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Abstract

In this paper we study approximation schemes for a nonlinear filtering problem of a partially observed
diffusive system when the state process X is the solution of a stochastic delay diffusion equation with
a constant time lag τ and the observation process is a noisy function of the state. The approximating
state is the linear interpolation of a modified Milstein scheme, which is asymptotically optimal
with respect to the mean square L2-error within the class of all pathwise approximations based
on equidistant observations of the driving Brownian motion. Upper bounds for the error of the
filter approximations are computed. Some other discretization schemes for the state process are also
considered.

Introduction

On the probability space (Ω,F , (Ft)t∈[0,T ], P ), let X =
(
X(t)

)
t∈[−τ,T ]

be the state process governed by
the following stochastic delay differential equation with constant time lag


X(t) = η(t), −τ ≤ t ≤ 0,

X(t) = η(0) +
∫ t

0

a(u,X(u), X(u− τ)) du+
∫ t

0

b(u,X(u), X(u− τ)) dW̃u, 0 ≤ t ≤ T,
(1)

where τ is a positive constant, η =
(
η(s)

)
s∈[−τ,0]

is the initial path and W̃ =
(
W̃ (t)

)
t∈[0,T ]

is a standard
Brownian motion.

Let Y =
(
Y (t)

)
t∈[0,T ]

be the observation process given by

Y (t) =
∫ t

0

h(u,X(u), X(u− τ))du+W (t), 0 ≤ t ≤ T, (2)

where W =
(
W (t)

)
t∈[0,T ]

is a standard Brownian motion, independent of W̃ , and h : [0, T ]× R → R is
a Borel measurable function.
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‡Département de Mathématiques, Université de Metz, 23 Allée des Oeillets F 57160 Moulins les Metz, France
§Dipartimento di Matematica - ”Sapienza” Università di Roma, piazzale A. Moro 2, I 00185 Roma, Italy
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Partially observed stochastic delay systems appear in many applications, for instance in population
growth (see, e.g., [8]) and in mathematical finance (see, e.g., [1]).

We assume the following hypotheses on the initial path η, the drift coefficient a and the diffusion
coefficient b of equation (1) stated above:

(A1) η is a F0-measurable random variable with values in C
(
[−τ, 0],R

)
and such that

E
(

sup
s∈[−τ,0]

|η(s)|2
)
<∞;

(A2) the drift a(t, x1, x2) and the diffusion coefficient b(t, x1, x2) satisfy

a, b ∈ C1,2([0, T ]× R2)

with bounded spatial derivatives a(0,1,0), a(0,0,1), b(0,1,0) and b(0,0,1).

Properties (A1) and (A2) implies that a unique strong solution of equation (1) with initial condition
X(s) = η(s), for −τ ≤ s ≤ 0, exists and satisfies

E
(

sup
s∈[−τ,T ]

|X(s)|2
)
<∞. (3)

Moreover we assume that

(B1) h : [0, T ] × R2 → R is jointly continuous and with less than linear growth, i.e. for any t ∈ [0, T ]
and x = (x1, x2) in R2

|h(t, x1, x2)|2 ≤ K(1 + x2
1 + x2

2);

(B2) h is globally Lipschitz with respect to (x1, x2), uniformly in time, i.e. for any t ∈ [0, T ], x = (x1, x2)
and x′ = (x′1, x

′
2) in R2

|h(t, x1, x2)− h(t, x′1, x
′
2)| ≤ Lh |(x1, x2)− (x′1, x

′
2)|.

In this paper we present an approximation scheme for the conditional law πt of the state process at
time t, given the observation process up to time t, i.e., an approximation scheme for the so-called filter

πt(ϕ) = E
[
ϕ(X(t))/FYt

]
, 0 ≤ t ≤ T (4)

for all functions ϕ belonging to a determining class, i.e., the best estimate of ϕ(X(t)) given the σ-algebra
of the observations up to time t, FYt = σ{Y (s), s ≤ t}.

Approximation in nonlinear filtering of partially observed stochastic differential systems without delays
has been widely studied by many authors, see e.g. Kushner [13], Le Gland [15], Crisan [6], Del Moral
[7] and the references therein. The case of stochastic delay systems is much less investigated. In [5],
Chang gives a computable and weakly convergent approximation for the filter associated to partially
observed delay systems by applying an Euler discretization scheme to the state process. Other weak
approximation schemes, such as those developed by Kushner [14] in a stochastic control framework, could
also be applied to obtain weak convergence of the filters. Nevertheless, it seems difficult to compute the
rate of convergence with these methods. In [4], Calzolari, Florchinger and Nappo construct a strong
approximation scheme which depends on the actual observation process and converges in probability to
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the original filter as measure valued process. As in [5], the starting point is the Euler approximation of
the state process. Moreover in [4], a nonlinear filtering problem concerning functionals of the trajectory(
X(t+ s), s ∈ [−τ, 0]

)
and a more general model of stochastic delay differential equations is considered

and, under appropriate conditions on the initial path, the drift coefficients and the diffusion coefficient,
the order of convergence at any fixed time turns out to be

(
log n/n

)1/2, where n is the number of points
in the discretization grid.

