ξi
n . The others ξ̂j

n are chosen
randomly (and uniformly) in the set of those having succeeded to reach
the level Bn . If Nn denotes the number of particle which succeeded to reach
the level Bn , then the estimate of the conditional probability P(Bn|Bn−1)
is simply given by the proportion ratio Nn/N .

• During the mutation, each particle ξ̂i
n evolves to a new location ξi

n+1 ,
randomly chosen according to the transition probability of the chain Xn

in the excursion space.

From previous consideration, a natural unbiased estimate of P(TA ≤ T ) is
simply given by the product

∏m+1
p=1 (Np/N) . Using the propagation of chaos

properties of the particle approximation models, one can prove that the above
estimate converges to the true value, as N → ∞ , [1, 2]. More precisely, we
have the almost sure convergence result

PN (TA < T ) =
m+1∏

p=1

Np

N
−−−−→
N→∞

P(TA < T ) .

The genealogical tree based model associated with the above genetic-type
algorithm represents the conditional distribution of the process evolving in
the rare event regime. To be more precise, we let

ξi
0,n ← ξi

1,n ← ξi
2,n ← · · · ← ξi

n,n

be the ancestral lines of the excursion-valued particles (ξi
n,n)i∈IN

n
having suc-

ceeded to reach the n-th level. For any bounded and measurable test function
f defined on the excursion space, we have the almost sure result

1|IN
n |>0 ×

1
|IN

n |
∑

i∈IN
n

f(ξi
0,n, · · · , ξi

n,n) −−−−→
N→∞

E (f(X0, · · · ,Xn)|Tn < T ) .
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In the figure 8, we provide a schematic picture of a genealogical tree associated
with N = 4 particles evolving on the lattice Z between a sequence of 3 upper-
levels. Each particle starting at the origin, tends to move back to the set of non
positive integer O = −N . The prototype of this model is the simple random
walk Xn on Z given by the transitions (1).

O

Z

B1

B2

B3

N
N

2

N
N 1

N
N3

0

U

U

1/2 =

1/2 =

3/4 =

absorbing region 

Fig. 8. Genealogical tree

3 Markov Chain and Random Excursion Models

Intuitively speaking, a sequence of random variables (Xn)n≥0 , taking values at
each time n in some measurable state space (En, En), is said to be a Markov
chain when its future and its past trajectories are independent, given the
present state of the chain. This Markov property is an extension to a random
phenomenon of the well-known property of a deterministic dynamical system,
which basically says that the future position and velocity are uniquely defined
as soon as they are known at a previous date.

A Markov chain is characterized by its Markov kernels Mn(xn−1, dxn) ,
which describe the conditional probability of the transition from the point
Xn−1 = xn−1 ∈ En−1 to the infinitesimal neighborhood dxn of the point
xn ∈ En . More formally we have that,

P(Xn ∈ dxn|Xn−1 = xn−1) = Mn(xn−1, dxn).

3.1 Canonical Probability Space

Using the Markov dependence property, µ as the distribution of the initial
random state X0 , we check that
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Pµ((X0, · · · , Xn) ∈ d(x0, · · · , xn))
= Mn(xn−1, dxn)Pµ ((X0, · · · , Xn−1) ∈ d(x0, · · · , xn−1))
= µ(dx0)M1(x0, dx1) · · ·Mn(xn−1, dxn)

where d(x0, · · · , xn) stands for an infinitesimal neighborhood of the path point

(x0, · · · , xn) ∈ E0 × · · · × En .

We define the distribution Pµ,n of the canonical sequence (X0, · · · , Xn)
on Ωn =

(∏n
p=0 Ep

)
, equipped with the product σ-field Fn = ⊗n

p=0Ep , by
setting

Pµ,n(dx[0,n]) = µ(dx0)M1(x0, dx1) · · ·Mn(xn−1, dxn).

By the consistency property of the collection Pµ,n , n ∈ N , the Ionescu Tulcea’s
theorem ensures the existence of an overall distribution Pµ, on the whole
path space Ω =

(∏
n≥0 En

)
, with finite-dimensional distributions Pµ,n . If

we denote by Xn, n ∈ N , the canonical projection mappings

Xn : ω = (ωn)n≥0 ∈ Ω −→ Xn(ω) = ωn ∈ En ,

then for any Ap ∈ Ep, p ≥ 0, we have that

Pµ((X0, · · · , Xn) ∈ (A0 × · · · × An))

=
∫

A0×···×An

µ(dx0)M1(x0, dx1) · · ·Mn(xn−1, dxn).

For obvious reasons, the probability model defined in this way

(Ω,F = (Fn)n≥0, X = (Xn)n≥0, Pµ), (9)

is called the canonical realisation of the Markov chain, with transitions Mn ,
and initial distribution µ .

3.2 Path-Space Markov Models

As we mentionned in the introduction, the path space modelling is dictated
by the excursions analysis of the process in the rare event regime.

Let (En, En) be an auxilairy collection of mesurable spaces, and let Xn

be a nonanticipative sequence of En-valued random variables in the sense
that the distribution of Xn+1 on En+1 only depends on the random states
(X0, · · · , Xn) . By direct inspection, we notice that the path sequence

Xn = X[0,n] = (X0, · · · , Xn),

forms a nonhomogeneous Markov chain taking values in the product space
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E[0,n] = (E0 × · · · × En) ,

equipped with the product σ-field

Fn = E0 ⊗ · · · ⊗ Ep .

In this situation, each point x[0,n] = (x0, · · · , xn) ∈ E[0,n] has to be thought
of like a path from the origin up to time n .

When Xn is a Markov chain, with non necessarily time homogeneous tran-
sitions Mn(xn−1, dxn) from En−1 into En , the Markov chain Xn in path space
is called the historical process, or the path process of the chain Xn .

The Markov transitions Mn of the chain Xn are connected to Mn by the
formula

Mn+1(x[0,n], dy[0,n+1]) = δx[0,n](dy[0,n])Mn+1(yn, dyn+1).

The motion of the path process Xn simply consists of extending each path
of Xn with an elementary Mn-transition. In summary, we have the synthetic
diagram

Xn−1 = X[0,n−1] −→ Xn = X[0,n] = (X[0,n−1], Xn),

with the random state Xn ∼ Mn+1(Xn−1, ·) .

4 Feynman-Kac Models

To describe precisely the Feynman-Kac models, we need to introduce some
additional notation. Firstly, we denote by Bb(E) the set of bounded measur-
able functions on a given measurable space (E, E) . The expectation operators
with respect to Pµ and Px are denoted by Eµ and Ex . For instance, for any
Fn ∈ Bb(E[0,n]) , we have

Eµ(Fn(X[0,n])) =
∫

E[0,n]

Fn(x[0,n])Pµ,n(dx[0,n]).

We denote respectively by M(En), and P(En) ⊂ M(En) the set of
bounded and signed measures, and the subset of probability measures on the
measurable space (En, En) . We also recall that any Markov kernel Mn from
En−1 to En generates two operators: The first acting on Bb(En) , taking value
in Bb(En−1) , and defined by

∀(xn−1, fn) ∈ (En−1 × Bb(En)) ,

Mn(fn)(xn−1) =
∫

En

Mn(xn−1, dxn)fn(xn) .
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The other one acting on measures µn−1 ∈ P(En−1) , taking values in P(En) ,
and defined by

∀(µn−1, An) ∈ (P(En−1) × En) ,

(µn−1Mn)(An) =
∫

En−1

µn−1(dxn−1)Mn(xn−1, An) .

Finally, if Mn+1(xn, dxn+1) is a Markov transition from (En, En) , to another
measurable space (En+1, En+1) , then we denote by MnMn+1 the composition
operator,

MnMn+1(xn−1, dxn+1) =
∫

En

Mn(xn−1, dxn)Mn+1(xn, dxn+1).

Finally, for a given integral operator M from E0 into E1 , for any x ∈ E0 and
ϕ1, ϕ2 ∈ Bb(E1) , we simplify notation, and we write

M [(ϕ1 − Mϕ1)(ϕ2 − Mϕ2)](x)

instead of

M [(ϕ1−M(ϕ1)(x))(ϕ2−M(ϕ2)(x))](x) = M(ϕ1ϕ2)(x)−M(ϕ1)(x)M(ϕ2)(x).
(10)

4.1 Description of the Models

We consider a given collection of bounded and En-measurable nonnegative
functions Gn : En → [0,∞) such that for any n ∈ N , we have

Eµ

( n∏

p=0

Gp(Xp)
)

> 0. (11)

Definition 1. The Feynman-Kac prediction and updated path models, asso-
ciated with the pair (Gn, Mn) (and the initial distribution µ), are the sequence
of measures on path space defined respectively, for any n ∈ N , by the formulas

Qµ,n(dx[0,n]) =
1
Zn

{n−1∏

p=0

Gp(xp)
}

Pµ,n(dx[0,n]) ,

Q̂µ,n(dx[0,n]) =
1
Ẑn

{ n∏

p=0

Gp(xp)
}

Pµ,n(dx[0,n]) .

The normalizing constants

Zn = Eµ

(n−1∏

p=0

Gp(xp)
)

and Ẑn = Zn+1 = Eµ

( n∏

p=0

Gp(xp)
)

are also often called the partition functions.
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Note that for any test function Fn ∈ Bb(E[0,n]) , we have

Qµ,n(Fn) =
1
Zn

Eµ

(
Fn(X0, · · · , Xn)

n−1∏

p=0

Gp(Xp)
)

,

Q̂µ,n(Fn) =
1
Ẑn

Eµ

(
Fn(X0, · · · , Xn)

n∏

p=0

Gp(Xp)
)

.

