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1 Introduction

The methods described in this chapter are applicable to problems where a
hidden dynamic Markov process needs to be filtered from the observed data
containing some noise. To illustrate the problem, start with an example from
fixed income taken from [12]. Figure 1 plots 18 US treasury zero-coupon bond
yields with maturities between 1 and 120 months observed in the period 1970-
2000. To summarize the information in these time series, analysts often find
it useful to extract a small number of dynamic factors that describe most of
the variation in the yields. This parsimonious representation can help both in
the interpretation of past yield curve movements and in prediction. However,
in general, this low-dimensional factor structure is consistent with the obser-
vations only if the observed yields are assumed to contain some measurement
errors. To uncover the unobserved dynamic factors, one needs to infer them
from the noisy observed yields.

Credit risk modeling is the subject of the second example. Six Flags Inc.,
a large operator of theme parks has been having financial difficulties in the
last couple of years. On January 2, 2008 the company reported total assets of
2945 Million USD, total liabilities of 2912 Millions USD and preferred equities
with a book value of 285 Millions, consistent with a negative -252 Millions of
shareholders’ equity on its balance sheets. However, in 2008, the stocks of the
company were not worthless, as reported in Figure 2. The main reason for the
positive market value of the stock in spite of the large debt is limited liability.
In case the value of the company is less than then the face value of the debt
when the debt is to be repaid, the stockholders can default in effect handing
the company to the debtholders. As a result of this default option, both the
equity and the debt can be interpreted as derivatives written on the face value
of the firm. The equity holders own a long call option on the value of the firm
with an exercise price equal to the face value of debt, while the debt-owners are
short of this position. Unfortunately, the observed equity prices are less then
perfect signals on the firm value. The first order autocorrelation coefficient
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Fig. 1. US treasury zero-coupon-bond yields between 1970-2000

of the equity log-returns is equal to -0.25, showing that a considerable part
of the observed price changes are due to transitory microstructure effects
unrelated to permanent value innovations. Then, a methodois needed to filter
the unobserved asset value of the firm from the noisy observed equity prices.

The chapter begins in Section 2 with the description of the general filtering
problem and puts the two examples in the general framework. Section 3 de-
scribes Kalman Filtering, applicable to linear normal systems. Here the filter-
ing distributions are normally distributed with a mean and variance that can
be recursively updated using the Kalman recursion. The method is applied to
the first example on interest rate term structure. Further, some extensions of
the Kalman Filter to nonlinear systems are mentioned. Section 4 turns to the
general filtering problem, where the dynamic model is nonlinear/nongaussian.
Here, the Kalman Filter is not valid any more, but anatheoretical recursions
still hold. Unfortunately, these involve integrals that need to be solved numer-
ically. The chapter proceeds by presenting sequential Monte Carlo techniques
that have been developed in last 15 year and are routinely used to solve the
general filtering problem. It describes the general particle filtering algorithm,
where resampling is introduced to tackle sample impoverishment, a pervasive
problem in sequential importance sampling. Here and in the remaining part
of the chapter, Merton’s model with noisy equity observations is used to illus-
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Fig. 2. Market Capitalization of Six Flags’ equity in 2008

trate the presentation. Section 5 presents various strategies to produce effec-
tive proposal distributions, a crucial issue in designing an efficient importance
sampling algorithm. The section end by applying the filtering methodoon the
second example, in filtering the asset value of Six Flags Inc. from its observed
equity prices. Section 6 concludes with a brief discussion of various classical
and Bayesian approaches to the estimation of the fixed model parameters in
the particle filtering context.

2 The Filtering Problem

Assume that the state of a financial model at time k is described by a random
vector xk whose dynamics follows the transition equation

xk+1 = Q(xk, εk+1) (1)

where Q() is an arbitrary function and εk is a sequence of independent ran-
dom vectors. When xk is continuous, this defines the conditional probability
density q(xk+1 | xk). xk is not directly observable, instead at time k a noisy
observation yk is available, linked to xk through the measurement equation

yk = G(xk, νk) (2)



4 Andras Fulop

where G() is an arbitrary function and νk the observation noise is a sequence
of random vectors, independent across time and from from εk. When yk is
continuous, this defines the conditional probability density g(yk | xk). Use the
following notation

x0:k = (x0, ..., xk)
y1:k = (y1, ..., yk)

Further, assume some prior distribution, q0(x0), for the initial state variable.
Then, the objective of filtering is to come up with the distribution of the
hidden variable, xk, given the observed data up to k. This quantity is the
filtering distribution of xk and is denoted by f(xk | y1:k). In the algorithms
that follow these distributions are obtained sequentially, as new observations
arrive.

2.1 Uncovering yield curve factors

To tackle the first example in the introduction, this subsection describes a
specific factor model of the term structure closely following [12] and shows
how it fits into the general filtering framework. Denote by y(τl)k the zero-
coupon yield observations at time k with maturity τl. On each observation
date k, there are 18 observed yields with maturities ranging between τ1 =
1, . . . , τ18 = 120 months. The data-set has monthly observations in the period
1975-2000. To summarize the rich cross-sectional information, the yields are
assumed to depend on three common factors (x1,k, x2,k, x3,k) and a yield-
specific measurement noise νl,k. This latter is assumed to be standard normal
and independent across the yields and through time. This setup leads to the
following measurement equations for l = 1, . . . , 18

y(τl)k = x1,k + x2,k

(
1− e−λτl

λτl

)
+ x3,k

(
1− e−λτl

λτl
− e−λτl

)
+ σννl,k (3)

This factor representation is a version of the Nelson-Siegel [30] parametric
form, popular with practitioners. The interpretability of the factors is an at-
tractive feature of this specific parameterization. First, x1,k has the same
loading on each yield, so it can be interpreted as a level factor. Second, x2,k

affects yields with longer maturities less, hence it is close to a slope factor.
Last, x3,k has hump-shaped loadings and plays the role of a curvature fac-
tor. The parameter λ determines where the maximum of this hump-shaped
pattern lies.

