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The Model

e Let X € E be a random vector and S : E — R a score.

e Goal: Estimate a = P(S(X) > 7) < 107°.

e Framework: we can only simulate X ~ p and compute S at
each point, but any analytical study is excluded.

= Monte-Carlo methods.
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Naive Monte-Carlo

Recall; the aim is to estimate

e Simulate &1,...,&y ~ i and denote

Ng =#{ie{1,...,N}, S(&)> 1}

e Monte-Carlo Estimate: &y = Ng/N, but...

e About ! simulations are necessary to make R occur.
o The relative standard deviation is a disaster:

U(é\éN):\/].—Oé% 1
a VNa  VNa

= ldea: Multilevel Monte-Carlo Method.
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Main Idea

pdf of S(X)

_ /\pz = P(S(X) > Lz2|S(X) > Ly)
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Ingredients: fix np and L1 < --- < L,, = 7 so that each
pj = P(S(X) > L;j|S(X) > Lj_1) is not too small.
Bayes decomposition: o = p1ps ... pp,-

Unreasonable assumption: suppose we can estimate each p;
independently with usual Monte-Carlo: p; = p; = N;/N.

Multilevel Estimator: &y = p1p2. .. Png-
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The Shaker

Recall: X ~ pon E.

Ingredient: a p—reversible transition kernel M(x, dx’) on E :
V(x,x') € E? w(dx)M(x, dx") = p(dx"YM(x', dx).

Consequence : yM = p.
Example: if X ~ N(0,1) then X' = XXW  Af(0,1), ie.

) Vito
M(x, dx") ~ N (2=, 72=)(dx’) is a “good shaker".
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A Selection/Mutation Algorithm

e Initialization: Simulate an i.i.d. sample 5&, ces ,5(')\’ ~ L.

e Selection: f(’) = &} if S(&5) > L1, else pick at random among
the N; selected particles.

o Mutation: &) ~ M(&}, dx’) and

Vie{l,...,N}
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A Selection/Mutation Algorithm

Ly

o Initialization: Simulate an i.i.d. sample &}, ... ,5(’)\’ ~ L.

e Selection: f(’) = &} if S(&)) > L1, else pick at random among
the N; selected particles.

o Mutation: &) ~ M(&}, dx’) and

{ L ifS(E) > L

Vel NG s < 1
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A Selection/Mutation Algorithm
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A Selection/Mutation Algorithm

Ly

o Initialization: Simulate an i.i.d. sample &}, ... ,5(’)\’ ~ L.

e Selection: f(’) = &} if S(&)) > L1, else pick at random among
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A Selection/Mutation Algorithm
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o Initialization: Simulate an i.i.d. sample &}, ... ,5(’)\’ ~ L.

e Selection: f(’) = &} if S(&)) > L1, else pick at random among
the N; selected particles.

o Mutation: &) ~ M(&}, dx’) and

. i [ & ESE) >0
Vie{l,...,N} 51—{51 ifS(é)ng
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A Selection/Mutation Algorithm

Ly Lo

o Initialization: Simulate an i.i.d. sample &}, ... ,5(’)\’ ~ L.

e Selection: f(’) = &} if S(&)) > L1, else pick at random among
the N; selected particles.

o Mutation: &) ~ M(&}, dx’) and

{ L ifS(E) > L

Vel NG s < 1
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Convergence of the Algorithm
e Ap={x€ E: S(x)> Ly} and p, = L(X|S(X) > Lp).
¢ Non-homogeneous transition kernel:
Mn(x, dx") = M(x, dx")1,(x") + M(x, AS)dx(dx").

It is easy to check that pu, is invariant by M,,.

