Stochastic particle models and methods in risk analysis

P. Del Moral (INRIA research team ALEA)

INRIA & Bordeaux Mathematical Institute & X CMAP

CSIRO, Sydney, February 20-th, 2012

Some Refs & links

- Feynman-Kac formulae, Genealogical & Interacting Particle Systems with appl., Springer (2004)
- Sequential Monte Carlo Samplers for Rare Events. (joint work with Johansen, Doucet) (2006)
- Branching and Interacting Particle Interpretations of Rare Event Probabilities Springer (2006). [+ Réfs]

Plus de références http://www.math.u-bordeaux1.fr/~delmoral/index.html [+ Links]

Introduction

Some examples The notion of risk Mathematical tools Mathematical models

Monte Carlo methods

Importance sampling Stochastic particle methods

Ilustrations

Security of offshore platforms in extreme see conditions Nuclear plant security Watermarking & Digital fingerprinting Fiber optics communication Food risk & Epidemic propagations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Performance analysis

Stochastic particle algorithms Particle estimates Exponentially small error probabilities

Ongoing research projects

Introduction

Some examples The notion of risk Mathematical tools Mathematical models

Monte Carlo methods

llustrations

Performance analysis

Ongoing research projects

Some examples

- Sanitary risks: pandemic propagation, tumor development, cardio-vascular risks, medical treatment efficiency, food risk analysis, bacterial propagations.
- System reliability : production chains, offshore platforms security, networks overflows, computer security.
- Air traffic control : control system failures, airport and flight collision risks.
- ▶ Nuclear plant security : radioactivity storage, nuclear tank cracks.
- Financial and economical risks : payment defaults, financial breakdowns and economic crisis.
- Environmental risks: invasive species, climatic fluctuations, floods and inondations, earthquakes

.../...

On the notion of risk

Poorly documented events :

• Only a few observations, missing statistical data.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Poorly formalised empirical models.
- Unpredictable and complex systems :
 - Multilevel and multiple scales interactions.
 - Chaotic and unstable systems.
 - High dimensional random models.

Mathematical tools

Calibration of models :

- 1. Direct statistical estimation :
 - Empirical estimates based on very few real data.
 - Extreme values theory.
- 2. Calibration of formalised systems or numerical codes *w.r.t. partial observations <u>and critical events</u> :*
 - Uncertainty and statistical variability.
 - Kinetic & statistical parameters.

→ Stochastic methods :

Filtering, bayesian inference, sequential Monte Carlo techniques, particle methods, stochastic style gradients.

Mathematical tools (continued)

Uncertainty propagations in formalised models.

- Rare event simulation :
 - Rare event probabilities.
 - Default random tree simulation.
- Sensitivity measures estimation :
 - Stability and robustness of the estimation.
 - Sensitivity w.r.t. the initial conditions.
 - Sensitivity w.r.t. kinetic/statistical parameters.

\rightsquigarrow Stochastic methods :

Recycling style acceptance-rejection techniques, interacting particle systems, default genealogy sampling, multi-level sampling techniques, free energy gradient computation, conditional path sampling, non intrusive importance sampling methods, interacting island models,...

Mathematical models

- X = random variable, stochastic process, random excursions
- W = model uncertainties, random noises, stochastic perturbations.

- Θ = kinetic parameters, initial conditions, control variables, statistical parameters.
- A = A critical event ($\mathbb{P}(X \in A) \simeq 10^{-6} 10^{-12}$)

Mathematical models

- X = random variable, stochastic process, random excursions
- W = model uncertainties, random noises, stochastic perturbations.

- Θ = kinetic parameters, initial conditions, control variables, statistical parameters.
- A = A critical event ($\mathbb{P}(X \in A) \simeq 10^{-6} 10^{-12}$)

Objectives	$\mathbb{P}(X \in A)$) a	nd	Law $(X \mid X \in A)$?	
个					
$\mathbb{P}((\Theta, W) \text{ s.t. })$	$X \in A$) and	nd	Law	$w((\Theta, W) \mid X \in A)$?	

