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1 Introduction

Influential contributions on the business cycle argue that the early 1980s
were a period of structural shifts in both policy conduct (see Clarida, Gal̀ı
and Gertler (1998)) and business cycle volatility (McConnell and Perez-Quiros
(2000); Stock and Watson (2002)). In the US, most statistical accounts of
the business cycle identify a marked decline of its volatility since the end of
the slowdown of 1980-82. Stock and Watson (2002) dubbed this reduction
of volatility as the ”Great Moderation”. Since 1984-861, expansions have
lasted longer and slowdowns have been less frequent and shallower than in the
previous several decades. On the other hand, the recent swings of aggregate
asset prices have set off a wide array of theoretical and empirical views (for
instance, Gilchrist, Himmelberg, and Huberman (2005); Menzly, Santos and
Veronesi (2004), Shiller (2000)).

The two events/phenomena might be linked. The run-up of stock prices
in the late ’90s might be related to a reduction of the equity premium. Such
fall could be due to a significant decrease of broad macroeconomic risk, as
represented by an exogenous decline in business cycle volatility. Indeed, some
authors (Lettau et al. (2005)) try to offer explicit rationalizations of this
linkage. Now, leaving on a side possible explanations for the widely noticed
reduction in the volatility of economic activity (see for example Gordon (2005),
Dynan et al. (2006) there is a widespread perception that the relationship
between business cycle volatility and financial markets fluctuations is far from
straightforward to measure.

There are at least two intertwined reasons why asset prices might experience
a boom. A permanent rise in total factor productivity could translate into a
persistently higher level of earnings, which in turn could raise, for example,
stock market valuations. On the other hand, non-fundamental shocks in
the equity or housing markets, perhaps due to over-optimistic expectations
about future productivity and returns, could boost prices in the short to
medium term. In practice, stock prices represent a measure of the marginal
value of firms’ installed capital. Greater uncertainty about earnings prospects
should immediately translate into more volatile stock prices, while equity
and investment goods prices (returns) should therefore both be pro-cyclical
(countercyclical) across the economy.

This work tries to assess whether the historical volatility structures of
business cycle and stock market fluctuations share some common pattern.
We do so by analysing quarterly time series of U.S. stock indices and key
macroeconomic variables over the past 40 years, and studying their filtered
volatilities. Inter alia, such exercise helps to evaluate the hypothesis that the
documented decrease in business cycle volatility has triggered a fall in the
equity premium, and then a run-up in stock valuations, at the end of 1990s.

1Most studies date 1984-86 as the period in which the decline of volatility took place.
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Our choice of a relatively unusual frequency and time span for financial data
is motivated by the need to address the issue from a long-term perspective.

In applied statistics (see Perpiñán (2001)) and in macroeconometric studies
the use of latent variable models is widely accepted. For instance, one could
test the hypothesis that the decline in macroeconomic volatility could affect
the investors’ perception of macroeconomic risk and the size of the equity
premium by fitting a hidden Markov-switching model. This way one could pick
up abrupt changes in volatility patterns, and identify common patterns across
output (or its components) and stock prices volatility. In this paper we perform
a similar exercise to extract latent components in the time series of our interest,
by applying the particle filter methodology. More specifically, we follow a
Bayesian approach to time series modelling (see Harrison and West (1997),
Bauwens, Lubrano and Richard (1999), Kim and Nelson (1999)), and apply
sequential Monte Carlo techniques (particle filters) to the joint estimation of
the parameters and latent factors.

Particle filters are now widely employed in the estimation of models for
financial markets, in particular for stochastic volatility models (see for example
Pitt and Shephard (1999) and Lopes and Marigno (2001)). Recently, some
studies have proposed their application to macroeconometrics, for the analysis
of general equilibrium models (Villaverde and Ramirez (2004a) and (2004b)),
the extraction of information from the yield curve (Chopin and Pelgrin (2004)),
and for the estimation of latent factors in business cycle analysis (Billio,
Casarin and Sartore (2004)). The main advantage of these simulation-based
techniques lies in their great flexibility when treating nonlinear dynamic
models, which cannot be successfully handled through the traditional Kalman-
Bucy or Hamilton-Kitagawa filters. Another advantage comes from the
sequential nature of the particle filters, which allows dealing with large datasets
and to build on-line applications, in contrast to other simulation-based filtering
techniques like Markov Chain Monte Carlo. In this work we follow the
sequential Monte Carlo approach proposed by Liu and Chen (1998), and
improve upon it by computing a multiple-bandwidth kernel estimate of the
parameter posterior distribution.

We detect a parallel decline of macroeconomic and stock market variability,
with the switch to low volatility occurring first in the business cycle indicators.
More in detail, the volatility of our business cycle indicators follows a low-
volatility regime for the second part of the 1966-2003 sample. On the other
hand, our estimates identify a similar pattern for the volatility of all our stock
market indicators: the market index and its price-earnings and dividend-price
ratios all switch to low-volatility around 1991. This switch appears to be
persistent, as brief reversions to high volatility occurred only after the longest
period of low volatility in our sample. Therefore, we cannot reject the view
that the widely observed decline in US business cycle volatility has prompted
a similar long-term decrease in stock market volatility.

The paper is structured as follows. Section 2 describes some stylized facts
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about the data we use and introduces the simple Bayesian dynamic model
employed to identify the latent switching structures for stochastic volatility.
Section 3 introduces particle filters for the estimation of the latent factors and
discusses some parameter estimation issues. Section 3.2 discusses the multiple
bandwidth regularised filter and the convergence of the resulting algorithm.
Section 4 comments on our estimation results on synthetic and real data.
Section 5 concludes.

2 The Volatilities of Economic Activity and Stock

Market

2.1 Some Stylized Facts

Figure 1 shows the quarterly growth rate of US real personal consumption
expenditure per capita (PCE, top chart), and the change in real residential and
non-residential fixed investment (RI and NRI, respectively, middle chart), from
1966Q2 to 2003Q32. In all our Figures, grey vertical bars denote NBER-dated
contraction episodes. In the case of consumption one can notice an apparent
fall of volatility starting from mid-1980s. Aggregate investment data somehow
yield the same visual impression. However, before drawing any conclusion
a number of factors and events should be accounted for. For instance, the
available data span only a limited number of full economic cycles. This is
a problem, since they show pronounced swings exactly in correspondence of
output fluctuations. The easiest thing to notice is the marked procyclicality
of volatilities: inflation outbursts, oil price shocks and known phases of
macroeconomic expansions and contractions can all be clearly identified.

Our simple graphical evidence and, more formally, the data analyzed by
Gordon (2005), show that the volatilities of residential investment and personal
consumption expenditure do follow a clear downward trend. However, in the
case of NRI, which is perhaps the most interesting of our investment series,
there seems to be no significant level shift. In fact its volatility appears to
have been, if anything, slightly higher in the recent past. The absence of
significant exogenous shocks and the generalized fall of inflation levels in the
eighties and nineties might well account for the observed decrease in PCE
and RI volatility (see Gordon (2005)). Also, sizeable portfolio reallocations
triggered by the expansion of global liquidity and credit around and after the
millennium certainly had some impact on investment choices, as claimed, inter
alia, by Borio and Lowe (2004). All in all, however, these data confirm Stock
and Watson (2002) conclusions that the cyclical volatility of economic activity
in the US has markedly dropped after 1984’s.

Against the background of the observed decline in business cycle variability,
the perception of macroeconomic risk, as summarized by GDP data, might

2The definition and sources of all data are detailed in the Data Appendix.
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have decreased since early 1980s as well3. Let us therefore look at some stock
market valuation data. Figure 1, bottom chart, plots the quarterly real S&P500
price/earnings ratio, defined over a 10-year moving average of earnings, from
1946 to 2004. The increase of equity valuations over the past two decades is
apparent, as it is their partial reversion at the end of the nineties. The price-
dividend ratio displays a similarly trended pattern, with unprecedented low
levels of the dividend yield at the turn of the millennium. Do these data tell
us anything about the link between macroeconomic volatility and stock market
valuations? Figure 1 also shows the output gap, computed using the potential
GDP measure of the Congressional Budget Office (see the Data Appendix).
A cursory look at the two series confirms an impressive common behaviour.
However, we cannot accept this as evidence of a systematic relationship
between their second moments, as the series’ mean-reverting properties clearly
differ.

Referring to first principles, the classical consumption-based asset pricing
model4 states that risk premia are proportional to the covariance of returns
with consumption growth. Let us suppose that the preferences of the
representative investor are time-separable:

Et

∞
∑

s=0

βsu (ct+s) (1)

Optimal allocation of resources to consumption and investment implies that
the marginal value of wealth and the marginal utility of consumption are equal.
The first-order condition of this optimization problem therefore yields

Et

(

Rei
t+1

)

= −Covt

(

Rei
t+1,

u′ (ct+1)

u′ (ct)

)

,∀ i (2)

where Rei
t = Ri

t−R0
t is the return of asset i in excess of a reference asset return

R0
t , and Covt (·, ·) denotes conditional covariance.

