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Diffusion Monte Carlo methods with a fixed number of walkers
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In this paper we discuss various aspects of diffusion Monte Carlo methods using a fixed number of walkers.
First, a rigorous proof of the divergence of pure diffusion Monte Carlo~PDMC! methods~DMC without
branching in which the weights are carried along trajectories! is given. Second, a bias-free Monte Carlo method
combining DMC and PDMC approaches, and based on a minimal stochastic reconfiguration of the population,
is discussed. Finally, some illustrative calculations for a system of coupled quantum rotators are presented.

PACS number~s!: 02.70.Lq, 75.40.Mg
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I. INTRODUCTION

Quantum Monte Carlo~QMC! methods are powerful ap
proaches to compute the ground-state properties of quan
systems. They have been applied with success to a g
variety of problems including quantum liquids and solid
nuclear matter, spin systems, the electron gas, the electr
structure of small atoms and molecules, etc.~see, e.g., Refs
@1–4#!. The basic idea of QMC is to extract from a know
trial vectorucT& its exact ground-state componentuc0&. This
is realized by using an operatorG(H) acting as a filter,

lim
L→`

G~H!LucT&;uc0&, ~1!

where H is the Hamiltonian operator of the system. F
problems defined in a continuous configuration space
forms for G(H) are usually introduced; they define the tw
following types of approaches.

~i! Diffusion Monte Carlo~DMC! methods

G~H!5e2t(H2ET). ~2!

~ii ! Green’s function Monte Carlo~GFMC! methods

G~H!5
1

11t~H2ET!
, ~3!

whereET is some reference energy andt plays the role of a
time step. For lattice problems or any problem described
a Hamiltonian matrix in a finite linear space, a most natu
choice is

G~H![12t~H2ET! ~4!

and the method is usually referred to as lattice Green’s fu
tion Monte Carlo. Note that the denomination ‘‘project
Monte Carlo’’ is also found in the literature to refer to any
the previous variants of the method. For simplicity we sh
use here the general denomination ‘‘diffusion Monte Carl
for QMC methods based on Eq.~1! and present our result
for a finite linear space with the choice~4! for the operator
G(H). All results presented in this paper can be straightf
wardly generalized to continuous models.
PRE 611063-651X/2000/61~4!/4566~10!/$15.00
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In a Monte Carlo scheme, successive applications
G(H) are done using probabilistic rules. In short, it is bas
on the fact that the quantity

Pi→ j* ~t![cT~ j !^ j u@12t~H2ET!#u i &
1

cT~ i !
~5!

can be viewed as a ‘‘generalized’’ transition probability a
can be used to sample stochastically the action ofG(H) on
an arbitrary vector. This statement can be made more exp
by rewriting Pi→ j* (t) under the form

Pi→ j* ~t![Pi→ j~t!wi j , ~6!

where

Pi→ j~t![cT~ j !^ j u@12t~H2EL!#u i &
1

cT~ i !
~7!

is now a genuine transition probability:Pi→ j (t)>0 and
( j Pi→ j51 ~the latter condition is not fulfilled byPi→ j* , ex-
cept whenucT& is the exact ground state! and where the
quantitywi j is defined as follows:

wi j [
^ i u@12t~H2ET!#u j &
^ i u@12t~H2EL!#u j &

. ~8!

In both expressionsEL is the so-called local energy whic
plays an important role in any QMC scheme

EL~ i !5
^ i uHucT&

^ i ucT&
. ~9!

In order to apply stochasticallyG(H), two type of ap-
proaches have been considered. A first type of approac
consists in using the transition probabilityPi→ j to generate
successive states and then introducing at each step the q
tity wi j as a weight in the averages~‘‘to carry’’ the weights!.
In this type of approaches the number of configurations~or
‘‘walkers’’ ! is constant by the very definition of the stocha
tic process. These methods are usually referred to as pure~no
branching! diffusion Monte Carlo~PDMC! methods. In the
second type of approach a birth-death~or branching! process
associated with the local weight is introduced. In practice
4566 © 2000 The American Physical Society
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consists in adding to the stochastic move defined by the t
sition probability, a new step in which the current config
ration is destroyed or copied a number of times proportio
to the local weightwi j . In these methods—generically re
ferred to as the diffusion Monte Carlo method—the num
of configurations is no longer constant. Remark that
theory there is no need to go beyond the pure diffus
Monte Carlo method. In practice, this is not true since
numerical experience has shown that for extended an
complex systems, the efficiency~computer time needed t
achieve a given accuracy! is drastically reduced when con
figurations are let to go to regions of configuration spa
where the weights are small. In other words, it is import
to sample less frequently regions where the total weigh
small and to accumulate statistics where it is large. This
the basic reason which motivates the introduction of
branching process and justifies the widespread use of D
compared to PDMC methods. Now, since in DMC the nu
ber of walkers can fluctuate, some sort of population con
is required. Indeed, nothing prevents the total populat
from exploding or collapsing entirely. Various solutions
this problem have been proposed. The most employed
proaches consist either in performing from time to time
random deletion/duplication step or in varying slowly t
reference energy to keep the average number of walkers
proximately constant. In both cases, a finite bias is int
duced by the population control step. In order to minim
this undesirable source of error it is important to control
size of population as rarely as possible and in the most ge
way @1#.