Theorem (Feynman-Kac Formula)

Define a Markov chain (X,) having the transition kernels (M,) and
initial law p, then for any test function ¢ and any n:

() = Elp(Xn) TT21 La;(Xj-1)]
o= TR, 14, (6-0)]

Remark: thus, after ng steps, un, = L(X|S(X) > 7).
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Variance of the estimator

Theorem (Cérou et al., ALEA (2006))

VN- SN E A0, 02),

(0% N—oco
with

no

2_x~1-p ZV(IP<5(X”0_1)>Lnoxj,s<xj_1)>Lj))1—pf

g =
j=1 Pj IPz(S(XHO*l) > Lno|5(XJ'*1) > Lj) pj

1

Remark: o2 > Z}’il _pJij, with equality iff
IP(S(Xl‘lo—l) > Lno|XJ'75(Xj*1) > Lj) 1 XJ

= Solution: at each step, iterate the transition kernel.



Multilevel Splitting
lterations of the Kernel

Problem: the choice of M depends on the application, but if
1 is a Gibbs measure given by a bounded potential, then...

Metropolis Method = M usually aperiodic and irreducible.
Tierney (Annals of Stat, 1994): for any initial law A

H/)\(dx)/\/l,',"(x, ) —pnl| ——0.
tv m—oo
Corollary: for any cloud of particles = = (&1,...,&y) and any

test function ¢

— 0.
m—00

] [ o=(zM™0) - u56)

Rule of thumb: at each step, iterate the kernel until 90% of
the particles have actually moved.
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The Impact of the Kernel

X 0‘2 )
/1102 1to2

e The model: X' = ZtaW  Af(0,1).

Vito
o Expected square distance: E[(X’ — X)?] =2 (1 - \/117)

% Trade-off between two drawbacks:

e o too large: most proposed mutations are refused.
e o too small: particles almost don't move.
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Constrained Optimization

Multilevel Estimator: &y = p1p2- .. Png-

Fluctuations: If the p;’s are independent, then

A no i
U v e, Qzlipf
Pj

(o] N—oo ;
Jj=1
e Constrained Minimization:
no no
1—p;
. )j
ar min s.t. P = Q.
gPla---vp”O Z pi HPJ
Jj=1 J=1
o Optimum: p; = --- = p,, = al/™.

= Solution: Adaptive levels.
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Adaptive Levels

Parameter: fix a proportion pg of surviving particles from one step
to another rather than ng and the levels L1, ..., Lp,.

Iy for po =1/2

= Adaptive multilevel estimator:
~ay =t xpg°,

log P(S(X)>7)

with ng = L log o0

Jandpo<r§1.
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Empirical Quantiles

Ly ~ Ly with P(S(X) > L1) = po.
Iterate the kernel M an “infinite” number of times, then the
particles £1,..., &N are i.i.d. with distribution

L(X|S(X) > 11) ~ L(X|S(X) > L1).

Ly ~ Ly with P(S(X) > L2]|S(X) > L1) = po.

e etc.
= if F(t) = P(S(X) < t), then the Ljs are such that

1 - F(Ljy1)

P> - po.
=0 I-F(L) ™
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Consistency

Theorem (Cérou and Guyader, SAA (2007))
Suppose that F is continuous, then

~ a.s.
ay —— a.
N—oco

Sketch of the proof:
e lterations of M; = knowing Zj, the (fj)lgiSN are i.i.d. with
distribution £(X|S(X) > L;).

* Fla.q) £ P(S(X) < L' S(X) > 1) = FE0.

e Convergence of the quantiles : Y/, F(zj, ZJ-H) % 1— po.
—00

e Induction on j.
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Variance of the Estimator

Theorem (Cérou and Guyader, SAA (2007))

Suppose that F is continuous, then

V- LN(O,OQ),

« N—oo

with

1—- 1—-
022170 P0+ r.
Po r

Remark: For fixed levels, we can also obtain non asymptotic
variance results and deduce the logarithmic efficiency of the
estimate (Cérou, Del Moral and Guyader (2009)).
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Proof of the Variance

e Vj >0, we have

E[p(F(L;, Lj+1))ILj] = Ele(Un—pon)))]-

e Triangular array of uniform variables:
D
VN(Un— o)) — (1 = po)) o N(0, po(1 — po)).-

e Induction on

VN (H[l —F(Lj, L)l - Po") :