Using the conventional power utility function, u (c) = c1−γ−1
1−γ , we can

rewrite equation (2) as

Et

(

Rei
t+1

)

= γCovt

(

Rei
t+1,

ct+1

ct

)

(3)

The last expression states that assets generate expected excess returns
for their systematic risk, as summarized by the covariance of returns with
the growth in the marginal value of wealth (the so-called stochastic discount
factor, pricing kernel, or state-price density). The covariance represents
systematic risk because it measures the component of return that contributes
to fluctuations in the marginal utility of wealth.

3Lettau et al. (2005) point to the same conclusion.
4Ferson (2003) and Cochrane (2005) are excellent surveys.
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Figure 1: Quarterly growth rate of real personal consumption expenditure per
capita (top chart); quarterly growth rate of residential and non-residential investment
expenditure (middle chart); S&P500-based price-to-earnings ratio (left-hand scale)
and output gap (right-hand scale) (bottom chart). NBER recessions are denoted by
shaded bars.

By re-arranging (3) we can write

Et

(

Rei
t+1

)

= γVt

(

Rei
t+1

)

Vt (∆ct+1) ρt

(

∆c,Rei
t+1

)

(4)

Risk premia therefore vary over time. They move if the conditional variance
of excess returns, Vt

(

Rei
t+1

)

, changes over time. But fluctuations in risk
aversion (γ), the conditional correlation ρt

(

∆c,Rei
t+1

)

, and consumption risk,
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Vt (∆ct+1) as well explain changes in risk premia5. The applied literature
(see Cochrane (2005) for a survey) broadly finds that changes in risk and
risk aversion at business-cycle frequencies produce predictable excess returns.
Therefore, it is clear that investigating the relationships between asset
prices and business cycle volatility implies studying the classical issue of the
predictability of asset returns and, in essence, the behaviour of risk premia.

In practice, and focusing on equities, aggregate market valuations respond
to permanent and transitory changes in expected earnings, in turn affected by
the current state of the economy. Expectations about future productivity and
returns determine equilibrium on the capital markets: share prices represent
a measure of the marginal value of firms’ installed capital. On the other
hand, changes in share and house prices affect consumption via wealth effects,
and alter the rental cost of capital for firms, through a variety of channels.
Investment and consumption volatilities might therefore depend on past and
expected changes in stock market valuations.

Stock market valuations and aggregate consumption should be
cointegrated: rising stock market wealth would lead to rising consumption
levels, and vice versa6. In fact, Lettau and Ludvigson (2001, 2004) find that
the ratio of consumption to wealth forecasts future stock market returns.
Moreover, while price/dividend and price/earnings ratios do forecast future
share prices returns, they are not leading indicators of consumption growth.
Thus, most of short-run stock prices volatility is transitory, which makes
the transmission of wealth effects from equity prices to consumption quite
a complex process to pin down.

All this suggests that an unrestricted approach, like a univariate approach,
to the identification of volatility patterns of stock market indices and business
cycle variables could lead to vital information. Moreover, this also motivates
the use of low-frequency (quarterly) data.

2.2 A Bayesian Dynamic Model

Our broad aim is therefore to check whether common regime changes affect the
stochastic volatility profile of some financial and macroeconomic variables. To
this goal we adopt latent-variable modelling framework, which is now widely
used in statistics and econometrics (see for example Perpiñán (2001) for a
review). In structural time series modelling (see Harvey (1989)), the evolution

5Note that equation (4) could well be read backwards, with risk premia determing
consumption volatility, conditional correlation, etc..

6One can show that the class of models we have just sketched provides the fundamental
asset pricing equation:

Pt = Et [mt+1 (Pt+1 + Dt+1)]

where m is the stochastic discount factor (≡ β
u′(ct+1)

u′(ct)
), P is the asset price and D is the

amount of any dividends, interest or other payments received by the asset.
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of the observed variable is described by means of a set of unobservable (latent)
variables that allow capturing time-heterogenous behaviour of the observed
series. In the following we consider a Bayesian probabilistic representation
of a dynamic model, which is general enough to account for many kinds of
latent-variable models.

The proposed probability model consists of the observed process {yt, t ∈
N0}, with values in the measurable observation space (E, E), E ⊂ R, and of
two latent processes: the volatility regime {st, t ∈ N} and the log-volatility
{xt, t ∈ N}, with values in the measurable latent product space (F ×G,F ⊗G),

where F ⊂ N0 and G ⊂ R. Let us introduce xs:t
∆
= (xs, . . . , xt), with s ≤ t.

In the following our Bayesian dynamic model is fully specified through the
time-conditional and initial densities.

The latent process {st, t ∈ N}, which drives stochastic volatility, is a time-
homogeneous Markov chain with transition probabilities

p(st|s0:t−1, θ) ∼ P (st = k|st−1 = l) = plk with k, l ≤ K (5)

where K is the number of states (or regimes).
Our approach posits that two volatility regimes characterize the behaviour

of financial and business cycle variables: low volatility (st = 1) and high
volatility (st = 2). This is a reasonable assumption, which has been already
discussed in many empirical studies on the business cycle (see for example
Watson (1994)) and financial variables (see for example So, Lam and Li
(1998)). Despite our simple assumption, the model and the proposed inference
framework can be easily extended to account for a time-varying number of
hidden states, as in Chopin (2001) and Chopin and Pelgrin (2004). Note that,
due to the use of a Markov-chain process for the latent variables, the model is
also known in the literature as Hidden Markov Model (HMM).

The latent log-volatility {xt} and the observation {yt} are parametric
processes, with Gaussian conditional densities

p(xt|xt−1, θ) ∼ N
(

αst + φxt−1, σ
2
)

(6)

p(yt|xt, θ) ∼ N (µ + ρyt−1, e
xt) (7)

where θ = (α1, α2, p11, p22, φ, σ2, µ, ρ) is the parameter vector, and αst is
indexed to the current volatility regime (st = k). When making Bayesian
inference, the parameter vector is treated as a random variable7. The initial
values of the latent processes are random quantities as well. We assume that
the latter follow Bernoulli and Gaussian densities, respectively

p(s0|θ) ∼ B(1, 0.5) (8)

p(x0|θ) ∼ N (α(s0), φ) . (9)

7Parameter estimation will be discussed in Section 3.1.

8



Despite its simplicity, the univariate Markov-switching stochastic-volatility
(MSSV) model picks up some important stylized facts that characterize
financial and macroeconomic time series, such as heteroscedasticity, volatility
clustering and switches, and heavy-tails unconditional distributions. The
estimation of the MSSV model poses also some challenging statistical problems,
as described in the subsequent sections (see also Casarin (2004) for further
details).

3 Particle Filters

The estimation of the latent-variable model presented in Section 2 configures a
problem of nonlinear filtering with unknown parameters. Among the existing
methods proposed in the literature, the Bayesian approach reveals to be general
enough not only to treat nonlinear problems, but also to account for prior
information on the parameters and to allow the use of simulation methods in
the inference process.

Let Y ⊂ R
ny , X ⊂ R

nx and Θ ⊂ R
nθ be the observations, state and

parameter spaces respectively. We now introduce the following probabilistic
representation of a stochastic dynamic model (see Harrison and West (1997))

xt ∼ p(xt|x0:t−1,y1:t−1, θ) (transition density) (10)

yt ∼ p(yt|x0:t,y1:t−1, θ) (measurement density) (11)

x0 ∼ p(x0|θ) (initial density) (12)

with t = 1, . . . , T , xt ∈ X , yt ∈ Y and θ ∈ Θ. Boldface indicates that state and
observation variables could possibly be vectors. For our model xt = (xt, st)
and yt = yt.

By applying the Bayesian theorem and the Chapman-Kolmogorov forward
integral equation, we obtain the filtering, one-step-ahead prediction and
smoothing densities associated to the dynamic model

p(xt|y1:t, θ) =
p(xt|x0:t−1,y1:t−1, θ)p(yt|x0:t,y1:t−1, θ)

p(yt|y1:t−1)
(13)

p(xt+1|y1:t, θ) =

∫

X
p(xt+1|x0:t,y1:t, θ)p(xt|y1:t, θ)dxt (14)

p(xs|y1:t, θ) = p(xs|y1:s, θ)

∫

X

p(xs+1|xs, θ)p(xs+1|y1:t, θ)

p(xs+1|y1:t, θ)
dxs+1, (15)

with s < t. The one-step-ahead prediction density of yt is p(yt|y1:t−1), and is
defined as follows

p(yt|y1:t−1) =

∫

X
p(xt|x0:t−1,y1:t−1, θ)p(yt|x0:t,y1:t−1, θ)dxt. (16)

Note that the analytical solution of the discrete-time filtering problem
exists in a few cases: the linear and Gaussian dynamic model and the linear
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model with a countable finite-dimension latent space, where Kalman-Bucy
(see Kalman (1960)) and Hamilton-Kitagawa (see Hamilton (1989)) filters
respectively apply. Except for these cases, the filtering problem is hard to
solve, and approximation methods are usually applied for the more difficult
nonlinear problems.