The aim of this paper is to get a new approximation scheme combining the techniques presented
by Calzolari, Florchinger and Nappo in [3] (see also Proposition 4.1 of [4], and Theorem 1.1 in the
sequel) with the modified Milstein scheme for pathwise approximation of stochastic delay differential
equations with constant time lag introduced by Hofmann and Mueller-Gronbach in [9]. The choice of
the modified Milstein approximation is motivated by the fact that this approximation is asymptotically
optimal with respect to the mean square L2-error within the class of all pathwise approximations based
on the knowledge of W̃ (t`) for a finite number of equidistant times t` ∈ [0, T ] (see Theorem 2 in [9]). For
the ease of the reader we have summarized the results of [9] in Proposition 2.3.

The main features of the method we propose are the following. The approximation of the filter is given
by a deterministic functional which depends on an approximation (X̂n,Y n) of the original system (X,Y )
evaluated in the actual observation process Y (see (7)). In this paper two different approximations Y n

of the observation process Y are considered (see (8) and (18)). Though the first one is the most natural,
the corresponding filter approximation is not feasible, since in order to be computed, the whole trajectory
of the observation process Y has to be known. On the other hand the second approximation leads to
a feasible filter approximation, i.e. depending on Y (t) and Y (t`) for a finite number of times t` ∈ [0, t].
With the modified Milstein approximation for the state process (see (24)), the approximations of the
filter converge in probability in bounded Lipschitz metric to the original filter, the rate of convergence
being of order n−1/2. Moreover, the error can be bounded from above by an explicit constant, and the
error bound for the filter is asymptotically the best that can be achieved by combining the general upper
bounds of [4] and the results in [9], when restricting to state process approximations depending on W̃ (t`)
for a finite number of equidistant times t` ∈ [0, T ].

Note that, as discussed in the last section, by using different continuous approximation schemes for
the state process, such as the Euler-Maruyama or the Milstein approximations, the technique exposed
in this paper would also allow us to compute explicit upper bounds for the error, even with a faster
(or asymptotically faster) rate of convergence, as for the Milstein approximation. Nevertheless from a
practical point of view, continuous approximation methods are not feasible in the sense that the whole
trajectory of the process W̃ has to be known. Furthermore, as discussed in Section 4 (see also Remark 1.4),
with Y n given by (18), the gain in the rate of convergence obtained by using the Milstein approximation is
lost and the rate remains equal to n−1/2. Finally, though from a theoretical point of view, the asymptotical
upper bound that we can get with our method by using the Milstein approximation is better than that
obtained by the modified Milstein approximation, it turns out that, from a practical point of view, the
best asymptotical upper bound is obtained by the latter approximation scheme.

This paper is divided into four sections and is organized as follows. In Section 1 we recall a general
method to define an approximation of the filter and to compute an upper bound for the bounded
Lipschitz distance between the original filter and its approximation for two different approximations
of the observation process. In Section 2 we describe the modified Milstein approximation for the state
process given in [9], and recall the asymptotic estimates for the rate of convergence. In Section 3, we
construct the approximation schemes for the filter and prove the main convergence results (Theorem 3.2
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and Theorem 3.4). Finally in Section 4, we briefly present some other approximation schemes for the
filter that can be derived by the same techniques using various continuous approximation schemes for
the state process, and discuss about the rate of convergence for the filter approximations, both from a
theoretical and a practical point of view.

1 The approximation of the filter

In this section we assume that X̂n =
(
X̂n(t)

)
t∈[−τ,T ]

is a sequence of processes, defined on
(Ω,F , (Ft)t∈[0,T ], P ), converging to X, independent of W , such that

sup
t∈[−τ,T ]

E
[
|X̂n(t)|2

]
<∞, (5)

and we construct a partially observed stochastic system (X̂n,Y n), with the property that Y n converges
to Y , and such that the associated filter π̂n has a robust version. This means that

π̂nt (dx) = Ûn(t,Y n; dx) (6)

for a suitable deterministic measure-valued functionals Ûn, with paths in the Skorohod space
DP(R)([0, T ]), where P(R) denotes the space of probability measures on R, and such that Ûn(t,y) =
Ûn(t, y(· ∧ t)). While the existence of such a functional is straightforward (see, e.g. [12]), the explicit
form of Ûn may be difficult to obtain. Then we consider

˜̂πnt = Ûn(t,Y ) (7)

as an approximation of the original filter πt, depending on the trajectory actually observed. Though
different approximations Y n can be considered, as a natural choice we define

Y n(t) =
∫ t

0

h(s, X̂n(s), X̂n(s− τ)) ds+W (t), 0 ≤ t ≤ T. (8)

Then, since the observation noise W is independent of both X and X̂n, thanks to hypothesis (B1),
and estimates (3) and (5) we can compute the filters πt and π̂nt associated respectively with the original
and the approximating delay systems (X,Y ) and (X̂n,Y n) by the classical Kallianpur-Striebel formula
(see [2]). The filter πt is then given, for any bounded measurable function ϕ, by

πt(ϕ) =
σt(ϕ)
σt(1)

=
E0
[
ϕ(X(t))Lt|FYt

]
E0
[
Lt|FYt

] , (9)

where E0 denotes the expectation with respect to the reference probability measure P 0, defined by the
Radon-Nikodym derivative

dP 0

dP
=
(
LT
)−1

,

with

Lt = exp
{∫ t

0

h(s,X(s), X(s− τ))dY (s)− 1
2

∫ t

0

|h(s,X(s), X(s− τ))|2 ds
}
, (10)
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which is a martingale thanks to the sublinearity of h and the bound (3). Similarly

π̂nt (ϕ) =
σnt (ϕ)
σnt (1)