The Feynman-Kac models have a particular dynamic structure. To de-
scribe precisely their evolution, it is convenient to introduce the flow of the
time marginals.

Definition 2. The sequence of bounded nonnegative measures γn, and γ̂n, on
En , and defined for any fn ∈ Bb(En) by the formulas

γn(fn) = Eµ

(
fn(Xn)

n−1∏

p=0

Gp(Xp)
)

,

γ̂n(fn) = Eµ

(
fn(Xn)

n∏

p=0

Gp(Xp)
)

,

are called the unnormalized prediction, and updated, Feynman-Kac model as-
sociated with the pair (Gn, Mn) . The sequence of distributions ηn, and η̂n, on
En , and defined for any fn ∈ Bb(En) by

ηn(fn) = γn(fn)/γn(1) and η̂n(fn) = γ̂n(fn)/γ̂n(1)

are called the normalized prediction, and updated, Feynman-Kac model asso-
ciated with the pair (Gn, Mn) .

To get one step further, we notice that

γn(fnGn) = γ̂n(fn) , and η̂n(fn) =
γn(fnGn)
γn(Gn)

=
ηn(fnGn)
ηn(Gn)

. (12)

An other key product formula that relates the “unnormalized models”
(γn, γ̂n) with the Feynman-Kac distribution flow (ηp)p≤n , is given by

γn(fn) = ηn(fn)
n−1∏

p=0

ηp(Gp) and γ̂n(fn) = η̂n(fn)
n∏

p=0

ηp(Gp).

The identity (12) leads us to introduce the following transformation.

Definition 3. The Boltzmann-Gibbs transformation associated with a poten-
tial function Gn on (En, En) is the mapping

Ψn : η ∈ Pn(En) −→ Ψn(η) ∈ Pn(En)
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from the subset Pn(En) = {η ∈ P(En) : η(Gn) > 0} into itself, and defined
by

Ψn(η)(dxn) =
1

η(Gn)
Gn(xn) dxn .

In this notation, we see that

η̂n = Ψn(ηn) , and ηn = η̂n−1Mn . (13)

The last identity comes from the following observation

γn(fn) = Eµ

(
Mn(fn)(Xn−1)

n−1∏

p=0

Gp(Xp)
)

= γ̂n−1(Mn(fn)) .

We conclude that, the Feynman-Kac flows (ηn, η̂n) are the solution of the
nonlinear and measure-valued processes equations

ηn = Φn(ηn−1) , and η̂n = Φ̂n(η̂n−1) , (14)

with the one step mappings Φn, and Φ̂n, defined by

Φn(η) = Ψn−1(η)Mn , Φ̂n = Ψn(ηMn) .

We emphasize that the above evolution analysis strongly relies on the fact
that the potential functions (Gn)n≥0 satisfy the regularity condition stated
in (11). For instance, the measure-valued equations (14) may not be defined
for any initial distribution η0 or η̂0 , since it may be happen that η0(G0) = 0 ,
or η̂0(G0) = 0 . On the other hand, when the potential functions Gn are
unbounded, the Boltzmann-Gibbs transformation Ψn are only defined on the
set {η ∈ P(En), 0 < η(Gn) < ∞} .

To solve these problems, we further require that the pairs (Gn, Mn) satisfy
for any xn ∈ En the following condition:

0 < Ĝn(xn) = Mn+1(Gn+1)(xn) and sup
xn

|Ĝn(xn)| = ‖Ĝn‖ < ∞ . (15)

In this situation, the integral operators

M̂n(xn−1, dxn) =
Mn(xn−1, dxn)Gn(xn)

Mn(Gn)(xn−1)

are well-defined Markov-kernels from En−1 to En . With this notation, the
mapping Φ̂n can be expressed as follows

Φ̂n = Ψ̂n−1(η)M̂n ,

where Ψ̂n is the Boltzmann-Gibbs transformation associated with the pair
potential/kernel (Ĝn, M̂n) and the initial measure η̂0 . Thus the updated
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Feynman-Kac models associated with the pair (Gn, Mn) and initial measure
η0 coincide with the prediction Feynman-Kac models associated with the pairs
(Ĝn, M̂n) starting at η̂0 . As we mentionned above, the interpretation of the
updated flow as a prediction flow associated with the pair (Ĝn, M̂n) is often
more judicious. To illustrate this observation, we examine the situation where
the potential function Gn may take some null values, and we set

Ên = {xn ∈ En : Gn(xn) > 0} .

It may happen that Ên is not Mn-accessible from any point in En−1 . In this
case, we may have Mn(xn−1, Ên) = 0 , for some xn−1 ∈ En−1 , and therefore
Mn(Gn)(xn−1) = 0 . In this situation, the condition (15) is clearly not met.
So, we weaken it by considering the following condition

(A) ∀xn ∈ Ên, Mn+1(xn, Ên+1) > 0, and η0(Ê0) > 0 , (16)

which says that the set Ên+1 is accessible from any point in Ên. This acces-
sibility condition avoids some degenerate tunneling problems such as those
represented in the figure 9.

2

Gn = 0

1/3

1/3

1/3

En = 7

7
Fig. 9. Tunneling problem

Assuming the condition (A), the condition (15) is only met for any xn ∈
Ên , and the operators M̂n (defined for any xn−1 ∈ Ên−1) are well-defined
Markov kernels from Ên−1 into Ên . Finally, we note that for any η0 ∈ P(E0) ,
with η0(Ê0) > 0 , the updated measure η̂0 = Ψ0(η0) is such that η̂0(Ê0) = 1 .

Summarizing the discussion above, the updated Feynman-Kac measures
η̂n ∈ P(Ên) can be interpreted as the prediction models associated with the
pair potential/kernel (Ĝn, M̂n) on the restricted state space (Ên, Ên) , as soon
as the accessibility condition A is met. We can also check that

Eη0

(
fn(Xn)

n∏

p=0

Gp(Xp)

)
= η0(G0) Êbη0

(
fn(Xn)

n−1∏

p=0

Ĝp(Xp)

)
> 0 .

In particular, this shows that for any n ∈ N , we have
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ηn ∈ Pn(En) = {η ∈ P(En) : η(Gn) > 0} .

Therefore, the Feynman-Kac flow is a well-defined two-step updating/predic-
tion model

ηn ∈ Pn(En) updating−−−−−→ η̂n ∈ Pn(Ên) prediction−−−−−−→ ηn+1 ∈ Pn+1(En+1) .

Finally, when the accessibility condition (A) is not met, it may happen that

η̂nMn+1(Gn+1) = ηn+1(Gn+1) = 0 .

In this situation, the Feynman-Kac flow ηn is well-defined, up to the first
time τ we have ητ (Gτ ) = 0 . At time τ , the measure ητ cannot be updated
anymore. Recalling that ητ (Gτ ) = γτ+1(1)/γτ (1) , we also see that τ coincides
with the first time that

γ̂τ (1) = γτ+1(1) = Eη0

( τ∏

p=0

Gp(Xp)
)

= 0 .

4.2 Physical Interpretations of the Feynman-Kac Models

We now provide different physical interpretations of the Feynman-Kac models.
The first one is the traditional trapping interpretation, the second one is based
on measure-valued, and interacting processes ideas, such as those arising in
mathematical biology.

In the first part, we design a Feynman-Kac representation of distribution
flows of a Markov particle evolving in an absorbing medium. As we mentionned
in the introduction, these probabilistic models provide a physical interpreta-
tion of rare event probabilities in terms of absorption time distributions. In
the second part, we set out an alternative representation in terms of non-
linear and measure valued processes, the so-called McKean interpretation.
The cornerstone of the particle interpretations, developped in this section, is
the interpretation of the Feynman-Kac model as such the distribution of a
non absorbed particle.

To clarify the presentation, we assume that the potential functions Gn

are strictly positive. On the other hand, since the potential functions Gn are
assumed to be bounded, we can replace in the definition of the normalized
measures ηn , η̂n , the functions Gn by Gn/‖Gn‖ , without altering their na-
ture. So, there is no loss of generality to assume that 0 < Gn(xn) ≤ 1 .

Killing Interpretation

Now, we identify the potential functions Gn with the multiplicative operator
Gn, acting on Bb(En) , and defined by the formula

Gn(fn)(xn) = Gn(xn) fn(xn) .
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We can alternatively see Gn as the integral operator on En defined by

Gn(xn, dyn) = Gn(xn)δxn(dyn) .

In this connection, we note that Gn is a sub-Markovian kernel

Gn(xn, En) = Gn(xn) ≤ 1 .

The first way to turn the sub-Markovian kernels Gn into the Markov case con-
sists in adding a cemetery point c to the state space En , and then extending
the various quantities on the space Ec

n = En ∪ {c} as follows:

• The test functions fn and the potential functions Gn are extended by
setting fn(c) = 0 = Gn(c) .

• The Markov transitions Mn are extended into transitions from Ec
n−1 to

Ec
n by setting M c

n(c, ·) = δc , and for each xn−1 ∈ En−1 ,

M c
n(xn−1, dxn) = Mn(xn−1, dxn) .