The simulation-based Bayesian framework represents an appealing solution
to nonlinear estimation problems. Thanks to a probabilistic representation
of the model of interest, the Bayesian approach allows including advanced
Monte Carlo techniques into the inference process. For example, Harrison
and West (1997) propose a Bayesian state-space form that permits to deal
with both discrete and continuous-valued state space models. Kim and Nelson
(1999) employ a Bayesian representation of the hidden Markov models for
business cycle analysis. All these works address the latent factor extraction
problem through the use of Monte Carlo Markov Chain (MCMC) techniques
(see also Robert and Casella (2004)), such as Gibbs sampling, although in
Harrison and West (1997) an earlier adaptive importance sampling algorithm is
proposed as an alternative to MCMC. In Bayesian analysis MCMC techniques
are considered as the most suitable tool for solving integration problems
that arise in parameters and latent-variables estimation, and in hypothesis
testing. Nevertheless, many applications reveal that MCMC methods have
some drawbacks too. For example, the choice of the scale parameter of the
random walk proposal in a Metropolis-Hastings algorithm can severely affect
the convergence to the posterior distribution. Moreover, the generated Markov
chain can get trapped in a local mode of the posterior distribution.

To estimate the hidden states and the parameters of our hidden Markov
model, we follow a route alternative to MCMC, which relies upon sequential
Monte Carlo methods. This class of methods is referred in the literature as
to particle filters (also known as bootstrap filters, interacting particle filters,
condensation algorithms, Monte Carlo filters). It was first introduced for
nonlinear filtering simultaneously by Gordon, Salmond and Smith (1993), and
Berzuini et al. (1997) (see also Doucet, Freitas and Gordon (2001) for a
review of sequential Monte Carlo methods). Particles filters are simulation-
based devices and reveal to be quite useful for filtering in complex dynamic
models. They make use of a weighted Monte Carlo sample to cover the whole
state space and to easily update, over the time iterations, the parameter
posterior distribution. The sequential nature of the filter also allows capturing
or detecting sudden changes of the states and parameters of the system, which
is a feature particularly helpful in our context.

We now present the baseline particle filter method, also called Sequential
Importance Sampling (SIS). Assume that a weighted Monte Carlo sample (also
called particle set), {xi

t, w
i
t}

N
i=1, from the posterior p(xt|y1:t, θ), is available at
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time t. It represents the empirical prior for the states at time t + 1, i.e.

pN(xt|y1:t, θ) =

N
∑

i=1

wi
tδ{xi

t}
(xt), (17)

where δ{y}(x) denotes the Dirac point-mass centered in y. Using the empirical
prior, the one-step-ahead prediction density in Eq. (14) and the filtering
density in Eq. (13) can be approximated as follows

p(xt+1|y1:t, θ) =

∫

X
p(xt+1|xt, θ)p(xt|y1:t, θ)dxt

≈
N
∑

i=1

wi
tp(xt+1|x

i
t, θ) (18)

p(xt+1|y1:t+1, θ) ∝ p(yt+1|xt+1, θ)p(xt+1|y1:t, θ)

≈
N
∑

i=1

p(yt+1|xt+1, θ)p(xt+1|x
i
t, θ)wi

t (19)

where the first summation defines the empirical prediction density,
pN (xt+1|y1:t, θ), and the second one the empirical filtering density,
pN (xt+1|y1:t+1, θ).

A simple way to obtain a weighted sample, {xi
t+1, w

i
t+1}

N
i=1, from the

filtering density at time t+1, is to apply importance sampling to the empirical
filtering density (Eq. (19)). A natural choice for the importance density is the
transition density, because it represents a sort of prior at time t for the state
xt+1. The particle weights are updated as follows

w̃i
t+1 ∝

p(yt+1|xt+1, θ)p(xt+1|y1:t, θ)wi
t

q(xt+1|xi
t,yt+1, θ)

= wi
t p(yt+1|x

i
t+1, θ) (20)

wi
t+1 =

w̃i
t+1

∑N
j=1 w̃j

t+1

(21)

It is well known (see for example Arulampalam et al. (2001)) that after
some iterations of the SIS algorithm, the empirical distribution degenerates
into a single particle, as the variance of the importance weights is non-
decreasing over time (see Doucet (2000)). In order to solve the degeneracy
problem, many extensions to the SIS have been proposed in the literature: the
Sampling Importance Resampling in Gordon, Salmond and Smith (1993), the
Regularised Particle Filter in Musso, Oudjane and LeGland (2001) and the
SIR-Move algorithm in Gilks and Berzuini (2001).

In this work we follow Pitt and Shephard (1999), who introduce the
Auxiliary Particle Filter (APF). In order to avoid a pure re-sampling step,
the APF algorithm uses an auxiliary variable to select the most representative
particles and to mutate them through a simulation step. The weights of
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the regenerated particles are updated through importance sampling. In this
way particles with low probability do not survive to the selection, and the
information contained in the particle set is not wasted. In particular, the
auxiliary variable is a random particle index, which is used in the resampling
step to select the new particles. The random index is simulated from a discrete
distribution which reflects the information based on the previous particle set
and the new observation yt+1. Note that the empirical filtering density given in
Eq. (19) is a mixture of distributions, which can be demarginalized as follows

p(xt+1, i|y1:t+1, θ) =
p(yt+1|xt+1, θ)

p(yt+1|y1:t, θ)
p(xt+1|i,y1:t, θ)p(i|y1:t, θ) (22)

=
p(yt+1|xt+1, θ)

p(yt+1|y1:t, θ)
p(xt+1|x

i
t, θ)wi

t.

where i ∈ {1, . . . , N} is an allocation variable, which selects one of the
mixture components. The algorithm generates a new set of particles by jointly
simulating the particle index i (selection step) and the selected particle value
xt+1 (mutation step) from the reparameterised empirical filtering density, and
according to the following importance density

q(xj
t+1, i

j |y1:t+1, θ) = q(xj
t+1|x

ij

t , θ)q(ij |y1:t+1, θ)

for j = 1, . . . , N and with q(ij |y1:t+1, θ) = p(yt+1|µ
ij
t+1, θ)wij

t . By following the
usual importance sampling argument, the updating relation for the particle
weights is

wj
t+1

∆
=

p(xj
t+1, i

j |y1:t+1, θ)

q(xj
t+1, i

j |y1:t+1, θ)
=

p(yt+1|x
j
t+1, θ)

p(yt+1|µij
t+1, θ)

.

In many applications of the particle filter techniques, parameters are
treated as known, and MCMC parameter estimates are used in place of the
true values. MCMC is typically an off-line approach, as it does not allow to
sequentially update parameter estimates as new observations arrive. Moreover,
when applied sequentially, MCMC estimation is more time consuming than
particle filter algorithms. Thus in the next section we will consider the filtering
problem in presence of unknown static parameters, in a Bayesian perspective.

3.1 Sequential Parameter Estimation

In economic applications both the latent variables and the parameters are
unknown quantities. Therefore, both the problems of hidden state filtering
and parameter estimation arise. In this work we propose a full Bayesian
sequential estimation approach for the parameter of interest. Parameters can
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be estimated jointly or separately w.r.t. the state filtering, as evidenced by

p(xt+1, θ|y1:t+1) =
p(yt+1|xt+1, θ)p(xt+1|xt, θ)p(x0:t|y1:t)

p(yt+1|y1:t)
p(θ|y1:t) (23)

=
p(yt+1|xt+1,y1:t, θ)p(xt+1|xt,y1:t, θ)

p(yt+1|y1:t)
p(x0:t, θ|y1:t). (24)

Equation (23) shows that the filtering problem can be treated conditionally
on the parameters. It is possible for example to use the Kalman Filter or
the HMM filtering algorithms to estimate the states and the particle filter
to estimate the parameters (see for example Chopin (2001)). In our MSSV
model neither the Kalman filter nor the HMM can be used, thus Monte Carlo
filters could be applied for the joint estimation of parameters and states of the
dynamic system.

Equation (24) shows the recursive relation for the joint state and parameter
filtering problem. It also suggests a direct way to estimate parameters, by
including them in the state vector. Berzuini et al. (1997) develop this approach
in a Bayesian framework and apply standard particle filtering techniques to
estimate the joint posterior density p(x0:t, θ|y1:t). The approximated posterior
p(θ|y1:t) is then obtained by marginalisation. This approximation requires
that the whole history of the particle set is stored and has a computational
complexity of O(Nt). Rather, when available, a set of sufficient statistics for
the likelihood function can be alternatively updated and stored to approximate
the posterior.