To ensure some degree of time-series consistency and to allow prediction
using the model, the factors are assumed to follow independent normal AR(1)
processes, resulting in the following transition equations

xi,k+1 = µi + γixi,k + σi,xεi,k+1 (4)
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where εi,k+1 are independent standard normal variables. Then, if one wants
to forecast the future yields for instance, one needs to filter the last value of
the unobserved factors, xi,k given the noisy yield observations up to k.

2.2 Finding the value of the firm in Merton’s model

[29] laid the foundation to the literature on the structural approach to credit
risk modeling. The value of the firm at time t, Vt, is assumed to follow a
geometric Brownian motion with respect to the physical probability law that
generates the asset values

dVt

Vt
= µdt + σdWt

The risk-free rate of interest is assumed to be a constant, r. Furthermore, the
firm has two classes of claims outstanding – an equity and a zero-coupon debt
maturing at time T with face value F . Due to limited liability, equity is a call
option on the value of the firm with payout

ST = max(VT − F, 0) (5)

Then, the equity claim in equation (5) can be priced at time t < T by the
standard Black-Scholes option pricing model to yield the following solution:

St ≡ S(Vt;σ, F, r, T − t) = VtΦ(dt)− Fe−r(T−t)Φ(dt − σ
√

T − t) (6)

where

dt =
log(Vt

F ) + (r + σ2

2 )(T − t)
σ
√

T − t

and Φ(·) is the standard normal distribution function.
Unfortunately, the asset value of the firm, Vτi is rarely observable. In con-

trast, for an exchange listed firm, one can obtain a time series of equity prices
denoted by DN = {Sτi , i = 0, · · · , N} and try to infer the asset value using
the equity prices and balance sheet information on debt. If the equity prices
are not contaminated by trading noises, the asset value can be obtained by
inverting the equity pricing function from equation (6) following [16]. However
the observed equity prices may be contaminated by microstructure noise that
can be important, especially for smaller firms or firms in financial difficulties.
Following [19] the trading noise obeys a multiplicative structure leading to
the following measurement equation for the log equity price

log Sτi = log S(Vτi ; σ, F, r, T − τi) + δνi (7)

where {νi, i = 0, N} are i.i.d. standard normal random variables and the
nonlinear pricing function S(Vt;σ, F, r, T − t) has been given earlier. Since the
unobserved asset value process follows the geometric Brownian motion, we
can derive its discrete-time form as
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log Vτi+1 = log Vτi + (µ− σ2

2
)h + σ

√
hεi+1 (8)

where {εi, i = 1, N} are i.i.d. standard normal random variables and h =
τi−τi−1 is the observation frequency. Then, one needs to filter the unobserved
asset price, Vτi given the noisy equity observations up to time k in the model
defined by the measurement equation (7) and the transition equation (8).

3 Kalman Filtering

When the measurement and the transition equations are normal and linear,
the filtering density is normal. Assume that the transition equation is

xk = C + Axk−1 + εk (9)

where εk ∼ N(0, Q). The measurement equation is also linear and normal:

yk = Hxk + νk (10)

where νk ∼ N(0, R). Introduce the following notation for conditional expec-
tations and variances:

Es(xk) = E(xk | y1:s)
Vs(xk) = V ar(xk | y1:s)

if the initial state x0 is distributed as x0 ∼ N(E0(x0), V0(x0)), the subsequent
filtering distributions are also normally distributed. Further, the first two mo-
ments can be sequentially updated by first predicting the distribution of the
hidden variable at k given past information up to k − 1

Ek−1(xk) = C + AEk−1(xk−1)
Vk−1(xk) = AVk−1(xk−1)A′ + Q

Then, the filtering distribution at k is obtained by including the information
at k

Kk = Vk−1(xk)H ′ (HVk−1(xk)H ′ + R)−1

Ek(xk) = Ek−1(xk) + Kk (yk −HEk−1(xk))
Vk(xk) = (I −KkH)Vk−1(xk)

For a general review of Kalman Filtering see [1]. For an application in
yield curve modeling see [6],[12] and another in commodities see [34].
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3.1 Application of Kalman Filtering: Uncovering yield curve
factors

It is apparent that the first example, on extracting yield curve factors, falls
within the realm of Kalman Filtering. In particular both the measurement
equation in 3 and the transition equation in 4 are gaussian and linear. To
investigate the method on the US zero-coupon yield data-set, the parameters
of the model are fitted using maximum likelihood1. In-sample, the model-
predicted yields have a root mean squared error of around 12 basis points,
pointing towards a satisfactory fit. Figure 3 plots the model-implied filtered
mean of the factors and the results seem to be in accord with intuition. For
example, one can see that the first factor indeed acts as a level factor, with
high values when the general level of interest rates is high.
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Fig. 3. Time series of filtered yield curve factors