Very recently, following an idea introduced by Hetherin
ton @5#, Sorella and co-workers@6–8# have reconsidered th
use of stochastic reconfiguration in diffusion Monte Car
Their motivation is to combine the best of both worlds: ef
ciency of DMC and absence of bias as in PDMC. Th
approach is derived within a PDMC framework~the walkers
‘‘carry’’ some weight! but the population is ‘‘reconfigured’
using specific rules. The reconfiguration is done in a s
way that the number of walkers is kept constant at each s

In this work we present a number of results regard
diffusion Monte Carlo methods and stochastic reconfigu
tion strategies. First, we present a rigorous proof that
PDMC method is expected to diverge as the simulation t
and the number of iterationsL @as defined by Eq.~1!# are let
to go to infinity. This result is not surprising and has alrea
been realized by a number of authors. However, to
knowledge no rigorous arguments have been given so fa
clarify this point. In general, it is stated in a more or le
detailed fashion that the variance of the product of weig
wi j explodes as the number of iterations is made large. Q
interestingly, the derivation of the proof of the divergence
PDMC presented here shows that this result is in fact
from being trivial. In particular, the proof of the divergenc
requires some care from a mathematical point of view. S
ond, we present a variant of the stochastic reconfigura
method which we consider to be a minimal bias-free QM
method combining efficiently PDMC and DMC ideas. Th
approach is built such as to minimize as much as possible
fluctuations associated with the reconfiguration step and
to recover the PDMC and DMC methods as two well-defin
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limits. Finally, we illustrate and compare the respecti
qualities and drawbacks of the different approaches on s
numerical examples.

The organization of the paper is as follows. In Sec. II w
give the basic ingredients of the diffusion Monte Carlo me
ods. Section III is devoted to the derivation of the proof
the divergence of PDMC approaches. Section IV discus
the construction of a DMC method including a minimal r
configuration process. In Sec. V some practical calculati
for a system of coupled quantum rotators are shown. Ca
lations are intended to illustrate the important aspects of
various DMC approaches discussed in this work. Finally
summary of our results is presented in Sec. VI.

II. DIFFUSION MONTE CARLO METHODS

In this section we give a very brief account of the ma
aspects of diffusion Monte Carlo methods. This part is
sentially designed to introduce formulas and notations u
in the following sections. It will also enable the nonexpert
understand the major steps of DMC approaches. For m
detailed presentations of the implementation of DMC to l
tice ~finite! systems the reader is referred to Refs.@9–12#.

A. Pure diffusion Monte Carlo

As already mentioned in the Introduction the basic idea
QMC approaches is to extract from a known trial vectorucT&
its exact ground-state componentuc0&. Note that such ap-
proaches are in a very close relation with power-type me
ods in which the ground-state eigenvector is obtained
applying a large number of times the matrix on an arbitra
initial vector. Here, the major difference is that the basic s
~matrix times a vector! is no longer done exactly~the size of
the linear space is too large! but in a probabilistic way using
a Markov chain. Once the ground-state eigenvector has b
determined, a number of properties can be obtained. As
important example, the energy is given by

E05 lim
L→`

^cTuH@12t~H2ET!#LucT&

^cTu@12t~H2ET!#LucT&
. ~10!

Using the basic formula relating the matrix elements of
Hamiltonian and the ‘‘generalized’’ transition probability a
ready presented in the Introduction, Eqs.~5!–~8!, we easily
get

E05 lim
L→`

,

K K EL~ i L! )
k50

L21

wi ki k11L L Y K K )
k50

L21

wi ki k11L L . ~11!

In this formula the symbol̂ ^•••&& denotes the stochasti
average over all realizations of the Markov chain describ
by Pi→ j , Eq. ~7!. It is easily checked that the stationa
density of the process verifying

(
i

P i Pi→ j~t!5P j ~12!

is given by
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P i5cT~ i !2. ~13!

The probability of a given realization of the chain corr
sponding toL steps and a total time oft5Lt is

P@ i 0→ i 1→••• i L21→ i L#5P i 0
Pi 0→ i 1

~t!•••Pi L21→ i L
~t!.
~14!