Mathematical models

- X = random variable, stochastic process, random excursions
- W = model uncertainties, random noises, stochastic perturbations.
- Θ = kinetic parameters, initial conditions, control variables, statistical parameters.
- A = A critical event $(\mathbb{P}(X \in A) \simeq 10^{-6} 10^{-12})$

 $\begin{array}{cccc} \text{Objectives} & \mathbb{P}(X \in A) & \text{and} & \text{Law}\left(X \mid X \in A\right) & ? \\ & & & \uparrow \\ & & \mathbb{P}((\Theta, W) \text{ s.t. } X \in A) & \text{and} & \text{Law}\left((\Theta, W) \mid X \in A\right) & ? \end{array}$

Sensitivity measures :

$$rac{\partial}{\partial heta} \log \mathbb{P}(X \in A) \quad ext{and} \quad rac{\partial}{\partial heta} \mathbb{E}\left(f(X) \mid X \in A\right) \;\; ?$$

Introduction

Monte Carlo methods Importance sampling Stochastic particle methods

llustrations

Performance analysis

Ongoing research projects

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Importance sampling

 $\mathbb{P}(X \in A) = \mathbb{P}_X(A) = 10^{-10} \rightsquigarrow \text{Find a twisted } \mathbb{P}_Y \text{ s.t. } \mathbb{P}_Y(A) = \mathbb{P}(Y \in A) \simeq 1$ $\rightsquigarrow \text{ Classical Monte Carlo simulation } Y^i \text{ i.i.d. } \mathbb{P}_Y$

$$\int \frac{d\mathbb{P}_X}{d\mathbb{P}_Y}(y) \, \mathbf{1}_A(y) \, \mathbb{P}_Y(dy) = \mathbb{P}_X(A) \simeq \mathbb{P}_X^N(A) := \frac{1}{N} \sum_{1 \le i \le N} \frac{d\mathbb{P}_X}{d\mathbb{P}_Y}(Y^i) \, \mathbf{1}_A(Y^i)$$

$$\Downarrow$$

Variance =
$$\int \frac{d\mathbb{P}_X}{d\mathbb{P}_Y}(x) \ \mathbf{1}_A(x) \ \mathbb{P}_X(dx) - \mathbb{P}_X(A)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Importance sampling

 $\mathbb{P}(X \in A) = \mathbb{P}_X(A) = 10^{-10} \rightsquigarrow \text{Find a twisted } \mathbb{P}_Y \text{ s.t. } \mathbb{P}_Y(A) = \mathbb{P}(Y \in A) \simeq 1$ $\rightsquigarrow \text{ Classical Monte Carlo simulation } Y^i \text{ i.i.d. } \mathbb{P}_Y$

$$\int \frac{d\mathbb{P}_X}{d\mathbb{P}_Y}(y) \, \mathbb{1}_A(y) \, \mathbb{P}_Y(dy) = \mathbb{P}_X(A) \simeq \mathbb{P}_X^N(A) := \frac{1}{N} \sum_{1 \le i \le N} \frac{d\mathbb{P}_X}{d\mathbb{P}_Y}(Y^i) \, \mathbb{1}_A(Y^i)$$

Variance =
$$\int \frac{d\mathbb{P}_X}{d\mathbb{P}_Y}(x) \ \mathbf{1}_A(x) \ \mathbb{P}_X(dx) - \mathbb{P}_X(A)$$

Optimal twisted measure

Variance = 0
$$\iff \mathbb{P}_{Y}(dx) = \frac{1_{A}(x)}{\mathbb{P}_{X}(A)} \mathbb{P}_{X}(dx) = \mathbb{P}(X \in dx \mid X \in A)$$

Importance sampling (continued)

The drawbacks

- ► Complex systems ⇒ Difficult choice of the twisted measures.
- Robustness troubles : huge variance for wrong choice of Y.
 Ex.: Stochastic process X = (X₀,..., X_n)

 $\frac{d\mathbb{P}_n}{d\mathbb{Q}_n}(X) := \prod_{k=0}^n \frac{p_k(X_k | X_{k-1})}{q_k(X_k | X_{k-1})} \quad \text{martingale} \ge 0 \to \text{degenerated products w.r.t. } n$

▶ Intrusive methods : we sample *Y*, and not the real *X*.

