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Abstract

This paper provides methods for carrying out likelihood based inference on non-linear

observed and partially observed non-linear diffusions. The diffusions can potentially be

non-stationary. The methods are based on innovative Markov chain Monte Carlo methods

combined with an augmentation strategy. We study the performance of the methods as

the degree of augmentation goes to infinity and find that the methods are robust. Various

extensions to the modelling framework are provided, while we also discuss issues of model

choice, model checking and filtering.
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1 Introduction

Consider a d−dimensional stochastic process α(t) = (α1(t), ..., αd(t))′ that satisfies an Ito

stochastic differential equation (SDE) of the form,

dα(t) = µ{α(t); θ}dt + Θ{α(t); θ}dw(t), (1)

where µ : d× 1 and Θ : d× d are the non-anticipative drift and volatility functions, respectively,

depending on α and an unknown parameter vector θ, and w(t) = (w1(t), ..., wd(t))′ is a vector

of independent standard Brownian motions. Suppose that the stochastic process {α(t)} is fully

or partially observed at the sequence of time points

0 < τ1 < τ2 < ... < τT ,

where, for simplicity, the time gap τi+1 − τi > 0 is assumed constant and equal to ∆. Let

Zi : ki × d (ki ≤ d) denote a known selection matrix and assume that we only have the discrete

time measurements

yi = Ziα(τi), i = 1, 2, ..., T.

The fully observed case arises when the rank of Zi is d of which the leading example is Z = Id.

We get the partially observed case when the rank of Zi is less than d. For simplicity of exposition,

assume that Zi does not vary over i.

The principal aim of the analysis is to estimate θ given the T × k matrix of measurements

y = (y1, ..., yT )′. In the partially observed case we may also be interested in estimating the

corresponding T × d matrix of unobserved states (α(τ0), ..., α(τT ))′.

In the likelihood context, the parameter vector θ is estimated by maximizing the conditional

log-likelihood function

log g(y|θ) = log g(y2, ..., yT |F1, θ) =
T−1∑
i=1

log g(yi+1|Fi, θ), (2)

where Fi = σ(y1, ..., yi) is the sigma field generated by the discrete time observations. When

the vector diffusion is fully observed, yi is Markov and the conditional log-likelihood reduces to

the relatively simple form

log g(y2, ..., yT |F1, θ) =
T−1∑
i=1

log g(yi+1|yi, θ).

For most practical SDE’s, the form of the conditional density g(yi+1|Fi, θ) is not available,

even in the Markov case. In response to this difficulty, a number of authors have pursued
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non-likelihood based methods for estimating SDE’s, for example, the indirect inference method

(Smith (1993) and Gourieroux, Monfort, and Renault (1993)), efficient method of moments

(Gallant and Tauchen (1996), Gallant and Long (1997) and Gallant and Tauchen (2003)), kernel-

based estimation of the transition density (Ait-Sahalia (1996a), Ait-Sahalia (1996b) and Jiang

and Knight (1997)), and the method of estimating functions (Kessler and Sorensen (1999),

Sørensen (1997), Sørensen (2000), Florens-Zmirou (1989) and Hansen and Scheinkman (1995)).

At the same time, there has been considerable work on overcoming the difficulties inherent in

a likelihood analysis, primarily through the use of simulation-based methods. Pedersen (1995)

introduced the important idea of estimating g(yi+1|yi, θ) by simulation in conjunction with an

augmentation procedure to reduce the error of the Euler discretization. Ait-Sahalia (2002),

Egorov, Li, and Xu (2003) and Ait-Sahalia (2003) explore the use of infinite series Edgeworth-

based expansions1 to approximate g(yi+1|yi, θ), and Durham and Gallant (2002), building on

Pedersen (1995) and, more directly, Elerian, Chib, and Shephard (2001), use importance sam-

pling to approximate the transition density. Other similar approaches are outlined by Brandt

and Santa-Clara (2002), Nicolau (2002) and Hurn, Lindsay, and Martin (2003). To the best of

our knowledge, none of these extend to the general non-Markov case.

An atttractive alternative to these techniques is the estimation of SDE’s by modern Markov

chain Monte Carlo Bayesian methods as principally developed by Elerian, Chib, and Shephard

(2001) and Roberts and Stramer (2001). There is also some Bayesian work on the partially

observed case, by Kim, Shephard, and Chib (1998) in the context of stochastic volatility pro-

cesses and by Roberts and Stramer (2001) and Eraker (2001) for general non-linear diffusions.