Remark that in the limitP→` andt→0 with t5Lt fixed,
this probability defines a functional measure on the set o
‘‘trajectories’’ of time-length t. View from that point, for-
mula ~11! is nothing but a generalized version of the we
known Feynman-Kac formula@13–15#. Using the ergodic
~recurrent! property of the Markov chain, the sum-over-a
trajectories restricted to a finite time interval can be rewrit
as a sum alongone singlearbitrary infinite realization of the
chain

E05 lim
L→`

1

L (
j 51

L

EL~ j !)
k50

j 21

wkk11

1/L (
j 51

L

)
k50

j 21

wkk11

, ~15!

where different states are denoted for simplicity
@0,1,2, . . . ,L#. In practice, numerical calculations are bas
on this formula which is particular simple to implement on
computer. Now, for later use, let us remark that the ba
equation~11! can be rewritten as a simple sum-over sta
under the form

E05(
i

EL~ i !Pi /(
i

Pi , ~16!

where the probabilityPi associated with a given statei is
given by

Pi[ lim
L→`

(
i 0 ,i 1 , . . . ,i L21

P@ i 0→ i 1→••• i L21→ i L# )
k50

L21

wi ki k11
,

~17!

where, for simplicity of notation, statei is identified to state
i L . By using Eqs.~7!, ~8!, ~13!, and ~14! it can be verified
that Pi is given by

Pi5cT~ i !c0~ i ! ~18!

up to an immaterial normalization constant. Note that wh
the weights are all taken to be equal to one,Pi reduces to the
stationary densityP i of the Markov chain as it should be.

B. Diffusion Monte Carlo

In the pure DMC method just described the number
configurations is kept fixed and the weights are carried
along random sequences of states. In DMC approaches
weight is introduced directly into the stochastic process v
birth-death or branching process. In practice, it consists
adding to the standard stochastic move of the PDMC met
a new step in which the current configuration is destroyed
copied a number of times proportional to the local weig
Denotingmi j the number of copies~multiplicity! of the state
j, we take
ll

n

s

ic
s

n

f
t

the
a
f
d
r
.

mi j [ int~wi j 1h!, ~19!

where int(x) denotes the integer part ofx, andh a uniform
random number on (0,1). In theory, such a process is pr
erly defined only for an infinite number of walkers. O
course, in practice only a large but finite number of walke
~a population! is considered. Adding a branching process c
be viewed as sampling directly with the generalized tran
tion probabilityPi→ j* (t) defined above, Eq.~5!. The fact that
its normalization is not constant is responsible for the flu
tuations of population. However, a stationary density for t
modified process can still be defined. By writing the statio
ary condition

(
i

Pi Pi→ j* ~t!5Pj ~20!

we see from Eq.~5! that this relation is fulfilled ifET is
chosen to be the exact energyE0 and for the following sta-
tionary density:

Pi5cT~ i !c0~ i !. ~21!

By using a stabilized population of configurations the ex
energy may be obtained as

E05^^EL&&w . ~22!

Note the use of an additional subscriptw in the average to
recall the presence of the branching process. Formally,
pressions~16! and ~22! for the estimate of the exact energ
in PDMC and DMC methods, respectively, are identical. T
same for the expressions of the probabilityPi of a given state
i in both approaches, Eqs.~18!,~21!. However, there is an
essential difference which distinguishes both methods. T
is the way that this probability is realized stochastically.
PDMC, the stationary density of the Markov chain isP
5CT

2 and Pi represents some effective probability obtain
from averaging the weights along trajectories of infin
time-length, formula~17!. In DMC, the probabilityPi is re-
alized by the stochastic process itself. There is no nee
introduce additional weights in averages@see formula~22!#.
As a consequence, the DMC approach is a much more st
method from a numerical point of view. The price to pay f
that is the introduction of a bias resulting from the popu
tion control ~done either by random deletion/duplication
smooth variation of the reference energy, see discussio
the Introduction!. In contrast, with PDMC there is no nee
for population control. However, as we shall see in the n
section, the method is intrisically unstable.

III. DIVERGENCE OF THE PDMC

In this section it is shown that the estimate of the effect
probability Pi associated with a given statei as defined in
PDMC, Eq.~17!, does not converge to a finite determinist
value. Let us defineln( i )(n>1) the product of weights be
tween the (n21)th andnth occurences of statei in the Mar-
kov sequence:

ln~ i ![ )
l 5Nn21

Nn21

wi l i l 11
, ~23!
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whereNk denotes the time index of the Markov chain. Let
denoteXn( i ) the total weight associated with all states o
curing between timeNn21 and timeNn

Xn~ i ![ (
k5Nn21

Nn

)
l 5Nn21

k21

wi l i l 11
. ~24!
.
n

s
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e

an
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q
n

-
As an important consequence of the Markov property
pairs of random variables@Xn( i ),ln( i )# are independent and
equidistributed~same law!. Only random variablesX andl
corresponding to the same indexn and same statei are de-
pendent. Using the ergodic property of the chain and pre
ous definitions, expression~17! for Pi can be rewritten as
Pi~n![
l1~ i !1l1~ i !l2~ i !1•••1l1~ i !l2~ i !•••ln~ i !

X1~ i !1l1~ i !X2~ i !1•••1l1~ i !l2~ i !•••ln21~ i !Xn~ i !
~25!
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when the numbern of occurences of statei becomes large
Now, our problem is to determine whether or not this qua
tity has a well-defined limit asn goes to infinity. For reason
we shall understand later, two different cases must be dis
guished. DenotingE@ ln(l)# the finite expectation value o
the random variablel we consider separately the two cas
uE@ ln(l)#u.0 and E@ ln(l)#50. Note that the time or stat
indices are not specified since all random variablesl are
independent and of the same law.