Forecasting is an important application of yield-curve models. Further, in-
vestigating the out-of-sample performance of various models may be an even
more important check on model validity than the in-sample fit. Hence, follow-
ing [12], the out-of-sample forecasting performance of the yield curve factor
1 Note that similarly to [12] λ = 0.0609 is chosen exogenously. This corresponds to

a peak in teh curvature factor at 30 months.
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model is compared with two competitors, the first being a naive random walk
model while the second is an AR(1) model of the individual yields. All the
models are estimated on the data up to 1993 and the quality of their forecasts
is investigated on the remaining sample at the 6-months horizon. Figure 4
shows the RMSE of the three forecasts for all maturities and provides evi-
dence that the discipline that the factor model puts on the data considerably
helps in prediction. All the results in this subsection are produced by the
MATLAB script DieboldLi_KF.m.
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Fig. 4. RMSE of various forecasting methods on the 6-months horizon, 1994-2000

3.2 Extensions

Extended Kalman Filter (EKF)

Often, the financial model of interest is normal, but the transition and mea-
surement equation are not linear. In particular we may have

xk = Q(xk−1, εk) (11)
yk = G(xk, νk) (12)
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where Q() and G() are differentiable functions and εk and νk are normally dis-
tributed. Then, the Extended Kalman Filter (EKF) approximates this system
using a first-order Taylor expansion around Ek−1(xk−1) and applies Kalman
Filtering on the approximating linear system. In finance, this approach is of-
ten applied in term structure modeling([10], [20], [21]) and in commodities
modeling([36]).

Unscented Kalman Filter (UKF)

The EKF approximates the system only up to a first order and it can provide
poor results when the nonlinearity of the measurement or transition equation
is serious. An alternative approach that avoids linearization altogether is the
Unscented Kalman Filter (UKF). This method approximates the normal fil-
tering distribution using a discrete distribution that matches the mean and
covariance matrix of the target gaussian random variable. Then, these points
are passed through directly the nonlinear functions to obtain the quantities
necessary for the Kalman recursion. In many situations the method provides
a higher order approximation to the nonlinear system than the EKF. For a
detailed description of the method see [38]. The technique has been applied
to currency option pricing by [3].

4 Particle Filtering

4.1 General Filtering Recursion

When the system is non-linear and/or non-gaussian, the filtering distribution
may not be normal and the Kalman Filter is not valid any more. To appreciate
the difficulty of the task, in the following we describe the sequential filtering
problem in the general model described by (1) and (2).

The joint filtering distribution of x0:k given y1:k is

f(x0:k | y1:k) =
f(x0:k, y1:k)

f(y1:k)
=

f(x0:k, y1:k)
L(y1:k)

where L(y1:k) is the likelihood of the data observed up to k

L(y1:k) =
∫

f(x0:k, y1:k)dx0:k

Now derive the recursive formula connecting the filtering distributions at k
and k + 1

f(x0:k+1 | y1:k+1)

=
f(x0:k+1, y1:k+1)

L(y1:k+1)
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=
g(yk+1 | xk+1)q(xk+1 | xk)f(x0:k, y1:k)

L(y1:k)
L(y1:k)

L(y1:k+1)

=
g(yk+1 | xk+1)q(xk+1 | xk)

f(yk+1 | y1:k)
f(x0:k | y1:k)

This equation gives the recursion of the filtered distributions over the whole
path space. Integrating over x0:k−1 one gets the following relationship

f(xk:k+1 | y1:k+1)

=
g(yk+1 | xk+1)q(xk+1 | xk)

f(yk+1 | y1:k)
f(xk | y1:k)

∝ g(yk+1 | xk+1)q(xk+1 | xk)f(xk | y1:k)

showing that f(x0:k | y1:k) is a sufficient statistic. Integrating out xk, one
arrives at the filtering distribution of xk+1

f(xk+1 | y1:k+1)

∝
∫

g(yk+1 | xk+1)q(xk+1 | xk)f(dxk | y1:k)

The Kalman Filter is a special case where this recursion can be executed in
closed-form due to the joint normality of the system. In general, the filtering
distributions do not belong to a known parametric family and the integration
has to be done using numerical methods. In the following a class of simulation-
based methods is presented that has been extensively used in the last few years
to solve the general filtering task.

4.2 Sequential Importance Sampling

The target is the joint filtering distribution of the hidden states

f(x0:k | y1:k) ∝
k∏

t=1

g(yt | xt)q(xt | xt−1)q0(x0) (13)

Ideally, one would like to sample directly from the densities g(yt | xt)q(xt |
xt−1), providing a straightforward recursive Monte Carlo scheme. Unfortu-
nately, due to the complexity of these densities, this is usually not possible.
Importance sampling is an approach that can be used in such cases. Here, one
draws from a feasible proposal distribution r(x0:k) instead of the target and
attaches importance weights to the samples to compensate for the discrep-
ancy between the proposal and the target. If the weighted sample is denoted
by (ξ(m)

0:k , w
(m)
k ) where m = 1, ...,M , the samples and weights are obtained as

ξ
(m)
0:k ∼ r(x0:k)

w
(m)
k =

∏k
t=1 g(yt | ξ(m)

t )q(ξ(m)
t | ξ(m)

t−1)q0(ξ
(m)
0 )

r(ξ(m)
0:k )
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The expectation E (h(x0:k | y1:k)) can be estimated by the estimator

ĥ =
∑M

m=1 h(ξ(m)
0:k )w(m)

k∑M
m=1 w

(m)
k

Using independence of the sample the estimator is asymptotically consistent

ĥ− E (h(x0:k | y1:k)) →P 0 as M →∞
and asymptotically normal

√
M

[
ĥ− E (h(x0:k | y1:k))

]
→D N

[
0,

V arr (h(x0:k)w(x0:k))
[Er (w(x0:k))]2

]
as M →∞

Note that the asymptotic variance can also be estimated using the simulation
output, allowing inference on the reliability of the estimate.