In the näıve method proposed in Berzuini et al. (1997), the static
parameters are included in the state vector. As pointed out by Storvik (2002),
the absence of dynamics in the parameters produces a negative effect on
the estimation of the posterior distribution, which degenerates into a Dirac
mass. Different solutions to the degeneracy problem have been proposed in
the literature8.

In the following we refer to the framework due to Liu and West (2001), who
apply a regularisation technique similar to the one used by Musso, Oudjane
and LeGland (2001). In our algorithm the posterior distribution p(θt|y1:t) is
approximated by means of the particle set {xi

t, θ
i
t, w

i
t}, where the index t of

the parameter vector means that it is updated sequentially. The resulting
empirical distribution

pN (xt+1, θt+1|y1:t+1) =

=

N
∑

i=1

∫

X×Θ
p(yt+1|xt+1, θt+1)p(xt+1|xt, θt+1)δ{θt}(θt+1)w

i
tδ{(xi

t,θ
i
t)}

dxtdθt

=
N
∑

i=1

p(yt+1|xt+1, θ
i
t)p(xt+1|x

i
t, θ

i
t)δ{θi

t}
(θt+1)w

i
t (25)

8See for example Kitagawa (1998), Storvik (2002) and Polson, Stroud and Müller
(2002, 2003).
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is then regularised through a multiple-bandwidth Gaussian-kernel density
estimation

1

N

N
∑

i=1

wi
tp(yt+1|xt+1, θ

i
t)p(xt+1|x

i
t, θ

i
t)Nnθ

(θt+1|m
i
t, (b

i
t)

2Vt) (26)

where (bi
t)

2 = (1 − (ai
t)

2) and mi
t = θi

ta
i
t + θ̄(1 − ai

t). Due to the
kernel reconstruction (also called regularisation step), the original parameter
transition density, δ{θi

t}
(θt+1), has been replaced by a Gaussian transition

density Nnθ
(θt+1|m

i
t, (b

i
t)

2 Vt) with particle-specifics: scale factor, bi
t, location,

mi
t and shrinkage factor, ai

t. The choice of bt
i and at

i will be discussed in section
3.2.

The reconstruction of the posterior distribution through Gaussian kernel
density estimation is a technique introduced by West (1992, 1993) in order
to obtain an adaptive importance sampling algorithm. The use of adapting
importance functions is particulary suitable in the estimation of nonlinear
dynamic models, where the probability density function of the system is not
time-homogeneous.

After the kernel reconstruction of the posterior density, a new set of
particles can be generated by applying the APF algorithm to the states and the
parameters using the posterior density kernel estimate as importance density.

In the spirit of the APF algorithms, the empirical posterior distribution is
reparameterised, using the auxiliary variable i to select the mixture component

p̂N (xt+1, θt+1, i) = wi
tp(yt+1|xt+1, θ

i
t)p(xt+1|x

i
t, θ

i
t)Nnθ

(θt+1|m
i
t, (b

i
t)

2 Vt) (27)

where p̂N (xt+1, θt+1|y1:t+1) denotes the multiple-bandwidth kernel estimator.
The particle selection step is obtained by sampling the mixture index i together
with states xt+1 and parameters θt+1. A sample from the joint density (27) is
obtained through importance sampling with importance density

q(xt+1, θt+1, i|y1:t+1) = p(xt+1|x
i
t, θ

i
t)Nnθ

(θt+1|m
i
t, (b

i
t)

2 Vt)q(i|y1:t+1) (28)

where the importance function used to sample the random index is q(i|y1:t+1) =
p(yt+1|µ

i
t+1,m

i
t)w

i
t. From previous assumptions the weights update as follows

wj
t+1 ∝

p(yt+1|x
j
t+1, θ

j
t )p(xj

t+1|x
ij
t , θj

t )Nnθ
(θj

t+1|m
ij
t , (bi

t)
2 Vt)w

ij
t

p(yt+1|µij
t+1,m

ij
t )p(xj

t+1|x
ij
t , θij

t )Nnθ
(θj

t+1|m
ij
t , (bi

t)
2 Vt)wij

t

(29)

=
p(yt+1|x

j
t+1, θ

j
t )

p(yt+1|µij
t+1,m

ij
t )

,

with j = 1, . . . , N .
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3.2 Multiple-Bandwidths Regularisation and Convergence

Issues

The particle filter given in the previous section avoids degeneracy in parameter
estimates by introducing variability in the particle set through a regularisation
step. We stress again that, in Eq. (26), for each particle the original
transition equation, θt+1 = θi

t a.s., is replaced by a nθ-dimensional Gaussian
autoregressive process

θt+1 = ai
tθ

i
t + (1 − ai

t)θ̄t + bi
t V

1/2
t ξt+1, with ξt+1 ∼ Nnθ

(0, Id),

where ai
t is a shrinkage factor, bi

t a local scale factor and Id is the (nθ × nθ)
identity matrix.

The shrinkage technique between Gaussian kernels is due to Liu and West
(2001) and allows us to reduce the negative effects of the variability introduced
with the artificial evolution of the parameter. The kernel density at time
t + 1 is made dependent on the density at time t through the constraint on

the conditional variance: Vt(θt+1) = Vt(θt)
∆
= Vt. Under this constraint and

assuming that the variance-covariance matrix of the noise is proportional to Vt

and to a particle-specific discount factor λi
t (i.e. Covt(ξt+1, θt) = Vt((λ

i
t)
−1−1)),

the conditional scale and location of the transition density are

Et(θt+1) = ai
t θi

t + (1 − ai
t)Et(θt), Vt(θt+1) = (bi

t)
2Vt, (30)

where ai
t = (3λi

t − 1)(2λi
t)
−1 and (bi

t)
2 = (1 − (ai

t)
2). It follows that

each component of the kernel density estimator has its own specific location
and scale factor. Conditional mean and variance can be replaced by their
estimates based on the particles set available at time t: θ̄t = N−1

∑N
i=1 θi

t and

V̂t = (N(N − 1))−1
∑N

i=1(θ
i
t − θ̄t)

′(θi
t − θ̄t).

Two important remarks should be done about the choice of the discount
factor λ. The first remark concerns the relation between the discount factor
and the bandwidth b. The choice of λ should be driven by one of the criteria
proposed in the literature for determining the optimal bandwidth b. For
example, for Gaussian data and single-bandwidth Gaussian kernels the optimal
bandwidth in the integrated MSE sense is

b∗N =

(

4

(2 + nθ)N

)
1

nθ+4

which is also used as a rule of thumb for non-Gaussian data. In our multiple-
bandwidth setting, the sequence of bandwidths is in the interval [(b∗N )α, (b∗N )β ],
with α < 1 and β > 1. By applying to the boundaries the following monotone
decreasing relation between the discount factor and the bandwidth,

λN =
3 + 2

√

1 − (bN )2

4(bN )2 + 5
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we find two boundaries: λ and λ̄, for the discount factor. Note that the two
values depend on the dimensions of the particle set and of the parameter space.

As for the second remark, our numerical experiments suggest that the
choice of λ clearly affects the convergence of the estimates and is itself
dependent on the employed number of particles and also on the parameter
setting of the dynamic model under study.

In order to account for both the previous instances, in this work, we propose
a full Bayesian approach and include λ in the parameter vector with a prior
distribution on it. The initial set of N particles, {λi

0}
N
i=1, is simulated from a

uniform prior distribution: U(λ;λN , λ̄N ). A truncated Gaussian distribution,
T N (λ;λN , λ̄N ,m, 1), is used as transition density in the mutation step of the
particle filter. Although a time-dependent discount factor could be used or
a more elaborate self-tuning iterative procedure of the discount factor could
be proposed, in this work we simply suggest to keep the advantages of using
a multiple-bandwidth estimator in the filtering procedure and focus on some
basic convergence properties of the resulting algorithm.

Allowing the discount factor to vary over the particle set (see last line in
Eq. (26)), amounts performing a multiple-bandwidth kernel estimation of the
posterior density. Thus, the regularisation step introduced in our algorithm
belongs to the general class of sample-point kernel density estimators. Sample-
point estimators have locally adapted bandwidths and show to be more
promising than fixed bandwidth estimators. Fixed bandwidths deal badly with
local scale variations of the prediction density and produce undersmoothing of
the tails and oversmoothing of the peaks.