One reason for pursuing the Bayesian approach is that it appears to be tailor-made for par-

tially observed diffusions, the setting in which other approaches and techniques are not very

effective. For example, importance sampling as advanced by Durham and Gallant (2002) be-

comes infeasible because of a large increase in the dimension of the space of latent-variables

(which now includes the entire missing states — Durham and Gallant (2002) do consider the

non-Markov case but are forced to employ techniques other than importance sampling) while

Edgeworth-based methods become difficult to generalize. On the other hand, Bayesian MCMC

methods remain feasible because they can be used to split up the parameter space into a set of

lower dimensional spaces, a sort of “divide-and conquer” strategy that (to our knowledge) has

no parallel in other methods.

1Schaumburg (2002) extended this work to cover stochastic differential equations driven by Lévy processes.
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1.1 Outline of the paper

The structure of this paper is as follows. In Section 2 we provide a brief overview of our

augmentation procedure for estimating vector diffusions. Essentially, the approach amounts to

a discretization of the SDE by the Euler method on a time scale that is finer than that of the

observed data. In addition we outline the structure of our Markov chain Monte Carlo (MCMC)

method for performing inference for both observed and partially observed SDE’s. As is standard

in the context of MCMC methods, the inferential approach does not require computation of the

likelihood function. In Section 3 we present the implementation of the algorithm starting with

the fully observed SDE and provide details on how the SDE can be sampled on our fine time

scale conditioned on the data and the parameters. Our sampling technique is built around a

distribution proposed by Durham and Gallant (2002) in the context of importance sampling.

We find that a robustified version of that distribution when used as proposal density within a

Metropolis-Hastings step leads to an algorithm which is highly effective even when the degree

of augmentation is large.

In Section 4 we extend our ideas to partially observed diffusions. For this case, we develop a

different proposal density for our Metropolis step. We illustrate the method with an example in

which the SDE has an analytic solution. We also consider a more complex stochastic volatility

diffusion.

In Section 5 we illustrate the methods on real data within the context of several stochastic

volatility diffusions. Disussion of some related literature as well as extensions of our work are

given in Section 6 while Section 7 has our conclusions. A proof of one of the results given in the

paper is provided in the Appendix.

2 Augmentation and inference

We begin by describing the augmentation method that lies at the core of the Bayesian approach

for fitting both the fully observed and partially observed diffusions. The link between the

augmentation method and the rest of the prior-posterior Bayesian analysis is developed in Section

2.2. For the fully observed case, specific details related to implementation are contained in

Section 3 whereas those for partially observed diffusions are in Section 4.

2.1 Augmentation

The main problem in fitting SDE’s is that the the transtion density g(yi+1|Fi, θ), and conse-

quently the conditional likelihood g(y|θ), are not generally available in closed form. Although
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this may appear to be an insuperable problem, the computation of the conditional likelihood

can be by-passed entirely by a simulation-based augmentation strategy that amounts to treating

the continuous path of the stochastic process between each pair of observed measurements as

“missing” and then iterating on a two-step process in which the that missing path is restored

given the current values of the parameters, followed by inferences on the parameters given the

restored missing measurements. The idea of simulation combined with augmentation in this

context goes back to Pedersen (1995), Gourieroux, Monfort, and Renault (1993) and Gallant

and Tauchen (1996) though our specific Bayesian implementation is based on Elerian, Chib, and

Shephard (2001) and Eraker (2001).

To review some of the specifics, suppose that within successive pair of time points {τi, τi+1}
of length ∆, we introduce M − 1 equally-spaced intermediate time points

τi < τi + δ < τi + 2δ < ... < τi + (M − 1)δ < τi + Mδ = τi+1

where δ = ∆/M . Now for each i = 1, 2, ..., T , let the values of the diffusion at this finer time

scale be

α(i−1)M+j = α(τi + jδ), j = 0, 1, 2, ..., M,

where we let α(τi) = α(i−1)M . Now collect these values across i in a {(T − 1) M + 1}× d vector

α+ = (α0, α1, ..., α(T−1)M )′.