• Finally, the Markov extension Gc
n of Gn is given by

Gc
n(xn, dyn) = Gn(xn)δxn(dyn) + (1 − Gn(xn))δc(dyn) .

The corresponding Markov chain
(
Ωc =

∏

n

Ec
n,Fc = (Fc

n)n≥0, X = (Xn)n≥0, Pc
µ

)
,

with initial distribution µ ∈ P(E0) and elementary transitions

Qc
n+1 = Gc

nM c
n+1 , (17)

can be regarded as a Markov particle evolving in an environment, with absor-
bing obstacles related to potential functions Gn . In view of (17), we see that
the motion is decomposed into two separate killing/exploration transitions,

Xn
killing−−−−→ X̂n

exploration−−−−−−−→ Xn+1

which are defined as follows:

• Killing: If Xn = c , then we set X̂n = c . Otherwise the particle Xn is
still alive. In this case, we perform the following random choice: With a
probability G(Xn) , it remains in the same site and we set X̂n = Xn; and
with probability 1 − Gn(Xn) , it is killed, and we set X̂n = c .

• Exploration: Firstly, when the particle has been killed, we hace X̂n = c ,
and we set Xp = X̂p = c for any p > n . Otherwise, the particle X̂n ∈ En

evolves to a new location Xn+1 in En+1 , randomly chosen according to
the distribution Mn+1(X̂n, ·) .
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In this physical interpretation, the Feynman-Kac flows (η̂n, ηn) represent
the conditional distributions of a nonabsorbed Markov particle. To see this
claim, we denote by T the time at which the particle has been killed

T = inf{n ≥ 0 : X̂n = c} .

By construction, we have

Pc
µ(T > n) = Pc

µ(X̂0 ∈ E0, · · · , X̂n ∈ En) = Eµ

( n∏

p=0

Gp(Xp)
)

.

This shows that the normalized constants of η̂n , and ηn , represent respectively
the probability for the particle to be killed at a time strictly greater than or
at least equal to n . That is, we have that

γ̂n(1) = Pc
µ(T > n) and γn(1) = Pc

µ(T ≥ n) .

Similar arguments yield that

γ̂n(fn) = Ec
µ

(
fn(Xn)1{T>n}

)
and γn(fn) = Ec

µ

(
fn(Xn)1{T≥n}

)
.

Finally, we conlude that

η̂n(fn) = Ec
µ(fn(Xn)|T > n) and ηn(fn) = Ec

µ(fn(Xn)|T ≥ n) .

The subsets G−1
n ((0, 1)) and G−1

n (0) are called respectively, the sets of soft
and hard obstacles (at time n). A particle entering into a hard obstacle is
instantly killed; whereas if it enters into a soft obstacle, its lifetime decreases.
When the accessibility condition (A) is met, we can replace the mathema-
tical objects (η0, En, Gn, Mn) by (η̂0, Ên, Ĝn, M̂n) . We define in this way a
particle motion in an absorbing medium, with no hard obstacles. Loosely
speaking, the hard obstacles have been replaced by repulsive obstacles. For
instance, in the situation where Gn = 1 bEn

, the Feynman-Kac model asso-
ciated with (η0, Gn, Mn) corresponds to a particle motion in an absorbing
medium, with pure hard obstacle sets Ên; while the Feynman-Kac associated
with (η̂0, Ĝn, M̂n) , corresponds to a particle motion in an absorbing medium,
with only soft obstacles related to the potential functions Ĝn .

Interacting Process Interpretation

In interacting process literature, Feynman-Kac flows are alternatively inter-
preted as nonlinear measure-valued process. For instance, the distribution ηn

in (14) is regarded as a solution of nonlinear recursive equations. This equation
can be rewritten in the following form

ηn+1 = ηnKn+1,ηn , (18)
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where Kn+1,ηn is the collection of Markov kernels given by

Kn+1,ηn(x, dz) = Sn,ηnMn+1(x, dz) =
∫

En

Sn,ηn(x, dy)Mn+1(y, dz) ,

with the selection type transitions

Sn,ηn(x, dy) = Gn(x)δx(dy) + (1 − Gn(x))Ψn(ηn)(dy) .

Note that the corresponding evolution equation is now decomposed into
two separate transitions

ηn
Sn,ηn−−−−→ η̂n = ηnSn,ηn

Mn+1−−−−→ ηn+1 = η̂nMn+1 , (19)

In constrast with the killing interpretation, we have turned the sub-Markovian
kernel Gn into the Markov case in a nonlinear way, by replacing the Dirac
measure δc , by the Boltzmann-Gibbs jump distribution Ψn(ηn) .

The choice of Kn,η is not unique. A collection of Markov kernels Kn,η ,
η ∈ P(En) satisfying the compatibility condition

Φn(η) = ηKn,η

for any η ∈ P(En) is called a McKean interpretation of the flow ηn . In com-
paraison with (17), the motion of the canonical model Xn → Xn+1 associated
with the Markov kernels (Kn,η)η∈P(En) is the overlapping of an interacting
jump, and an exploration transition

Xn
interacting jump−−−−−−−−−−→ X̂n

exploration−−−−−−−→ Xn+1 .

These two mechanisms are defined as follows:

• Interacting jump: Given the position, and the distribution ηn at time
n of the particle Xn , a jump is performed to a new site X̂n , randomly
chosen according to the distribution

Sn,ηn(Xn, ·) = Gn(Xn)δXn + (1 − Gn(Xn))Ψn(ηn) .

In other words, with a probability Gn(Xn) the particle remains in the
same site, and we set X̂n = Xn . Otherwise, it jumps to a new location,
randomly chosen according to the Boltzmann-Gibbs distribution Ψn(ηn) .
Notice that particles are attracted by regions with high potential values.

• Exploration: The exploration transition coincides with that of the killed
particle model. During this stage, the particle evolves to a new site Xn+1 ,
randomly chosen according to Mn+1(X̂n, ·) .
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5 Interacting Particle Systems

The basic idea behind the interacting particle systems is to associate to a given
nonlinear dynamical structure, a sequence of EN

n -valued Markov processes, in
such a way that the configuration occupation measures converge, as N →
∞ , to the desired distribution. The parameter N represents the precision
parameter, as well as the size of the systems. The state components of the
EN

n -valued Markov process are called particles.

5.1 Interacting Particle Interpretations

Hereafter, we suppose the potential functions Gn are bounded and strictly
positive (the situation where Gn may take null values can be reduced to this
situation, under appropriate accessibility conditions, by replacing ηn by η̂n).

We recall that ηn satisfy the nonlinear recursive equation (18) where the
kernels Kn,η are a combination of a selection and mutation transition

Kn+1,η = Sn,ηMn+1 . (20)

The selection transition Sn,η on En is given by

Sn,ηn(x, dy) = εnGn(x)δx(dy) + (1 − εnGn(x))Ψn(ηn)(dy) , (21)

where εn stands for non negative number such that εnGn ≤ 1 .

Definition 4. The interacting particle model associated with a collection of
Markov transitions Kn,η, η ∈ P(En), n ≥ 1 , and with initial distribution η0 ,
is a sequence of nonhomogeneous Markov chains

(
Ω(N) =

∏

n≥0

EN
n , FN = (FN

n )n≥0, ξ = (ξn)n≥0, PN
η0

)
,

taking values at each time n in the product space EN
n . That is, we have

ξn = (ξ1
n, · · · , ξN

n ) ∈ EN
n = En × · · · × En︸ ︷︷ ︸

Ntimes

.

The initial configuration ξ0 consists of N independent, and identically dis-
tributed random variables, with common law η0 . Its elementary transitions
from EN

n−1 into EN
n are given by

PN
η0

(
ξn ∈ dxn|ξn−1

)
=

N∏

p=1

Kn,m(ξn−1)(ξ
p
n−1, dxp

n) ,

where

m(ξn−1) =
1
N

N∑

i=1

δξi
n−1
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is the empirical measure of the configuration ξn−1 of the system, and dxn =
dx1

n×· · ·×dxN
n is an infinitesimal neighborhood of a point xn = (x1

n, · · · , xN
n ) ∈

EN
n .

The N -particle model, associated with the Markov transition Kn,η given
by (20), is the Markov chain ξn with elementary transitions

PN
η0

(
ξn+1 ∈ dxn+1|ξn) =

∫

EN
n

Sn(ξn, dxn)Mn+1(xn, dxn+1) .

The Boltzmann-Gibbs transition Sn , from EN
n into itself, and the mutation

transition Mn+1 , from EN
n into EN

n+1 , are defined by the product formulas

Sn(ξn, dxn) =
N∏

p=1

Sn,m(ξn)(ξp
n, dxp

n) ,

Mn+1(xn, dxn+1) =
N∏

p=1

Mn+1(xp
n, dxp

n+1) .

This integral decomposition shows that (the deterministic) two-step up-
dating/prediction transitions in (19) have been replaced by a two-step selec-
tion/mutation transitions (8)

ξn ∈ EN
n

selection−−−−−→ ξ̂n ∈ EN
n

mutation−−−−−−→ ξn+1 ∈ EN
n+1 .