Stochastic particle methods

A critical event = A cascade of (much less) rare events

Examples :

increasing energy levels, "physical" gateways, critical excursion sequences, numerical codes inputs levels associated with critical outputs, ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stochastic particle methods

A critical event = A cascade of (much less) rare events

Examples :

increasing energy levels, "physical" gateways, critical excursion sequences, numerical codes inputs levels associated with critical outputs, ...

11

Conditional distributions = Optimal twisted measures

 $n \rightarrow \eta_n = \text{Law}(r.v., \text{ path, excursion } \mid n \text{ intermediate events})$

\oplus

Rare event probability = Normalized constants Z_n = $\mathbb{P}(n \text{ intermediate events})$ Genetic type algorithm N individuals $(\xi_n^i)_{1 \le i \le N}$

- (local) explorations/propositions/predictions of random states (noises, model uncertainties, unknown parameters)
- Branching-Selection-Duplication-Recycling predicted evolutions & "individuals" entering in higher critical events.

Genetic type algorithm N individuals $(\xi_n^i)_{1 \le i \le N}$

- (local) explorations/propositions/predictions of random states (noises, model uncertainties, unknown parameters)
- Branching-Selection-Duplication-Recycling predicted evolutions & "individuals" entering in higher critical events.

Particle estimations :

$$\eta_n = \text{Law}(\text{random states or paths} \mid n \text{ events})$$

 $\simeq_{N\uparrow\infty} \quad \eta_n^N := \text{Occupation measure of a genealogical tree}$

Unbias particle estimate :

 $\mathcal{Z}_n = \mathbb{P}(n \text{ successive events})$

 $= \mathbb{P}(n-\text{th} \mid (n-1) \text{ events}) \times \ldots \times \mathbb{P}(2nd \mid \text{the first}) \times \mathbb{P}(\text{the first})$

 $\simeq_{\textit{N}\uparrow\infty} \mathcal{Z}_n^{\textit{N}} := [\% \text{ success } (n-1) \rightsquigarrow n] \times \ldots \times [\% \text{ success } 1 \rightsquigarrow 2] \times [\% \text{ in } 1]$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Monte Carlo methods

Ilustrations

Security of offshore platforms in extreme see conditions Nuclear plant security Watermarking & Digital fingerprinting Fiber optics communication Food risk & Epidemic propagations

Performance analysis

Ongoing research projects

Numerical codes: mechan. and hydrodyn.

(contract ALEA-IFREMER 2010)

- Inputs I : waves heights, forecasting data.
 temperatures graphs, uncertainties and kinetic parameters.
 (statistical model : I = 2000 Gaussian r.v.)
- ► Ouputs O : force mappings F_t(I) on the offshore structure (oil rigs, gas carriers).
- **Critical event :** hit a critical level *a* within the time horizon *T*.

$$A = B(a) = \left\{ \mathcal{I} \text{ s.t. } \sup_{0 \leq t \leq T} F_t(\mathcal{I}) \geq a
ight\} \rightsquigarrow \mathsf{Law}\left(\mathsf{Inputs} \ \mathcal{I} \ \mid \mathcal{I} \ \in A \
ight)$$

Numerical codes: mechan. and hydrodyn.

(contract ALEA-IFREMER 2010)

- Inputs I : waves heights, forecasting data.
 temperatures graphs, uncertainties and kinetic parameters.
 (statistical model : I = 2000 Gaussian r.v.)
- ► Ouputs O : force mappings F_t(I) on the offshore structure (oil rigs, gas carriers).
- **Critical event :** hit a critical level *a* within the time horizon *T*.

$$A = B(a) = \left\{ \mathcal{I} \text{ s.t. } \sup_{0 \le t \le T} F_t(\mathcal{I}) \ge a \right\} \rightsquigarrow \mathsf{Law}\left(\mathsf{Inputs} \ \mathcal{I} \ \mid \mathcal{I} \ \in A \ \right)$$

Multi-level particle branching algorithm w.r.t. $A_n = B(a_n)$ with $a_n \uparrow$

- MCMC exploration of the level sets A_n.
- ▶ Selection of the individual $\in A_{n+1}$ (⊕ adaptive choice of A_{n+1})

Nuclear plant security

(Contract CIFRE, ALEA-EDF R&D Industrial Risks)