The preceding importance sampling algorithm can be made sequential
by choosing a recursive structure for the importance sampling distribution,
r(x0:k):

R(x0:k) =
k∏

t=1

r(xt | yk, xt−1)r0(x0)

Then the importance weight wk can be written as

wk =
k∏

t=1

g(yt | xt)q(xt | xt−1)
r(xt | yk, xt−1)

q0(x0)
r0(x0)

and the importance sampler can be implemented in a sequential manner

Sequential Importance Sampling

• Initial State: Draw an i.i.d. sample ξ
(m)
0 ,m = 1, ...,M from ξi

0 ∼ r0(x0)
and set

w
(m)
0 =

q0(ξ
(m)
0 )

r0(ξ
(m)
0 )

,m = 1, ..., M

• Recursion: For k = 1, ..., N

1. Draw (ξ(m)
k , m = 1, ...,M) from the distribution ξ

(m)
k ∼ r(xk | yk, ξ

(m)
k−1)

2. Compute the updated importance weights

w
(m)
k = w

(m)
k−1 ×

g(yk | ξ(m)
k )q(ξ(m)

k | ξ(m)
k−1)

r(ξ(m)
k | yt, ξ

(m)
k−1)

This algorithm seems to provide a solution to the recursive filtering problem.
Unfortunately after a couple of time steps the normalized weights of most
points fall to zero and the weighted sample ceases to provide a reliable
representation of the target distribution.
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Weight degeneracy in Merton’s model

To illustrate the phenomenon mentioned before, consider the performance of
the sequential importance sampling algorithm for Merton’s model with noisy
equity observations. Choose the prior distribution to be a point mass
assuming that the initial equity observation Sτ0 is observed without any
error. Further, use the transition density f(Vτi+1 | V (m)

τi ) as the proposal
distribution. The procedure that results is:

Sequential Importance Sampling in Merton’s model

• Initial State: Set V
(m)
τ0 = S−1(Sτ0) where the function S−1(.) is the inverse

of the equity pricing function in (6).
• Recursion: For k = 1, ..., N

1. Draw V
(m)
τk from f(Vτk

| V
(m)
τk−1 , Θ), which can be easily done using

equation (8).
2. Compute the updated importance weights

w
(m)
k = w

(m)
k−1f(Sτk

| V (m)
τk

, Θ)
One measure of the reliability of an importance sampler is the effective
sample size, Neff , defined as

Neff =




M∑
m=1

(
w

(m)
k∑M

m=1 w
(m)
k

)2


−1

Roughly speaking, the effective sample size measures the size of an
equally-weighted Monte Carlo sample providing the same reliability as the
output of the importance sampler. Figure 5 depicts the effective sample sizes
for the first few observations in Merton’s model obtained by running the SIS
algorithm. The model parameters are
(σ = 0.2, µ = 0.1, r = 0.05, δ = 0.01, F = 100). The initial asset value is 60,
the initial debt maturity is 3 years, and a year of daily data is generated (i.e.
h = 1/250, n = 250) and the sample size is M = 1000. The MATLAB file
producing this figure is test_MertonSIS.m. One can observe that by t = 5
the effective sample size collapses to one, signaling the deterioration of the
filter. The underlying reason behind this phenomenon is that a fixed number
of points is used to cover an increasing dimensional space.

4.3 Sequential Importance Sampling with Resampling (SIR or
particle filtering)

To deal with the problem of sample impoverishment, [24] suggest to
resample the current population of particles using the normalized weights as
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Fig. 5. Normalized importance weights for Sequential Importance Sampling in Mer-
ton’s model

probabilities of selection. After resampling, all importance weights are reset
to one. The intuition behind this procedure is that unlikely trajectories are
eliminated and likely ones are multiplied. This yields the following algorithm:
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Sequential Importance Sampling with Resampling

• Initial State: Draw an i.i.d. sample ξ
(m)
0 from ξ

(m)
0 ∼ r0(x0) and set w

(m)
0 =

q0(ξ
(m)
0 )

r0(ξ
(m)
0 )

, m = 1, ...,M

• For k = 1, ..., N repeat the next steps
1. Sampling

– Draw (ξ(m)
k , m = 1, ..., M) conditionally independently given

(ξ(m)
0:k−1, m = 1, ...,M) from the distribution ξ

(m)
k ∼ r(xk | yk, ξ

(m)
k−1)

– Compute the importance weights

w
(m)
k =

g(yk | ξ(m)
k )q(ξ(m)

k | ξ(m)
k−1)

r(ξ(m)
k | yk, ξ

(m)
k−1)

2. Resampling
– Draw from the multinomial trial (I1

k , ..., IM
k ) with probabilities of

success
w1

k∑M
m=1 w

(m)
k

, ...,
wM

k∑M
m=1 w

(m)
k

– Reset the importance weights w
(m)
k to 1;

3. Trajectory update: ξ
(m)
0:k = ξ

I
(m)
k

0:k ,m = 1, ..., M

This approach concentrates on the marginal filtering distribution f(xk | y0:k)
instead of the joint one, f(x0:k | y0:k). Resampling helps to achieve a better
characterization of the last state of the system at the expense of representing
the past of the full hidden path, x0:k.

