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Abstract

In this paper we present a change detection method for
nonlinear stochastic systems based on Projection Particle
Filtering. The statistic for this method is chosen in such a
way that it can be calculated recursively while the compu-
tational complexity of the method remains constant with
respect to time. We present some simulation results that
show the advantages of this method compared to lineariza-
tion techniques.

1 Introduction

In many practical problems arising in quality control, fault
detection, and integrity monitoring, the underlying system
can be modeled as a parametric model. The parameters
of such models usually can be categorized into two differ-
ent sets. The first set contains the parameters that change
slowly with respect to time, for example the parameters
that describe the conditional density of position-velocity-
orientation in a navigation system are of this type. The
second set contains the parameters that are subject to sud-
den changes. These sudden changes are the results of a
failure in the system dynamic, malfunctioning of measuring
instruments, or perhaps the result of a change in the state of
the system. We refer to these changes as sudden or abrupt
because the time frame in which these changes happen is
much smaller than the response time of the system which
is limited by the nominal bandwidth of the system [1] .
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The abrupt changes in the system do not need to
be catastrophic. In fact, in this paper we are inter-
ested in studying the changes that degrade the perfor-
mance/accuracy/efficiency of the system, but do not stop
the system from functioning. A monitoring system is re-
sponsible to detect and isolate these changes.

Online detection of abrupt changes for linear dynamical sys-
tems have been studied extensively (cf. [1] and the refer-
ences therein). Unlike the linear case, change detection for
nonlinear stochastic systems has not been investigated in
any depth. In the cases where a nonlinear system experi-
ences a sudden change, linearization and change detection
methods for linear systems are the main tools for solving
the change detection problem (see [2] for example). The
reason for this lack of interest is clear; even when there is
no change, the estimation of the state of the system given
the observations results in an infinite dimensional nonlin-
ear filter [3], the change in the system can only make the
estimation harder.

In the last decade there has been an increasing interest in
simulation based nonlinear filtering methods. These fil-
tering methods are based on a grid-less approximation of
the conditional density of the state given the observations.
Grid-less simulation based filtering, now known by many
different names such as Particle Filtering (PaF) [4][5], the
Condensation Algorithm [6], the Sequential Monte Carlo
(SMC) Method [7], and Bayesian Bootstrap Filtering [8],
was first introduced in [8] and then it was rediscovered in-
dependently in [6] and [9].

The theoretical results regarding the convergence of the ap-
proximate conditional density given by PaF to the true con-
ditional density (in some proper sense), suggests that this
method is a strong alternative for nonlinear filtering [4].
The advantage of this method over the nonlinear filter is
that PaF is a finite dimensional filter. The authors believe
that PaF and its modifications are a starting point to study
change detection for nonlinear stochastic systems. In this
paper we use the results in [10] and we develop a new change
detection method for nonlinear stochastic systems.



In [10] we showed that when the number of satellites is be-
low a critical number, linearization methods such as EKF
result in an unacceptable position error for an integrated
INS/GPS. We also showed that the approximate nonlinear
filtering methods, Projection Particle Filter (PPaF) in par-
ticular, are capable of providing an acceptable estimate of
the position in the same situation.

If the carrier phase is used for position information in an in-
tegrated INS/GPS, one sudden change that happens rather
often is the cycle slip. A cycle slip happens when the phase
of the received signal estimated by the phase lock loop in
the receiver has a sudden jump. An integrated INS/GPS
with carrier phase receiver is used as an application for
the method introduced in this paper. Since the proposed
change detection method assumes known parameters after
change, this application should not be considered a cycle
slip detection method.

In Section 2 we briefly define the change detection problem.
In Section 3 we review the CUSUM algorithm for linear
systems with additive changes. Then in Sections 4 and
5 we present a new change detection method for nonlinear
stochastic systems. In Section 6 we present some simulation
results. In the last section of this paper we summarize the
results and lay out the future work.