- Inputs I : material specif./defaults, injection temperatures, model uncertainties and unknown parameters.
 (ex. stat. model : I = 20 Gaussian r.v.)
- Outputs = neutronics/mechanics/hydro. codes : $\mathcal{O} = \mathcal{F}(\mathcal{I})$
- ► Critical event :

 $\mathcal{G}(\mathcal{O}) \in \mathbb{R}$ risk measure function ($\mathcal{G}^{-1}\{0\}$ =default hyper-surface)

$$A = \{\mathcal{I} \text{ s.t. } \mathcal{G} \circ \mathcal{F}(\mathcal{I}) < 0\} \rightsquigarrow \operatorname{Law}(\mathcal{I} \mid \mathcal{I} \in A)$$

Nuclear plant security

(Contract CIFRE, ALEA-EDF R&D Industrial Risks)

- Inputs I: material specif./defaults, injection temperatures, model uncertainties and unknown parameters.
 (ex. stat. model : I = 20 Gaussian r.v.)
- Outputs = neutronics/mechanics/hydro. codes : $\mathcal{O} = \mathcal{F}(\mathcal{I})$
- Critical event :

 $\mathcal{G}(\mathcal{O}) \in \mathbb{R}$ risk measure function ($\mathcal{G}^{-1}\{0\}$ =default hyper-surface)

$$A = \{\mathcal{I} \text{ s.t. } \mathcal{G} \circ \mathcal{F}(\mathcal{I}) < 0\} \rightsquigarrow \operatorname{Law}(\mathcal{I} \mid \mathcal{I} \in A)$$

The same particle algorithm as before with $A_n \downarrow$ \oplus Sensitivity analysis (r.v. correlations, parameters estimations) Watermarking & Digital fingerprinting (Illegal copy detection systems)

(ANR Nebbiano 06-09, INRIA ALEA-ASPI-TEMICS)

Random variables : hidden code (fingerprint)

Formalisation : bit series $X = (X^1, \dots, X^d) \in \{0, 1\}$ or Gauss. r.v.

Rare event : Innocent prosecution (illegal copy).

Watermarking & Digital fingerprinting (Illegal copy detection systems)

(ANR Nebbiano 06-09, INRIA ALEA-ASPI-TEMICS)

Random variables : hidden code (fingerprint)

Formalisation : bit series $X = (X^1, \dots, X^d) \in \{0, 1\}$ or Gauss. r.v.

Rare event : Innocent prosecution (illegal copy).

We find a document with some code $y = (y^1, \dots, y^d)$. Wrong accusation/Mistaken degree \sim level passing of a function:

$$\begin{array}{lll} \mathcal{F}(X) &=& \sum_{1 \leq i \leq d} y^i \; f(X^i) \geq a & \text{Tardos Codes} \\ \mathcal{F}(X) &=& |\langle X, u \rangle| \, / \|X\| \geq a & \text{Zero-bit watermarking } (\|u\| = 1) \\ A &= \{X \; \text{such that} \; \mathcal{F}(X) \geq a\} \rightsquigarrow \mathrm{Law} \left(X \; \mid \mathcal{F}(X) \; \geq a \right) \end{array}$$

Watermarking & Digital fingerprinting (Illegal copy detection systems)

(ANR Nebbiano 06-09, INRIA ALEA-ASPI-TEMICS)

Random variables : hidden code (fingerprint)

Formalisation : bit series $X = (X^1, \dots, X^d) \in \{0, 1\}$ or Gauss. r.v.

Rare event : Innocent prosecution (illegal copy).

We find a document with some code $y = (y^1, \dots, y^d)$. Wrong accusation/Mistaken degree \sim level passing of a function:

$$\begin{aligned} \mathcal{F}(X) &= \sum_{1 \leq i \leq d} y^i \ f(X^i) \geq a \quad \text{Tardos Codes} \\ \mathcal{F}(X) &= |\langle X, u \rangle| / ||X|| \geq a \quad \text{Zero-bit watermarking } (||u|| = 1) \\ A &= \{X \text{ such that } \mathcal{F}(X) \geq a\} \rightsquigarrow \text{Law} \left(X \mid \mathcal{F}(X) \geq a\right) \end{aligned}$$

⇒ Same multi-level branching algorithm as before $A_n \downarrow$ ⊕ Sensitivity analysis (r.v. correlations, parameters estimations)

Fiber optics communication

- DM + J. Garnier. Simulations of rare events in fiber optics by interacting particle systems. Optics Communications (2006).
- DM + J. Garnier. Genealogical particle analysis of rare events. Ann. Appl. Probab. (2005).