In more details, the motion of the particles is defined as follows:

• Selection: Given the configuration ξn ∈ EN
n of the system at time n ,

the selection transition consists in selecting randomly N particles ξ̂i
n with

respective distribution Sn,m(ξn)(ξi
n, ·) . In other words, with a probability

εnGn(ξi
n) , we set ξ̂i

n = ξi
n; otherwise, we select randomly a particle ξ̃i

n

with distribution

Ψn(m(ξn)) =
N∑

i=1

Gn(ξi
n)

∑N
j=1 Gn(ξj

n)
δξi

n
, and we set ξ̂i

n = ξ̃i
n .

• Mutation: Given the selected configuration ξ̂n ∈ EN
n , the mutation tran-

sition consists in sampling randomly N independent random particles ξi
n+1

with respective distributions Mn+1(ξ̂i
n, ·) .

5.2 Particle Models with Degenerate Potential

We now discuss the situation where Gn is not necessarily strictly positive. To
avoid some complications, we suppose the accessibility condition (A) is met.
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Two strategies can be underlined. In view of the discussion given in
Sect. 4.1, the first idea is to consider the N -particle approximation model as-
sociated with some McKean interpretation of the updated model η̂n = Ψn(ηn)
which can be regarded as a sequence of measures on Ên = G−1

n (0,∞) . Fur-
thermore, η̂n coincide with the prediction model starting at η̂0 and associated
with the pair of potentials/kernels (Ĝn, M̂n) on the state spaces Ên .

The potential function Ĝn is now a strictly positive function on Ên and
the updated model η̂n satisfies the recursive equation

η̂n+1 = η̂nK̂n+1,bηn with K̂n+1,η = Ŝn,ηM̂n+1 .

The selection transitions are now Markov kernels, from Ên into itself, and
they are defined for any xn ∈ Ên by the formula

Ŝn,η(xn, dyn) = εnĜn(xn)δxn(dyn) + (1 − εnĜn(xn))Ψ̂n(η)(dyn) .

The Boltzmann-Gibbs transformation Ψ̂n is given by

Ψ̂n(η)(dxn) =
1

η(Ĝn)
Ĝn(xn) η(dxn) .

In this interpretation, the model η̂n satisfies the deterministic evolution
equation

η̂n
updating−−−−−→ η̃n = η̂nŜn,bηn

prediction−−−−−−→ η̂n+1 = η̃nM̂n+1 .

The N -particle associated with this McKean interpretation is defined as be-
fore.

The second strategy consists in still working with the McKean interpre-
tation of the prediction flow associated with the collection of transitions
Kn+1,η = Sn,ηMn+1 with η ∈ Pn(En) . In this case the particle interpretation
given in Definition 4 is not well-defined. Indeed, it may happen that the whole
configuration ξn moves out of the set Ên . To describe rigorously the particle
model we proceed as in Sect. 4.2. We add a cemetery point ∆ to the pro-
duct space EN

n and we extend the test functions and the mutation/selection
transitions (Sn,Mn) on EN

n to EN
n ∪ {∆} as follows:

• The test functions ϕn ∈ Bb(EN
n ) are extended by setting ϕn(∆) = 0 .

• The selection transitions Sn , from EN
n into itself, are extended into tran-

sitions on EN
n ∪ {∆} by setting Sn(x, ·) = δ∆ , as soon as the empirical

measure m(x) /∈ Pn(En) .
• The mutation transitions Mn+1 are extended into transitions from EN

n ∪
{∆} to EN

n+1 ∪ {∆} by setting Mn+1(∆, ·) = δ∆ .

The corresponding interacting particle model is a sequence of nonhomoge-
neous Markov chains, taking values at each time n in EN

n ∪{∆} . It is defined
by a two-step selection/mutation transition of the same nature as before:
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ξn ∈ EN
n ∪ {∆} selection−−−−−→ ξ̂n ∈ EN

n ∪ {∆} mutation−−−−−−→ ξn+1 ∈ EN
n+1 ∪ {∆} .

The only difference is that the chain is killed at the first time n , we have
m(ξn) /∈ Pn(En) . Let τN and τ be the dates at which respectively the chain
and the Feynman-Kac model are killed:

τN = inf{n ∈ N; m(ξn)(Gn) = 0}, and τ = inf{n ∈ N; ηn(Gn) = 0} .

Then it is intuitively clear that τN ≤ τ , and in Sect. 6.3 it will be proved
that for any n ≤ τ and N ≥ 1 we have exponential estimate

PN
η0

(τN ≤ n) ≤ a(n) exp(−N/b(n)) .

In particular, this shows that limN→∞ PN
η0

(τN = τ) = 1 .

5.3 Application to Particle Analysis of Rare Events

We use the notations and conventions as were introduced in Sects. 2.5 and 3.
We recall that X = (Xn)n∈N is a strong Markov chain taking values in some
metric state space (S, d) . The process X starts in some Borel set O ⊂ S with
a given probability distribution ν0 . We also consider a pair of Borel subsets
(A, R) , such that A0 ∩ R = ∅ = A ∩ R .

We associate with this pair, the first time T the process hits A ∪ R , and
we let TR be the hitting time of the set R . We also assume that for any initial
x0 ∈ O , we have Px(T < ∞) = 1 . One would like to estimate the quantities

P(T < TR) = P(XT ∈ A) , (22)
Law(Xn; 0 ≤ n ≤ T |T < TR) = Law(Xn; 0 ≤ n ≤ T |XT ∈ A) .

It often happens that most of the realizations of X never reach the target
set A , but are attracted, and absorbed by some non empty set R . These rare
events are difficult to analyze numerically. One strategy to estimate these
events is to consider the sequence of level-crossing excursions Xn associated
with a splitting of the state space, namely

X0 = (0, X0), and Xn = (Tn, X[Tn−1,Tn]) ,

with the entrance times Tn = inf{n ≥ 0 : Xn ∈ Bn ∪R} . This sequence forms
a Markov chain taking value in the set of excursions E = ∪p≥0({p} × Sp) .

One way to check whether or not a random path has succeeded to reach the
desired n-th level is to consider the indicator potential functions Gn(q, x[p,q]) =
1Bn(xq) , with the convention B0 = O . Using elementary calculations, we
obtain the following Feynman-Kac representation of the desired quantities
(22).

Proposition 1. For any n and any fn ∈ Bb(E) , we have that

E (fn(X0, · · · ,Xn) ; Tn < TR) = E
(

fn(X0, · · · ,Xn)
n∏

p=0

Gp(Xp)

)
.
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The prediction Feynman-Kac model ηn ∈ P(E) , defined by

ηn(f) = γn(f)/γn(1) with γn(f) = E
(

f(Xn)
n−1∏

p=0

Gp(Xp)

)
,

satisfies the measure-valued dynamical system

ηn+1 = Φn+1(ηn) with η0 = δ0 ⊗ ν0 .

The mappings Φn+1 , from Pn(E) into P(E) , are defined by Φn+1(η) =
Ψn(η)Mn+1 , where the Markov kernels Mn(u, dv) represent the Markov tran-
sitions of the chain excursions Xn . We have the following lemma

Lemma 1. For any n ≥ 0 , we have

P(Tn < TR) = γ̂n(1) = γn+1(1) .

In addition, we have P(Tn < TR|Tn−1 < TR) = ηn(Gn) , and for any f ∈
Bb(E)

ηn(f) = E
(
f(Tn, X[Tn−1,Tn])|Tn−1 < TR

)
,

η̂n(f) = E
(
f(Tn, X[Tn−1,Tn])|Tn < TR

)
.

This lemma gives a Feynman-Kac interpretation of rare events probabili-
ties. Since the potentials are indicator functions, it is more judicious to rewrite
the Boltzmann-Gibbs transformations Ψn(η) = ηSn,η in terms of the selection
Markov transitions

Sn,η(u, dv) = (1 − 1{G−1
n (1)}(u))Ψn(η)(dv) + 1{G−1

n (1)}(u)δu(dv) .

Note that G−1
n (1) represents the collection of excursions in S entering the nth

level Bn; that is, we have that

G−1
n (1) = {u = (q, x[p,q]) ∈ E; xq ∈ Bn} .

The particle interpretation of these discrete Feynman-Kac model is simply
derived from Sect. 5.2. In this context, the particle model consists in evolving
a collection of N -excursion valued particles

ξi
n = (T i

n, X i
[T i

n−1,T i
n]) ∈ E ∪ {∆} ,

ξ̂i
n = (T̂ i

n, X̂ i
[ bT i

n−1, bT i
n]

) ∈ E ∪ {∆} .

The auxiliary point ∆ stands for a cemetery point, the random time pairs
(T i

n−1, T
i
n) and (T̂ i

n−1, T̂
i
n) represent the length of the corresponding excur-

sions. At the time n = 0 , the initial system consists of N independent, and
identically distributed, S-valued random variables ξi

0 = (0, X i
0) , with common
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law η0 = δ0 ⊗ ν0 . Since we have G0(0, u) = 1 , there is no updating transition
at time n = 0 , and we set ξ̂i

0 = ξi
0 , for each 1 ≤ i ≤ N .

Mutation: The mutation stage ξ̂n → ξn+1 at time n + 1 is defined as
follows. If ξ̂n = ∆ , we set ξn+1 = ∆ . Otherwise, during the mutation, each
selected excursion ξ̂i

n evolves randomly, and independently of each other, ac-
cording to the Markov transition Mn+1 of the chain Xn . Thus, ξi

n+1 is a ran-
dom variable with distribution Mn+1(ξ̂i

n, ·) . More precisely, we set T i
n = T̂ i

n ,
and the particle X̂ i

[ bT i
n−1, bT i

n]
evolves randomly as a copy of the excursion pro-

cess (Xs)s≥T i
n

starting at XT i
n

, and up to the first time T i
n+1 it visits Bn+1 ,

or returns to R . The stopping time T i
n+1 represents the first time t ≥ T i

n the
ith excursion hits the set Bn+1 ∪ R .