The idea is to solve the SDE by considering the discretized Euler version of the Ito SDE that

operates on the time scale of the augmented time points. This discretrized version is given by

αj+1|αj , θ ∼ Nd(αj + µ(αj ; θ)δ, Σ(αj ; θ)δ) , j = 0, 1, 2 . . . , (3)

where Σ(·; θ) = Θ (·; θ)}Θ (·; θ)}′. From the transition density in (3) it is easy to see that by

iterating M times and marginalising we get

fM (αiM |α(i−1)M , θ) =
∫

f(αiM |α∗
i ; θ)f(α∗

i |α(i−1)M ; θ)dα∗
i , (4)

where

α∗
i = (α(i−1)M+1, α(i−1)M+2, ..., αiM−1)′.

are the unobserved values of the SDE’s on the intermediate time points in the interval {τi, τi+1}.
This is the augmentation-based Euler approximation to the true density g(α(τi+1)|α(τi), θ). It

can be shown that

fM (α(τi+1)|α(τi), θ) → g(α(τi+1)|α(τi), θ), as M → ∞,
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see Pedersen (1995, Theorem 3) and Kohatsu-Higa and Ogawa (1997)). Hence, by operating on

this fine time scale it is possible to reduce the bias of the error due to discretization and the

gains can be substantial as documented by Elerian, Chib, and Shephard (2001) for univariate

diffusions.

By way of additional notation, let us introduce the M × d block

α+
i = (α(i−1)M+1, α(i−1)M+2, ..., αiM−1, αiM )′, (5)

which means that α+ can be expressed in the natural block form

α+ = (α0, α
+
1 , α+

2 , ..., α+
T−1)

′.

We may now write

f(α+|θ) = f(α0|θ)
T−1∏
i=1

f(α+
i |α(i−1)M , θ).

where from (3)

f(α+
i |α(i−1)M ; θ) =

M−1∏
j=0

f(α(i−1)M+j+1|α(i−1)M+j , θ).

The procedures that we develop in the sequel will base prior-posterior inferences on the quantity

f(α+|θ) or, in effect, the likelihood built up from fM instead of g. It is clear that if M is finite, as

in any practical implementation, then all bias from discretization cannot be removed. However,

this sort of error is unavoidable and also arises in (one form or another) in other simulation-based

approaches such as the EMM, indirect inference and simulated maximum likelihood methods.

Indeed, even the infinite series expansion approach of Ait-Sahalia (2002) cannot be exact since

the infinte series expansion must be truncated at some point. Of course, the approximations are

likely to be good and can be improved, in our case for example, by adjusting M .

2.2 Inference

The augmentation approach to dealing with diffusions means that the model can be expressed

as

yi = Zα(i−1)M , i = 1, 2, ..., T,

where

αj+1|αj ∼ Nd(αj + µ(αj ; θ)δ, Σ(αj ; θ)δ) , j = 0, 1, 2, ... .
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On letting α+ = (α0, α1, ..., α(T−1)M )′, Bayesian inference on θ|y can be carried out by simply

sampling from the posterior2

f(θ, α+|y),

and then discarding the α+ draws, leading to samples from θ|y. There are many ways in which

this simulation can be carried out — some of these will involve enormous computational effort,

others will be manageable. In the sequel we present those that are effective in the sense of being

simulation efficient, applicable to both fully and partially observed diffusions, and scaleable in

the dimension of the vector diffusion.

In the Bayesian context, the modern way of simulating from enormously large dimensional

distributions, such as the posterior θ, α+|y, is by MCMC methods. These methods proceed

through the sampling of a Markov chain whose limiting (invariant) distribution is the posterior

distribution of interest. The Markov chain is constructed by breaking up the parameter space

into smaller, manageable blocks, and then recursively sampling each block conditioned on the

data and the most recent values of the remaining blocks. A full discussion of the theory, along

with the many issues related to implementation, are discussed by, for example, Chib (2001, pp.

?). In our problem, we construct the Markov chain simulation in the following way:

1. Update α+ from

f(α+|y, θ),

2. Update θ from

f(θ|y, α+),

3. Goto 1.

It turns out that this simple sampling scheme can be used for both the observed and partially

observed diffusions. Another point is that the sampling of the parameters in step 2 is relatively

straightforward and model-specific. We shall therefore not have much to say about this step.