=
E0,n

[
ϕ(X̂n(t))L̂nt |FY

n

t

]
E0,n

[
L̂nt |FY

n

t

] , (11)

where E0,n denotes the expectation with respect to the reference probability measure P 0,n, defined by
the Radon-Nikodym derivative

dP 0,n

dP
=
(
L̂nT
)−1

,

with

L̂nt = exp
{∫ t

0

h(s, X̂n(s), X̂n(s− τ))dY n(s)− 1
2

∫ t

0

|h(s, X̂n(s), X̂n(s− τ))|2 ds
}
, (12)

which is a martingale thanks to the sublinearity of h and the bound (5).
Furthermore note that the independence of X̂n and W under P implies the independence of X̂n and

Y n under the reference probability measure P 0,n, and in addition the law of X̂n is the same under the
probability measures P and P 0,n.

Before stating our convergence result, we recall the definition of the bounded Lipschitz metric. For
any metric space S, and probability measures ν1 and ν2 on S,

dBL(ν1, ν2) = sup
{
|ν1(ϕ)− ν2(ϕ)|
‖ϕ‖ ∨ Lϕ

;ϕ bounded and Lipschitz
}

where ‖ϕ‖ denotes the sup-norm, and Lϕ is the Lipschitz constant of ϕ.

Theorem 1.1. Assume that conditions (A1),(A2), and (B1),(B2) for the system (1)-(2) are satisfied.
Assume that the processes X̂n are independent of W , and satisfy condition (5), and that the
approximation processes Y n are given by (8). Then there exists a computable positive constant H,
independent of t and n, such that

E
[
dBL(πt, ˜̂πnt )

]
≤ H

[
E
[ ∫ t

−τ

∣∣X̂n(s)−X(s)
∣∣2 ds]

+
(
E
[ ∫ t

−τ

∣∣X̂n(s)−X(s)
∣∣2 ds])1/2]+

(
E
[
|X̂n(t)−X(t)|2

])1/2
. (13)

Moreover, if the right hand side of the above inequality converges to zero, then the sequence ˜̂πnt defined
in (7) converges in probability in bounded Lipschitz metric to the original filter πt.

Proof. Let Pn be the probability measure defined by the Radon-Nikodym derivative

dPn

dP 0
= exp

{∫ T

0

h(s, X̂n(s), X̂n(s− τ)) dY (s)− 1
2

∫ T

0

|h(s, X̂n(s), X̂n(s− τ))|2 ds

}
, (14)

where P 0 is the reference probability measure defined above.
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Then the law of (X̂n,Y ) under Pn is the same as the law of (X̂n,Y n) under P , and (X, X̂n,Y ),
and the probability measures P 0, P , and Pn satisfy conditions (a), (an), (b1), and (b2) of Calzolari,
Florchinger, and Nappo [3]. Therefore, using (32) in Theorem 2.3 of [3], we have

E
[
dBL(πt, ˜̂πnt )

]
≤ 2E0

[∣∣(dPn/dP 0)|F̃t − (dP/dP 0)|F̃t
∣∣]+ E

[
|X(t)− X̂n(t)|

]
, (15)

where F̃t = FX,X̂
n,Y

t . Moreover, with slight modifications in the proof of Proposition 4.1 of [4], we get
for all t ≤ T

E0
[∣∣(dPn/dP 0)|F̃t − (dP/dP 0)|F̃t

∣∣]
≤ 2
(
E
[ ∫ t

0

∣∣h(s, X̂n(s), X̂n(s− τ))− h(s,X(s), X(s− τ))
∣∣2 ds])1/2

+ E
[ ∫ t

0

∣∣h(s, X̂n(s), X̂n(s− τ))− h(s,X(s), X(s− τ))
∣∣2 ds].

Finally, substituting the previous bound in (15), using the Lipschitz assumption on h and Cauchy-Schwarz
inequality

E
[
dBL(πt, ˜̂πnt )

]
≤ 4Lh

(
E
[ ∫ t

−τ

∣∣X̂n(s)−X(s)
∣∣2 ds])1/2

+ 2L2
hE
[ ∫ t

−τ

∣∣X̂n(s)−X(s)
∣∣2 ds]+

(
E
[
|X̂n(t)−X(t)|2

])1/2
, (16)

and H can be taken to be equal to max(4Lh, 2L2
h).

Remark 1.2. The same arguments apply when the function h appearing in the definition of Y is of the
form

h
(
u,X(u), X(u− τ1), . . . , X(u− τm)

)
,

where the delays τi, i = 1, . . . ,m, are in [0, τ ], for a fixed τ > 0, the only difference being that the constant
H depends linearly on m. Furthermore, the result extends when the delays τi depend on time.

On the other hand, when instead h is of the form

h
(
u,X(u)

)
,

then inequality (16) reduces to

E
[
dBL(πt, ˜̂πnt )

]
≤ 2Lh

(
E
[ ∫ t

0

∣∣X̂n(s)−X(s)
∣∣2 ds])1/2

+ L2
hE
[ ∫ t

0

∣∣X̂n(s)−X(s)
∣∣2 ds]+

(
E
[
|X̂n(t)−X(t)|2

])1/2
. (17)

Among all the possible approximations for the observation process that one can consider instead of
(8) the following one

Y n(t) =
∫ t

0

h
(
δ bs/δc, X̂n(δ bs/δc), X̂n(δ b(s− τ)/δc)

)
ds+W (t), 0 ≤ t ≤ T, (18)



7

has the property, as shown in the sequel, that the functional Ûn
(
t, y(· ∧ t)

)
depends on y(t) and on y(t`)

for a finite number of times t` ∈ [0, t], so that the approximation of the filter given by (7) is feasible, i.e.
it depends only on Y (t) and on Y (t`) for a finite number of times t` ∈ [0, t] (see (22)).