A. zE† ln l‡zÌ0

Let us first consider the caseE@ ln l#.0. After some el-
ementary manipulations the inverse ofPi(n) as expressed by
Eq.~25! can be rewritten in the equivalent form~same law!

1

Pi
5

X1~ i !1
X2~ i !

l2~ i !
1

X3~ i !

l2~ i !l3~ i !
1•••1

Xn~ i !

l2~ i !•••ln~ i !

l1~ i !111
1

l2~ i !
1

1

l2~ i !l3~ i !
1•••

1

l2~ i !•••ln~ i !

.

~26!

Note that, while deriving this expression, subscripts of r
dom variables have been interchanged. Such a manipula
is allowed since random variables are independent and e
distributed. To proceed further we define the following qua
tities:

Yn[
X2~ i !

l2~ i !
1

X3~ i !

l2~ i !l3~ i !
1•••1

Xn~ i !

l2~ i !•••ln~ i !

and

Zn[11
1

l2~ i !
1

1

l2~ i !l3~ i !
1•••1

1

l2~ i !•••ln~ i !
.

~27!

We then have

1

Pi
5

X11Yn

l11Zn
~28!

and

Yn

Zn
5

X21Yn21

l21Zn21
. ~29!
-

n-

-
on
ui-
-

Let us now suppose that 1/Pi converges to a constant. The
it follows that in the limit of largen, the random variables
Yn /Zn and (X11Yn)/(l11Zn) converge to the same con
stant. Now, since (Yn ,Zn) are independent of (X1 ,l1) @and
the same for (Yn21 ,Zn21) and (X2 ,l2)# it follows that the
random variables (X1 ,l1) must reduce to some constant
and the same for all (Xi ,l i). This result shows that, excep
in the trivial case where the weights are equal to one~no
branching!, Pi cannot converge to a well-defined limit asn
goes to infinity. Note that similar arguments can be given
the caseE(ln l),0, after the transformationl i→1/l i .

Now, the important remark is that all these arguments
valid only if the random variableZn converges to a finite
distribution. For our purposes, the convergence ofYn has not
to be considered here since the two conditions (Zn converges
and Pi finite and different from zero! implies the conver-
gence ofYn . In the caseE@ ln l#.0 the convergence ofZn is
a consequence of the law of large numbers. Indeed, acc
ing to this theorem, for a given realization of the Marko
chain there exist two constantsC.0 andb.1 such that

l1~ i !•••ln~ i !>Cbn ~30!

for n large enough. As a consequenceZn converges to a
positive andfinite distibution almost surely. In the cas
E@ ln l#50 this is no longer true:Zn tends to infinity for large
n and no direct constraint on the law of random variablesXi
or l i can be drawn. As a consequence, this case mus
treated separately. Before doing that, let us emphasize
this case is in fact general. Indeed, the expectation valu
ln l does not depend on the particular state~as a result of the
Markov property! and by multiplying all weights by a suit
able constant we can always imposeE(ln l)50.

B. E„ ln l…Ä0

To treat this case we try to depart as less as possible f
the previous case. For that we introduce some new quant
gn( i ) which will play a role similar to that played by quan
tities ln( i ), except that by their very definitiongn( i )>C
whereC is some constant strictly greater than 1. As a dir
consequenceE(ln g).0 and arguments similar to those em
ployed previously will be invoked.

Let us definegn( i ) as the product of weightswi ki k11
be-

tween two occurences of statei such that the ratio of the tota
product of weights at the two occurences is greater than
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constantC.1. gn( i ) can be written as

gn~ i !5 )
l 5Nf(n21)

Nf(n)21

wi l i l 11
, ~31!

wheref(n) denotes thef(n)th occurence of statei verify-
ing the condition associated with the thresholdC. More pre-
cisely,f(n) is defined as

f~n!5 inf(k.f(n21)11)H )
l 5Nf(n21)11

Nk

wi l i l 11
.CJ . ~32!

Note that the functionf(n) is well defined@successive val-
ues off(n) are finite# because we have
es

-
f
t

th
-
e

sup1<k<n(
l 51

k

ln l l~ i !→1`

as n→1` for a given realization.

~33!

This property is a consequence of the theorem~40! which
will be presented later. Roughly speaking, what is done h
is to extract from the full set of occurences of statei a subset
of occurences~labeled by the functionf) corresponding to a
series of ‘‘stopping times’’ along the random sequence. O
more, as a result of the Markov property the random va
ablesgn( i ) are independent and equidistributed. In additio
from their very definitiongn( i )>C.1. Using previous defi-
nitions we can rewritePi as
Pi~n![
U1~ i !1g1~ i !U2~ i !1•••1g1~ i !g2~ i !•••gn21~ i !Un~ i !