Selection: The selection mechanism ξn+1 → ξ̂n+1 is defined as follows. In
the mutation stage, we have sampled N excursions ξi

n+1 . Some of these par-
ticles have succeeded to reach the desired set Bn+1 , and the other ones have
entered into R . We denote by IN(n + 1) the set of the labels of the particles
having reached the (n + 1)-th level, and we set m(ξn+1) = N−1

∑N
i=1 δ(ξi

n+1)
.

Two situations may occur. If IN (n+1) = ∅ then none of the particles have suc-
ceeded to hit the desired level. In this situation, we have m(ξn+1) /∈ Pn+1(E) ,
and the algorithm has to be stopped. In this case, we set ξ̂n+1 = ∆ . Oth-
erwise, the selection transition is defined as follows. Each particle ξ̂n+1 is
sampled according to the selection distribution

Sn,m(ξn+1)(ξ
i
n+1, dv)

= 1Bn+1(X
i
T i

n+1
)δξi

n+1
(dv) + 1BC

n+1
(X i

T i
n+1

)Ψn(m(ξn+1))(dv) .

More precisely, if the i-th excursion has reached the desired level, then we set
ξ̂i
n+1 = ξi

n+1 . In the opposite case, the particle has not reached the (n+1)-th
level, but it has visited the set R . In this case, ξ̂i

n+1 is chosen randomly and
uniformly in the set {ξj

n+1; j ∈ IN (n + 1)} of all excursions having entered
into Bn+1 . In other words, each particle that doesn’t enter into the (n+1)-th
level is killed, and instantly a different particle in the Bn+1 level splits into
two offsprings.

For each time n < τN = inf{n ≥ 0 : X i
T i

n
∈ R, 1 ≤ i ≤ n} , the N -particle

approximation measures (γN
n , ηN

n , η̂N
n ) associated with (γn, ηn, η̂n) are defined

by
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γ̂N
n (1) = γN

n (Gn) = N−n
n∏

p=1

Card(IN (p)) ,

ηN
n =

1
N

N∑

i=1

δξi
n

,

η̂N
n = Ψn(ηN

n ) =
1

Card(IN (n))

∑

i∈IN (n)

δ(T i
n,Xi

[T i
n−1,Ti

n]
) .

Thus, γ̂N
n (1) is the proportion product of excursions having entered levels

B1, · · · , Bn . Also notice that η̂N
n is the occupation measure of the excursions

entering the nth level.
The asymptotic analysis of these particles measures will be discussed in

the following sections. We will prove the following results (see notation (10)):
Theorem 1. For any n ≥ 0 and N ≥ 1 we have

P(τN ≤ n) ≤ a(n) exp(−N/b(n)) .

The particle estimates are unbiased, E(γ̂N
n (1)1{n<τN}) = P(Tn < TR) , and

for any p ≥ 1 , and any n ≥ 0 , we have
√

N E
(
|γ̂N

n (1)1{n<τN} − P(Tn < TR)|p
)1/p ≤ a(p)b(n) ,

for some finite constants a(p), b(n) < ∞ whose values only depend respectively
on the parameters p and n .

In addition, for any 0 ≤ n ≤ m + 1 , the sequence of random variables

WN
n+1 =

√
N(γN

n (1)1{τN>n} − P(Tn < TR))

converges in law (as N tends to ∞) to a centered Gaussian random variable
Wn+1 with variance

σ2
n =

n+1∑

q=0

(γq(1))2ηq−1(Kq,ηq−1 [Qq,n(1) − Kq,ηq−1Qq,n(1)]2) .

The collection of functions Qq,n+1(1) on the excursion space E are defined for
any x = (xn)s≤n≤t by

Qq,n+1(1)(t, x) = 1Bq(xt)P(Tn < TR|Tq = t, XTq = xt) .

Example 1. When the set S = Rd is the Euclidean space, we can think of a
sequence of centered decreasing balls with radius 1/(n + 1)

Bn = B(0,
1

n + 1
) and R = S \ B(0, 1 + ε)

for some ε > 0 . Further assume that the process X exits the ball of radius 1+ε
in finite time. In this situation, P(T < TR) is the probability that X hits the
smallest ball Bm , starting with 1/2 < |X0| ≤ 1 , and before exiting the ball
of radius 1 + ε . The distribution (22) represents the conditional distribution
of the process X in this ballistic regime (see Fig. 10).
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=B(4)=target set

A

B(0)

B(1)
B(2)

B(3)

Fig. 10. Ballistic regime, target B(4) with N = 4

6 Asymptotic Behavior

This section is concerned with the asymptotic behavior of particle approx-
imation models, as the size of the systems tends to infinity. The principal
convergence results are the following. Firstly, γN

n is an unbiaised estimator;
that is, we have for any fn ∈ Bb(En)

EN
η0

(γN
n (fn)1{τN

n ≥n}) = γn(fn) .

Furthermore, we have the Lp-estimates
√

N EN
η0

[|ηN
n (fn) − ηn(fn)|p]1/p ≤ a(p)b(n)‖f‖ ,

which can be extended to a countable collection of uniformly bounded func-
tions Fn ⊂ Bb(En) ,

√
N EN

η0

[
sup

fn∈Fn

|ηN
n (fn) − ηn(fn)|p

]1/p

≤ a(p)b(n)I(Fn) ,

for some finite constant I(Fn) < ∞ that only depends on the class Fn . Similar
but exponential type estimates will be also covered. By instance, we have for
any ε > 0 and N sufficiently large

PN
η0

[
sup

fn∈Fn

|ηN
n (fn) − ηn(fn)| > ε

]
≤ dn(ε,Fn)e−Nε2/b(n) ,

with a finite constant d(ε,Fn) depending on ε and the class Fn . From these
estimates and using the Borel-Cantelli lemma, we conclude the almost sure
convergence result

lim
N→∞

sup
fn∈Fn

|ηN
n (fn) − ηn(fn)| = 0 .
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The corresponding fluctuations and Central Limits Theorems will also be
discussed in Sect. 6.5, in which the following result will be proved: For any
n ≥ 0 , and f ∈ Bb(En) , the sequence of random variables

WN
n (f) =

√
N(γN

n (fn)1{τN≥n} − γn(fn))

converges in law (as N tends to ∞) to a centered Gaussian random variable
Wn(f) with variance

σ2
n(f) =

n∑

q=0

γq(1)2ηq−1

(
Kq,ηq−1 [Qq,n(f) − Kq,ηq−1Qq,n(f)]2

)
,

where Qp,n(f) are some functions defined hereafter. We use the convention
η−1 = η0 = K0,η−1 . Rephrasing these asymptotic results in the context of
analysis of rare events leads to the Theorem 1.

6.1 Preliminaries

Feynman-Kac Semigroups

In this short section, we introduce the Feynman-Kac semigroups, Qp,n and
Φp,n, associated respectively with γn and ηn . They are defined by the formulas

Qp,n = Qp+1 · · ·Qn−1Qn , and Φp,n = Φn ◦ Φn−1 ◦ . . . ◦ Φp+1 ,

with Qn(xn−1, dxn) = Gn−1(xn−1)Mn(xn−1, dxn) . We use the convention
Qn,n = Id and Φn,n = Id . These semigroups are alternatively defined by

Qp,n(fn)(xp) = Ep,xp

(
fn(Xn)

n−1∏

q=p

Gq(Xp)

)
, Φp,n(µp)(fn) =

µp(Qp,n(fn))
µp(Qp,n(1))

,

where Ep,xp is the expectation with respect the law of the shifted chain
(Xp+n)n≥0 . By definition of ηn and Qp,n , we observe that

ηn(fn) =
ηp(Qp,n(fn))
ηp(Qp,n(1))

, γp(Qp,n(1)) = γn(1) . (23)

Now, introducing the pair potential/transition (Gp,n, Pp,n) defined by

Gp,n = Qp,n(1) and Pp,n(fn) =
Qp,n(fn)
Qp,n(1)

,

we deduce the following formula for the semigroup Φp,n

Φp,n(µp) = Ψp,n(µp)Pp,n ,

with the Boltzmann-Gibbs transformation, Ψp,n from Ep into itself, defined by

Ψp,n(µp)(fp) = µp(Gp,n(fn))/µp(Gp,n(1)) .
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Some Inequalities for Independent Random Variables

In this section, we discuss some general inequalities for sequences of indepen-
dent variables. These inequalities will be used in the following sections.

Let (µi)i≥1 be a sequence of probability measures on a given measurable
state space (E, E) . We also consider a sequence of E-measurable functions
(hi)i≥1 such that µi(hi) = 0 , for all i ≥ 1 . During the further development
of this section we fix an integer N ≥ 1 . To clarify the presentation we slight
abuse the notation and we denote respectively by

m(X) =
1
N

N∑

i=1

δXi and µ =
1
N

N∑

i=1

µi ,

the N -empirical measure associated to a collection of independent random
variables X = (X i)i≥1 , with respective distributions (µi)i≥1 and the N -
averaged measure associated to the sequence of measures (µi)i≥1 . When
we are given N -sequences of points x = (xi)1≤i≤N ∈ EN and functions
(hi)1≤i≤N ∈ Bb(E)N we shall also use the following notations

m(x)(h) =
1
N

N∑

i=1

hi(xi) and σ2(h) =
1
N

N∑

i=1

osc2(hi) ,

where osc(h) = sup{|h(x) − h(y)|} is the oscillation of the function h .
For any pair of integers (p, n) , with 1 ≤ p ≤ n , we denote by (n)p the

quantity

(n)p =
n!