To prove the convergence of the kernel particle filter with respect to the
number of particle N , we refer to the following nθ-dimensional sample-point
kernel estimator of p(θt+1|y1:t+1)

p̂N (θt+1|y1:t+1) =
1

N

N
∑

i=1

1

(bi
t)

nθ
K((bi

t)
−nθ(θt+1 − θi

t)) (31)

where bi
t is a positive smoothing parameter associated to the i-th particle,

which could vary with the algorithm iterations.
The convergence of the basic particle filter has been studied in Crisan (2001)

and Crisan and Doucet (2000), (2002)9.
Let us focus on the sample-point kernel particle filter without selection

step. The L2-convergence of the estimator w.r.t. the number of particles N ,
is given in the following.

Theorem 3.1. (Quadratic-mean convergence)
Let K be a Gaussian kernel on R

nθ , {bi
t}

N
i=1 a sequence of positive scale factors

9For a deeper theoretical analysis of the particle methods see also Del Moral (2004) and
Bartoli and Del Moral (2001). The convergence of the Gaussian regularised particle filter of
Liu and West (2001) is proved in Stavropoulos and Titterington (2001).
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(bandwidths) with value in the finite interval [bN,min, bN,max] and {θi
t}

N
i=1 a

sequence of R
nθ-valued i.i.d. samples simulated from p̂(θt|y1:t). If

lim
N→∞

bN,max = 0, and lim
N→∞

(bN,min)
dN = ∞ (32)

then the functional estimator, p̂N (θt+1|y1:t+1) defined in (31), converges in
quadratic mean to the true density p̂(θ|y1:t+1)

p̂N (θt+1|y1:t+1)
L2

−→
N→∞

p(θt+1|y1:t+1). (33)

Proof. See Appendix C.

In Appendix C we also prove the a.c. convergence and the a.s. convergence
of the kernel estimator. The two imply the L1-convergence that is given in the
following.

Theorem 3.2. (L1-convergence)
Let K be a Gaussian kernel on R

nθ , p(θt|y1:t) ∈ L1(Rnθ ) a density, {bi
t}

N
i=1

a sequence of positive scale factors (bandwidths) with value in the interval
[bN,min, bN,max] and {θi

t}
N
i=1 a sequence of R

nθ-valued i.i.d. samples simulated
from p(θt|y1:t). If

lim
N→∞

bN,max = 0 , lim
N→∞

(bN,min)
dN

log N
= ∞ (34)

then the sample-point estimators, pN (θt+1|y1:t+1) defined in (31), converges in
L1 to the true density

p̂N (θt+1|y1:t+1)
L1

−→
N→∞

p(θt+1|y1:t+1). (35)

Proof. See Appendix C.

Our convergence results can also be extended to account for the selection
step in the particle filter. See for example Rossi (2004) for an updated analysis
of the convergence of the kernel-convolution particle filters.

4 Estimation Results

In this section we apply our particle filter to the MSSV model given in Eq.
(5), (6) and (7). In order to verify the efficiency of the algorithm in the
estimation of parameters and hidden variables, and also to detect possible
degeneracy problems, we first apply the regularised APF to synthetic data.
The sequential Monte Carlo filter is subsequently applied to actual US stock
market and business cycle data.
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4.1 Simulated Data

In the simulations we refer to the MSSV model given in Section 2 and
apply our regularised particle filter with multiple bandwidth. The resulting
filtering procedure, given in Appendix A, allows us to sequentially estimate
the parameter vector and filter and predict the hidden state vector of the
dynamic model. We use a set of N = 2, 000 particles to obtain the empirical
filtering and prediction densities10.

Figure 2 plots on-line estimates of the latent factors {xt} and {st} obtained
form a typical run of the APF algorithm on the synthetic dataset plotted in
the first panel of the same figure. In order to detect the absence of degeneracy
in the output of the APF algorithm we evaluate at each time step the survival
rate. This is defined as the number of particles surviving to the selection step
over the total number of particles. Particles sets degenerate when persistently
exhibiting a high number of dead particles from a generation to the subsequent
one. The survival rate is therefore computed as follows

SRt = 1 −
1

N

N
∑

i=1

I{Ji,t=∅} (36)

where Ji,t = {j ∈ {1, . . . , N}|ijt = i} is the set of all random index values,
which are selecting, at time t, the i-th particle. If at time t the particle k does
not survive to the selection step, then the set Jk,t becomes empty. Figure 2
shows the survival rate at each time step. The rate does not decline, therefore
we conclude that the APF algorithm does not degenerate in our simulation
study.

Figure 3 shows sequential estimates of parameters α1, α2, p11, p22, φ and
σ2. We remind that these are the parameters of the conditional densities of
the latent log-volatility {xt} and the observation {yt}

11.
Finally, for each filtering iteration Figure 4 shows the empirical mean of the

discount factors λ used in the regularisation step. The bounds of the interval
spanned by the discount factor are represented in the same graph.

4.2 Volatility Patterns in Macroeconomic and Stock Market

Data

The aim of this exercise is to capture similarities in the volatility profiles of
macroeconomic and stock market variables. Our attention therefore focuses
in particular on what happened to the variability of stock market valuations
over the past three decades, during which volatility of several macroeconomic
variables has clearly declined.

10All computations have been carried out on a Pentium IV 2.4 Ghz, and the APF algorithm
has been implemented in GAUSS 7.0.

11See Section 2.2 above.
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Figure 2: The simulated (black line) and sequentially filtered (grey line) latent factors
and the survival rate of the particle set, over a sample of T = 1, 000 observations.
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Figure 3: On-line parameter estimates. Graphs show at each date the empirical mean
and the quantiles at 0.025 and 0.975 for each parameter.
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Figure 4: The support set [λmin, λmax] of the random discount factor and the average
discount factor over 1, 000 particle filter iterations. We use a set of N = 2, 000 particles.

We apply the sequential Monte Carlo filter to two groups of actual US
data. The first group (the log-difference of the S&P500 stock market index
and its corresponding dividend yield and price-to-earnings ratio) tracks the
aggregate behaviour of US stock market. The second group of variables (the
log-difference of industrial production, non-residential investment expenditure,
real personal consumption expenditure per capita, and the level of the output
gap) accounts for the evolution of the business cycle12.

We start by analyzing the behaviour of stock market valuations. We
therefore first estimate the MSSV model on the log-difference of the Standard
& Poor’s 500 index (S&P), and of its corresponding dividend yield (DP) and
price-to-earnings ratio (PE). The data are quarterly observations collected on
the sample period 1966Q2-2003Q3 (see the Data Appendix for details on data
sources and definitions).

The filtered volatility regimes and log-volatility processes are shown in
Fig. 5, 6 and 7. The top left-hand panel of each figure plots the time series
accompanied by vertical shaded areas representing the contraction phases of
the US GDP as detected by Business Cycle Dating Committee of the NBER.
The contraction starts at the peak of the cycle and ends at the through.
In particular, our sample covers the following GDP contraction periods (the
corresponding quarter is in parenthesis) that are of interest in our study:
December 1969 (IV)-November 1970 (IV), November 1973 (IV)-March 1975
(I), January 1980 (I)-July 1980 (III), July 1981 (III)-November 1982 (IV),
July 1990 (III)-March 1991 (I) and March 2001 (I)-November 2001 (IV).

12Gordon (2005) finds that government spending and net exports too might have played a
role (albeit a relatively small one) in explaining the decline of output volatility.
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From the charts in Figures 5 to 7 one can easily notice that S&P, PE and
DP all follow remarkably similar volatility patterns. The estimated filtered
log-volatility and filtered Markov processes show that the regimes of high and
low volatility alternate along very similar sequences across the three variables.
First, S&P, PE and (to a slightly smaller extent) DP all see periods of low
volatility that last much longer than those of high volatility. The last twenty
years in particular seem to have witnessed only few and short reversions to
high-volatility regimes. Second, the vertical bars point to volatility rising
almost exclusively around periods of GDP contraction. The 1990-1991 and
2001 GDP recessions triggered a shift to high volatility for S&P, PE and DP,
although for the latter the high-volatility regime predates the start of GDP
contraction, and for S&P our algorithm detects a similar regime for the latter
part of 1990s. Third, volatility switches appear to happen less frequently since
the mid-eighties. We could take the latter two findings as prima facie evidence
of some relationship between lower stock market volatility and decreased GDP
volatility.

For all the series the survival rate is well-behaved, therefore pointing to the
absence of degeneracy phenomena in the posterior distribution. Figures 13 to
19 in Appendix D show the sequential estimates of the parameter α1, α2, p12,
p22, φ and σ2 with the 0.975 and 0.025 quantiles. The values of the parameter
estimates at the last iteration of the filter are in Table 1.