Step 1 on the other hand is more crucial and involved and the viability of the Bayesian approach

in this context depends on being able to sample α+ in an effective way. We have developed such

methods for both the fully and partially observed cases. We present the details as they relate

to the fully observed diffusion in Section 33 and those for the partially observed case in Section

4, which naturally extends the observed case.
2Inevitably there are some degeneracies in these densities as yi = Zαi,0, however we will ignore this in our

notation for densities.

3Other cases where Z is of rank d can be dealt with by simply considering observations of the form Z−1yi = αi.
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3 Observed diffusions

3.1 The big picture

The observed case of the diffusion (1) arises when Z = Id, so that the sequence of discrete time

observations form a Markov process with yi = α(i−1)M . The general sampling method for Step

1 of the approach described in Section 2.2 becomes quite simple due to the Markovian nature

of yi. In particular the problem of sampling from f(α+|y, θ) becomes the task of drawing from

T−1∏
i=1

f(α+
i |yi, yi+1, θ), where α+

i = (α(i−1)M+1, α(i−1)M+2, ..., αiM−1, αiM )′. (6)

Because in the fully observed case αiM = yi+1, it is only necessary to sample a subset of α+
i ,

specifically

α∗
i = (α(i−1)M+1, α(i−1)M+2, ..., αiM−1)′.

From (6) we see that the α∗
i are conditionally independent and the problem of interest therefore

reduces to one of sampling the distributions

α∗
i |yi, yi+1, i = 1, 2, ..., T − 1,

seperately for α∗
i . This means that Step 1 of Section 2.2 becomes:

1’. Update α∗
i from

f(α∗
i |yi, yi+1, θ), (7)

for i = 1, 2..., T − 1.

This reduction in the dimension is clearly very helpful as the task of sampling from the

enormously high dimensional distribution α+|y, θ is now broken down to a series of T − 1

independent sampling steps, each of dimension M × d. Furthermore, the target distribution

α∗
i |yi, yi+1, θ is relatively easy to sample. Here we discuss a method based on the importance

sampling distribution that appears in Durham and Gallant (2002) (henceforth DG). We utilize

a version of that importance function to form a proposal density for our Metropolis-Hastings

algorithm. We will see that this leads to an effective sampling procedure for these distributions.

3.2 Algorithm for observed diffusions

3.2.1 The core ideas

We now consider the sampling of the distribution α∗
i |yi, yi+1, θ and since all such distributions

have the same structure we simply set i = 1 and also suppress the parameters θ for notational
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convenience. The two observed observations are then now α0 = y1 and αM = y2 and the

augmented points are α∗′ = (α′
1, ..., α

′
M−1)

′. Thus, in this notation, the question of interest is

the sampling of the distribution

α∗|α0, αM .

From (3), we have that αj follows the multivariate Markov process

αj+1|αj ∼ Nd(αj + µ(αj)δ, Σ(αj)δ) , j = 0, . . . , M − 1. (8)

which implies by simple calculation that α∗|α0, αM has the density

f(α1, ..., αM−1|α0, αM ) =


M∏

j=1

f(αj |αj−1)

 /f(αM |α0) (9)

=
M−1∏
j=1

f(αj |αj−1, αM ), (10)

where f(αM |α0) is the unknown normalizing constant. This is the (target) density that we need

to sample. It is easy to see that the (smoothed) densities in the product of (10) cannot be

calculated nor can they be directly simulated due to the non-linearity in (8).

In their work, DG develop an importance function to integrate out α1, ..., αM−1, leading to an

estimate of the likelihood contribution. Although our objectives are quite different, we can utilize

this importance function as a proposal density for the Metropolis-Hastings algorithm. Later, in

Section 4, we provide a generalisation of this proposal density that enables consideration of a

broader class of models.