Moreover, if, for the sake of simplicity, we assume that h does not depend on time (otherwise we need
to assume some regularity of h with respect to time) then the following result holds.

Theorem 1.3. Assume that conditions (A1),(A2), and (B1),(B2) for the system (1)-(2) are satisfied.
Assume that the processes X̂n are independent of W , and satisfy condition (5), and that the
approximation processes Y n are given by (18) with h(t, x) = h(x). Then there exists a computable
positive constant H, independent of t and n, such that

E
[
dBL(πt, ˜̂πnt )

]
≤ H

[(
E
[ ∫ t

−τ

∣∣X̂n(δ bs/δc)−X(δ bs/δc)
∣∣2 ds])1/2

+ E
[ ∫ t

−τ

∣∣X̂n(δ bs/δc)−X(δ bs/δc)
∣∣2 ds]

+
(
E
[ ∫ t

−τ

∣∣X(δ bs/δc)−X(s)
∣∣2 ds])1/2

+ E
[ ∫ t

−τ

∣∣X(δ bs/δc)−X(s)
∣∣2 ds]]

+
(
2E
[
|X̂n(δ bt/δc)−X(δ bt/δc)|2

])1/2 +
(
2E
[
|X(δ bt/δc)−X(t)|2

])1/2
. (19)

Moreover, if the right hand side of the above inequality converges to zero, then the sequence ˜̂πnt defined
in (7) converges in probability in bounded Lipschitz metric to the original filter πt.

Proof. Arguing as in the proof of Theorem 1.1, instead of inequality (16) we get

E
[
dBL(πt, ˜̂πnt )

]
≤ 4Lh

(
E
[ ∫ t

−τ

∣∣X̂n(δ bs/δc)−X(s)
∣∣2 ds])1/2

+ 2L2
hE
[ ∫ t

−τ

∣∣X̂n(δ bs/δc)−X(s)
∣∣2 ds]+

(
E
[
|X̂n(δ bt/δc)−X(t)|2

])1/2
.

Then, the previous inequality leads to the following upper bound

E
[
dBL(πt, ˜̂πnt )

]
≤ 4Lh

(
2E
[ ∫ t

−τ

∣∣X̂n(δ bs/δc)−X(δ bs/δc)
∣∣2 ds])1/2

+ 4Lh
(

2E
[ ∫ t

−τ

∣∣X(δ bs/δc)−X(s)
∣∣2 ds])1/2

+ 4L2
hE
[ ∫ t

−τ

∣∣X̂n(δ bs/δc)−X(δ bs/δc)
∣∣2 ds]+ 4L2

hE
[ ∫ t

−τ

∣∣X(δ bs/δc)−X(s)
∣∣2 ds]

+
(
2E
[
|X̂n(δ bt/δc)−X(δ bt/δc)|2

])1/2 +
(
2E
[
|X(δ bt/δc)−X(t)|2

])1/2
, (20)

and H can be taken to be equal to max(4
√

2Lh, 4L2
h).

Remark 1.4. From the previous result, we observe that, for the above feasible approximation filter,
we cannot obtain a rate of convergence faster than n−1/2. Indeed, even when the initial path is
a deterministic constant function, and the coefficients a and b are uniformly bounded above, then
E
[
|X(t)−X(s)|2

]
= O

(
|t− s|

)
.
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With the choice (18) as an approximation of the observation process the reference probability measure
P 0,n is defined by the Radon-Nikodym derivative

dP 0,n

dP
=
(
L̂nT
)−1

,

with

L̂nt = exp
{∫ t

0

h
(
δ bs/δc, X̂n(δ bs/δc), X̂n(δ b(s− τ)/δc)

)
dY ns

− 1
2

∫ t

0

∣∣h(δ bs/δc), X̂n(δ bs/δc), X̂n(δ b(s− τ)/δc)
)∣∣2 ds}, (21)

which is a martingale thanks to the sublinearity of h and the upper bound (5).

The advantage of this choice for Y n is that the Radon-Nikodym derivative can be easily computed
since the stochastic integrals reduce to sums involving Y n(t) and Y n(t`) for a finite number of times
t` ∈ [0, t]. Indeed, taking into account that s 7→ h

(
δ bs/δc, X̂n(δ bs/δc), X̂n(δ b(s − τ)/δc)

)
is piecewise

constant, we have that (we assume that τ = mδ and δ = T/n)

L̂nt = Lnt (X̂n
(·), Y n

0 , Y n
δ , · · · , Y n

bt/δc, Y
n
t ),

where, for 0 ≤ ` ≤ n,

logLn`δ(x(·), y0, y1, · · · , y`) =
`−1∑
k=0

h
(
kδ, x(kδ), x((k −m)δ)

)
(yk+1 − yk)

− 1
2

`−1∑
k=0

|h
(
kδ, x(kδ), x((k −m)δ)

)
|2 δ,

and, for t ∈ (`δ, (`+ 1)δ), 0 ≤ ` ≤ n− 1,

logLnt (x(·), y0, y1, · · · , y`, y) = logLn`δ(x(·), y0, y1, · · · , y`)
+ h
(
δ bt/δc), x(δ bt/δc), x(δ b(t− τ)/δc)

)
(y − y`)

− 1
2

∣∣h(δ bt/δc), x(δ bt/δc), x(δ b(t− τ)/δc)
)∣∣2(t− `δ).