Bootstrap Filter

In the bootstrap filter of [24] the proposal density is chosen to be equal to
the transition density

r(xk | yk, xk−1) = q(xk | xk−1)

In this case the importance weights take a particularly simple form, they
simply equal the measurement density

wm
k =

g(yk | ξm
k )q(ξm

k | ξm
k−1)

q(ξm
k | ξm

k−1)
= g(yk | ξm

k )
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Bootstrap Filter in Merton’s model

Bootstrap Filter in Merton’s model

• Initial State: Set V
(m)
τ0 = S−1(Sτ0) where the function S−1(.) is the inverse

of the equity pricing function in equation (6).
• Recursion: For k = 1, ..., N

1. Sampling
– Draw V

(m)
τk from f(Vτk

| V (m)
τk−1 , Θ), using equation(8).

– Compute the normalized importance weights

π
(m)
k =

w
(m)
k∑M

m=1 w
(m)
k

where w
(m)
k = f(Sτk

| V (m)
τk

, Θ)

2. Resample from the weighted sample {(V (m)
τk , π

(m)
k ); m = 1, · · · , M} to

obtain a new equal-weight sample of size M .
To investigate whether the resampling step successfully deals with sample
depletion we repeat the simulation exercise described before on Merton’s
model, but now we run the bootstrap filter on the simulated data. Panel A
of Figure 6 depicts the effective sample sizes (Neff ) for a simulated sample
path. One can see that now Neff does not collapse as time progresses, so the
resampling seems an effective remedy to sample depletion. Panel B
reinforces this message by showing that the filter reliably tracks the
unobserved asset value path.The MATLAB file producing Figure 6 is
test_MertonBootstrap.m.

4.4 Theoretical properties of particle filters

The filtering algorithm described above has been shown to possess attractive
asymptotic properties as the number of particles, N , goes to infinity. (see [9]
for a short introduction to the theory and [11] for a monograph-length
treatment) In particular it provides consistent estimates of any filtering
quantity

1
M

M∑
m=1

h(ξm
k )− E (h(xk | y1:k)) → 0 as M →∞

Central limit theorems has been proved for particle systems, leading to
results of the type

√
M

(
1
M

M∑
m=1

h(ξm
k )− E(h(xk | y1:k))

)
→ N(0, σ2

k(h)) as M →∞

In general the Monte-Carlo variance, σ2
k(h) increases with the time k. This

reflects the fact that as time passes, errors accumulate in the filtering
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Fig. 6. Bootstrap Filter in Merton’s model

recursions. In practice this means that an ever-increasing number of
particles is needed to ensure the same quality for the estimates. To rule this
out and achieve uniform convergence further assumptions on the forgetting
properties of the model are needed.
While these results provide the rate of convergence,

√
M , the constant of

convergence, σ2
k(h) is usually not known. This means that in contrast to

simple importance sampling, one cannot compute confidence intervals for
the estimates.
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5 Implementation issues for Particle Filters

5.1 The choice of proposal in SIR

The choice of the proposal distribution is critical for the efficiency of the
method. The question is how to best use the information in the next
observation in sampling. The optimal choice would be the conditional
distribution of the new hidden state given the past hidden state and the new
observation:

f(xk | yk, xk−1) ∝ g(yk | xk)q(xk | xk−1)

As direct sampling from the optimal choice is usually not feasible,
approximations are needed. In the following Merton’s model is used to
illustrate various strategies to obtain efficient proposal distributions. The
first approach uses a specific feature of Merton’s model by localizing the
sampler around the new observation. The second, more generic approach
linearizes the model around each particle and uses the optimal sampler of
the approximated model as the proposal. The third strategy adapts a
parametric family of proposal and picks the best density within this family
using the information in the previously sampled particles.

Localized sampling in Merton’s model

To illustrate the importance of the proposal density, consider again Merton’s
model. If one uses the bootstrap filter, the importance weights are

f(Sτi+1 | Vτi+1 , Θ) ∝ 1
δ
φ

(
log Sτi+1 − log S(Vτi+1 , Θ)

δ

)

When the microstructure noise δ is small, this density function is peaked,
resulting in high variance of the particle weights and a poor representation
of the filtering distribution. Intuitively, when the microstructure noise is
relatively small, the new observation is very informative on the hidden asset
value. This makes the bootstrap sampler that ignores the new observation, a
poor choice for the proposal.
However, if the observation is so important, why not totally base the
sampler on the observation, forgetting the past? This idea is used in [19] to
propose an efficient sampler, localized around the new observed equity price.
In particular, [19] suggest to draw from the microstructure noise, νk and to
use the asset value implied by the noise and the new observation as the
sampler. This results in the following algorithm:
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Localized Sampling in Merton’s model

• Initial State: Set V
(m)
τ0 = S−1(Sτ0) where the function S−1(.) is the inverse

of the equity pricing function in (6).
• Recursion: For k = 1, ..., N

1. Sampling
– Draw a standard normal ν

(m)
k and compute V

(m)
τk = V ∗

τk
(Sτk

, ν
(m)
k )

to obtain the pair (V (m)
τi , V

(m)
τk ), where

V ∗
τk

(Sτk
, νk) = S−1(Sτk

e−δνk ;σ, F, r, T − τk)

– Compute the importance weights

w
(m)
k =

f(V (m)
τk | V (m)

τk−1 , Θ)

Φ(d∗(m)
τk )eδν

(m)
k

– Normalize the importance weights

π
(m)
k =

w
(m)
k∑M

m=1 w
(m)
k

where w
(m)
k = f(Sτk

| V (m)
τk

, Θ)

2. Resample from the weighted sample {(V (m)
τk , π

(m)
k ); m = 1, · · · , M} to

obtain a new equal-weight sample of size M .
Here, using a change of variables formula, the density function of the
sampler is

g(V (m)
τk

| Sτk
, V (m)