(n − p)!
.

We have the following lemmas [2][§7.3]:

Lemma 2 (Chernov-Hoeffding).

P (|m(X)(h)| ≥ ε) ≤ 2e−2Nε2/σ2(h) .

Lemma 3. For any sequence of E-measurable functions (hi)i≥1 such that
µi(hi) = 0 and σ(h) < ∞ we have for any p ≥ 1

√
N E(|m(X)(h)|p)

1
p ≤ d(p)

1
p σ(h) , (24)

with the sequence of finite constants (d(n))n≥0 defined, for any n ≥ 1 , by the
formulas

d(2n) = (2n)n 2−n and d(2n − 1) =
(2n − 1)n√

n − 1/2
2−(n−1/2) . (25)

In addition we have for any ε > 0

E(exp (ε
√

N |m(X)(h)|)) ≤ (1 + εσ(h)/
√

2) exp (ε2σ2(h)/2) .
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We now extend the previous results to the convergence of empirical pro-
cesses with respect to some Zolotarev seminorm. Let F be a given collection
of measurable functions f : E → R such that ‖f‖ = supx∈E |f(x)| ≤ 1 . We
associate with F the Zolotarev seminorm on P(E) defined by

‖µ − ν‖F = sup{|µ(f) − ν(f)| : f ∈ F} .

No generality is lost and much convenience is gained by supposing that the
unit constant function f = 1 ∈ F . Furthermore, we shall suppose that F
contains a countable and dense subset.

To measure the size of a given class F , one considers the covering numbers
N (ε,F , Lp(µ)) defined as the minimal number of Lp(µ)-balls of radius ε > 0
needed to cover F . By N (ε,F) and by I(F) we denote the uniform covering
numbers and entropy integral given by

N (ε,F) = sup{N (ε,F , L2(η)); η ∈ P(E)} ,

I(F) =
∫ 1

0

√
log(1 + N (ε,F))dε .

For more details and various examples the reader is invited to consult [14].
We have the following lemma [2][§7.3]:

Lemma 4. For any p ≥ 1 , we have
√

N E (‖m(X)− µ‖p
F)1/p ≤ c,p/2-! I(F) ,

where c is a universal constant.
For any ε > 0 and

√
N ≥ 4ε−1 , we have that

P (‖m(X) − µ‖F > 8ε) ≤ 8N (ε,F)e−Nε2/2 .

6.2 Strong Law of Large Numbers

In the following picture, we have illustrated the random evolution of the N -
particle approximation model:

η0 → η1 = Φ1(η0) → η2 = Φ0,2(η0) → · · · → ηn = Φ0,n(η0)
⇓
ηN
0 → Φ1(ηN

0 ) → Φ0,2(ηN
0 ) → · · · → Φ0,n(ηN

0 )
⇓
ηN
1 → Φ2(ηN

0 ) → · · · → Φ1,n(ηN
1 )

⇓
ηN
2 → · · · → Φ2,n(ηN

2 )

⇓
...

ηN
n−1 → Φn−1,n(ηN

n−1)
⇓
ηN

n
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In this picture, the sampling errors are represented by the implication sign
“⇓”. Using the identity Φq−1,n(ηN

q−1) = Φq,n(Φq(ηN
q−1)) , we observe that

ηN
n − ηn =

n∑

q=0

[
Φq,n(ηN

q ) − Φq,n(Φq(ηN
q−1))

]
, (26)

with the convention Φ0(ηN
−1) = η0 . Note that each term on the r.h.s. represents

the propagation of the pth sampling local error Φq(ηN
q−1) ⇒ ηN

q . This pivotal
formula will be of important use in the following. In addition, we have for
each η1, η2 ∈ P(Eq) and f ∈ Bb(En)

Φq,n(η1)(f) − Φq,n(η2)(f) =
1

η2(Gq,n)
[(η1(Qq,n(f)) − η2(Qq,n(f)))

+ Φq,n(η1)(f)(η2(Gq,n) − η1(Gq,n))] .

We deduce the following formula which highlights the sampling errors:

ηN
n (f) − ηn(f) =

n∑

q=0

1
ηN

q−1(Gq,n)
[(ηN

q (Qq,n(f)) − Φq(ηN
q−1)(Qq,n(f)))

+ Φq,n(ηN
q )(f)(Φq(ηN

q−1)(Gq,n) − ηN
q (Gq,n))] . (27)

6.3 Extinction Probabilities

The objective of this short section is to estimate the probability of extinc-
tion of a class of particle models, associated with bounded (by one) potential
functions that may take null values. Let us recall that the limiting flow ηn is
well-defined, only up to the first time τ we have ητ (Gτ ) = 0 ; that is

τ = inf{n ∈ N : ηn(Gn) = 0} = inf{n ∈ N : γn+1 = 0} .

In the same way, the N -interacting particle systems are only defined up to
the time τN the whole configuration ξn ∈ EN

n first hits the hard obstacle set
(En \ Ên)N :

τN = inf{n ∈ N : ηN
n (Gn) = 0}.

It follows the equivalence (τN ≥ n) ⇔ (ξ0 ∈ Ê0, · · · , ξn−1 ∈ Ên−1) , which
indicates that τN is a predictable Markov time with respect to the filtration
(FN

n ) , in the sense that {τN ≥ n} ∈ FN
n−1 . We have the following rather

crude but reassuring result [2][Theorem 7.4.1]

Theorem 2. Suppose we have γn(1) > 0 for any n ≥ 0 . Then, for any N ≥ 1
and n ≥ 0 , we have the estimate

P(τN ≤ n) ≤ a(n)e−N/b(n) ,

for some constants a(n) and b(n) which depend only on n and γn+1(1) .



Branching and Interacting Particle 37

For a detailed proof, the reader is referred to [2][§7.4]. Its key idea is based
on the following observation. Using formula (23), we obtain for any p ≤ n ,

ηn(Gn) =
ηp(Gp,n+1)
ηp(Gp,n)

=
γn+1(1)
γn(1)

.

Now, referring to the setting of Theorem 2, we obtain that ηq(Gq) > 0 for
any 1 ≤ q ≤ n , and therefore that τ > n . In fact, assuming the condition
γn(1) > 0 for all n, avoids the tunneling problems with probability one, so an
exponential decrease of the extinction probabilities.

6.4 Convergence of Empirical Processes

This section provides precise estimates on the convergence of the particle
density profiles when the size of the system tends to infinity. We start with
the analysis of the unnormalized particles models and we show that this ap-
proximation particle has no bias. The central idea consists in expressing the
difference between the particle measures and the limiting Feynman-Kac ones
as such end values of martingale sequence.

We recall that a square integrable and FN -martingale MN = (MN
n )n≥0 is

an FN -adapted sequence such that E(MN
n )2 < ∞ for all n ≥ 0 and

E(MN
n+1|FN

n ) = MN
n (PN − a.s.) .

The predictable quadratic characteristic of MN is the sequence of random
variables 〈MN 〉 = (〈MN 〉n)n≥0 defined by

〈MN 〉n =
n∑

p=0

E((MN
p − MN

p−1)
2|FN

p−1) ,

with the convention E((MN
0 −MN

−1)2|FN
−1) = E(MN

0 )2 . The stochastic process
〈MN 〉 is also called the angle bracket of MN and is the unique predictable
increasing process such that the sequence ((MN

n )2 − 〈MN 〉n)n≥0 is an FN -
martingale.

In the following, we will use the simplified notation (10). For instance, if
we consider the McKean model

Kn,η(x, ·) = Gn−1(x)Mn(x, ·) + (1 − Gn−1(x))Φn(η) , (28)

we first observe that

Kq,η(ϕ− Φq(ϕ)) = Kq,η(ϕ) − Φq(η)(ϕ) = Gq−1(Mq(ϕ) − Φq(η)(ϕ)) .

So, let ϕ̃q be the function defined by ϕ̃q = ϕ− Φq(η)(ϕ) . We obtain
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Kq,η[ϕ− Kq,η(ϕ)]2 = Kq,η[ϕ̃q − Kq,η(ϕ̃q)]2

= Kq,η(ϕ̃q)2 − (Kq,η(ϕ̃q))2

= Kq,η[ϕ− Φq(η)(ϕ)]2 − G2
q−1[Mq(ϕ) − Φq(η)(ϕ)]2 .

(29)

Furthermore, if we consider the McKean model

Kn,η(x, ·) = Φn(η)(·) , (30)

we obtain
Kq,η[ϕ− Kq,η(ϕ)]2 = Φq(η)[ϕ− Φq(η)(ϕ)]2 . (31)

These two formulas indicate that the particle model in the first case is more
accurate than the other one.