Stochastic model :

- Elementary pulses X_k in each k-th fiber section (virtual) : soliton type pulse profiles.
- Random var. : ω_k = randomness/perturbations in each section. (speed dispersion fluctuations)

$$X_k = \underbrace{F_k(X_{k-1}, \omega_k)}_{\text{nonlinear Schrödinger equation}}$$

Rare event : critical level of a characteristic value $V(X_T)$ (pulse profile width, modal dispersion, loss of amplitude power).

$$\mathbb{P}\left(V(X_{T}) \geq a\right) \quad \& \quad \mathsf{Law}\left((X_{t})_{0 \leq t \leq T} \mid V(X_{T}) \geq a\right)$$

Fiber optics communication (continued)

Particle algorithm = N particles $\xi_t^i = (X_t^i, X_{t+1}^i)$

- Free transition space exploration $X_{t-1} \rightsquigarrow X_t = F_t(X_{t-1}, \omega_t)$.
- ► Selection-Recycling \uparrow levels (criteria/weight $e^{\alpha(V(X_t)-V(X_{t-1}))}$)

Fiber optics communication (continued)

Particle algorithm = N particles $\xi_t^i = (X_t^i, X_{t+1}^i)$

- Free transition space exploration $X_{t-1} \rightsquigarrow X_t = F_t(X_{t-1}, \omega_t)$.
- ► Selection-Recycling \uparrow levels (criteria/weight $e^{\alpha(V(X_t)-V(X_{t-1}))}$)

∜

Unbias estimate of the normalizing constants

$$\begin{aligned} \mathcal{Z}_{T} &= \mathbb{P}(V_{T}(X_{T}) \geq a) \\ &= \mathbb{E}\left(1_{V_{T}(X_{T}) \geq a} e^{\alpha V(X_{T})} \left\{ \prod_{0 \leq t \leq T} e^{\alpha (V(X_{t}) - V(X_{t-1}))} \right\} \right) \\ &\simeq_{N\uparrow} \left(\frac{1}{N} \sum_{1 \leq i \leq N} 1_{V_{T}(X_{T}^{i}) \geq a} e^{\alpha V(X_{T}^{i})} \right) \times \prod_{0 \leq t \leq T} \frac{1}{N} \sum_{1 \leq i \leq N} e^{\alpha \left(V(X_{t}^{i}) - V(X_{t-1}^{i})\right)} \\ & \oplus \end{aligned}$$

Genealogical tree $\simeq_{N\uparrow}$ Default tree model

Food risk & Epidemic propagations

ANR VIROSCOPY 08-11: Epidemic propagations analysis INRIA-ENST.

- ARC EPS INRA-INRIA : Eco-microbiologie previsonnelle (09-10).
- CNRS Project : ENS Paris & Bordeaux Mathematical Institute (2011-2013).

Kinetic models \sim unknown parameters Θ :

$$X_k = F_k(X_{k-1}, \omega_k, \Theta)$$

- Calibration : partial and noisy observations (web, mesures stat.)
 Particle filters and sequential Monte Carlo techniques.
- Risk analysis : level crossing type models V(X) > a, critical excursions,...

→ Same type of particle models (branching-selection)

Introduction

Monte Carlo methods

Ilustrations

Performance analysis Stochastic particle algorithms Particle estimates Exponentially small error probabilities

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ongoing research projects

Genetic type particle models

Interacting sampling+ adaptative + <u>universal</u>

- Mutation-Propositions : Markov transitions $X_{n-1} \rightsquigarrow X_n \in E_n$.
- ▶ Selection-Accept/Rejet-Recycling : local criteria \rightsquigarrow function G_n .