τk−1
)

= f(V ∗
τk

(Sτk
, ν

(m)
k ) | Sτk

) =
φ(ν(m)

k )Φ(d∗(m)
τk )eδν

(m)
k

δSτk

Then, the expression for the importance weights can be derived as

w
(m)
k =

f(Sτk
| V (m)

τk , Θ)f(V (m)
τk | V (m)

τk−1 , Θ)

g(V (m)
τk | Sτk

, V
(m)
τk−1)

=
f(Sτk

| V (m)
τk , Θ)δSτk

f(V (m)
τk | V (m)

τk−1 , Θ)

φ(ν(m)
k )Φ(d∗(m)

τk )eδν
(m)
k

=
f(V (m)

τk | V (m)
τk−1 , Θ)

Φ(d∗(m)
τk )eδν

(m)
k

Table 1 shows the efficient sample sizes for the bootstrap filter and the
localized sampler for different values of the measurement noise standard
deviation, δ. The values are averages taken through time and across 20
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simulations, run at different random seeds. The sample size M = 1000 and
all the other simulation parameters are as described before. The MATLAB
file producing the table is test_MertonLocalized.m. Overall, the localized
sampler seems to perform much better than the bootstrap filter reflected in
the much higher effective sample sizes. Further, as δ decreases, the
performance of the bootstrap filter deteriorates while that of the localized
filter actually gets better. The reason for this phenomenon is that for smaller
values of δ, the relative importance of the new observation is higher in
determining the location of the new unobserved asset value. Then, the the
localized sampler that ignores the past overperforms the bootstrap filter that
ignores the new observation.

Table 1. Effective Sample Size for the Localized Sampler and the Bootstrap Filter
in Merton’s model

δ = 0.0005 δ = 0.005 δ = 0.01 δ = 0.02

Neff (Localized) 999.9 993.0 974.1 916.9
Neff (Bootstrap) 6.4 61.4 121.1 230.4

Using local linearization to generate the proposal in Merton’s
model

The localized sampler described in the previous section completely ignores
the past. An alternative approach is to follow the advice of [15] and use a
local linear approximation of the model to generate a proposal. Here, both
the past and the new observation is used to come up with a proposal
distribution at the price of the bias due to the linearization. In Merton’
model, the only non-linearity is in the measurement equation (7).
Linearizing this equation around the conditional expected value yields the
approximate measurement equation:

log Sτk
∼ A

(
log V ∗(m)

)
+ B

(
log V ∗(m)

)
×

(
log Vτk

− log V ∗(m)
)

where

log V ∗(m) = (µ− σ2

2
)h + log V (m)

τk−1

A
(
log V ∗(m)

)
= log S

(
elog V ∗(m)

; σ, F, r, T − τk

)

B
(
log V ∗(m)

)
=

V ∗Φ(d∗(m))
S

(
elog V ∗(m) ; σ, F, r, T − τk

)

By local normality of this system, the conditional distribution of log V
(m)
τk

given log Sτk
is
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log V (m)
τk

∼ N
(
µ(log V (m)

τk−1
), σ2(log V (m)

τk−1
)
)

where

µ(log V (m)
τk−1

) = log V ∗(m) +
B

(
log V ∗(m)

)
σ2h

B2
(
log V ∗(m)

)
σ2h + δ2

×
(
log Sτk

−A
(
log V ∗(m)

))

σ2(log V (m)
τk−1

) = σ2h− B2
(
log V ∗(m)

)
σ4h2

B2
(
log V ∗(m)

)
σ2h + δ2

The expression of the importance weights is

w
(m)
k =

f(Sτk
| V (m)

τk , Θ)f(V (m)
τk | V (m)

τk−1 , Θ)

g(V (m)
τk | Sτk

, V
(m)
τk−1)

=
f(Sτk

| V (m)
τk , Θ)f(V (m)

τk | V (m)
τk−1 , Θ)

φ

(
log V

(m)
τk

−µ(log V
(m)

τk−1
)

σ(log V
(m)

τk−1
)

)
/σ(log V

(m)
τk−1)

Table 2 compares this linearized proposal with the bootstrap filter. The
MATLAB file producing the table is test_MertonLinearized.m. The
linearized filter performs much better, with results that are comparable to
the localized sampler described before. Instead of using local linearization,
[37] suggests using the unscented Kalman Filter for proposal generation.

Table 2. Effective Sample Size for the Localized Sampler and the Bootstrap Filter
in Merton’s model

δ = 0.0005 δ = 0.005 δ = 0.01 δ = 0.02

Neff (Linearized) 607.5 966.7 979.1 955.0
Neff (Bootstrap) 6.4 61.4 121.1 230.4

Using adaptation to tune the proposal in Merton’s model

Another generic approach to improve the efficiency of the particle filtering
algorithm is to use the filter output to adapt the proposal. [8] suggests to
implement this idea by choosing a parametric family of proposal distribution
and then optimize the parameters using the particles from the filter. To
illustrate this method, consider the adaptation of the bootstrap filter in
Merton’s model. In particular, assume that the following family of proposal
distribution is chosen:

log V (m)
τk

∼ N

(
(µ− σ2

2
)h + log V (m)

τk−1
+ γ1,k, σ2hγ2,k

)
(14)
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Setting γ1,k = 0 and γ2,k = 1 one obtains bootstrap filter. In general γ1,k and
γ2,k can be varied in order to find a proposal that is as close as possible to
the target distribution, f(log Vτk