V1~ i !1g1~ i !V2~ i !1•••1g1~ i !g2~ i !•••gn21~ i !Vn~ i !
, ~34!
us
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em.
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whereUn( i ) represents the sum of the products ofl( i ) be-
tween the occurencesf(n21) andf(n)

Un~ i ![ (
k5Nf(n21)

Nf(n)

)
l 5Nf(n21)

k

l l~ i ! ~35!

andVn the sum of all weights between the two occurenc

Vn~ i ![ (
k5Nf(n21)

Nf(n) F )
l 5Nf(n21)

k

l l~ i !GXk~ i !

lk~ i !
. ~36!

The triplets (Un ,Vn ,gn) are independent and equidistrib
uted. After some elementary manipulations the inverse oPi
as expressed by Eq.~34! can be rewritten in the equivalen
form ~same law!

1

Pi
5

V11Tn

U11Wn
~37!

and

Tn

Wn
5

V21Tn21

U21Wn21
~38!

with the following definitions:

Tn[
V2~ i !

g2~ i !
1

V3~ i !

g2~ i !g3~ i !
1•••1

Vn~ i !

g2~ i !•••gn~ i !

and

Wn[
U2~ i !

g2~ i !
1

U3~ i !

g2~ i !g3~ i !
1•••1

Un~ i !

g2~ i !•••gn~ i !
.

~39!

In order to complete the proof we need to show that
series associated withWn converges to some finite distribu
tion ~as already discussed in the preceding section, the d
e

ri-

vation of the convergence ofTn is not necessary!. If Zn con-
verges we can conclude~same arguments as before! that Pi
converges to a finite~deterministic! value only if the ratio
Vn /Un is a constant, which is not the case. To do that let
first introduce the following theorem.

Theorem. Let Xl be a family of independent, equidistrib
uted and centered~zero mean! random variables. If all mo-
ments of the random variables are finite we have

sup1<k<n(
l 51

k

Xl

na
→1` as n→1` ;a,

1

2
. ~40!

This theorem is a consequence of the central-limit theor
Using rough arguments we can say that the sum of the in
pendent variables in the numerator converges to so
Gaussian distribution with a variance proportional ton and
that the greatest value is expected to behave as the sq
root of the varianceAn. As a consequence, the ratio of th
numerator and denominator must diverge as soon aa
.1/2. Although these arguments are correct, a rigorous d
vation is actually not so simple. It requires some mathem
cal care which is beyond the scope of this work. The deri
tion will be presented elsewhere@20#. Now, the important
point is that the random variables lnll(i) verify the hypoth-
eses of the theorem. They are independent, equidistrib
~with zero mean!, and as a consequence of the finite variati
of the weights and ‘‘stopping times’’@as defined by the func
tion f(n)# all their moments are finite. Using the fact th
f(n) is a series extracted from the full series of occuren
of statei we obtain the following property:

sup1<k<f(n)F(
l 51

k

ln l l~ i !G
f~n!a

→1` as n→1` ;a,
1

2
~41!
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or, equivalently,

(
l 51

n

ln g l~ i !

f~n!a
→1` as n→1` ; a,

1

2
. ~42!

Note that, in the particular casea50, we recover the prop
erty ~33!, a result which guarantees that the functionf(n) is
well defined. From its definition~35! the seriesUn( i ) is a
sum of at most~but not equal! f(n) terms all smaller than
the constantC except the last one which isgn( i ). Therefore,
we have

0<Un~ i !<Cf~n!1gn~ i !. ~43!

From this relation we can write

0<
Un~ i !

g2~ i !•••gn~ i !
<

Cf~n!

g2~ i !•••gn~ i !
1

1

g2~ i !•••gn~ i !
.

~44!

The series of general term 1/g2( i )•••gn( i ) is convergent
since allgn( i ) are greater or equal toC.1. Regarding the
other termAn[Cf(n)/g2( i )•••gn( i ) we can write as a re
sult of Eq.~42! that there exists a constantM (a) such that

f~n!<MF(
l 51

n

ln g l~ i !G1/a

for 0,a,
1

2
. ~45!

Therefore, we have

Cf~n!

g2~ i !•••gn~ i !
<CMg1~ i !

F ln )
l 51

n

g l~ i !G1/a

)
l 51

n

g l~ i !

. ~46!

From the fact that the function@ ln x#1/a/x decreases forx
large enough and thatg l.C it follows that An is bounded
from above byCMg1( i )@n ln C#1/a/Cn, the general term of a
convergent series. Finally, we can conclude that the se
Wn converges to some finite positive distribution. This res
completes our proof of the nonconvergence of the PDM
estimate of the effective probabilityPi .

IV. DMC WITH MINIMAL STOCHASTIC
RECONFIGURATION

As seen in the previous section PDMC is intrinsica
unstable. As already remarked, the basic reason for that is
increase of variance of the products of weights as a func
of the number of iterations~or projecting time!. However, as
illustrated by a number of applications performed using t
type of approaches~e.g., Refs.@15,11,16–19#! the method
has proven to be very useful. This is the case when the
wave function is accurate enough to allow the converge
of the various averages before large fluctuations associ
with large projecting times arise. When convergence
achieved no finite bias due to a population control proces
introduced. In order to make PDMC approaches effective
fluctuations of the weights must be decreased in some w
es
lt

he
n

s
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ed
s
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e
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Before considering this point, let us determine the dep
dence of the error as a function of the computational effor
a PDMC scheme. The fluctuations of the weight from ite
tion n to iterationn11 will be described by the varianceb2

defined as

b25

K S w(n11)

w(n) D 2L
K w(n11)

w(n) L 2 . ~47!