2 Change Detection: Problem Definition

On-line detection of a change can be formulated as fol-
lows [1]. Let Yn

1 = {y1,y2, · · · ,yn} be a sequence
of observed random variables with conditional density
pθ(yk|yk−1, · · · ,y1). Before the unknown change time t0
the parameter of the conditional density, θ, is constant and
equal to θ0. After the change, this parameter is equal to
θ1. In online change detection one is interested in detecting
the occurrence of such a change. The exact time and the
estimation of the parameters before and after the change
is not required. In case of multiple changes, we assume
that the changes are detected fast enough so that in each
time instance only one change has to be considered. Online
change detection is performed by a stopping rule [1]

ta = inf{n : gn(Yn
1 ) ≥ λ}

where λ is a threshold, (gn)n≥1 is a family of functions, and
ta is the alarm time, i.e. the time that change is detected.

If ta < t0 then a false alarm has occurred. The criteria
for choosing the parameter λ and the family of functions
(gn)n≥1 is to minimize the detection delay for the fixed
mean time between false alarms.

3 Additive Changes in Linear Dynamical Systems

Consider the following system:

xk+1 = Fkxk + Gkwk + ΓkΥx(k, t0)
yk = Hkxk + vk + ΞkΥy(k, t0)

(1)

where xk ∈ Rn, ynτ ∈ Rd, wk ∈ Rq and vk ∈ Rd are white
noise with known statistics, Fk, Gk, HK , Γk, and Ξk are
matrices of proper dimension, and Υx(k, t0) and Υy(k, t0)
are the dynamic profiles of the assumed changes, of dimen-
sion ñ ≤ n and d̃ ≤ d, respectively. wk and vk are white
Gaussian noise, independent of the initial condition x0. It
is assumed thatΥx(k, t0) = 0 and Υy(k, t0) = 0 for k < t0,
but we do not necessarily have the exact knowledge of the
dynamic profile and the gain matrices, Γk and Ξk. The
dynamic profile of change may be assumed known or un-
known.

For the case of known parameters before and after change,
the CUSUM [1] algorithm can be used, and it is well known
that the change detection method has the following form

ta = min{k ≥ 1|gk ≥ λ}
gk = max

1≤j≤k
Sk

j

Sk
j = ln

∏k

i=j
p

ρ(i,j)(εi)∏k

i=j
p0(εi)

(2)

where εi is the innovation process calculated using Kalman
filtering assuming that no change occurred, and ρ(i, j) is
the mean of the innovation process at time j condition on
the change occurred at the time i. p0 and pρ(·,·) are Gaus-
sian densities with means 0, and ρ(·, ·), respectively. The
covariance matrix for these two densities is the same and is
calculated using Kalman filtering.

When the parameter after change is not known, the algo-
rithm that is used for the change detection is the Gener-
alized Likelihood Ratio (GLR) test [11]. In this case gk is
calculated as follows

gk = max
1≤j≤k

sup
Υx,Υy

Sk
j . (3)

The solution for (3) is well known and can be found in many
references [1].

Similar to nonlinear filtering, change detection for nonlinear
stochastic systems results in an algorithm that is infinite di-
mensional. Linearization techniques, whenever applicable,
are the main approximation tool for studying the change
detection problem for nonlinear systems. In this setup, a
nonlinear filtering problem is transformed to it linearized
form through Extended Kalman Filtering (EKF) and then
the same algorithms that are used for the linear Gaussian
case are used for the change detection problem. Although
linearization techniques are computationally efficient, they
are not always applicable. In the sections to come we pro-
pose a new method based on nonlinear Particle Filtering
that can be used for change detection for nonlinear stochas-
tic systems.

4 Nonlinear Change Detection: Problem Setup

Consider the following nonlinear system

xk+1 = f
ik
k (xk) + G

ik
k (xk)wk

yk = h
ik
k (xk) + vk

(4)

where the functions f ik
k (·) and hik

k (·) and the matrix Gik
k (·)

have the proper dimensions. The noise processes wk ,
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Figure 1: Combination of nonlinear filters used in the

CUSUM change detection algorithm

vk, k = 0, 1, · · ·, and the initial condition x0 are assumed
independent. We assume that

ik =

{
0 k < t0
i k ≥ t0, i ∈ I

, (5)

where I is a countable index set. The index 0 is used for
the nominal system and the system after change belongs to
a countable set of systems. In this paper we assume that
the set I has only one member, i.e. we assume that the
parameters after the change are known.