, log Vτk−1 | Dk). One appropriate metric to
measure closeness between probability distributions is the Kullback-Leibler
(K-L) distance. In the present context, if r(log Vτk

| γ, log Vτk−1) is the
parametric proposal conditional on log Vτk−1 , then the overall proposal over
the pair (log Vτk

, log Vτk−1) is r(log Vτk
| γ, log Vτk−1)f(log Vτk−1 | Dk−1). The

K-L distance of this proposal from the target is defined as

DKL

(
f(log Vτk

, log Vτk−1 | Dk)‖r(log Vτk
| γ, log Vτk−1)f(log Vτk−1 | Dk−1)

)

=
∫

{log Vτk
,log Vτk−1}

f(log Vτk
, log Vτk−1 | Dk) log

(
f(log Vτk

, log Vτk−1 | Dk)
r(log Vτk

| γ, log Vτk−1)f(log Vτk−1 | Dk−1)

)

Then, the ”best” proposal within the parametric family is the one that
minimizes the K-L distance to f(log Vτk

, log Vτk−1 | Dk). This is achieved by
γ∗k solving

γ∗k = arg max
γ

∫

{log Vτk
,log Vτk−1}

f(log Vτk
, log Vτk−1 | Dk) log r(log Vτk

| γ, log Vτk−1)

(15)
This optimization problem is unfeasible as the integral is not known in
closed form. However, if one has a normalized weighted sample
(π(m)

k , log V
(m)
τk , log V

(m)
τk−1 ,m = 1, ..., M) representing f(log Vτk

, log Vτk−1 | Dk)
from a prior run of a particle filter, the problem can be approximated by

γ∗k = arg max
γ

M∑

i=1

π
(m)
k log r(log V (m)

τk
| γ, log V (m)

τk−1
) (16)

In the example in Merton’s model with the choice of the proposal family as
in (14) , the optimization problem becomes

(γ∗1,k, γ∗2,k) = arg max
γ1,k,γ2,k

M∑

i=1

π
(m)
k

(
− (log V

(m)
τk − (µ− σ2

2 )h− log V
(m)
τk−1 − γ1,k)2

2γ1,k, σ2hγ2,k
− log(γ1,k, σ2hγ2,k)

2

)

This can be solved in one step, yielding

γ∗1,k =
M∑

i=1

π
(m)
k

(
log V (m)

τk
− (µ− σ2

2
)h− log V (m)

τk−1

)
(17)

γ∗2,k =

∑M
i=1 π

(m)
k

(
log V

(m)
τk − (µ− σ2

2 )h− log V
(m)
τk−1 − γ∗1,k

)2

σ2h
(18)

The algorithm is initialized by running the bootstrap filter (setting
(γ(0)

1,k = 0, γ
(0)
2,k = 1)) and then the filter is adapted by the procedure

described above.
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Adapted Bootstrap Filter in Merton’s model

• Initial State: Set V
(m)
τ0 = S−1(Sτ0) where the function S−1(.) is the inverse

of the equity pricing function in equation (6).
• Run the bootstrap filter, providing (γ(1)

1,k, γ
(1)
2,k) using (17-18)

• Adapt the filter: For j = 1, ..., Niter

– Recursion: For k = 1, ..., N
1. Sampling
· Draw log V

(m)
τk from r(V (m)

τk | γ(j)
1,k, γ

(j)
2,k)

log V (m)
τk

∼ N

(
(µ− σ2

2
)h + log V (m)

τk−1
+ γ

(j)
1,k, σ2hγ

(j)
2,k

)

· Compute the normalized importance weights

π
(m)
k =

w
(m)
k∑M

m=1 w
(m)
k

where

w
(m)
k =

f(Sτk
| V (m)

τk , Θ)f(V (m)
τk | V (m)

τk−1 , Θ)

r(V (m)
τk | γ(j)

1,k, γ
(j)
2,k, V

(m)
τk−1)

2. Compute the new value of the adaptation parameters:
(γ(j+1)

1,k , γ
(j+1)
2,k ) using the new weighted sample and (17-18).

To avoid spurious results due to a poor particle set, γ2,k is updated
only when Neff (k) >= 5.

3. Resample from the weighted sample {(V (m)
τk , π

(m)
k ); m = 1, · · · ,M}

to obtain a new equal-weight sample of size M .
As M →∞, the approximating optimization problem in (16) converges to
the true problem in (15). Thus if M is large enough, setting Niter = 1 would
already achieve the optimal parameters. However for finite M , the initial
particle approximation may be poor and running a couple more iterations
can yield further improvements.
Table 3 reports the results of this algorithm with Niter = 4 and M = 1000,
with all the other simulation parameters set as in the examples before. The
MATLAB file producing the table is test_MertonAdapt.m. Adaptation
yields great improvements in the algorithm, providing acceptable results
even when δ is small and the likelihood function is very peaked. In
accordance with theory, most of the improvement takes place in the first
iteration. Substantial further improvements are achieved only when the
initial sampler is very poor, the case of small δ. In more complicated
problems, wider parametric families could be used for adaptation. In
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particular, using the adaptive D-kernel method of [4] and [5] would allow the
use of general mixture classes.

Table 3. Effective Sample Size for the Adapted Bootstrap Filter in Merton’s model

δ = 0.0005 δ = 0.005 δ = 0.01 δ = 0.02

Neff (Iteration 0) 6.4 61.4 121.1 230.4
Neff (Iteration 1) 252.6 520.3 537.4 557.8
Neff (Iteration 2) 457.4 542.0 546.5 557.9
Neff (Iteration 3) 506.7 543.54 545.8 559.7
Neff (Iteration 4) 523.9 544.3 547.51 557.6

5.2 Other variations on the filtering algorithm

When the future observation is very informative on the present state, it may
be better to resample the present particles before propagating them forward.
This idea is used in the Auxiliary Particle Filter by [33] and investigated
theoretically in [13]. More sophisticated resampling routines have been
proposed to reduce the variance of multinomial resampling. Some examples
are residual resampling [28] or stratified resampling [27].