Genealogical tree models

(Population size, Time horizon)=(N, n) = (3, 3)

Genealogical tree models

(Population size, Time horizon)=(N, n) = (3, 3)

Theoreme (96-98'): Ancestral lines \simeq i.i.d. \sim = Feynman-Kac measures

$$\mathbb{Q}_n := rac{1}{\mathcal{Z}_n} \left\{ \prod_{0 \le p < n} G_p(X_p) \right\} \quad \mathbb{P}_n \quad ext{avec} \quad \mathbb{P}_n := ext{Law}\left(X_0, \dots, X_n\right)$$

Genealogical tree models

(Population size, Time horizon) = (N, n) = (3, 3)

Theoreme (96-98'): Ancestral lines \simeq i.i.d. \sim = Feynman-Kac measures

$$\mathbb{Q}_n := rac{1}{\mathcal{Z}_n} \left\{ \prod_{0 \le p < n} G_p(X_p) \right\} \quad \mathbb{P}_n \quad ext{avec} \quad \mathbb{P}_n := ext{Law} \left(X_0, \dots, X_n
ight)$$

Example

$$G_n = 1_{A_n} o \mathbb{Q}_n = \operatorname{Law}((X_0, \dots, X_n) \mid X_p \in A_p, \ p < n)$$

Sensitivity measures $\theta \in \mathbb{R}^{d=1} \rightsquigarrow (X_n^{\theta}, G_n^{\theta}, \mathbb{Q}_n^{\theta})$

Rare event probabilities = Normalizing constants

$$\mathcal{Z}_n(heta) = \mathbb{P}(ext{critical event} \sim heta) = \mathbb{E}\left(\prod_{0 \leq p < n} G^{ heta}_p(X^{ heta}_p)
ight)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sensitivity measures $\theta \in \mathbb{R}^{d=1} \rightsquigarrow (X_n^{\theta}, G_n^{\theta}, \mathbb{Q}_n^{\theta})$

Rare event probabilities = Normalizing constants

$$\mathcal{Z}_n(\theta) = \mathbb{P}(ext{critical event} \sim \theta) = \mathbb{E}\left(\prod_{0 \leq p < n} G^{\theta}_p(X^{\theta}_p)\right)$$

$$rac{\partial}{\partial heta} \log \mathcal{Z}_n(heta) = \mathbb{Q}_n\left(\mathbf{f_n}\right) = \int_{\mathbf{x}=\mathrm{paths}} \quad \mathbb{Q}_n^{ heta}(\mathsf{dx}) \ \ \mathbf{f_n}(\mathbf{x})$$

with the additive functional :

$$\mathbf{f_n}(x_0,\ldots,x_n) = \frac{1}{n} \sum_{0 \le p < n} \frac{\partial}{\partial \theta} \log \left(p_{\theta}(x_{p+1}|x_p) \ G_p^{\theta}(x_p) \right)$$

Sensitivity measures $\theta \in \mathbb{R}^{d=1} \rightsquigarrow (X_n^{\theta}, G_n^{\theta}, \mathbb{Q}_n^{\theta})$

Rare event probabilities = Normalizing constants

$$\mathcal{Z}_n(heta) = \mathbb{P}(ext{critical event} \sim heta) = \mathbb{E}\left(\prod_{0 \leq p < n} G^{ heta}_p(X^{ heta}_p)
ight)$$

$$\frac{\partial}{\partial \theta} \log \mathcal{Z}_n(\theta) = \mathbb{Q}_n(\mathbf{f_n}) = \int_{\mathbf{x}=\text{paths}} \quad \mathbb{Q}_n^{\theta}(\mathbf{dx}) \ \mathbf{f_n(x)}$$

with the additive functional :

$$\mathbf{f_n}(x_0,\ldots,x_n) = \frac{1}{n} \sum_{0 \le p < n} \frac{\partial}{\partial \theta} \log \left(p_{\theta}(x_{p+1}|x_p) \ G_p^{\theta}(x_p) \right)$$

Particle approximations

$$\frac{\partial}{\partial \theta} \log \mathcal{Z}_n(\theta) = \mathbb{Q}_n^{\theta}(\mathbf{f_n}) \simeq_{N\uparrow} \frac{1}{N} \sum_{1 \leq i \leq N} \mathbf{f_n}(\text{ancestral line}_n(i))$$