In this setup Sk
j can be written as follows

Sk
j = ln

p(Yk
j |Yj−1

1 , t0 = j)

p(Yk
j |Yj−1

1 , t0 > k)
. (6)

Writing (6) in a recursive form we get

p(Yk
j |Yj−1

1 , t0 = j) =
k∏

i=j

p(yi|Yi−1
1 , t0 = j) (7)

where p(yi|Yi−1
1 , t0 = j) can be written as follows

p(yi|Yi−1
1 , t0 = j) =

∫

xi

p(yi|xi)p(xi|Yi−1
1 , t0 = j)dxi. (8)

To find p(xi|Yi−1
1 , t0 = j) in (8), one needs to find an ap-

proximation for the corresponding nonlinear filter. We as-
sume that this approximation is done using either Particle
Filtering (PaF) or Projection Particle Filtering (PPaF) [10].

To calculate the likelihood ratio in (6), we must calculate
the conditional densities of the state given the observation
for two hypothesis (changed occurred at j and change oc-
curred after k change). This means that two nonlinear fil-
ters should be implemented just to compare these two hy-
pothesis. Therefore, it is clear that to use an algorithm sim-
ilar to (2), k parallel nonlinear filter should be implemented.

In Figure 1, we see that the computational complexity of the
CUSUM algorithm grows linearly with respect to time. In
most applications this growth is not desirable. One possible
way to approximate the CUSUM algorithm is to truncate
the branches that are forked from the main branch in Fig-
ure 1. We will explain this truncation procedure and its
technical difficulties in the next few lines.

Recall that the main branch (horizontal) and the branches
forked from it in Figure 1 are representing a series of non-
linear filters with specific assumptions on the change time.
The dynamic and the observation equation for all forked
branches are the same and the only difference is the ini-
tial density. If the conditional density of the state given
the observation for a nonlinear system with the wrong ini-
tial density converges (in some meaningful way) to the true
conditional density (initialized by the true initial density),
we say that the corresponding nonlinear filter is Asymp-
totically Stable [12].

For asymptotically stable nonlinear filters the forked
branches in Figure 1 converge to a single branch, therefore
there is no need to implement several parallel nonlinear fil-
ters. In other words, after each branching the independent
nonlinear filter is used for a period of time and then this
branch converges to the the branches that have forked ear-
lier, i.e. joins them. The time needed for the branch of the
independent nonlinear filter before joining the other forked
branches depends on the convergence rate and the target
accuracy of the approximation.

Although the procedure mentioned above can be used for
asymptotically stable nonlinear filters, there are several
problems associated to this method. The known theoret-
ical results for identifying asymptotically stable filters is
limited to either requiring ergodicity and the compactness
of the state space [13] [14] [15] or very special cases of the
observation equation [12]. The rate of convergence of the
filters in different branches is another potential shortcom-
ing of the mentioned procedure. If the convergence rate is
low in comparison with the the rate of parameter change
in the system, then the algorithm cannot take advantage of
this convergence.

5 Nonlinear Change Detection: Non Growing
Computational Complexity

In this section we introduce a new statistic to overcome
the problem of growing computational complexity for the
change detection method. We show that this statistic can
be calculated recursively.

Consider the following statistic

T k
j = ln

p(Yk
j |Yj−1

1 , t0 ∈ {j, · · · , k})
p(Yk

j |Yj−1
1 , t0 > k)

. (9)

For the rest of this paper we assume that conditioned on
change, the change time, t0, is distributed uniformly, i.e.