Turning to the examination of business cycle variables, we study the
volatility of the following series: Industrial Production (IP), Personal
Consumption Expenditure per capita (PCE), Non-Residential Investments
(NRI), all in their log-differences, and the level of Output Gap (YGAP)13.
The filtered stochastic log-volatility and volatility-regime processes are shown
in Figures 8, 9, 10 and 11. At the outset, one can notice that the clearest
similarity in the behaviour of volatility concerns industrial production and
non-residential investment. The volatilities of IP and NRI appear to have
switched to a persistent low-volatility regime in the second half of the 1980s.
IP reverts to high volatility only briefly after the 1990-91 contraction, and
NRI does the same around the 2001 recession and the subsequent recovery.
The volatility of PCE too enters a low-level regime, but only since 1993. The
fact that in the preceding part of the sample high-volatility dominates more
than for the other macroeconomic series makes its switch to low volatility even
more striking.

Finally, let us turn to the output gap. We remind that we study its level.
Even a bird’s eye view of the series (top left-hand chart of Figure 11) confirms
that since the mid-eighties expansions have had much longer durations, while
slowdowns have both occurred less often and been milder than in the preceding

13We do not include here results for residential fixed investment expenditure. Those
data, which are notoriously linked to the value of aggregate wealth, will be the object of
a multivariate extension.
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Table 1: Parameter estimates (posterior-mean estimates) with the 0.975 and 0.025
quantiles, for quarterly log-differences of the observations (except for the Output
Gap) on the sample period 1966Q3-2003Q3. Give ht as the log-volatility, our model
ht = α1I{1}(st) + α2(1 − I{1}(st)) + φht−1 + σεt with εt i.i.d. standard normals.

S&P Index Price-to-Earnings Ratio

θ θ̂ q0.025 q0.975 θ̂ q0.025 q0.975

α1 -3.264 -3.378 -3.115 -3.183 -3.303 -3.057
α2 -2.747 -2.866 -2.634 -2.862 -2.952 -2.781

p12 0.014 0.012 0.017 0.018 0.017 0.020
p22 0.990 0.989 0.991 0.974 0.972 0.977

σ2 0.096 0.086 0.110 0.108 0.097 0.119
φ 0.465 0.421 0.515 0.468 0.440 0.491

Dividend Yield

θ θ̂ q0.025 q0.975

α1 -5.617 -5.953 -5.234
α2 -5.117 -5.472 -4.793

p12 0.011 0.005 0.019
p22 0.989 0.983 0.994

σ2 0.094 0.059 0.136
φ 0.457 0.417 0.497

Industrial Production Consumption Expenditure

θ θ̂ q0.025 q0.975 θ̂ q0.025 q0.975

α1 -4.911 -5.025 -4.788 -0.898 -0.928 -0.871
α2 -4.228 -4.400 -4.073 -0.307 -0.349 -0.260

p12 0.020 0.017 0.023 0.009 0.008 0.010
p22 0.999 0.988 0.991 0.979 0.975 0.983

σ2 0.369 0.318 0.421 0.204 0.169 0.244
φ 0.498 0.471 0.525 0.531 0.427 0.627

Non-Resid. Investment Output Gap

θ θ̂ q0.025 q0.975 θ̂ q0.025 q0.975

α1 0.626 0.535 0.736 -0.803 -0.999 -0.606
α2 0.783 0.624 0.959 0.107 -0.080 0.304

p12 0.019 0.154 0.023 0.020 0.016 0.024
p22 0.980 0.976 0.983 0.989 0.987 0.991

σ2 0.124 0.101 0.143 0.201 0.166 0.241
φ 0.579 0.469 0.687 0.495 0.310 0.677
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Figure 5: Log-differences of the S&P500 price index; sequentially filtered log-volatility
with 0.025 and 0.975 quantiles (dotted lines); filtered volatility regimes and survival
rate of the particle set, over the sample of T = 150 observations.
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Figure 6: Log-differences of the Price-to-Earnings series; sequentially filtered log-
volatility with 0.025 and 0.975 quantiles (dotted lines); filtered volatility regime and
survival rate of the particle set, over the sample of T = 150 observations.
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Figure 7: Log-differences of the Dividend Yield series; sequentially filtered log-
volatility with 0.025 and 0.975 quantiles (dotted lines); filtered volatility regime and
survival rate of the particle set, over the sample of T = 150 observations.
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Figure 8: Log-differences of the Industrial Production index; sequentially filtered log-
volatility with 0.025 and 0.975 quantiles (dotted lines); filtered volatility regime and
survival rate of the particle set, over the sample of T = 150 observations.
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part of the sample. Indeed, the estimated MSSV model shows that YGAP
behaved according to a persistent high volatility regime essentially until 1984.
Afterwards, it switched to a persistent low-volatility regime, with brief spells
of high volatility around the 1990-1991 and 2001 contractions. Thus, our
evidence says that YGAP volatility has followed a pattern that is somewhat
intermediate between those of the other business cycle indicators, but overall
closer to that of IP and NRI.

We can now draw some conclusions about the main objective of this
exercise, namely, the investigation of similarities in the filtered volatilities
of macroeconomic and stock market aggregate variables. Our indicators
of economic activity follow a low-volatility regime for most of the second
part of the sample. In particular, persistently low volatility characterizes
industrial production, non-residential investment and the output gap; personal
consumption expenditure switches to low volatility too, but with a lag relative
to the other series. Our MSSV estimates detect essentially the same for our
stock market indicators: the market index and its price-earnings and dividend-
price ratios all switch to low-volatility around 1991. This switch appears to
be persistent, as reversions to high volatility occurred only after the longest
period of low volatility in our sample.

The estimates in Table 1 complement the graphical evidence we have just
commented. In detail, the estimated values of α1 and α2, which provide the
mean level of log-volatility of the series under the regime of low and high
volatility, respectively, confirm that PCE, NRI and YGAP, that is, three out
of the four macroeconomic variables, have the highest mean value of volatility.
As to the values of the transition probabilities, we remind that they represent
an indirect measure of persistence of each volatility regime. We observe that
p12, the probability of the variable switching from a low- to a high-volatility
regime, is marginally higher for IP and YGAP, and smaller for S&P and DP. On
the other hand, p22, the probability of the variable staying in a high-volatility
regime, is highest for S&P and YGAP, and lowest for PE and PCE14. Finally,
(1 − φ) accounts for the speed of reversion of log-volatility to its mean value.
We obtain the highest values for the φs of NRI and PCE, which therefore tend
to revert to their mean volatility levels much more slowly than all other series.
Stock market variables are, as expected, the quickest to revert to their mean
values of log-volatility. In our approach all estimated parameters are time-
varying. This allows us to gauge the stability of our estimated models: graphs
in Appendix D confirm that estimated parameters are overall stable.

Figure 12 makes easier to summarize the volatility profiles of two pairs of
variables. The top panel shows the volatility regimes for S&P and YGAP,
the lower panel that for PE and IP. Both charts highlight that all series have

14We remind that p11 = (1 − p12) is the probability of log-volatility remaining in the low-
volatility regime, whereas p21 = (1− p22) is the probability of log-volatility migrating from a
high to a low-volatility regime.
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Figure 9: Log-differences of the Personal Consumption Expenditure per capita;
sequentially filtered log-volatility with 0.025 and 0.975 quantiles (dotted lines); filtered
volatility regime and survival rate of the particle set, over the sample of T = 150
observations.
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Figure 10: Log-differences of the non-residential Investments; sequentially filtered log-
volatility with 0.025 and 0.975 quantiles (dotted lines); filtered volatility regime and
survival rate of the particle set, over the sample of T = 150 observations.
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Figure 11: Output Gap; sequentially filtered log-volatility with 0.025 and 0.975
quantiles (dotted lines); filtered volatility regime and survival rate of the particle
set, over the sample of T = 150 observations.
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switched to low volatility over the last half of the sample. In particular, the
shift seems to have occurred in the business cycle variables first, and then in
the stock market valuations. A natural development of this work, one which
is needed before we can draw firmer conclusions on the issue at hand, is an
extension to a multivariate setting. Such framework would enable to deal with
causality and make more robust inference on the timing of the switches between
volatility regimes.

5 Conclusions

In this work univariate Markov switching stochastic volatility models
are estimated to extract the latent volatility regimes processes for some
macroeconomic and aggregate stock market variables. We make Bayesian
inference and propose a particle filter framework in order to jointly estimate the
parameters and the hidden states of the dynamic model. The view we put to
test is that the widely observed decline in US business cycle volatility translated
into a similar long-term decrease in stock market volatility. According to this
view, the relentless rise of stock prices in the late ’90s might be due to a
reduction of the equity premium, in turn generated by a decrease of broad
macroeconomic risk, as represented by the noticed decline in business cycle
volatility.

The evidence uncovered by our univariate estimates supports a parallel
decline of macroeconomic and stock market variability, with the switch to low
volatility occurring first in the business cycle indicators. Of course, post hoc
ergo propter hoc (or cum hoc ergo propter hoc, for that matter) is a common
fallacy and we certainly do not want to incur in it, but the findings of our
empirical exercise are not inconsistent with the above view.
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Appendix A - Data

Stock market data are from Robert Shiller’s website. His data set consists
of monthly stock price, dividends, and earnings data, and the consumer price
index (to allow conversion to real values), all starting January 1871. Monthly
dividend and earnings data are computed from the S&P four-quarter tools for
the quarter since 1926, with linear interpolation to monthly figures. Stock
price data are monthly averages of daily closing prices.