 \oplus Genealogical tree

$$\begin{split} \mathbb{A}_n^N(f_n) &= \frac{1}{N} \sum_{1 \le i \le N} f_n \left(\text{ancestral line}_n(i) \right) \\ &\simeq_{N \to \infty} \quad \mathbb{Q}_n(f_n) = \mathbb{E} \left(f_n(X_0, \dots, X_n) \mid \text{critical event} \right) \end{split}$$

<□ > < @ > < E > < E > E のQ @

 \oplus Genealogical tree

$$\begin{split} \mathbb{A}_n^N(f_n) &= \frac{1}{N} \sum_{1 \le i \le N} f_n \left(\text{ancestral line}_n(i) \right) \\ &\simeq_{N \to \infty} \quad \mathbb{Q}_n(f_n) = \mathbb{E} \left(f_n(X_0, \dots, X_n) \mid \text{critical event} \right) \end{split}$$

 \oplus Current population

$$\eta_n^N(f_n) := \frac{1}{N} \sum_{1 \le i \le N} f_n(\xi_n^i) \longrightarrow_{N \to \infty} \eta_n(f_n) = \mathbb{E}\left(f_n(X_n) \mid \text{critical event}\right)$$

 \oplus Genealogical tree

$$\begin{split} \mathbb{A}_n^N(f_n) &= \frac{1}{N} \sum_{1 \le i \le N} f_n \left(\text{ancestral line}_n(i) \right) \\ &\simeq_{N \to \infty} \quad \mathbb{Q}_n(f_n) = \mathbb{E} \left(f_n(X_0, \dots, X_n) \mid \text{critical event} \right) \end{split}$$

 \oplus Current population

$$\eta_n^N(f_n) := \frac{1}{N} \sum_{1 \le i \le N} f_n(\xi_n^i) \longrightarrow_{N \to \infty} \eta_n(f_n) = \mathbb{E}\left(f_n(X_n) \mid \text{critical event}\right)$$

 \oplus Unbias particle approximation

$$\mathcal{Z}_n^N = \prod_{0 \leq p < n} \frac{1}{N} \sum_{1 \leq i \leq N} G_p(\xi_p^i) \longrightarrow_{N \to \infty} \mathcal{Z}_n = \mathbb{P} (ext{critical event})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \oplus Genealogical tree

$$\begin{split} \mathbb{A}_n^N(f_n) &= \frac{1}{N} \sum_{1 \le i \le N} f_n \left(\text{ancestral line}_n(i) \right) \\ &\simeq_{N \to \infty} \quad \mathbb{Q}_n(f_n) = \mathbb{E} \left(f_n(X_0, \dots, X_n) \mid \text{critical event} \right) \end{split}$$

 \oplus Current population

$$\eta_n^N(f_n) := \frac{1}{N} \sum_{1 \le i \le N} f_n(\xi_n^i) \longrightarrow_{N \to \infty} \eta_n(f_n) = \mathbb{E}\left(f_n(X_n) \mid \text{critical event}\right)$$

 \oplus Unbias particle approximation

$$\mathcal{Z}_n^N = \prod_{0 \le p < n} \frac{1}{N} \sum_{1 \le i \le N} G_p(\xi_p^i) \longrightarrow_{N \to \infty} \mathcal{Z}_n = \mathbb{P} \text{ (critical event)}$$

Ex.: $G_n = 1_{A_n} \rightsquigarrow \mathcal{Z}_n^N = \prod \%$ success $\longrightarrow \mathbb{P}(X_p \in A_p, \ p < n)$

 \oplus Compelete genealogical tree = $[(\xi_p^i)_{1 \le i \le N}, 0 \le p \le n]$ Backward Markovian model

$$\mathbb{Q}_n^N(\xi_0^{i_0},\xi_1^{i_1},\ldots,\xi_n^{i_n}):=\frac{1}{N}\times\mathbb{M}_n^N(i_n,i_{n-1})\times\ldots\times\mathbb{M}_2^N(i_2,i_1)\times\mathbb{M}_1^N(i_1,i_0)$$

with the random transitions : $(p_n = \text{transition densities } x_{n-1} \rightsquigarrow x_n)$

$$\mathbb{M}_{n+1}^{N}(i_{n+1},i_n) = \frac{p_{n+1}(\xi_{n+1}^{i_{n+1}}|\xi_n^{i_n})G_n(\xi_n^{i_n})}{\sum_{1 \le k \le N} p_{n+1}(\xi_{n+1}^{i_{n+1}}|\xi_n^{k})G_n(\xi_n^{k})}$$