Moreover, under P 0,n, the processes X̂n and Y n are independent and the law of the approximated state
process is invariant under P and P 0,n, and hence, for t ∈ [`δ, (`+ 1)δ), 0 ≤ ` ≤ n− 1,

σnt (ϕ) = E
[
ϕ
(
X̂n(t)

)
Lnt (X̂n

(·), y0, y1, · · · , y`, y)
]∣∣∣∣
y0=Y n0 ,y1=Y nδ ,··· ,y`=Y

n
`δ,y=Y nt

.

Therefore, when Y n is given by (18), the functional Ûn
(
t, y(· ∧ t)

)
depends on y(t) and on y(`δ)

for ` ≤ bt/δc, and the approximation of the filter is feasible. Indeed the filter approximation can be
computed as

˜̂πnt (ϕ) =
E
[
ϕ
(
X̂n(t)

)
Lnt (X̂n(·), y0, y1, · · · , y`, y)

]
E
[
Lnt (X̂n(·), y0, y1, · · · , y`, y)

] ∣∣∣∣∣
y0=Y0,y1=Yδ,··· ,y`=Y`δ,y=Yt

. (22)

Remark 1.5. When the initial condition is not approximated, i.e. when X̂n(s) = η(s) for all s ∈ [−τ, 0],
then in all the previous upper bounds (13), (16), (19) and (20) for E

[
dBL(πt, ˜̂πnt )

]
the integrals between

−τ and t reduce to integrals between 0 and t.
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2 The Milstein type approximation of the state

In this section we are dealing with the Milstein type approximation X̂n =
(
X̂n(t)

)
t∈[−τ,T ]

, introduced

in [9], for the state process X =
(
X(t)

)
t∈[−τ,T ]

.

In addition to the previous hypotheses we assume that the following conditions on the initial path η,
the drift coefficient a and the diffusion coefficient b of equation (1) are satisfied:

(A3) there exists a constant c, such that, for all s, t ∈ [−τ, 0],

E
[
|η(t)− η(s)|2

]
≤ c|t− s|;

(A4) there exists K > 0 such that

|a(1,0,0)(t, x1, x2)|+ |b(1,0,0)(t, x1, x2)| ≤ K (1 + |x1|+ |x2|) ,

where a(1,0,0) and b(1,0,0) denote the partial derivatives with respect to time;

(A5) equation (1) is non-deterministic, i.e.∫ T

0

E
[
b2(t,X(t), X(t− τ))

]
dt > 0.

Properties (A3) and (A4), together with (A1) and (A2), imply that the unique strong solution of
equation (1) satisfies

E
[
|X(t)−X(s)|2

]
≤ C|t− s| (23)

with the constant C dependent on η, a and b.

Let us consider the Milstein type discretization scheme with step δ = δn = T/n, with τ = mδ (for the
sake of simplicity, T/τ is rational) :

X̂n(`δ) = η(`δ), −m ≤ ` ≤ 0,

X̂n((`+ 1)δ) = X̂n(`δ) + a(`δ, X̂n(`δ), X̂n((`−m)δ))δ
+b(`δ, X̂n(`δ), X̂n((`−m)δ))

[
W̃ ((`+ 1)δ)− W̃ (`δ)

]
+ 1

2

(
bb(0,1,0)

)
(`δ, X̂n(`δ), X̂n((`−m)δ))

[(
W̃ ((`+ 1)δ)− W̃ (`δ)

)2 − δ] 0 ≤ ` ≤ m− 1,

X̂n((`+ 1)δ) = X̂n(`δ) + a(`δ, X̂n(`δ), X̂n((`−m)δ))δ
+b(`δ, X̂n(`δ), X̂n((`−m)δ))

[
W̃ ((`+ 1)δ)− W̃ (`δ)

]
+ 1

2

(
bb(0,1,0)

)
(`δ, X̂n(`δ), X̂n((`−m)δ))

[(
W̃ ((`+ 1)δ)− W̃ (`δ)

)2 − δ]
+ 1

2b((`−m)δ, X̂n((`−m)δ), X̂n((`− 2m)δ))b(0,0,1)(`δ, X̂n(`δ), X̂n((`−m)δ))
×
(
W̃ ((`+ 1−m)δ)− W̃ ((`−m)δ)

)(
W̃ ((`+ 1)δ)− W̃ (`δ)

)
, m ≤ ` ≤ n− 1,

and let X̂n =
(
X̂n(t)

)
t∈[−τ,T ]

be the linear interpolation of the previous discretization scheme, i.e. for
t ∈ [`δ, (`+ 1)δ], −m ≤ ` ≤ n− 1

X̂n(t) = X̂n(`δ) +
(
X̂n((`+ 1)δ)− X̂n(`δ)

)
(t− `δ)/δ. (24)
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Remark 2.1. Note that X̂n(t) depends on n only through δ and T , since by our assumption n = T/δ.
Therefore, for t ∈ [0, T ′], with T ′ = n′ δ, n′ < n, the processes X̂n′

(t) and X̂n(t) coincide.