By definition b is greater or equal to one. The equality
obtained in the optimal case corresponding to cons
weights~no branching!. Let N be the total number of Monte
Carlo steps of the simulation~the computational effort is
proportional toN). The systematic error due to a finite pro
jecting time T ~number of iterationsL5T/t) is of order
exp(2TD) where D is the gap in energy of the model (D
5E12E0, whereE0 is the ground-state energy andE1 the
energy of the lowest state having a nonzero overlap with
trial wave function!. The statistical error due to the finit
statistics on some quantity evaluated at some fixed projec
time T is given by bT/AN/T. By equating both errors an
estimate of the relation between the computational effort~via
N) and a given accuracye can be obtained. In the large-N
limit the relation is easily found to be

e;
1

Ng/2

with

g5
D

ln b1D
. ~48!

When b51 ~no fluctuations of the weights! g51 and the
efficiency of the simulation is optimal: the standard 1/AN
law of diffusion processes is recovered. Asb is increased the
efficiency of the simulations can decrease quite rapidly. A
cordingly, to enhance the efficiency of PDMC the fluctu
tions of the weights must be decreased. An elegant solu
to this problem has been introduced more than ten years
by Hetherington@5#. The idea consists in carrying man
walkers simultaneously and introducing a global weight
sociated with the entire population instead of a local wei
for each walker. The global weightW is chosen to be the
average of the local weightswi l

Wi 1••• i M
[

1

M (
l 51

M

wi l
, ~49!

whereM is the number of walkers considered~to avoid con-
fusion between various indices only one subscript has b
used for individual weights!. By increasing the numberM of
walkers the fluctuations of the global weight is reduced a
b as defined in Eq.~47! is decreased. It is easy to check th
the quantity lnb decreases as the inverse of the number
walkers. As a consequence of Eq.~48! the gain in computa-
tional efficiency can be very important. Now, the meth
consists in defining a PDMC scheme in the enlarged lin
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space defined by the tensorial product (M times! of the ini-
tial linear space. In this new space the full transition pro
ability is defined as the tensorial product of individual tra
sition probabilities. Note that no correlation between t
stochastic moves of different walkers is introduced at t
level. Second, and this is the important point, each individ
weight carried by a walker is rewritten as a function of t
global weight

wi l
5w̃i l

~ i 1••• i M !Wi 1••• i M

with

w̃i l
~ i 1••• i M !5

wi l

Wi 1••• i M

. ~50!

This rewriting allows us to introduce the global weight as
weight common to all walkers and thus to define a stand
PDMC scheme in the tensorial product of spaces. To t
into account the new weightw̃i l

a so-called reconfiguration
process is introduced. At each step the total population oM
walkers is ‘‘reconfigured’’ by selecting with probability pro
portional tow̃ the same numberM of walkers. Note that, a
this point, some correlation between different walkers is
troduced. Now, let us discuss the two important limits of t
algorithm, namely, the case of an infinite number of walke
M→` and the case of constant weights,wi→1. WhenM
→` the global weight converges to its stationary ex
value. As a consequence, the different weightsw̃ associated
with each walker@as given by Eq.~50!# become independen
from each other and the reconfiguration process reduce
the usual branching process~19! without population control
and systematic bias since the population is infinite. In
limit wi→1 the method does not reduce to the stand
PDMC approach. Indeed, the reconfiguration step ‘‘recon
ures’’ the entire population whatever the values of t
weights. In order to improve the efficiency of such metho
this undesirable source of fluctuations must be reduced
the limit of the exact PDMC should be implemented in t
method. For that we divide the population of walkers in
two different sets. A first set of walkers corresponds to
walkers verifying w̃>1. These walkers can be potential
duplicated and will be called ‘‘positive’’ walkers. The othe
walkers verify 0<w̃,1, they can be potentially destroye
and will be called ‘‘negative walkers.’’ The number of re
configurations is defined as

NReconf5(
i 1

uw̃i21u5(
i 2

uw̃i21u, ~51!