P (t0 = i|t0 ∈ {j, · · · , k}) =

{
1

k−j+1
i ∈ {j, · · · , k}

0 otherwise
. (10)



With this assumption we have

p(Yk
j |Yj−1

1 , t0 ∈ {j, · · · , k})
= p(Yk

j , t0 ∈ {j, · · · , k}|Yj−1
1 , t0 ∈ {j, · · · , k})

= p(Yk
j , t0 = j |Yj−1

1 , t0 ∈ {j, · · · , k})+
p(Yk

j , t0 = j + 1|Yj−1
1 , t0 ∈ {j, · · · , k})+

...

p(Yk
j , t0 = k |Yj−1

1 , t0 ∈ {j, · · · , k})
= 1

k−j+1

(
p(Yk

j |Yj−1
1 , t0 = j)+

p(Yk
j |Yj−1

1 , t0 = j + 1)+

· · ·+ p(Yk
j |Yj−1

1 , t0 = k)
)

,

therefore,

T k
j = ln

p(Yk
j |Y

j−1
1 ,t0∈{j,···,k})

p(Yk
j
|Yj−1

1 ,t0>k)

= ln

(
1

k−j+1

k∑
i=j

p(Yk
j |Y

j−1
1 ,t0=i)

p(Yk
j
|Yj−1

1 ,t0>k)

)
.

In other words T k
j can be written as follows

T k
j = ln

(
1

k − j + 1

k∑
i=j

exp(Sk
i )

)
. (11)

If we define Ŝk
j =

p(Yk
j |Y

j−1
1 ,t0=j)

p(Yk
j
|Yj−1

1 ,t0>k)
then

T̂ k
j =

1

k − j + 1

k∑
i=j

Ŝk
i , (12)

where T̂ k
j = exp(T k

j ).

The change detection algorithm based on statistic T k
j can

be presented as follows

ta = min{k ≥ j | T k
j ≥ λ or T k

j ≤ −α}, (13)

where j is the last time that gk ≥ λ or gk ≤ −α,
and λ > 0 and α > 0 are chosen such that the detection
delay is minimum for a fixed mean time between two false
alarms. Using (2) and (12), we try to find a relation between
the detection algorithm (13) and the CUSUM algorithm.
Assume two possible extreme cases. The first one is the case
where Sk

i = c, ∀i ∈ {j, · · · , k}. In this case it is clear that
T k

j = Sk
i ∀i ∈ {j, · · · , k}, and therefore, the performance

of the two methods with the same thresholds is the same.
In the second case we assume that ∃i, l ∈ {j, · · · , k} such
that Sk

i >> Sk
l , l 6= i. Therefore, it can be seen that T k

j '
Sk

l − ln(k − j + 1), i.e. T k
j is degraded by − ln(k − j + 1).

With this simple analysis we can conclude that

max
i∈{j,···,k}

Sk
i − ln(k − j + 1) ≤ T k

j ≤ max
i∈{j,···,k}

Sk
i . (14)

Therefore, with the same thresholds for both detection
methods, (14) can be used to find the bounds for the per-
formance of the detection algorithm in (13) with respect to
the CUSUM algorithm. We emphasize that the thresholds
used for detection method (13) need not be the same as the
thresholds in the CUSUM algorithm, in fact, they should
be optimum according to the criteria for the mean detection
delay for the detection method in (13).

The main advantage of using the statistic T k
j over Sk

j is the
fact that T k

j can be calculated recursively without growth in
the computational complexity of the method with respect to
time. We can rewrite p(Yk

j |Yj−1
1 , t0 ∈ {j, · · · , k}) as follows

p(Yk
j |Yj−1

1 , t0 ∈ {j, · · · , k}) =

k∏
i=j

p(yi|Yi−1
1 , t0 ∈ {j, · · · , k}).

Using (10) we have

p(yi|Yi−1
1 , t0 ∈ {j, · · · , k})

= p(yi, t0 ∈ {j, · · · , k}|Yi−1
1 , t0 ∈ {j, · · · , k})

= p(yi, t0 ∈ {j, · · · , i}|Yi−1
1 , t0 ∈ {j, · · · , k}) +

p(yi, t0 > i|Yi−1
1 , t0 ∈ {j, · · · , k})

= i−j+1
k−j+1

p(yi|Yi−1
1 , t0 ∈ {j, · · · , i}) +

k−i
k−j+1

p(yi|Yi−1
1 , t0 > i)

(15)

From (15) it is clear that we need only to calculate two
types of functions. These two functions are p(yi|Yi−1

1 , t0 ∈
{j, · · · , i}) and p(yi|Yi−1

1 , t0 > i). To calculate these two
functions we can use the following

p(yi|Yi−1
1 , t0 ∈ {j, · · · , i})