In [9] the authors have proved that the above approximation scheme is asymptotically optimal in a
sense that we are going to explain. To this end we need to introduce the following constants

CT =

(
T

4

∫ T

0

E[θ2(u, T )] du

)1/2

and

CT =

(
T

6

∫ T

0

E
[
b2
(
u,X(u), X(u− τ)

)]
du+

T

4

∫ T

0

∫ T

0

E[θ2(u, v)] dv du

)1/2

where

θ(u, v) =


Φ(u, v) b

(
u− τ,X(u− τ), X(u− 2τ)

)
b(0,0,1)

(
u,X(u), X(u− τ)

)
, for τ ≤ u ≤ v,

0, otherwise
(25)

and Φ(u, v) = 0, for u > v, while, for v > u

dΦ(u, v) = a(0,1,0)
(
v,X(v), X(v − τ)

)
· Φ(u, v) dv + a(0,0,1)

(
v,X(v), X(v − τ)

)
· Φ(u, v − τ) dv

+ b(0,1,0)
(
v,X(v), X(v − τ)

)
· Φ(u, v) dW̃v + b(0,0,1)

(
v,X(v), X(v − τ)

)
· Φ(u, v − τ) dW̃v,

with initial condition Φ(u, u) = 1.

Remark 2.2. Note that under condition (A5) the constant CT is strictly positive, whereas, when the
diffusion coefficient does not depend on the delay state variable x2, i.e. when b(0,0,1) = 0, the constant
CT equals zero, and the constant CT is finite.

Furthermore observe that when either η is a deterministic function (and, by (A3), Hölder continuous
of order 1/2) or is a random continuous function with

E[ sup
s∈[−τ,0]

|η(s)|q] <∞

for q sufficiently large, then (see Remarks 4 and 5 in [9])

E
[

sup
0≤u,v≤T

θ2(u, v)
]
<∞,

and therefore CT and CT are both finite.

Then we can state the optimality result for the approximation scheme proved in [9].

Proposition 2.3. Assume that CT and CT are finite. Then, for any pair of non-negative numbers α and
β, such that α CT + β CT > 0, the approximation X̂n defined by (24) satisfies(

E
[ ∫ T

0

|X̂n(s)−X(s)|2ds
])1/2

+ β
(
E
[
|X̂n(T )−X(T )|2

])1/2

≈
(
α CT + β CT

)
n−1/2, (26)
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where ≈ denotes the strong asymptotic equivalence of sequence of real numbers, i.e. an ≈ bn if
lim an/bn = 1.

Furthermore, the approximation X̂n is asymptotically the best among the approximation schemes
which are functions of

{
W (`δ)

}
`=0,...,n

, in the following sense: if X̂n
∗ denotes the best mean square

approximation of X, i.e. for all t ≤ T

X̂n
∗ (t) = E[X(t) | W̃ (t1), . . . , W̃ (tn)],

where t` = ` δ, (so that tn = T ), and if CT is strictly positive, then the analogous of (26) obtained by
replacing X̂n with X̂n

∗ holds.

Proof. The result follows immediately by Theorem 1 and Theorem 2 in [9] which guarantee that(
E
[ ∫ T

0

|X̂n(s)−X(s)|2ds
])1/2

≈ CT n−1/2. (27)

and, when CT > 0, (
E
[
|X̂n(T )−X(T )|2

])1/2

≈ CT n−1/2 (28)

while, when CT = 0, (
E
[
|X̂n(T )−X(T )|2

])1/2

≤ γT n−3/4

for some constant γT > 0, depending on a, b and η. Furthermore, when CT > 0, the analogous of (27)
and (28) obtained by replacing X̂n with X̂n

∗ hold.

Remark 2.4. In Proposition 2.3 we have implicitly assumed that τ < T . As observed at the end of
Section 6 in [9], page 104, the above assumption is not necessary, and the result holds in much more
generality, without any restriction on the time lag and the time horizon T .

As a consequence of the previous Remarks 2.1 and 2.4, denoting by Ct,T and Ct,T the quantities defined
by

Ct,T =
(
T

4

∫ t

0

E[θ2(u, t)] du
)1/2

and

Ct,T =
(
T

6

∫ t

0

E
[
b2
(
u,X(u), X(u− τ)

)]
du+

T

4

∫ t

0

∫ t

0

E[θ2(u, v)] dv du
)1/2

,

the above Proposition 2.3 can be extended as follows.

Proposition 2.5. Let t̄ = i
2j T , for some integers i and j, with i ≤ 2j and assume that Ct̄,T and C t̄,T

are finite. Then, for any pair of non-negative numbers α and β, such that α C t̄,T + β Ct̄,T > 0, and for
n = 2k, with k ≥ j, the approximation X̂n defined by (24) satisfies

α
(
E
[ ∫ t̄

0

|X̂n(s)−X(s)|2ds
])1/2

+ β
(
E
[
|X̂n(t̄)−X(t̄)|2

])1/2

≈
(
α C t̄,T + β Ct̄,T

)
n−1/2,

as k goes to infinity.

Proof. The proof can be achieved by applying Proposition 2.3 with t̄ instead of T , and taking into account
Remark 2.1 with n = 2k, δ = T/2k, T ′ = t̄, and n′ = i 2k−j .
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Remark 2.6. When the times t` in the grid are not equidistant, one cannot assert that the modified
Milstein scheme is asymptotically the best. Nevertheless the rate of convergence for both schemes X̂n

and X̂n
∗ is still of order n−1/2 (see [9]).