To describe the DG approach, consider the question of finding a close approximation to the

target density

f(αj |αj−1, αM ) ∝ f(αM |αj)f(αj |αj−1),

where the density f(αj |αj−1) arises from (8). Now set

q(αj |αj−1, αM ) ∝ f̂(αM |αj)f(αj |αj−1)

where

f̂(αM |αj) = Nd(αM |αj + µ(αj−1)δ∗, Σ(αj−1)δ∗) where δ∗ = (M − j) δ. (11)

Note that f̂(αM |αj) is the standard Euler approximation between αM and αj , but with αj−1

appearing in the drift and volatility functions. This form of f̂(αM |αj), as a function of αj ,

produces a closed form expression for the density q(αj |αj−1, αM ). DG utilize the resulting

density as an importance function in their importance sampling procedure. The exact form of

this density follows from this simple Proposition.
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Proposition 1 For some fixed integer j ≥ 0, we assume, that for arbitrary integers N > k >

j ≥ 0 that

αN |αk ∼ Nd(αk + µ(αj−1) (N − k) δ, Σ(αj−1) (N − k) δ),

then, writing

mj =
(k − j)
N − j

(αN − αj) and vj = δ
(k − j) (N − k)

(N − j)
,

we have that

αk|αj , αN ∼ Nd (αj + mj , vjΣ(αj−1)) . (12)

�

Proof. Given in Appendix 8.1.

Note that, under this measure, the mean of αk|αj , αN does not depend upon the drift µ.

Instead αk is simply interpolated between αj and αN .

The exact form of the DG importance function then follows trivially.

Definition 2 DG Importance Function

q(α1, ..., αM−1|α0, αM ) =
M−1∏
j=1

q(αj |αj−1, αM ), (13)

where q(·|αj−1, αM ) is a Gaussian density, Nd(αj−1 + mj , vjΣ(αj−1)), with

mj =
αM − αj−1

(M − j + 1)
, vj = δ

(M − j)
(M − j + 1)

. (14)

�

We have written the DG importance function in an equilibrium correction form (see, for

example, Hendry (1995)). If the αj−1 is below (above) αM , then the mean of the importance

function is shifted upwards (downwards). As j increases this correction strengthens.

For our problem, we utilize this importance function as a proposal density for a Metropolis

step. In line with the suggestion in Chib and Greenberg (1995), the distribution of the proposal

density is taken to be multivariate-t, q̃(αj |αj−1, αM ) say, which has the mean and variance given

by (14). If we let α∗(j) denote the current value of α∗ at the end of the jth MCMC cycle, then

the Metropolis step is implemented as follows.

Algorithm 1: Metropolis method: observed diffusions

1. Sample z = (z1, ..., zM−1)′ ∼ q̃(z|α0, αM ) =
∏M−1

j=1 q̃(zj |zj−1, αM ).
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2. Evaluate

p(z, α∗(j)) = min

{
1,

f(z|α0, αM )
q̃(z|α0, αM )

q̃(α∗(j)|α0, αM )
f(α∗(j)|α0, αM )

}
. (15)

3. With probability p(z, α∗(j)), set α∗(j+1) = z; otherwise set α∗(j+1) = α∗(j).

We can expect the efficiency of this method to be high because q̃(αj |αj−1, αM ) is likely to be a

good approximation to f(αj |αj−1, αM ). In addition, the parameters of the proposal density can

be calculated quickly, more quickly than those in Elerian, Chib, and Shephard (2001). It may be

seen that the the conditional mean and variance given by (14) are based on a linear interpolation

and may therefore be thought of as a bridge between the two observations. Intuitively, we might

expect this linear proposal to work well when the observations α0, αM are closely spaced in

time, as the true conditional mean may be close to linear. When the observations are far apart

in time (or equivalently, when there is low persistence) a proposal density based on the linear

approximation may be less adequate.

3.2.2 Blocking

One of the advantages of Bayesian inference via MCMC over importance sampling, is that it

allows one to tackle higher dimensional problems since the sampling can be done (in sequence) on

small blocks of parameters conditioned on the rest. For example, instead of sampling α1, ..., αM−1

from f(α1, ..., αM−1|α0, αM ) in one block we may sample it in two.

1”. At each sweep select an integer k at random such that 1 < k < M

(a) Sample from f(α1, ..., αk−1|α0, αk),

(b) Sample from f(αk, ..., αM−1|αk−1, αM ).

In order to implement this strategy we can apply the Metropolis algorithm of the previous

subsection to f(α1, ..., αk−1|α0, αk) and then seperately on f(αk, ..., αM−1|αk−1, αM ). The same

approach can obviously be extended to more than two blocks. Blocking in this way can be

effective when tailoring by linear approximation is less precise for the larger block and more

precise when the blocks are smaller. There can be a problem, however, if the block size is

taken to be too small because that leads to an increase in the dimension of the state space of

the underlying Markov chain and can increase the serial correlation of the simulated output.

