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Introduction

Rare event

Low but non-zero probability, say 0 < P(X ∈ A) ≤ 10−8.
It is very important to know this probability, or to generate typical
realizations.
We assume that we know how to draw (pseudo) realizations of X .
Different from extreme values: here we have a model that we can simulate,
extreme values refer to some dataset used with purely statistical
approaches.

Why naive Monte-Carlo does not work ? Let p = P(X ∈ A).

p̂ =
∑N

i=1 1A(Xi ), and the relative mean square error is var(p̂)
p2 = 1−p

Np
. So

we need N ≃ 10/p at least...

Two main frameworks: importance sampling vs. importance splitting.
Splitting can work with a simulation blackbox, and gives rare trajectories
drawn with the original dynamics.
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Introduction

Some applications

Particle transmission [KH51]

Queueing networks

Air traffic management

Satellite versus debris collision

Finance

Food contaminant exposure

Molecular dynamics
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Introduction

Naive Monte-Carlo
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Introduction

Trajectory splitting
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Introduction

Trajectory splitting

Splitting (time and number of offsprings) may depend on the past of the
current trajectory.
With the right weighting, the splitting MC estimates are unbiased.
But the goal is to lower the variance, by using a "clever" way of splitting.
Consider splitting those trajectories that goes "towards" the rare event.
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Multilevel splitting

Precise setting

X continuous time stochastic process in Rd , with initial distribution µ0. X
has almost surely right continuous, left limited trajectories (RCLL).

A0 is a recurrent event for X , i.e. P(X returns to A0 i.o. ) = 1.

Let τA = inf{t > 0, Xt ∈ A} and τA0
= inf{t > 0, Xt ∈ A0}. Consider the

rare event A = P(τA < τA0
).

In many cases, A has the following form: A = {x ∈ Rd , φ(x) ≥ L} for
some scalar continuous function φ, and some real L.
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Multilevel splitting

Algorithm: fixed splitting

Parameters: Splitting levels L1 < L2 < · · · < Lk < · · · < L for a chosen
importance function φ, and mean offspring numbers R . We estimate the

total probability by p̂n,FS =
#particles reaching L

NRn−1 .

L1

L2

L
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Multilevel splitting

Efficiency

How to measure efficiency ?
Let τk = inf{t > 0, φ(Xt) ≥ Lk} and pk = P(τk < τA0

). Assume
limk→+∞ pk = 0.
Work normalized variance var(p̂k)wk .
Naive Monte-Carlo var(p̂k,MC)wk = var(p̂k,MC)N = pk(1 − pk)

Definition

We define the asymptotic efficiency [GW92] of an estimate p̂k by

lim
k→+∞

log(var(p̂k)wk)

log pk

= 2

By Jensen inequality, we always have ≤ 2 for unbiased estimators.
For Naive Monte-Carlo, we get
log(var(p̂k,MC)wk )

log pk
= log(pk (1−pk ))

log(pk )
= 1 + log(1−pk )

log(pk )
→ 1.
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Multilevel splitting

Efficiency: fixed splitting

Assume limk→+∞
log pk

k
= log ρ exists.

From [GHSZ99], we have

Theorem

Under some mixing conditions,

lim
k→+∞

log(var(p̂k,FS)wk,FS)

log pk

= 2 for R = 1/ρ,

and

lim
k→+∞

log(var(p̂k,FS)wk,FS)

log pk

< 2 for R 6= 1/ρ,

Fixed splitting efficient only in critical regime. From simulations, it proved
to be very sensitive to the branching rate R .
But we can choose R adaptively...
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Interacting particle systems

Fixed effort splitting

At each level, we randomly branch N offsprings on the remaining paths.

Let p̂k|k−1 =
#particles reaching Lk

N
, we estimate the total probability by

p̂n,FE =
∏n

k=1 p̂k|k−1.

x0x0

L1 L1

L2
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Interacting particle systems

Feynman-Kac representation

Following [CDLL06] let τk = inf{t > 0, φ(Xt) ≥ Lk}, and Tk = τk ∧ τA0
.