where( i 1 (( i 2) indicates that the summation is done ov
the set of positive~negative! walkers. The equality in Eq
~51! is a simple consequence of the definition of positive a
negative walkers. In practice, an integer number of rec
figurations is obtained by considering int(Nreconf1h), where
h is a uniform random number on the interval~0,1!. Once
the number of reconfigurations has been drawn,Nreconf walk-
ers are added to or removed from the current population
drawing separatelyNreconfwalkers among the lists of positiv
and negative walkers. It is easily verified that by doing t
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no source of systematic error has been introduced and th
is equivalent to the original reconfiguration process of He
erington. However, in contrast with the latter the avera
number of reconfigurations is kept minimal and, cons
quently, the efficiency of the simulation is significantly e
hanced. In addition, the average number of reconfigurati
vanishes as the weights become constant. In other words
reconfiguration method reduces in this limit to the stand
PDMC method. In their recent work Calandra-Buonaura a
Sorella @7# ~CBS! have proposed to use a reconfigurati
process which is essentially identical to that of Hetheringt
except that the reconfiguration step is not necessarily don
each iteration. Besides reducing the finite bias on the stat
ary density they have shown that their approach allows
calculate efficiently ground-state correlation functions with
a forward walking approach. Here, our reconfiguration p
cess is built in order to minimize as much as possible
fluctuations of the weights at each step. As a conseque
the finite bias on the stationary density is also reduced
much as possible. In particular, and in contrast with the C
scheme, our algorithm is found to be optimal when the
configuration process is applied at each iteration.

V. AN ILLUSTRATIVE EXAMPLE

In this section we present some calculations illustrat
the various aspects of DMC approaches discussed in the
ceding sections. The system considered is a chain ofNs
coupled quantum rotators~one per site!. In the angular rep-
resentation the Hamiltonian is written

H[2(
i 51

Ns ]2

]u i
2

2
x

2 (
i 51

Ns

cos~u i 112u i !, ~52!

where (u1•••uNs
) are angular variablesu iPR/2pZ and pe-

riodic boundary conditions are used (uNs115u1). In this for-
mula x is a parameter defining the relative weight of t
potential and kinetic terms. It can be shown that the mo
described by this Hamiltonian has the same critical prop
ties as the two-dimensionalXY spin model@21#. The finite-
temperature Kosterlitz-Thouless~KT! classical phase transi
tion of the spin model is equivalent to a zero-temperat
quantum phase transition in the rotator model occuring
some critical value for the parameterx. Monte Carlo simu-
lations have been done in the angular momentum repre
tation. In this representationH is expressed in the discret
basis, u l 1••• l Ns

& ( l iPZ), consisting of the eigenvectors o
the angular momentum operators at different sites. We h

H5(
i 51

Ns

Ĵi
22

x

2 (
i 51

Ns

~f i 11
1 f i1H.c.!, ~53!

where the operators (f i
1 ,f i ,Ĵi) are defined as follows@Lie-

algebra ofO(2)#:

f i
1u l 1••• l i•••&5u l 1••• l i11•••&,

f i u l 1••• l i•••&5u l 1••• l i21•••&, ~54!

Ĵi u l 1••• l i•••&5 l i u l 1••• l i•••&.
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FIG. 1. PDMC calculation of
the energy as a function of th
projecting time.E0 is in units of

Ĵ2, Eqs.~53!,~54!.
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Here we are interested in calculating the ground-state en
of the model. Note that the ground state belongs to the f
damental representation ofO(2) corresponding to a tota
momentum equal to zero( i 51

Ns l i50. In what follows the
parameterx is taken to be 1.8, a value expected to be v
close to the exact critical value~see, Hameret al. @21#!. In
actual calculations we have takenNs56. By using exact
diagonalization methods~Lanczòs algorithm! and after ex-
trapolation to an infinite basis set (l i→`) we get E0
524.37367626~all digits converged! for parameters (x
51.8, Ns56).

In Fig. 1 a PDMC calculation of the exact energy is pr
sented. The trial wave function used is given by

cT5e2k(
i 51

Ns

l i
2
, ~55!
gy
n-

y

-

wherek is some positive parameter.
The unstable character of PDMC at large times is clea

illustrated. At zero-projecting time the variational energy a
sociated with the trial wave function is recovered with sm
fluctuations,Ev524.10284(25). The fact that this value
quite different from the exact one illustrates the poor qua
of the trial wave function. Now, when the projecting time
increased the estimate of the energy converges to the e
value~number of iterations of about 25!. For larger times the
estimate of the energy begins to wander and no stabiliza
is observed.

In Fig. 2 we present some DMC calculations perform
by using the standard branching process associated withwi j
@Eq. ~19!# and a population control step to keep the numb
of walkers under control. The population control has be
done by adjusting the reference energy to the fluctuation
population by using a formula of the type
f

FIG. 2. DMC calculation of

the exact energy as a function o
the size of the population.E0 is in

units of Ĵ2, Eqs.~53!,~54!.
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FIG. 3. PDMC with stochastic
reconfiguration method.E0 is in

units of Ĵ2, Eqs.~53!,~54!.
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ET~ t1t!5ET~ t !1K/t ln@M ~ t !/M ~ t1t!#, ~56!

whereM (t) is the total number of walkers at timet andK is
some positive constant. WhenM (t1t).M (t) the reference
energy is reduced and more walkers are killed at the n
step. In the opposite caseET is raised and more walkers ar
duplicated.

Calculations have been done with populations of differ
sizes ranging fromM540 to M5100. At M540 the bias is
small ~systematic error of about 1/1000! but much greater
than the statistical error. The error is seen to decrease a
size of the population is increased. ForM5100 it is smaller
than the statistical error. It should be emphasized that
magnitude of the systematic error is very dependent on
quality of the trial wave function. Here a quite simple tri
xt

t

the

e
e

wave function has been used. With more sophisticated
fully optimized forms the error would be much smaller.