It is possible to show that the dependence in the simulated output increases linearly with the

number of blocks in Gaussian Ornstein-Uhlenbeck processes (see Elerian (1999) and Roberts and

Stramer (2001)). Similar analytic calculations are not possible in more interesting diffusions,
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however the same behavior can be observed empirically. Hence, it is important to consider both

the block size and the adequacy of the proposal while tuning the MCMC algorithm. We will

revisit this question in Section 4 when we discuss models for partially observed diffusions.

3.3 Analysis as M → ∞

Before we progress to the examples, we show that the proposal density based on the DG impor-

tance function has potentially very good properties even as M → ∞. The simulation scheme

presented above can be productively thought of as a continuous time pure jump process αM (t)

on the interval t ∈ [τi, τi + ∆]

αM (t) = α (τi) +
�(t−τi)M/∆�∑

j=1

(
mj + v

1/2
j Σ1/2 [αM {τi + δ (j − 1)}] εj

)
,

where εj is a vector of independent standard normals. Here the process jumps every ∆/M

periods of continuous time. Then as M → ∞ the law of this process converges to the law of the

diffusion z(t) which satisfies the SDE

dz(t) = {τi+1 − t}−1 {α(τi+1) − z(t)} dt + Θ {z(t)} db(t), (16)

where b is a vector of standard independent Brownian motions which are independent of the w

process given in (1). This process is initialised at

z(τi) = α(τi) = α0

and has the property that

z(τi+1) = α(τi+1) = αM

with probability one. Hence this diffusion is a type of vector bridge process. It is important to

note that (16) has exactly the same volatility function as (1) and so this approximation only

differs via the drift. In particular we are using

{τi+1 − t}−1 {α(τi+1) − z(t)} instead of µ {z(t)} .

From a theoretical viewpoint, it is insightful to think of the case where we have infinite

computer power and allow M → ∞. Then instead of making proposals to move sequences of

the process, the algorithm will move sections of the entire continuous path of the process.

1. Propose the new path z from (16) to replace the existing path α∗(j). We write Q as the

measure associated with this proposal, and G for the measure under (1).
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2. Evaluate

p(z, α∗(j)) = min

{
1,

dG(z)
dQ(z)

dQ(α∗(j))
dG(α∗(j))

}
.

3. With probability p(z, α∗(j)) we accept the path z, otherwise we reject it and continue to

use α∗(j). Goto 1.

Here dG(z)/dQ(z) is the Radon-Nikodym derivative, or likelihood ratio process, of moving

from the approximating process Q to the true process G. As the volatility functions in (1) and

(16) are the same, α(z, α∗(j)) is always properly defined4. This would not be true if the volatility

functions differed. Therefore, we can expect to make proposals which are accepted even in this

infinite dimensional case, which means that in practice it is possible to let M be large without

causing the algorithm to get sticky. Of course, the practical performance of the procedure (in

terms of the mixing of the generated output) is determined solely by the difference between the

true and approximating drift functions. When the latter difference is small, the procedure works

well, otherwise it works poorly.

3.4 Example 1: Cox-Ingersoll-Ross model

We now consider the Cox-Ingersoll-Ross (CIR) model given by the SDE

dx = k(µ − x)dt + σ
√

xdw(t).

Marginally we have x ∼ Ga
(

2kµ
σ2 , 2k

σ2

)
. For this model, the transition density g(x(τi+1)|x(τi)),

and consequently the likelihood, can be evaluated exactly. We shall work with the process

transformed to the real line by taking α = log(x). By Ito’s lemma we obtain

dα(t) =
{

k(µ − eα(t))e−α(t) − 1
2
σ2e−α(t)

}
dt + σe−α(t)/2dw(t). (17)

Before turning to the results of the MCMC sampler, we mention that we will evaluate the

performance of our sampling scheme in terms of the inefficiency factor5, or the integrated auto-

correlation time, of each posterior estimate. This measure is defined as

INF = 1 + 2
∞∑
i=1

ρ(i),

4An implication of this analysis is that if we follow DG and use z as an importance sampler to estimate the

density g(yi+1|yi, θ) in fully observed diffusions, then in the limit as M → ∞ then the importance sampler weights

will be dG(z)/dQ(z), which should be, in theory, well behaved. This is very unusual in importance sampling, for

as the dimension of the integration goes to infinity we usually expect the variance of the importance sampler to

increase exponentially with the dimension while it often even goes to infinity, which can mean that its rate of

convergence will become poor (see, for example, Koopman and Shephard (2002)).