5.3 Application of Particle Filtering: Obtaining the asset and debt
value of Six Flags

In the second example described before the objective is to obtain the
unobserved asset value of Six Flags in 2008 using the noisy time series of
equity. The application of Merton’s model necessitates some assumptions on
the inputs of the model. The face value of debt is chosen to be the sum of
total liabilities and preferred equity (as this latter is more senior than
common equity) yielding F = 3197.9 (the unit is Million USD). The
maturity of debt is chosen to be 1 years, while the risk-free rate is set to
2.7%, the one-year zero-coupon yield on treasuries at the beginning of 2008.
Last, to run the filter one needs estimates of the model parameters (µ, σ, δ).
The estimation of the drift is unreliable using one year of data, so the drift is
simply set equal to the riskfree rate. The other two parameters σ and δ are
estimated in a Bayesian procedure using importance sampling and a flat
prior. The posterior means are used as point estimates yielding σ = 0.075
and δ = 0.0117. Panel A of Figure 7 reports the filtered asset values while
Panel B the filtered yield spread on the debt (liabilities+preferred equity) of
the firm. The localized filter with M = 1000 particles was used to produce
the results. One can see that in the second half of 2008 when the asset value
of the company decreased, the spread becomes more sensitive to changes in
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the asset value. This can be explained by the fact that by this stage, the
equity buffer that protects the debt-holders is more depleted. To understand
the uncertainty created by the noise in the equity prices, Figure 8 plots the
90% confidence interval of the yield spread of Six Value, ranging from 7
basis points at the beginning of the year to 12 basis points at the end of the
period. The figures have been produced using the MATLAB script
SixFlags.m.
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Fig. 7. Filtered asset value and yield spread on Six Flags’ debt

6 Outlook

While the algorithms described in this chapter provide reliable sequential
inference on the unobservable dynamic states, the important task of
estimating the fixed parameters of the financial model has proved to be a
formidable task.
In a classical setting, the problem stems from the irregularity of the
likelihood surface. The individual likelihood function, f(yk | y1:k−1, θ), can
be estimated pointwise using the particle filter as
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Fig. 8. 90% confidence interval on the Yield Spread of Six Flag

f̂(yk | y1:k−1, θ) ≈
M∑

i=1

w
(m)
k (θ)

yielding an estimate of the sample :

l̂(y1:N | θ) =
N∑

k=1

log f̂(yk | y1:k−1, θ)

However, l̂(y1:N | θ) is an inherently irregular function of the fixed model
parameters, θ. Figure 9 illustrates this phenomenon by plotting the
estimated likelihood function of a simulated data sample in Merton’s model
for different values of the asset volatility parameter, σ. The local wiggles one
observes here result from the resampling step and make both the usual
gradient-based optimization routines unusable and inference based on the
numerical derivatives of the likelihood function problematic.
There are several ways in the literature to circumvent this problem. [32]
proposes to use a smooth resampling routine that makes the likelihood
function regular. [19] apply the method to estimate the parameters of
Merton’s model with noisy equity prices, while [7] use it in fitting equity
option prices with different stochastic volatility models. Unfortunately, the
approach only works when the hidden state is one-dimensional.
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Fig. 9. Irregularity of the Likelihood Function in Merton’s model

An alternative approach that works even when xk is multi-dimensional is the
Monte-Carlo Expectation-Maximization (MCEM) algorithm. Here the
irregularity of the filter becomes inconsequential for obtaining parameter
estimates, because filtering and optimization are disentangled. In particular,
while the particle filter is used to approximate the necessary expectations in
the E-step, the particles are kept unchanged in the M-step where
optimization is implemented. Further, [31] show that it is sufficient to use
fixed-lag smoothing in the E-step with a relatively small number of lags. This
is important because in particle filtering the inference on the recent past is
more reliable than the representation of the distant past, a result of the
repeated use of the resampling step. To deal with the problem of inference,
[18] proposes the use the sample cross-products of the individual smoothed
scores and a Newey-West correction. [17] apply the MCEM algorithm to the
estimation of a jump-diffusion model with high-frequency data and
microstructure noise, while [23] uses it to estimate intra-daily patterns of
transaction costs and volatilities on the credit default swap market.
In a Bayesian setting, one could simply try to include the fixed parameters
in the state-space and perform particle filtering on the extended state-space.
This is very attractive as it would allow joint sequential inference on the
states and the fixed parameters. Unfortunately it is well-known that this
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algorithm is unreliable. The underlying reason is that the extended dynamic
system is not forgetting its past due to the inclusion of the fixed parameters,
thus the Monte-Carlo errors committed in each stage quickly accumulate.
Extending the work of [35], [26] suggest tracking the filtering distribution of
some sufficient statistics to perform sequential inference on the parameters.
[25] apply this approach to examine the predictability of the stock market
and optimal portfolio allocation. The key limitation is that the method can
only be applied to models that admit a finite-dimensional sufficient statistic
structure for the fixed parameters. Instead of attempting sequential
inference, [2] suggest inserting particle filters into an MCMC algorithm as a
proposal-generating mechanism. The method is illustrated on different
economic and financial models by [22].
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