=
∫

p(yi|xi, t0 ∈ {j, · · · , i})
p(xi|Yi−1

1 , t0 ∈ {j, · · · , i})dxi

= 1
i−j+1

∫
p1(yi|xi)p(xi|Yi−1

1 , t0 = i)dxi +
i−j

i−j+1

∫
p1(yi|xi)p(xi|Yi−1

1 , t0 ∈ {j, · · · , i− 1})dxi

= 1
i−j+1

∫
p1(yi|xi)p(xi|Yi−1

1 , t0 > i− 1)dxi +
i−j

i−j+1

∫
p1(yi|xi)p(xi|Yi−1

1 , t0 ∈ {j, · · · , i− 1})dxi

(16)

and

p(yi|Yi−1
1 , t0 > i)

=
∫

p(yi|xi, t0 > i)p(xi|Yi−1
1 , t0 > i)dxi

=
∫

p0(yi|xi)p(xi|Yi−1
1 , t0 > i− 1)dxi ,

(17)

where p0(yi|xi) and p1(yi|xi) are the conditional densities
of the observation given the state of the system before and
after the change, respectively. To calculate these two func-
tions two conditional densities, p(xi|Yi−1

1 , t0 > i − 1) and
p(xi|Yi−1

1 , t0 ∈ {j, · · · , i − 1}) should be found. These two
conditional densities can be calculated recursively as follows

p(xi|Yi−1
1 , t0 > i− 1)

=
∫

p(xi|xi−1, t0 > i− 1)
p(xi−1|Yi−1

1 , t0 > i− 1)dxi−1

=
∫

p0(xi|xi−1)p(xi−1|Yi−1
1 , t0 > i− 1)dxi−1 ,

(18)

where p0(xi|xi−1) is the conditional density of the state at
time i given the state at time i−1 assuming that no change
has happened up until time i−1. The recursion is complete
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Figure 2: Implementation of the nonlinear filters used

in the change detection algorithm in (13)

with

p(xi−1|Yi−1
1 , t0 > i− 1)

=
p(xi−1|Yi−2

1 , t0>i−1)p(yi−1|xi−1, t0>i−1)∫
p(xi−1|Yi−2

1 , t0>i−1)p(yi−1|xi−1, t0>i−1)dxi−1

=
p(xi−1|Yi−2

1 , t0>i−2)p0 (yi−1|xi−1)∫
p(xi−1|Yi−2

1 , t0>i−2)p0 (yi−1|xi−1)dxi−1
,

(19)

and it is assumed that the initial density of the state is
known. (18) and (19) are in fact the equations for the non-
linear filter assuming that no change has happened. For the
other conditional density we have

p(xi|Yi−1
1 , t0 ∈ {j, · · · , i− 1})

=
∫

p(xi|xi−1, t0 ∈ {j, · · · , i− 1})
p(xi−1|Yi−1

1 , t0 ∈ {j, · · · , i− 1})dxi−1

= 1
j−i

∫
p1(xi|xi−1)p(xi−1|Yi−1

1 , t0 = i− 1)dxi−1

+ j−i−1
j−i

∫
p1(xi|xi−1)

p(xi−1|Yi−1
1 , t0 ∈ {j, · · · , i− 2})dxi−1,

(20)

where p1(xi|xi−1) is the conditional density of the state at
time i given the state at time i− 1 assuming that a change
has occurred. To complete the recursion formula we have

p(xi−1|Yi−1
1 , t0 = i− 1)

=
p(xi−1|Yi−2

1 , t0=i−1)p(yi−1|xi−1, t0=i−1)∫
p(xi−1|Yi−2

1 , t0=i−1)p(yi−1|xi−1, t0=i−1)dxi−1

=
p(xi−1|Yi−2

1 , t0>i−2)p1 (yi−1|xi−1)∫
p(xi−1|Yi−2

1 , t0>i−2)p1 (yi−1|xi−1)dxi−1
,

(21)

and

p(xi−1|Yi−1
1 , t0 ∈ {j, · · · , i− 2}) =

p(xi−1|Yi−2
1 , t0∈{j,···,i−2})p(yi−1|xi−1, t0∈{j,···,i−2})∫

p(xi−1|Yi−2
1 , t0∈{j,···,i−2})p(yi−1|xi−1, t0∈{j,···,i−2})dxi−1

=
p(xi−1|Yi−2

1 , t0∈{j,···,i−2})p1 (yi−1|xi−1)∫
p(xi−1|Yi−2

1 , t0∈{j,···,i−2})p1 (yi−1|xi−1)dxi−1
.