3 The approximation of the filter

In this section we assume that the approximating sequence for the state process considered in Section 1
is the Milstein type approximation sequence given by (24).

Theorem 3.1. Assume conditions (A1)—(A5), together with (B1) and (B2) for the partially observed
system (1)-(2) are satisfied and that CT and CT are finite.

Then the sequence of approximating filters ˜̂πnT defined in (7), with the approximation processes Y n

given by (8), converges in probability in bounded Lipschitz metric to the original filter in the following
sense

lim sup
n→∞

√
nE
[
dBL(πT , ˜̂πnT )

]
≤ 4Lh

(
2 c τ T + C2

T

)1/2 + CT , (29)

where c and Lh are defined in (A3) and (B2), respectively.

Proof. In the proof of Theorem 1.1 we have shown that the bound (16) for E
[
dBL(πT , ˜̂πnT )

]
holds. Taking

into account that for s ∈ [−τ, 0] the process X̂n(s) is the linear interpolation of η(`δ) = X(`δ), for
` ∈ {−m, −m+ 1, · · · , 0}, by condition (A3) we get that

E
[ ∫ 0

−τ
|X̂n(s)−X(s)|2 ds

]
≤ 2 c

T

n
τ.

Then the result follows by Proposition 2.3.

We now assume that n = 2k, so that the grid {t0, t1, · · · , tn} with t` = `T/n is increasing with n.

Theorem 3.2. Assume conditions (A1)—(A5), together with (B1) and (B2) for the partially observed
system (1)-(2) are satisfied, that

sup
t∈[0,T ]

Ct,T ≤ C <∞, (30)

and finally that CT is finite.
Then the sequence of approximating filters defined in (7), with the approximation processes Y n given

by (8), converges in probability in bounded Lipschitz metric to the original filter in the following sense

lim sup
n→∞
n = 2k

√
n max
`=0,··· ,n

E
[
dBL(πt` , ˜̂π

n
t`

)
]
≤ 4Lh

(
2 c τ T + C2

T

)1/2 + C, (31)

where c and Lh are defined in (A3) and (B2), respectively.

Proof. The proof is similar to that of Theorem 3.1, invoking Proposition 2.5 instead of Proposition 2.3.

Observe that condition (30) is satisfied, provided that one of the conditions considered in Remark 2.2
is satisfied.
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Remark 3.3. The result of Theorem 3.1 can be extended to the case of h depending on a different number
of fixed delays, as in Remark 1.2.

On the other hand, when the observation function h does not depend on x2, i.e.

h(t, x1, x2) = h(t, x1),

then the contribution due to the integral on [−τ, 0] disappears, and one can get the inequality

lim sup
n→∞
n = 2k

√
n max
`=0,··· ,n

E
[
dBL(πt` , ˜̂π

n
t`

)
]
≤ 2Lh CT + C. (32)

Finally, when both the observation function h and the diffusion coefficient b do not depend on x2, then
one can get the following inequality

lim sup
n→∞
n = 2k

√
n max
`=0,··· ,n

E
[
dBL(πt` , ˜̂π

n
t`

)
]
≤ 2Lh

(
T

6

∫ T

0

E
[
b2
(
u,X(u)

)]
du

)1/2

. (33)

Similar results can be obtained when considering the approximation processes Y n given by (18)
instead of (8). In particular the following result holds.

Theorem 3.4. Assume conditions (A1)—(A5), together with (B1) and (B2) for the partially observed
system (1)-(2) are satisfied, that condition (30) holds and finally that CT is finite.

Then the sequence of approximating filters defined in (7), with the approximation processes Y n given
by (18), converges in probability in bounded Lipschitz metric to the original filter in the following sense

lim sup
n→∞
n = 2k

√
n max
`=0,··· ,n

E
[
dBL(πt` , ˜̂π

n
t`

)
]
≤ 4
√

2Lh
[(

2 c τ T + C2

T

)1/2 + (CT )1/2
]

+
√

2
(
CT + 1

)
, (34)

where c, Lh and C are defined in (A3), (B2) and (23), respectively.

Proof. The proof is similar to that of Theorem 3.2, invoking inequality (20) in the proof of Theorem 1.3
instead of inequality (16) in the proof of Theorem 1.1.

4 Final remarks

In this section we discuss briefly how by the same techniques different approximations schemes for the
filter at every time t ≤ T can be easily constructed.

Let us consider the Euler-Maruyama scheme XE
n =

(
XE
n (t)

)
t∈[−τ,T ]

, the truncated Milstein scheme

XM
n =

(
XM
n (t)

)
t∈[−τ,T ]

and the Milstein scheme XM
n =

(
XM
n (t)

)
t∈[−τ,T ]

for stochastic delay differential
equations, defined as follows



14

XE
n (t) = XM

n (t) = η(t), −τ ≤ t ≤ 0,

and for t ∈
(
` δ, (`+ 1) δ

]
, with 0 ≤ ` ≤ n− 1,

XE
n (t) = XE

n (`δ) + a(`δ,XE
n (`δ), XE

n ((`−m)δ))
(
t− ` δ

)
+ b(`δ,XE

n (`δ), XE
n ((`−m)δ))

[
W̃ (t)− W̃ (`δ)

]
XM
n (t) = XM

n (`δ) + a(`δ,XM
n (`δ), XM

n ((`−m)δ))
(
t− ` δ

)
+ b(`δ,XM

n (`δ), XM
n ((`−m)δ))