5See also Geweke (1989) who prefers to report the inverse of this number
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where ρ(·) is the autocorrelation function of the sampled draws. By way of interpretation,

to make the variance of the posterior estimate the same as that from independent draws, the

MCMC sampler must be run for INF times as many iterations, beyond the transient or burn-in

phase.

0.0 0.5 1.0 1.5 2.0

0.80

0.85

0.90

0.95

1.00 (a) Estimated acceptance prob against time

time

acceptance prob M =10 
acceptance prob M=80 
acceptance prob M=1000 

0.0 0.5 1.0 1.5 2.0

2

4

6

8
(b) Estimated inefficiency against time
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Figure 1: Analysis of CIR model with 3 blocks, M = 10, 80 and 1000. (a) estimated average

acceptance probability, (b) estimated inefficiency both against t, time. (c): correlogram of the

sampled midpoint α(1).

We first examine inference for the CIR process tied down by two observations with fixed

parameters. We let ∆ = 2 and follow Durham and Gallant (2002) and Ait-Sahalia (2002, Table

3) in fixing k = 0.5, µ = 0.06 and σ = 0.15. These parameters are calibrated to the US

monthly treasury bill rate. Under these choices, x = eα has marginal mean and variance of

0.06 and 0.00135 respectively. We also let the two observations be α(0) = α0 = log(0.05) and

α(2) = αM = log(0.25). It is clearly unlikely that we would have a move in interest rates from

5% to 25% in 2 months. Nonetheless, this setting offers an interesting test of the viability of our

method.

We implement our M-H algorithm with 3 blocks and with M taking the values 10, 80 and

1000. The choice M = 1000 is particularly interesting because it allows us to see if augmentation

of high level is practically possible. In each case, the degrees of the freedom of the multivariate-t

14



proposal density is taken to be 50 and we base our results on 10000 MCMC draws collected

after a burn-in of a 100 cycles. We mention that the computation time is basically propotional

to M . We display our results in Figure 1. In this figure, in panel (a) we plot the acceptance

rate from the M-H step for each augmented data point in the interval (0, 2). The acceptance

rate is usually over 80% and is not affected by the degree of augmentation. In panel (b) of

the same plot, we record the inefficiency factors for each augmented point, computed using 50

lags. In panel (c) we report the autocorrelation function for the latent data in the mid-point

of our interval. These inefficiency factors show that the method performs extremely well with

the maximum inefficiency being less than 8. Interestingly, the inefficiency factors fall as M

is increased. Since the number of blocks remains fixed at 3, these results show that the M-H

step for the latent data is not particularly affected by the number of augmented points that are

sampled simultaneously. This example provides a potent illustration of the fact that it is possible

to use a fine discretization of the time interval without affecting the performance of the sampling

scheme, consistent with the theoretical arguments advanced in the previous sub-section.

4 Partially observed diffusions

4.1 The big picture

We now turn to an analysis of vector SDE that are only partially observed. In the notation

introduced in Section 1, the observed data is given by

y(τi) = Zα(τi), i = 1, ..., T,

where Z is a non-random k×d selection matrix. The key difference in approach for dealing with

this (non-Markov) situation is that now it is not particularly helpful to consider blocks defined

in terms of the latent α+
i between yi and yi+1. Instead it is necessary to work with the entire

α+ in terms of the natural complete ordering

α+ = (α0, α1, ..., αM(T−1))
′, (18)

so that

yi = ZαM(i−1), i = 1, . . . , T − 1.

To sample this very high-dimensional latent vector from its distribution conditioned on the

observed data and the parameters, we subdivide α+ randomly into B blocks

α+ = (α+(1), α+(2), ..., α+(B))′.
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Corresponding to these blocks we write

y = (y+(1), y+(2), ..., y+(B))′,

the real observations which fall within these blocks. Each block α+(l) may contain more or less

than M vectors of the diffusion and so y+(l) could include single vectors of observations, multiple

observations or could be the null set. Finally, it will be convenient to write the elements of the

l-th block as

α+(l) = (α+(l)
1 , α

+(l)
2 , ..., α

+(l)
Nl

)′,

where Nl is the number of elements in this block.