(22)

Figure 2 shows the implementation of equations (18)
through (22), it can be seen that the complexity of the im-
plemented nonlinear filter does not grow with time. Using

Figure 2 and the definition of T k
j we have

T k
j =

k∑
i=j

ln

(
1

k − j + 1

(
(k − i) +

ς2
i

ς1
i

+ (i− j)
ς3
i

ς1
i

))
, (23)

where

ς1
i = p(yi|Yi−1

1 , t0 > i)

ς2
i = p(yi|Yi−1

1 , t0 = i)

ς3
i = p(yi|Yi−1

1 , t0 ∈ {j, · · · , i− 1)}.

6 Simulations and Results

In [10] we showed that for an integrated INS/GPS when
the number of satellites is less than a critical number, Pro-
jection Particle Filtering (PaF) provides a very accurate es-
timate of the position while the position solution given by
EKF is unacceptable. In this paper we use the same exam-
ple to apply the change detection method in (13). Similar
to [10] for a critical situation (low number of observable
satellites) linearization does not work. On the other hand
the CUSUM algorithm leads to a growth in computational
complexity with respect to time, therefore, at this point
a natural selection for a change detection algorithm is the
method in (13). We wish to emphasize that in the example
given in this section we assume that the parameter of change
before and after change is known and the only unknown pa-
rameter is the change time. In future we will address the
more general problem of unknown change parameters.

The dynamics of an integrated INS/GPS is given in [10].
The observation given by a Differential GPS is very similar
to the one given in the same reference. The only difference
is that we assume that the signal associated to one of the
satellites experiences an abrupt change, i.e. we assume a
known cycle slip in one of the channels. We invite the reader
to see [10] for details.

For this simulation we simply chose an 11 dimensional
Gaussian density for the projection PaF. This choice of den-
sity makes the random vector generation easy and compu-
tationally affordable. To be able to use the projection PaF,
we used maximum likelihood to estimate the parameters of
the Guassian density before and after Bayes’ correction.

In this simulation, we used two Novatel GPS receivers to
collect the navigation data on April 2, 2000. From the col-
lected data, we extracted the position information of the
satellites, the pseudo range, and the carrier phase measure-
ment noise powers for the L1 frequency. Using the collected
information we generated the pseudo range and the carrier
phase data for one static and one moving receiver (base
and rover, respectively). Here we assume for the carrier
phase measurement the integer ambiguity problem is al-
ready solved. We also assumed that the phase lock loop
associated to satellite one experiences a cycle slip and the
phase changes suddenly. The size of the change is assumed
to be one cycle. The movement of the INS/GPS platform
was simulation based and the measurement data measured
by the accelerometers, the gyros, the GPS pseudo range,
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Figure 3: This figure shows the plot of T k
j with respect

to time. At time t = 15, the receiver looses

3 satellites. We assume that the cycle slip in

channel one occurred at time t = 20.

and the GPS carrier phase data were generated according
to that movement.

In the simulation we assumed that the GPS receiver starts
with 6 satellites. At time t = 15, the receiver looses 3
satellites. We assume that the cycle slip in channel one
occurred at time t = 20. In Figure 3 we have plotted T k

j

with respect to time. From the figure it is clear that the
change time is estimated accurately.

7 Conclusion and Future Work

In this paper we developed a new method for the detec-
tion of abrupt changes for known parameters after change.
We showed that unlike the CUSUM algorithm, the statis-
tic in this method can be calculated recursively for non-
linear stochastic systems. In future, we intend to extend
our results to the case where the parameters after change
are unknown. The major obstacle in this extension is the
complexity of the change detection method. Another sub-
ject that requires further investigations is the comparison
of this method with other existing methods.
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