J=1
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Bias of the Estimator

Theorem (Cérou, Del Moral, Furon and Guyader (2009))

Suppose that F is continuous, then

E[an] — 1-
y Elénl —a b=ng—°
(0 N—oco Po

Remarks:

e The bias is of order 1/N and is thus negligible compared to
the standard deviation.

e The biais is non negative, leading to a slightly overvalued
estimate, which is a nice property in concrete situations.
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Proof of the Bias

e Suppose g = ng, then:

E[dN]—a:E[?]—r:E[ ng]
a— Wy

« r
with a =1 — F(Lp) = py° and

Wy = F(Ln,) — F(Lpy) —=— 0.

e Make an asymptotic expansion near 0
Elan] — E[W, E[W?
[Gn] —a _ E[Wn] | El 2/v] N
o a a
e Finally, remark that E[Wy] = 0 and

E[W? —
Wal _mo 1-p (1)
a2 N Po N

o(EWZ)).
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Asymptotic Expansion

o <Ean]=a+0 (%)

Summary: Putting all things together, we have obtained

av—a(1+-2v+ 2 o (X
apn = \/N N P N .



Zero-Bit Watermarking

Watermark W € R?

Image | € T __.| Encoding

X

Watermarking

©

Detection

Yes

<o

e Principle: The watermark must be both invisible and robust.

e False Detection: An unwatermarked content detected as

watermarked.

e Constraint: Copy Protection Working Group = Pg < 107°.
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Zero-Bit Watermarking

u € R is a fixed and normalized secret vector.

A content X is deemed watermarked if S(X) = <ﬁ<)’<‘|’|> > T.

Usual assumption: An unwatermarked content X has a
radially symmetric pdf.

False detection: Py = IP(S(X) > 7|X unwatermarked).
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Number of lterations

Percentage

e The model: X ~ N(0, fo).

e Rare event: o = P <<ﬁ<)’<‘|'|> > 0.95).

e Numerical computation: o = 4.704 - 10711,

o Parameter: pg = 3/4 ~> a = r x pg° = 0.83 x (3/4)%2.
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Bias
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Standard Deviation

T T T T
3 a

Number N of particles
. o 1 1—po n 1—r
ONR —— = —— 4|/ Ng-——— + ——.
vN VN Po r
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Histogram

Sl

Asymptotic expansion

b
&N_O‘(1+\;NN(O’1)+N+"'>
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Fingerprinting

Image |—|Fingerprint Xj |-

- ’ Accusation
Image |— Fmgerprmt X ————————————— Procedure — colluders

Image |—|Fingerprint Xyt~

Principle: X; € {0,1}™ is hidden in the copy of each user.
Benefit: Find a dishonest user via his fingerprint.

Question: What if several dishonest users collude ?

False Detections: Accusing an innocent (false alarm) or
accusing none of the colluders (false negative).

= Answer: Tardos probabilistic codes.
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Probabilistic Fingerprinting

pdf of adishonest user

pdf of an innocent

e Fingerprint: X = [Xq,..., Xn], X¢ ~ B(p;) and py ~ f(p).
e Pirated Copy: y = [y1,...,¥m] € {0,1}™.
e Accusation procedure: S(X) =>",", yege(Xe) = 7.
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Estimation of P

Parameters: Fix m, N, r, c, pg and the threshold 7.
Colluders: c fingerprints ~~ y = [y1,..., Ym]-
Initialization: N fingerprints &1,...,&y.

Scores: Vi, compute S(&;) = >, vege(&ir).

First level: [; is the |pgN|-th greatest score.

Selection: branch the killed particles on the selected ones.

Mutation: pick r indices {¢1,...,¢,} at random among
{1,..., m}, then for each particle ¢;

Ve € {l1,...,£,}, draw a new g;lk ~ B(pe,)



Framework

Multilevel Splitting Adaptive Levels

Estimation of Pg and Py,

mean — m = 200

107 L L L L L L L L L
-10 o 10 20 30 40 50 60 70 80
Threshold

90
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