In Fig. 3 we present a PDMC calculation with the origin
reconfiguration process of Hetherington. The number
walkers used isM550. When compared to the PDMC ca
culation of Fig. 1~same range for the projecting time! the
stabilization in time resulting from the use of the glob
weight and the reconfiguration process is clearly seen
chaotic behavior similar to that observed in Fig. 1 at lar
times is also expected but for much larger projecting tim

In the next figure, Fig. 4, we present our improved vers
for the stochastic reconfiguration process. The converge
as a function of time of the energy is very satisfactory a
the fluctuations are reduced. Note that the value of the
ergy at the origin~no projection! E0524.37115(16) is
FIG. 4. PDMC with minimal
stochastic reconfiguration.E0 is in

units of Ĵ2, Eqs.~53!,~54!.
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much closer to the exact result (E0524.37367•••) than in
the standard case~Fig. 3! E0524.36708(24). This result is
a direct consequence of the fact that the average numb
reconfigurations with our minimal scheme is much sma
than in the previous case. In other words, the effective nu
ber of walkers has been increased and, then, the finite bia
the stationary density has been reduced. Note that in the
of an infinite number of walkers the finite error on the ener
would entirely disappear.

VI. SUMMARY

In this paper we have discussed various aspects of d
sion Monte Carlo methods at fixed number of walkers. Fi
we have concentrated our attention on the so-called pure
fusion Monte Carlo~PDMC! methods in which no branchin
process is introduced~the weights are carried! and for which
the number of configurations is kept fixed at any level of
algorithm. As already remarked by a number of autho
PDMC methods are powerful, but they suffer from a sev
problem at large projecting times~rapid increase of the vari
ance!. In this paper this statement has been made much m
precise by showing that the statistical estimate of the ef
tr
of
r
-
on
it

y

u-
t,
if-

e
,
e

re
c-

tive probability associated with a given state as calculated
a PDMC scheme does not converge to a finite determini
value. This is in sharp contrast with what happens in DM
where a different —but biased— estimate is used for
same quantity. Quite interestingly, the derivation of the pro
turns out to be far from being trivial. In particular, it wa
necessary to deal in detail with a difficult case@E(ln l)50
with our notations# from which a convergent variant o
PDMC could have emerged. Second, based on an orig
estimate of the PDMC error@formula ~48!# we have dis-
cussed the most natural generalization of PDMC which
make the method effective for problems associated w
large fluctuations of the weights. By introducing stochas
reconfiguration processes as proposed by Hetherington
very recently reconsidered by Sorella and co-workers
have proposed an alternative approach to realize what ca
called a minimal stochastic reconfiguration DMC approa
The method has been designed to reduce as much as po
the statistical fluctuations associated with the reconfigura
process and also to recover both PDMC and DMC lim
The numerical calculations presented have illustrated the
lidity of such an approach.
ys.

-

ys.
@1# D.M. Ceperley and M.H. Kalos, inMonte Carlo Method in
Statistical Physics, edited by K. Binder ~Springer-Verlag,
Heidelberg, 1992!.

@2# D.M. Ceperley, Rev. Mod. Phys.67, 279 ~1995!.
@3# W. von der Linden, Phys. Rep.220, 53 ~1992!.
@4# B.L. Hammond, W.A. Lester, Jr., and P.J. Reynolds, inMonte

Carlo Methods in Ab Initio Quantum Chemistry, Vol. 1 of
World Scientific Lecture and Course Notes in Chemis
~World Scientific, Singapore, 1994!.

@5# J.H. Hetherington, Phys. Rev. A30, 2713~1984!.
@6# S. Sorella, Phys. Rev. Lett.80, 4558~1998!.
@7# M. Calandra Buonaura and S. Sorella, Phys. Rev. B57, 11 446

~1998!.
@8# S. Sorella and L. Capriotti, Phys. Rev. B61, 2599~2000!.
@9# J. Carlson, Phys. Rev. B40, 846 ~1989!.

@10# N. Trivedi and D.M. Ceperley, Phys. Rev. B41, 4552~1990!.
y

@11# K.J. Runge, Phys. Rev. B45, 7229~1992!.
@12# R. Assaraf, P. Azaria, M. Caffarel, and P. Lecheminant, Ph

Rev. B60, 2299~1999!.
@13# J. Glimm and A. Jaffe´, Quantum Physics. A Functional Inte

gral Point of View~Springer, New York, 1981!.
@14# M. Caffarel and P. Claverie, J. Chem. Phys.88, 1088~1988!.
@15# M. Caffarel and P. Claverie J. Chem. Phys.88, 1100~1988!.
@16# D.M. Ceperley and B. Bernu, J. Chem. Phys.89, 6316~1988!.
@17# B. Bernu, D.M. Ceperley, and W.A. Lester, Jr., J. Chem. Ph

93, 552 ~1990!.
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