Proposition 2. For each n ≥ 0 and fn ∈ Bb(En) , we let ΓN
·,n(fn) be the

R-valued process defined for any p ∈ {0, · · · , n} by

ΓN
p,n(fn) = γN

p (Qp,nfn)1{τN≥p} − γp(Qp,nfn) . (32)

For any p ≤ n , ΓN
·,n(fn) has the FN -martingale decomposition

ΓN
p,n(fn) =

p∑

q=0

γN
q (1)1{τN≥p}

[
ηN

q (Qq,nfn) − ηN
q−1Kq,ηN

q−1
(Qq,nfn)

]
, (33)

and its bracket is given by

〈ΓN
·,n(fn)〉p =

1
N

p∑

q=0

(γN
q (1))2 1{τN≥p}η

N
q−1

(
Kq,ηN

q−1

[
Qq,nfn − Kq,ηN

q−1
Qq,nfn

]2
)

,

with the convention Φ0(ηN
−1) = η0 = K0,ηN

−1
.

The first consequence of Proposition 2 is that γN
n is unbiased. More pre-

cisely, using the martingale decomposition (33) with p = n , we obtain for any
f ∈ Fn the following identity

E(γN
n (f)1{τN≥p}) = γn(f) .

In fact, we have the more precise result [2][Theorem 7.4.2]

Theorem 3. For each p ≥ 1, n ∈ N , and for any (separable) collection Fn of
measurable functions f : En → R such that ‖f‖ ≤ 1 (and 1 ∈ Fn), we have
for any f ∈ Fn

E(γN
n (f)1{τN≥p}) = γn(f) ,

and for any r ≤ n
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√
N E(‖1{τN≥r}γ

N
r Qr,n − γrQr,n‖p

Fn
)1/p ≤ c(n + 1),p/2-!I(Fn) .

In addition, for any ε ≥ 4/
√

N , we have the exponential estimate

P
(
‖1{τN≥r}γ

N
r Qr,n − γrQr,n‖Fn > ε

)
≤ 8(n + 1)N (εn,Fn)e−Nε2n/2 , (34)

with εn = ε/(n + 1) .

Applying the exponential estimate (34) with r = n and ε = γn(1)/2 , we
obtain, for any pair (n, N) such that

√
N ≥ 8/γn(1) , the following inequality

P
(
1{τN≥r}γ

N
n (1) ≥ γn(1)/2

)
≥ 1 − 8(n + 1)N (εn,Fn)e−Nε2n/2 ,

with εn = γn(1)/(2(n+1)) . Now, to obtain some exponential estimate for the
measure ηN

n , we use the following decomposition

(ηN
n (f) − ηn(f))1{τN≥n} =

γn(1)
γN

n (1)
γN

n

(
1

γn(1)
(f − ηn(f))

)
1{τN≥n} . (35)

If we set fn = 1
γn(1) (f − ηn(f)) , then since γn(fn) = 0 , (35) also reads

(ηN
n (f) − ηn(f))1{τN≥n} =

γn(1)
γN

n (1)
(γN

n (fn)1{τN≥n} − γn(fn))

=
γn(1)
γN

n (1)
ΓN

n,n(fn) . (36)

Let ΩN
n be the set of events

ΩN
n = {γN

n (1)1{τN≥n} ≥ γn(1)/2} ⊂ {τN ≥ n} .

Using Theorem 3, we have

P(ΩN
n ) ≥ 1 − b(n)2

N
,

where b(n) is a constant which depends on n only. If we combine this estimate
with Theorem 3 and (36), we find that for any f ∈ Bb(En) , with ‖f‖ ≤ 1

|E
(
(ηN

n (f) − ηn(f))1{τN≥n}
)
| ≤ |E

(
(ηN

n (f) − ηn(f))1ΩN
n

)
| + 2P((ΩN

n )2)

≤ b(n)2

N
,

where b(n) is a new constant which depends on n only. Finally by Theorem
2, we conclude that

|E
(
(ηN

n (f)1{τN≥n} − ηn(f))
)
| ≤ b(n)2

N
+ a(n)e−N/b(n) .

A consequence of this result is the following extension of the Glivenko-
Cantelli theorem to particle models.
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Corollary 1. Let Fn be a countable collection of functions f such that
‖f‖ ≤ 1 and N (ε,Fn) < ∞ for any ε > 0 . Then, for any time n ≥ 0 ,
‖ηN

n (f)1{τN≥n} − ηn(f)‖Fn converges almost surely to 0 as N → ∞ .

Some time-uniform estimates can also be obtained when the pair (Gn, Mn)
satisfies some regularity conditions. When these conditions are met the non-
linear Feynman-Kac semigroup Φp,n has asymptotic stability properties which
ensure that in some sense for each elementary term

[Φq,n(ηN
n ) − Φq,n(Φq(ηN

q1
))] → 0 as (n − q) → ∞ .

Consequently, according to (26), a uniform estimate of the sum of the “small
errors” can be proved. The reader is invited to consult [2][§7.4] for more details
about this subject.

6.5 Central Limit Theorems

Let us consider the particle approximation model ξn = (ξi
n)1≤i≤N associated

with a nonlinear measure-valued equation of the form

ηn = ηn−1Kn,ηn−1 . (37)

We will assume that γn(1) > 0 for all n . The n-th sampling error is the
measure-valued random variable V N

n defined by the formula

ηN
n = ηN

n−1K
N
n,ηn−1

+ V N
n /

√
N . (38)

Notice that V N
n is itself the sum of the local errors induced by the random

elementary transitions ξi
n−1 ! ξi

n of the N particles; that is, we have

V N
n =

N∑

i=1

∆iV
N
n ,

with the “local” terms given for any ϕn ∈ Bb(En) by

∆iV
N
n (ϕn) =

1√
N

[ϕn(ξi
n) − Kn, ηN

n−1(ϕn)(ξi
n−1)] .

By definition of the particle model, ηN
n is the empirical measure associa-

ted with a collection of conditionnaly independent random variables ξi
n with

distributions Kn,ηN
n−1

(ξi
n−1, ·) . From this we obtain that

EN
η0

[ηN
n (fn)|FN

n ] = Φn(ηN
n−1)(fn) = ηN

n−1Kn,ηN
n−1

,

where FN
n = σ(ξ0, · · · , ξn−1) is the σ-field asociated with the ξ0, · · · , ξn−1 .

So we readily find that E(V N
n (ϕn)) = 0 and
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E(V N
n (ϕn)2) = E(ηN

n−1(Kn,ηN
n−1

[ϕn − Kn,ηN
n−1

(ϕn)]2)) .

In addition, for sufficiently regular McKean interpretation models, we have
the asymptotic result

lim
N→∞

E(V N
n (ϕn)2) = ηn−1(Kn,ηn−1 [ϕn − Kn,ηn−1(ϕn)]2) .

The formula (38) shows that the particle density ηN
n satisfy almost the

same equation (37) as the limiting measures ηn . In fact [2][§9.3], VN
n (ϕn)

converges in law to a Gaussian random variable Vn(ϕn) such that

E(Vn(ϕn)) = 0 and E(Vn(ϕn)2) = ηn−1(Kn,ηn−1 [ϕn − Kn,ηn−1(ϕn)]2) .

These elementary fluctuations give some insight on the asymptotic normal
behavior of the local errors accumulated by the sampling scheme. Nevertheless,
they do not give directly CLT result for the difference between the particle
measures ηN

n or γN
n and the corresponding limiting measures ηn and γn .

Preliminaries

The key idea is to consider the one-dimensional FN -martingale

MN
n (f) =

√
N

n∑

p=0

1{τN≥p}[ηN
p (fp) − Φp(ηN

p−1)(fp)] ,

where fp stands for some collection of measurable and bounded functions
defined on Ep . The angle bracket of this martingale is given by the formula

〈MN (f)〉n =
n∑

p=0

ηN
p−1[Kp,ηN

p−1
((fp − Kp,ηN

p−1
fp)2)] .

Then [2][Theorem 9.3.1], for any sequence of bounded measurable functions
fp and p ≥ 0 , the FN -martingale MN

n (f) converges in law to a Gaussian
martingale Mn(f) such that for any n ≥ 0

〈M(f)〉n =
n∑

p=0

ηp−1[Kp,ηp−1((fp − Kp,ηp−1fp)2)] .

A first consequence of this result is the next corollary which expresses
the fact that the local errors associated with the particle approximation sam-
pling steps behave asymptotically as a sequence of independent and centered
Gaussian random variables.

Corollary 2. The sequence of random fields VN
n = (V N

p )0≤p≤n converges in
law, as N → ∞ , to a sequence Vn = (Vp)0≤p≤n of (n + 1) independent and
Gaussian random fields Vp with, for any ϕ1

p, ϕ
2
p ∈ Bp(Ep) , E(Vp(ϕ1

p)) = 0 and

E(Vp(ϕ1
p)Vp(ϕ2

p)) = ηp−1(Kp,ηp−1 [ϕ
1
p − Kp,ηp−1(ϕ

1
p)][ϕ

2
p − Kp,ηp−1(ϕ

2
p)]) .
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We now are concerned with the fluctuations of the particle approximation
measures γN

n nd ηN
n . Nevertheless, before we start, we recall some tools to

transfer CLT such as the Slutsky’s technique and the δ-method. Firstly, the
Slutsky’s theorem states that for any sequences of random variables (Xn)n≥1

and (Yn)n≥1 , taking value in some separable metric space (E, d) , which are
such that Xn converges in law, as n → ∞ , to some random variable X , and
d(Xn, Yn) converges to 0 in probability, then Yn converges in law, as N → ∞ ,
to X . We deduce of this theorem, that if Xn converges in law to some finite
constant c (which implies the convergence in probability) and Yn converges in
law to some variable Y , then XnYn converges in law to cY .