[
W̃ (t)− W̃ (`δ)

]
+

1
2
(
bb(0,1,0)

)
(`δ,XM

n (`δ), XM
n ((`−m)δ))

[(
W̃ (t)− W̃ (`δ)

)2 − (t− `δ)
]
,

as far as the Euler-Maruyama and Milstein truncated scheme are concerned, while, for the Milstein
scheme

XM
n (t) = XM

n (t), for −τ ≤ t ≤ τ = mδ,

and for t ∈
(
` δ, (`+ 1) δ

]
, with m ≤ ` ≤ n− 1

XM
n (t) = XM

n (`δ) + a(`δ,XM
n (`δ), XM

n ((`−m)δ))(t− ` δ)
+ b(`δ,XM

n (`δ), XM
n ((`−m)δ))

[
W̃ (t)− W̃ (`δ)

]
+

1
2
(
bb(0,1,0)

)
(`δ,XM

n (`δ), XM
n ((`−m)δ))

[(
W̃ (t)− W̃ (`δ)

)2 − (t− `δ)
]

+
1
2
B((`−m)δ, `δ,XM

n (`δ), XM
n ((`−m)δ), XM

n ((`− 2m)δ)) Jn(t),

where B(u, v, x1, x2, x3) = b(u, x2, x3)b(0,0,1)(v, x1, x2) and

Jn(t) =
∫ t

`δ

[
W̃ (s−mδ)− W̃ ((`−m)δ)

]
dW̃ (s) =

∫ t

`δ

[
W̃ (s− τ)− W̃ (`δ − τ)

]
dW̃ (s),

for t ≥ `δ .

The rate of convergence of these approximations is related to the following upper bounds for the error
(see [9], Proposition 1, and for more general results [10] and [11]):

sup
t∈[0,T ]

(
E
[
|X(t)−XE

n (t)|q
])1/q

≤ cEn−1/2 (35)

sup
t∈[0,T ]

(
E
[
|X(t)−XM

n (t)|q
])1/q

≤ cMn−1/2 (36)

for every q ≥ 1, and

sup
t∈[0,T ]

(
E
[
|X(t)−XM

n (t)|2
])1/2

≤ cMn−1 (37)

where cE , cM and cM denote constants that only depend on T, a, b, and η.
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Similarly to the procedure of Section 3, we can define π̃E
n =

(
π̃En (t)

)
t∈[0,T ]

by the following analogous
of equality (7)

π̃En (t) = UEn (t,Y )

where UEn is the functional associated to the filter of the partially observed system (XE
n ,Y

n), where Y n

is given by the analogous of (8) with X̂n replaced by XE
n . It is easy to see that, when we replace X̂n

with XE
n in (16), the estimate still holds.

Then, taking into account that the initial path η has not been approximated, and making use of
Remark 1.5 and estimate (35), we can easily derive the following upper bound

sup
t∈[0,T ]

E
[
dBL

(
π(t), π̃En (t)

)]
≤ k n− 1

2

for a suitable constant k. In the same way we can construct π̃M and π̃M as approximation
schemes for the filter using XM

n and XM
n as approximations for the state. Moreover, taking into

account Remark 1.5 together with estimates (36) and (37), we can derive explicit upper bounds for
supt∈[0,T ]E

[
dBL

(
π(t), π̃Mn (t)

)]
and supt∈[0,T ]E

[
dBL

(
π(t), π̃Mn (t)

)]
, of order n−1/2 and n−1 respectively.

Note that when the initial path is not approximated, the Milstein scheme as an approximation for
the state process gives the fastest rate of convergence for the filter approximations. This property is lost
when approximating the initial path by the piecewise linear interpolation of η(`δ), for ` = −m, ..., 0.
Indeed, in the latter case, independently of the approximation scheme for the state process, the rate of
convergence for the filter approximations depends on the square root of

sup
s, t∈[−τ,0],|s−t|≤δ

E
[
|η(t)− η(s)|2

]
,

and so, under condition (A3), the rate is of order n−1/2.

As already observed in Remark 1.4, when using (18) as an approximation for the observation process,
the rate of convergence for the filter approximations is always of order n−1/2, independently of the chosen
approximation scheme for the state process. It is interesting to note that when we choose the Milstein
scheme as described above, then, by means of inequality (20) in the proof of Theorem 1.3 we get that

lim sup
n→∞

√
n sup
t∈[0,T ]

E
[
dBL

(
π(t), π̃Mn (t)

)]
≤ 4Lh (CT )1/2 + 1, (38)

where C is defined in (23). Though the above theoretical result is better than the one obtained in
Theorem 3.4, it is important to note that usually, in order to compute π̃Mn (t) by means of the analogous
of (22) with X̂n replaced by XM

n , one has to implement a Montecarlo method. With this aim, one
has first of all to restrict the time interval to a finite discretization grid. Then, if we consider the grid
t` = `δ and take n equal to a power of 2, so that we have just to simulate XM

n (`δ), besides the simulation
error, one has to take into account that the stochastic integral Jn(`δ) is approximated by a sum involving
W̃ (sj) for a finite numbers of times sj . Therefore the approximation scheme used in this simulation is
not anymore the Milstein scheme, but is a scheme involving W̃ evaluated in a finite numbers of times.
Then the asymptotical (and theoretical) error is not given by (38), and it appears that when computed,
it is even worse than the asymptotic error (34) obtained for the modified Milstein scheme.
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