\oplus Compelete genealogical tree = $\left[(\xi_p^i)_{1 \le i \le N}, 0 \le p \le n \right]$ Backward Markovian model

$$\mathbb{Q}_n^N(\xi_0^{i_0},\xi_1^{i_1},\ldots,\xi_n^{i_n}):=\frac{1}{N}\times\mathbb{M}_n^N(i_n,i_{n-1})\times\ldots\times\mathbb{M}_2^N(i_2,i_1)\times\mathbb{M}_1^N(i_1,i_0)$$

with the random transitions : $(p_n = \text{transition densities } x_{n-1} \rightsquigarrow x_n)$

$$\mathbb{M}_{n+1}^{N}(i_{n+1},i_{n}) = \frac{p_{n+1}(\xi_{n+1}^{i_{n+1}}|\xi_{n}^{i_{n}})G_{n}(\xi_{n}^{i_{n}})}{\sum_{1 \le k \le N} p_{n+1}(\xi_{n+1}^{i_{n+1}}|\xi_{n}^{k})G_{n}(\xi_{n}^{k})}$$

Example: Additive functional integration

$$\mathbf{f}_{\mathbf{n}}(x_0,\ldots,x_n) = \frac{1}{n+1} \sum_{0 \le p \le n} f_p(x_p)$$

$$\mathbb{Q}_{n}(\mathbf{f}_{n}) \simeq_{N\uparrow} \mathbb{Q}_{n}^{N}(\mathbf{f}_{n}) := \frac{1}{n+1} \sum_{0 \leq p \leq n} \left[\frac{1}{N}, \dots, \frac{1}{N} \right] \mathbb{M}_{n}^{N} \mathbb{M}_{n-1}^{N} \dots \mathbb{M}_{p+1}^{N} \left[\begin{array}{c} f_{p}(\xi_{p}^{1}) \\ \vdots \\ f_{p}(\xi_{p}^{N}) \end{array} \right]$$

Concentration inequalities

Constants (c_1, c_2) related to (biais,variance) $\perp n, c$ universal ct, $||f_n|| \leq 1$, et $\mathbf{F_n}$ normalised additive functional

 $\forall \ (x \ge 0, n \ge 0, N \ge 1, \epsilon \in \{+1, -1\})$, the probability of the following inequalities is larger than $1 - e^{-x}$:

$$\left[\eta_n^N - \eta_n\right](f_n) \le \frac{c_1}{N} \left(1 + x + \sqrt{x}\right) + \frac{c_2}{\sqrt{N}} \sqrt{x}$$

$$\left[\mathbb{A}_n^N-\mathbb{Q}_n
ight](f_n)\leq c_1\;rac{n+1}{N}\;\left(1+x+\sqrt{x}
ight)+c_2\;\sqrt{rac{(n+1)}{N}\;\sqrt{x}}$$

$$\left[\mathbb{Q}_n^N - \mathbb{Q}_n\right](\mathbf{F}_n) \leq c_1 \frac{1}{N} \left(1 + (x + \sqrt{x})\right) + c_2 \sqrt{\frac{x}{N(n+1)}}$$

$$\frac{\epsilon}{n}\log\frac{\mathcal{Z}_n^N}{\mathcal{Z}_n} \le \frac{c_1}{N} \ \left(1 + x + \sqrt{x}\right) + \frac{c_2}{\sqrt{N}} \ \sqrt{x}$$

Introduction

Monte Carlo methods

llustrations

Performance analysis

Ongoing research projects

Ongoing research projects

- Genealogical trees = Defaults trees = Typical critical trajectories
- Computation of the influent parameters w.r.t. critical event

₩

- ~> Control of processes evolving in critical regimes
- visit of systems
- Prediction of events w.r.t. observations