Personal Consumption Expenditures and Real Gross Domestic Product
data are from the U.S. Department of Commerce, Bureau of Economic
Analysis, and are quarterly, seasonally adjusted observations. Real Potential
Gross Domestic Product is from the U.S. Congress, Congressional Budget
Office, and is a quarterly, seasonally adjusted series, in billions of chained
2000 Dollars. The output gap is calculated as the (log) difference between Real
Gross Domestic Product and Real Potential Gross Domestic Product. Personal
Consumption Expenditure is converted to real values using the Personal
Consumption Expenditures Chain-type Price Index, quarterly, seasonally
adjusted, index 2000=100, taken from the U.S. Department of Commerce,
Bureau of Economic Analysis.

Real Private Non-Residential Fixed Investment and Real Residential Fixed
Investment are from NIPA Tables, Bureau of Economic Analysis, and are
quarterly, seasonally adjusted observations, in billions of chained 2000 dollars.

We converted all monthly data into quarterly averages.
In many charts vertical shaded areas represent the contraction phases of

the US GDP as detected by Business Cycle Dating Committee of the NBER.
The contraction starts at the peak of the cycle and ends at the through.
In particular, our sample covers the following GDP contraction periods (the
corresponding quarter is in parenthesis) that are of interest in our study:
December 1969 (IV)-November 1970 (IV), November 1973 (IV)-March 1975
(I), January 1980 (I)-July 1980 (III), July 1981 (III)-November 1982 (IV),
July 1990 (III)-March 1991 (I) and March 2001 (I)-November 2001 (IV).
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Appendix B - A Regularised Filtering Algorithm

In the following we give the multiple-bandwidth kernel regularised particle
filter for the Markov Switching Stochastic Volatility model.

Algorithm 1. Kernel-Regularised Particle Filter

Given an initial set of particles {xi
t, s

i
t, θ

i
t, λ

i
t, w

i
t}

N
i=1:

1. Compute Vt =
∑N

i=1(θ
i
t − θ̄t)(θ

i
t − θ̄t)

′wi
t and θ̄t =

∑N
i=1 θi

tw
i
t

2. For i = 1, . . . , N and with a and b tuning parameters, calculate:

(a) S̃i
t+1 = arg max

l∈{1,2}
P(st+1 = l|st = si

t)

(b) X̃i
t+1 = αi

t(S̃
i
t+1) + φi

tx
i
t

(c) θ̃i
t = a(λi

t)θ
i
t + (1 − a(λi

t))θ̄t, where θ̃ = (α̃1,2, φ̃, σ̃, ρ̃, µ̃, p̃11, p̃22)

3. For i = 1, . . . , N :

(a) Simulate ki from
N
∑

k=1

N (yt+1; µ̃
k
t + ρ̃k

t yt, e
X̃k

t+1)wk
t δ{k}(dki)

(b) Simulate si
t+1 from P(si

t+1 = l|ski

t ) with l ∈ {1, 2}

(c) Simulate xi
t+1 from N (xt+1;α

ki

t (si
t+1) + φki

t xki

t , σki

t )

(d) Simulate θi
t+1 from Nnθ

(θt+1; θ̃
ki

t , b2(λki

t )Vt)

4. Update: w̃i
t+1 ∝ N (yt+1; µ̃

ki

t + ρ̃ki

t yt, e
xi

t+1)/N (yt+1; µ̃
ki

t + ρ̃ki

t yt, e
X̃ki

t+1)

5. Normalize: wi
t+1 = w̃i

t+1 (
∑N

i=1 w̃i
t+1)

−1.
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Appendix C - Convergence Issues

Let K be a Gaussian kernel and f a density function both defined on R
d. Note

that
∫

K(y)dy = 1. We denote by Kh(y) = h−dK(y/h) a Gaussian kernel with
bandwidth h and by (f ∗Kh)(x) =

∫

f(x−y)Kh(y)dy the convolution product.
Let us define the following simple multiple-bandwidth kernel estimator.

Definition 5.1. (Multiple-bandwidth estimator)
Let X1, . . . ,XN be a sequence of i.i.d. random vectors with density f . The
Multiple-bandwidth estimator of the density f is

fN (x) =
1

N

N
∑

i=1

1

hd
i

K(h−1
i (x − Xi)). (37)

where {hi}
N
i=1 is a sequence of positive numbers (bandwidths).

Note that the proposed sample-point estimator is positive and integrates
to one. Thus it is a density function and the Glick’s theorem applies to its.
The theorem gives a relation between a.s.-convergence and L1-convergence for
functional estimators.

Theorem 5.1. (Glick’s theorem)
Let {fN (x)} be a sequence of probability density functions on R

d, which are
measurable functions of x and of X1, . . . ,XN and such that fN

a.s.
−→

N→∞
f almost

everywhere in x. Then
∫

Rd

|fN (x) − f(x)|dx
L1−→

N→∞
0. (38)

Proof. See Glick (1974).

The following lemma is a useful preliminary result before showing some
convergence results for the proposed multi-scale density estimator.

Lemma 5.1. Let K be a Gaussian kernel on R
d, f ∈ L1(Rd) a density function

and {hi}
N
i=1 a sequence of positive numbers (scale factors), which takes values

in the interval [hN,min, hN,max]. Let hN,max satisfy

lim
N→∞

hN,max = 0 (39)

then

lim
N→∞

1

N

N
∑

i=1

(f ∗ Khi
)(x) = f(x), ∀x ∈ R

d (40)

and

lim
N→∞

sup
x

∣

∣

∣

∣

∣

1

N

N
∑

i=1

(f ∗ Khi
)(x) − f(x)

∣

∣

∣

∣

∣

= 0. (41)
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Proof. This result extends the Bochner’s lemma to the case of a variable-
bandwidth kernel. Thus to prove the theorem we follow the technique used in
Bosq and Lecoutre (1987) (p. 61). Let δ > 0, then

∣

∣

∣

∣

∣

1

N

N
∑

i=1

(f ∗ Khi
)(x) − f(x)

∣

∣

∣

∣

∣

≤ (42)

≤
1

N

N
∑

i=1

∫

‖xi‖≤δ
|(f(x − xi) − f(x))Khi

(xi)| dxi +

+
1

N

N
∑

i=1

∫

‖xi‖>δ
|(f(x − xi) − f(x))Khi

(xi)| dxi

≤
1

N

N
∑

i=1

sup
‖xi‖≤δ

|(f(x − xi) − f(x))|

∫

‖xi‖≤δ
|Khi

(xi)| dxi +

+
1

N

N
∑

i=1

∫

‖xi‖>δ

|f(x − xi)|

‖ xi ‖d
‖

xi

hi
‖d |K(xi/hi)| dxi +

+
1

N

N
∑

i=1

|f(x)|

∫

‖xi‖>δ/hi

|K(zi)| dzi

≤
1

N

N
∑

i=1

sup
‖xi‖≤δ

|(f(x − xi) − f(x))|

∫

Rd

|K(zi)| dzi +

+
1

N

N
∑

i=1

δ−d

∫

Rd

|f(x − zihi)| sup
‖zi‖>δ/hi

‖ zi ‖
d |K(zi)| dzi +

+
1

N

N
∑

i=1

|f(x)|

∫

‖zi‖>δ/hi

|K(zi)| dzi

Let δ be fixed and N → ∞ then hN,max → 0 ⇒ hi → 0, ∀ i and the last two
summations tend to zero, because for Gaussian kernels ‖ z ‖d |K(z)| → 0 as
‖ z ‖d→ ∞. Now let δ tend to zero, also the first summation equals to zero.