The other tool, also known as the δ-method [2][§9.3], is the following
lemma.

Lemma 5. Let (UN
0 , · · · , UN

n )N≥1 be a sequence of Rn+1-valued random vari-
ables defined on some probability space and (up)0≤p≤n be a given point in
Rn+1 . Suppose that

√
N (UN

0 − u0, · · · , UN
n − un)

converges in law, as N → ∞ , to some random vector (U0, · · · , Un) . Then,
for any differentiable function Fn : Rn+1 → R at the point (up)0≤p≤n , the
sequence √

N [Fn(UN
0 (ω), · · · , UN

n (ω)) − Fn(u0, · · · , un)]

converges in law as N → ∞ to the random variable
∑n

p=0
∂Fn
∂ui

(u0, · · · , un)Up .

Unnormalized Measures

We consider the R valued process ΓN
·,n(fn) introduced in Proposition 2. As

the reader may have certainly noticed, the martingale decomposition of ΓN
·,n ,

exhibited in Proposition, 2 is expressed in terms of the sequence of local errors
V N

n .
Let ΓN

·,n(fn) be the random sequence defined as in (33) by replacing, in the
summation, the terms γN

q (1)1{τN≥q} by their limiting values γq(1) . In order
to combine the CLT stated in Corollary 2 with the δ-method, we rewrite the
resulting random sequence as

√
N Γ

N
n,n(fn) =

√
N

p∑

q=0

γq(1)
[
ηN

q − ηN
q−1Kq,ηN

q−1

]
(Qq,nfn)

=
√

N Fn(UN
0,n, · · · , UN

n,n) ,

with the random sequence (UN
p,n)0≤p≤n , and the function Fn given by

UN
p,n = V N

p (Qp,nfn)/
√

N and Fn(v0, · · · , vn) =
n∑

q=0

γq(1)vq .
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Since for any n ≥ 0 we have limN→∞ γN
q (1) 1{τN≥q} = γq(1) in proba-

bility, we easily deduce from Corollary 2, the Slutsky’s theorem and the δ-
method that the real-valued random variable

√
N (γN

n (fn)1{τN≥n} − γn(fn))
converges in law to the centered Gaussian random variable W γ

n (fn) =∑n
q=0 γq(1)Vp(Qp,nfn) with variance

σ2
n(f) =

n∑

q=0

(γq(1))2ηq−1

(
Kq,ηq−1 [Qp,nfn − Kq,ηq−1Qp,nfn]2

)
.

With the McKean model (28), the formula (29) gives the following new
expression for the variance

σ2
n(f) =

n∑

q=0

(γq(1))2ηq((Qq,nf − ηq(Qq,nf))2)

−
n∑

q=1

(γq(1))2ηq−1

(
G2

q−1(MqQq,nf − ηq(Qq,nf))2
)
. (39)

Normalized Measures

Using formula (35) and the Slutsky’s theorem, we obtain that the sequence of
real-valued random variables

W η,N
n (f) =

√
N (ηN

n (f) − ηn(f))1{τN≥n}

converges to the Gaussian random variable W η
n given by

W η
n (f) = W γ

n

(
1

γn(1)
(f − ηn(f))

)
.

Now, let the semigroups Qp,n and the functions fp,n be respectively defined
by

Qp,n =
γp(1)
γn(1)

Qp,n , and fp,n = Qp,n(f − ηnf) . (40)

Then, the variance of the Gaussian random variable W η
n (f) is given by the

formula

E(W η
n (f)2) =

n∑

p=0

ηp−1

(
Kp,ηp−1 [fp,n − Kp,ηp−1fp,n]2

)
. (41)

Killing Interpretations and Related Comparisons

One of the best ways to interpret the fluctuations variances developed pre-
viously is to use the Feynman-Kac killing interpretations provided in Sect. 4.2.
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In this context, Xn is regarded as a Markov particle evolving in an absorbing
medium with obstacles related to [0, 1]-valued potentials. Using the same no-
tation and terminology as was used in Sect. 4.2, the Feynman-Kac semigroup
Qp,n has the following interpretation

Qp,n(xp, dxn) =
∫ {

n−1∏

q=p

Gq(xq)

}
Mp+1(xp, dxp+1 · · ·Mn(xn−1, dxn)

= Pc
p,xp

(Xn ∈ dxn, T ≥ n) ,

where Pc
p,xp

represents the distribution of the absorbed particle evolution
model starting at Xp = xp at time p . In this context, the variance of the
fluctuation variable W γ

n (1) , associated with the McKean interpretation model
(30), is given by

E(W γ
n (1)2) = γn(1)2

n∑

p=0

ηp

(
[1 − Gp,n/ηp(Gp,n)]2

)

= Pc(T ≥ n)2
n∑

p=0

∫

Ep

Pc(Xp ∈ dxp|T ≥ p)

[
Pc

p,xp
(T ≥ n)

Pc(T ≥ n|T ≥ p)
− 1

]2

.

We further assume that for any n ≥ p and ηp-a.e. xp, yp ∈ Êp , we have

Pc
p,xp

(T ≥ n) ≥ δPc
p,yp

(T ≥ n) , (42)

for some δ > 0 (see [2][Proposition 4.3.3] for sufficient conditions to obtain
the condition (42)). In this case we have

E(W γ
n (1)2) ≤ b(δ)(n + 1)Pc(T ≥ n)2,

for some finite constant b(δ) .
The killing interpretation also suggests another evolution model based

on N independent and identically distributed copies X i of the absorbed
particle evolution model. The Monte Carlo approximation is now given by
N−1

∑N
i=1 1{T i≥n} , where T i represents the absorption time of the i-th par-

ticle. It is well known that the fluctuation variance σMC
n (1)2 of this scheme is

given by
σMC

n (1)2 = Pc(T ≥ n)(1 − Pc(T ≥ n)) .

From previous considerations we find that

σMC
n (1)2

E(W γ
n (1)2)

≥ 1
b(δ)(n + 1)

1 − Pc(T ≥ n)
Pc(T ≥ n)

→ ∞ ,

as soon as Pc(T ≥ n) = o(1/n) .
In addition, according to the formulas (41) and (31), and the observation

that ηq(fq,n) = 0 , the variance of the random field W η
n can also be described

for any f ∈ Bb(En) as
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E(W η
n (f)2) =

n∑

p=0

ηp(f2
p,n) .

If we choose the McKean model (28) then, according to the formula (29),
we conclude that the variance of the random field W η

n is defined for any
f ∈ Bb(En) by the formula

E(W η
n (f)2) =

n∑

p=0

ηp(f2
p,n) −

n∑

p=1

ηp−1[(Gp−1Mp(fp,n))2] .

Then, we readily see that the variance of the corresponding CLT is
strictly smaller than the one associated with the McKean interpretation
Kn,η(xn−1, ·) = Φn(η) .

Application to Rare Event Analysis

We use the same notation and conventions as introduced in Sect. 5.3. Using
the fluctuation analysis stated in the Sect. 6.5, we have the following theorem

Theorem 4. For any 0 ≤ n ≤ m + 1 , the sequence of random variables

WN
n+1 =

√
N (1{τN>n}γ

N
n+1(1) − P(Tn < TR))

converges in law (as N tends to ∞) to a Gaussian random variable Wn+1

with mean 0 and variance

σ2
n =

n+1∑

q=0

(γq(1))2ηq−1

(
Kq,ηq−1 [Qq,n+1(1) − Kq,ηq−1Qq,n+1(1)]2

)
.

The collection of functions Qq,n+1(1) on the excursion space E are defined
for any x = (xn)s≤n≤t by

Qq,n+1(1)(t, x) = 1Bq(xt)P(Tn < TR|Tq = t, XTq = xt) .

Explicit calculations of σn are in general difficult to obtain since they rely
on an explicit knowledge of the semigroup Qq,n . Nevertheless, in the context
of rare event analysis, an alternative can be provided. Firstly, according to
the formula (39), the variance σ2

n takes the form

σ2
n = P(Tn < TR)2(an − bn) ,

with

an =
1

γn+1(1)2

n+1∑

q=0

(γq(1))2ηq((Qq,n+1(1) − ηq(Qq,n+1(1)))2)

bn =
1

γn+1(1)2

n+1∑

q=1

(γq(1))2ηq−1

(
G2

q−1(MqQq,n+1(1) − ηq(Qq,n+1(1)))2
)

.
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Then we observe that γp(1) = P(Tp−1 < TR) and

ηqQq,n+1(1) = γn+1(1)/γp(1) = P(Tn < TR|Tp−1 < TR) ,

from which we conclude that

an =
n+1∑

q=0

E
(
[∆n

q−1,q(Tq, XTq)1{Tq<TR} − 1]2|Tq−1 < TR

)
,

where

∆n
p,q(t, x) = P(Tn < TR|Tq = t, XTq = x)/P(Tn < TR|Tp < TR) .

In much the same way, we find

bn =
n∑

q=0

E(1{Tq<TR}[∆n
q,q(Tq, XTq) − 1]2|Tq−1 < TR)

=
n∑

q=0

P(Tq < TR|Tq−1 < TR)E[∆n
q,q(Tq, XTq) − 1]2|Tq < TR) .
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