E[f (Xt , t ≤ Tn)|τA ≤ τA0
] =

E[f (Xt , t ≤ Tn)
∏n

k=0 1φ(XT
k
)≥Lk

]

E[
∏n

k=0 1φ(XT
k
)≥Lk

]
,

and P(TA ≤ TA0
) = E[

n
∏

k=0

1φ(XT
k
)≥Lk

].

Special case of general Feynman-Kac formula

ηn(f ) =
E[f (Z1, . . . ,Zn)

∏n
k=0 Gk(Zk)]

E[
∏n

k=0 Gk(Zk)]

where Gk are measurable non-negative functions called potentials.
The corresponding Interacting Particle System approximation is exactly the
fixed effort splitting algorithm.
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Interacting particle systems

Convergence results

Once we have our problem in the form of a Feynman-Kac formula,
associated with an IPS, we can use directly results in the monograph
[DM04]. This includes unbiasedness of p̂n,FE, SLLN, CLT...
Central Limit Theorem:

Theorem

√
N

p̂n,FE − p

p

D−−−−−→
N→+∞

N (0, σ2),

with

σ2 =

n
∑

k=1

1 − pk|k−1

pk|k−1

+
n−1
∑

k=0

var(P(φ(Xτn ) ≥ L|Xτk , φ(Xτk ) ≥ Lk))P2(φ(Xτn) ≥ L|φ(Xτk ) ≥ Lk)

1 − p2
k|k−1

pk|k−1

.
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Interacting particle systems

Some remarks

σ2 =

n
∑

k=1

1 − pk|k−1

pk|k−1

+

n−1
∑

k=0

var(P(φ(Xτn ) ≥ L|Xτk , φ(Xτk ) ≥ Lk))P2(φ(Xτn) ≥ L|φ(Xτk ) ≥ Lk)

1 − p2
k|k−1

pk|k−1

.

The vaviance in the second term is zero if the importance function φ
is the committor function, i.e. the levels Lk define iso-committor
surfaces.

First term is minimal when all the pk|k−1 are equal (optimization with
the constraint that their product is p).

F. Cerou (Inria) Rare event simulation Hybrid workshop 2010 14 / 38



Interacting particle systems

Efficiency of fixed effort

Theorem ([CDG10])

Under mixing conditions, and provided that the levels are well chosen (in
the sense that ∀k , 0 < ρ1 ≤ pk|k−1 ≤ ρ2 < 1), we have

var(p̂k,FE) ≤ p2
k [(1 +

C

(N − 1)ρ1

)k − 1]

for some C > 0.

and thus, taking wk,FE = kN,

Corollary

lim inf
k→∞

log(wk,FE var(p̂k,FE))

log pk

≥ 2 +
1

2 log ρ2

log(1 +
C

ρ1(N − 1)
).

Almost get efficiency, closer as N gets larger.
Paul Dupuis and Yi Cai recently obtained a similar result.
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Adaptive level splitting

Adaptive splitting

To each trajectory X we associate S = supt≤τA∧τA0
φ(Xt).

Choose K < N, and compute the K/N quantile q̂1 of S1, . . . ,SN . This
quantile will be the first level of splitting.

x0

q̂1

X3
X2

X4

X1
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Adaptive level splitting

Adaptive splitting

Keep the trajectories above q̂1, and split (branch) them when they first
corss this level. From the whole N again trajectories, all above q̂1, compute
q̂2, and iterate.

0

q̂2

q̂1

x0
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Adaptive level splitting

Convergence of adaptive splitting

Only in dimension 1: a.s. convergence and CLT.

Theorem ([CG07])
√

N(pn − p̂n,AS )
L−−−−→

n→+∞
N (0, σ2),

with

σ2 = p2
n((n − 1)

1 − p0

p0
+

1 − ρ

ρ
),

with p0 = K
N

.

Minimal variance in the CLT, but no asyptotic efficiency results.
Complexity in nN log N.
New version with K = N − 1: discard only the lower trajectory at each step.
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Numerical simulations

Application to reactive trajectories

Let V : Rd → R the potential function, consider the overdamped Langevin
dynamics:

dXt = −∇V (Xt) dt +
√

2β−1dWt ,

where β = 1/(kBT )
Equilibrium canonical measure:

dµ = Z−1 exp(−βV (x)) dx

where Z =

∫Rd

exp(−βV (x)) dx
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Numerical simulations

Reactive trajectories

A and B two metastable (recurrent) regions in Rd .