The second part of the lemma follows from the inequalities

sup
x

∣

∣

∣

∣

∣

1

N

N
∑

i=1

(f ∗ Khi
)(x) − f(x)

∣

∣

∣

∣

∣

≤
1

N

N
∑

i=1

sup
x

|(f ∗ Khi
)(x) − f(x)|(43)

≤
1

N

N
∑

i=1

{

sup
x

sup
‖xi‖≤δ

|(f(x − xi) − f(x))|

∫

|K(zi)| dzi

}

+

+
1

N

N
∑

i=1

{

2sup
x

|f(x)|

∫

‖zi‖>δ/hi

|K(zi)| dzi

}

which tends to zero due to result in the first part of the lemma.
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Theorem 5.2. (Quadratic-mean convergence)
Let K be a Gaussian kernel on R

d, f ∈ L1(Rd) a density, {xi}
N
i=1 i.i.d.

samples with common density f and {hi}
N
i=1 a sequence of positive numbers

(bandwidths) with values in the interval [hN,min, hN,max]. Let the bounds satisfy

lim
N→∞

hN,max = 0 , lim
N→∞

(hN,min)
dN = ∞ (44)

then the sample-point estimators, fN , converges in L2 to the true density

fN (x)
L2−→

N→∞
f(x), a.e. in x. (45)

Proof. Take the expectation of the functional estimator with respect to the
sequence of i.i.d. random vectors {Xi}

E (fN (x)) = (46)

=

∫

RNd

(

1

N

N
∑

i=1

1

hd
i

K(h−1
i (x − xi))

)

f(x1) . . . f(xN )dx1 . . . dxN

=
1

N

N
∑

i=1

∫

Rd

1

hd
i

K(h−1
i (x − xi))f(xi)dxi

=
1

N

N
∑

i=1

(f ∗ Khi
)(x)

which is the quantity studied in Lemma 5.1. Now the quadratic error
decomposes as follows

E(fN (x) − f(x))2 = (47)

= E[fN (x) − E(fN (x))]2 + [E(fN (x)) − f(x)]2

= E

(

1

N

N
∑

i=1

1

hd
i

K(h−1
i (x − xi)) −

1

N

N
∑

i=1

(f ∗ Khi
)(x)

)2

+

+[E(fN (x)) − f(x)]2

= E

(

1

N

N
∑

i=1

1

hd
i

K(h−1
i (x − xi))

)2

−

(

1

N

N
∑

i=1

(f ∗ Khi
)(x)

)2

+

+[E(fN (x)) − f(x)]2
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=
1

N2

N
∑

i=1

∫

1

h2d
i

K2(h−1
i (x − xi))f(xi)dxi

+
1

N2

∑

i6=j

∫

1

hd
i h

d
j

K(h−1
i (x − xi))K(h−1

j (x − xj))f(xj)f(xi)dxjdxi

−

(

1

N

N
∑

i=1

(f ∗ Khi
)(x)

)2

+ [E(fN (x)) − f(x)]2

=
1

N2

N
∑

i=1

1

hd
i

(f ∗ K2
hi

)(x) −
1

N2

N
∑

i=1

1

h2d
i

(
∫

K(h−1
i (x − xi))f(xi)

)2

dxi +

+[E(fN (x)) − f(x)]2

≤

∫

K2

Nhd
N,min

(

1

N

N
∑

i=1

(f ∗ K̃2
hi

)(x)

)

−
1

N2

(

N
∑

i=1

E
2 (Khi

(x − xi))

)

+

+[E(fN (x)) − f(x)]2

where K̃2
hi

(x) = K2
hi

(x)/
∫

K2 is a normalized kernel, integrating to one.
Lemma 5.1 and the assumption: hN,max → 0 as N → ∞, insure that the

first term in parenthesis converges to f(x) and the last term, converges to zero.
Each element of the sum in the middle is bounded. The two elements tend to
zero providing that lim

N→∞
(hN,min)

dN = ∞.

The following theorem states the almost sure (a.s.) convergence of the
proposed sample-point estimator.

Theorem 5.3. (a.s. convergence)
Let K be a Gaussian kernel on R

d, f ∈ L1(Rd) a density, {xi}
N
i=1 i.i.d. samples

from f and {hi}
N
i=1 a sequence of positive numbers (bandwidths) with values in

the interval [hN,min, hN,max]. Let the bounds satisfy

lim
N→∞

hN,max = 0 , lim
N→∞

(hN,min)
dN

log N
= ∞ (48)

then the sample-point estimators, fN , converges a.s. to the true density

fN (x)
a.s.
−→

N→∞
f(x) (49)

Proof. We follow Devroye and Wagner (1979) and apply the triangular
inequality to decompose the estimation error into the variance and bias
components.

|fN (x) − f(x)| ≤ |fN (x) − E(fN(x))| + |E(fN (x)) − f(x)|. (50)
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We first consider the second term on the RHS of the inequality and show that
by a straightforward application of the Lemma 5.1

E(fN(x))
a.s.
−→

N→∞
f(x).

The second result in Lemma 5.1 insures the pointwise convergence of E(fN(x))
to f(x) uniformly in x and implies

|E(fN (x)) − f(x)| =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

(f ∗ Khi
)(x) − f(x)

∣

∣

∣

∣

∣

a.s.
−→

N→∞
0 (51)

providing that hN,max → 0 as N → ∞ and ‖ z ‖d |K(z)| → 0 as ‖ z ‖d→ ∞.
Consider now the first term on the RHS of the inequality,

|fN (x) − E(fN (x))| =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

(

1

hd
i

K(h(x − xi)) − (f ∗ Khi
)(x)

)

∣

∣

∣

∣

∣

. (52)

Let M = sup
z

K(z) and note that

Khi
≤ h−d

i M ≤ h−d
N,minM

and
E(K2

hi
) = h−d

i (f ∗ K2
hi

)(x) ≤ h−d
N,minh

−d
i M(f ∗ Khi

)(x).

By Bernstein-Fréchet’s inequality15 ,

P (|fN (x) − E(fN (x))| ≥ ε) ≤

≤ 2 exp

(

−
ε2N2

4h−d
N,minM

∑

i V(Khi
) + 2εNh−d

N,minM

)

(53)

< 2 exp

(

−
ε2N2hd

N,min

4M
∑

i E(Khi
) + 2εNM

)

≤ 2 exp

(

−
ε2N2hd

N,min

4M
∑

i h
−d
i (f ∗ Khi

)(x) + 2εNM

)

= 2exp

(

−
ε2Nhd

N,min

4ME(fN (x)) + 2εM

)

≤ exp (αNhd
N,min)

which is bounded a.e. in x and for all N , due to the a.s. convergence of
E(fN (x)) to f(x). The above inequality insures the almost complete (a.c.)

15See Bosq and Lecoutre (1987) (Th. I.2, p. 41), with p = 3, and E|Khi
− E(Khi

)|3 ≤
h−d

N,minMV(Khi
).
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convergence and consequently the a.s. convergence (see Bosq and Lecoutre
(1987)) of the estimator

fN (x)
a.c.
−→

N→∞
E(fN (x)),

providing that
∑∞

N=1 e−αNhd
N,min < ∞. This condition is clearly implied by the

assumption: lim
N→∞

AN = ∞ where AN = Nhd
N,min log(N)−1. For an arbitrarily

chosen η > 0 there exists M s.t. for all N > M , AN > η and

∞
∑

N=1

e−αNhd
N,min

∞
∑

N=1

e−α log(N)AN <

<

M
∑

N=1

e−α log(N)AN +

∞
∑

N=M+1

e−α log(N)η (54)

<

M
∑

N=1

e−α log(N)AN +

∞
∑

N=1

N−αη < ∞

choosing η such that the series is convergent.

Theorem 5.4. (L1-convergence)
Let K be a Gaussian kernel on R

d, f ∈ L1(Rd) a density, {xi}
N
i=1 i.i.d. samples

from f and {hi}
N
i=1 a sequence of positive numbers (bandwidths) with values in

the interval [hN,min, hN,max]. Let the bounds satisfy

lim
N→∞

hN,max = 0 , lim
N→∞

(hN,min)
dN

log N
= ∞ (55)

then the sample-point estimators, fN , converges in L1 to the true density

fN (x)
L1−→

N→∞
f(x). (56)

Proof. Note first that the assumptions of the theorem insure the a.s.-
convergence (see Theorem (5.3)) of the multiple-bandwidth estimator. The
a.s. convergence implies the L1-convergence by the Glick’s theorem.
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Appendix D - Recursive Parameter Estimates
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Figure 13: On-line parameter estimates for the log-returns on the S&P price index.
Graphs show at each date the empirical mean and the quantiles at 0.025 and 0.975
for each parameter.
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Figure 14: On-line parameter estimates for the Price-to-Earnings. Graphs show at
each date the empirical mean and the quantiles at 0.025 and 0.975 for each parameter.
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Figure 15: On-line parameter estimates for the Dividend Yields. Graphs show at each
date the empirical mean and the quantiles at 0.025 and 0.975 for each parameter.
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Figure 16: On-line parameter estimates for the log-returns on the Industrial
Production index. Graphs show at each date the empirical mean and the quantiles at
0.025 and 0.975 for each parameter.
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Figure 17: On-line parameter estimates for the Personal Consumption Expenditure.
Graphs show at each date the empirical mean and the quantiles at 0.025 and 0.975
for each parameter.
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Figure 18: On-line parameter estimates for the non-residential investments series.
Graphs show at each date the empirical mean and the quantiles at 0.025 and 0.975
for each parameter.
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Figure 19: On-line parameter estimates for the output gap series. Graphs show at
each date the empirical mean and the quantiles at 0.025 and 0.975 for each parameter.
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