A B

Reactive trajectory: piece of equilibrium trajectory that leaves A and goes
to B without going back to A in the meantime (excursion from A to B)
Problem: one may wait a long time before the trajectory eventually reaches
B
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Algorithm

Reaction coordinate

Also called "importance function" in rare event literature
Smooth one-dimensional function:

ξ : Rd → R
such that:

|∇ξ| 6= 0, A ⊂ {x ∈ Rd , ξ(x) < zmin} and B ⊂ {x ∈ Rd , ξ(x) > zmax},

where zmin < zmax are two given real numbers
Example: ξ(x) = ‖x − xA‖ with xA ∈ A denotes a reference configuration
in A
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Algorithm

Committor function

It is well known (e.g. Metzner, Schütte and Vanden-Eijnden (2006),
Vanden-Eijnden, Venturoli, Ciccotti and Elber (2008)) that the optimal
reaction coordinate/importance function is the committor function
q(x) = P(τA(x) > τB(x)).
q is solution of

{

−∇V · ∇q + β−1∆q = 0 in Rd \ (A ∪ B),

q = 0 on ∂A and q = 1 on ∂B .
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Algorithm

Algorithm

A B
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Algorithm

Algorithm

A B
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Algorithm
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Algorithm

Algorithm
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Algorithm

Algorithm
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Algorithm

Algorithm

A B
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Algorithm

Algorithm

A B
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Algorithm

Algorithm

Iterate until all the paths reach Σmax, and keep only those which actually
reach B .

Initialization: generate a long trajectory "around" A (wait until
equilibrium), and keep (a subsample of) the upward crossing points of
Σmin, and the corresponding piece of trajectory coming from A.

Remark: the algorithm is a kind of adaptive Forward Flux Sampling (e.g.
Allen, Valeriani and ten Wolde (2009)), or more generally Importance
Splitting

Diffusion process approximated by Euler scheme.
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Algorithm

Convergence and efficiency

Unbiased estimates p̂k,IR.
In dimension 1, almost have efficiency. In this case

var(p̂k,IR) = p2
k(p

− 1
N

k − 1) and wk,IR = −N log N log pk .

lim
k→+∞

log(var(p̂k,IR)wk,IR)

log pk

= 2 − 1

N
.

(Guyader,Hengertner,Matzner-Løber, not yet published).
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Numerical results

1D example

Simple example to validate the method against DNS

V (x) = x4 − 2x2.

This potential has two minima at ±1 and one saddle point at 0. In this
simple one dimensional setting, we set as metastable states A = {−1} and
B = {+1}, and the reaction coordinate is taken to be simply

ξ(x) = x .

We computed the distribution of the duration of the reactive paths.
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Numerical results

1D example
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Numerical results

2D example

V (x , y) = 3e−x2−(y− 1
3
)2 − 3e−x2−(y− 5

3
)2 − 5e−(x−1)2−y2

− 5e−(x+1)2−y2
+ 0.2x4 + 0.2

(

y − 1

3

)4

.

as considered by Metzner, Schütte and Vanden-Eijnden (2006)

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

-4

-2

 0

 2

 4

 6

 8

V(x,y)

x

y

V(x,y)

Figure: The potential V .
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Numerical results

Density of reactive paths

-1.2
-0.6

0
0.6

1.2-1

-0.25

0.5

1.25

2.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

Density for beta = 1.67

x

y

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

-1.2
-0.6

0
0.6

1.2-1

-0.25

0.5

1.25

2.

 0
 0.0005
 0.001

 0.0015
 0.002

 0.0025
 0.003

 0.0035
 0.004

Density for beta = 6.67

x

y

 0
 0.0005
 0.001
 0.0015
 0.002
 0.0025
 0.003
 0.0035
 0.004

F. Cerou (Inria) Rare event simulation Hybrid workshop 2010 35 / 38



Numerical results

Density of reactive paths
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Numerical results

Flux of reactive trajectories
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Figure: Flux of reactive trajectories, at inverse temperature β = 1.67 on the left,
and β = 6.67 on the right. The color indicates the norm of the flux.
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Numerical results

A few reactive trajectories
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Figure: A few reactive paths for β = 1.67 (left), β = 6.67 (right).
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