For each block we update from its full conditional density. Thus the sampling step becomes

1“‘. (a) Subdivide α+ randomly into B blocks, with the l-th block being α+(l).

(b) Update from

f(α+(l)|α+(l−1)
Nl−1

, α
+(l+1)
1 , y(l)), (19)

for l = 1, 2, ..., B.

The fact that we condition only on α
+(l−1)
Nl−1

, α
+(l+1)
1 and y(l) is due to the Markovian nature

of the diffusion.

4.2 Algorithm for partially observed diffusions

The only task that remains is to design simulators for α+(l)|α+(l−1)
Nj−1

, α
+(l+1)
1 , y(l). In order to

focus on the main ideas we will surpress the superscript l and write α∗′ = (α′
1, ..., α

′
N−1) and

think about sampling from

α∗|α0, αN , y+.

Clearly if y+ is the null set, then we can update samples from this distribution by using the

DG sampler. Hence that case is of no new interest. Before considering the case of multiple

observations it is helpful to think about y+ containing only a single observation within this

block, ỹk. Recall this notation means this observation corresponds to

ỹk = Zαk.

In this case we have to sample from the full conditional density

f(α∗|α0, αN , ỹk) = I(ỹk = Zαk)


N∏

j=1

f(αj |αj−1)

 /f(ỹk, αN |α0). (20)
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As in Section 3, the normalising term f(αN , ỹk|α0) is unknown to us. However we can evaluate

the numerator of (20), allowing the use of the Metropolis method.

In theory this can be rewritten as

f(α∗|α0, αN , ỹk) =
N−1∏
j=1

f(αj |αj−1, ỹk, αN ) (21)

=
k∏

j=1

f(αj |αj−1, ỹk, αN )
N−1∏

j=k+1

f(αj |αj−1, αN ). (22)

The αj |αj−1, αN terms in (22) are essentially the expressions which appeared in Section 3.2,

so we know how to update that block. Hence the only remaining issue is how to sample from

f(αj |αj−1, ỹk, αN ).

In Section 3.2, we noted that the derivation of the approach of DG depends upon the ap-

proximation, p̂(αM |αj), made in (11). We parallel this approach and work under the measures,

for N > k > j,

f̂(αk|αj) = N(αk|αj + µ(αj−1)δ(k−j), Σ(αj−1)δ(k−j)),

f̂(αN |αk) = N(αN |αk + µ(αj−1)δ(N−j), Σ(αj−1)δ(N−j)),

ỹk = Zαk.

(23)

Then,

αj |αj−1, ỹk, αN ∼ Nd

(
m†

j , V
†
j

)
,

where the mean and covariance are given in the following Proposition.

Proposition 3 Writing Σj−1 = Σ(αj−1) and

mj =
αN − αj−1

(N − j + 1)
, vj = δ

(N − j)
(N − j + 1)

,

and

cj = 1 − (k − j)
N − j

, m∗
j =

(k − j)
N − j

αN , v∗j = δ
(k − j) (N − k)

(N − j)
.

Then αj |αj−1, ỹk, αN ∼ Nd

(
m†

j , V
†
j

)
where

(
V †

j

)−1
= v−1

j Σ−1
j−1 +

c2
j

v∗j
Z ′ (ZΣj−1Z

′)−1
Z

and (
V †

j

)−1
m†

j = v−1
j Σ−1

j−1 (αj−1 + mj) +
cj

v∗j
Z ′ (ZΣj−1Z

′)−1 (
ỹk − Zm∗

j

)
.

�
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Proof. Proposition 1 implies that

αj |αj−1, αN ∼ N (αj−1 + mj , vjΣj−1) ,

and

αk|αj , αN ∼ N
(
cjαj + m∗

j , v
∗
j Σj−1

)
, cj = 1−(k − j)

N − j
, m∗

j =
(k − j)
N − j

αN , v∗j = δ
(k − j) (N − k)

(N − j)
.

Thus

ỹk|αj , αN ∼ N
(
cjZαj + Zm∗

j , v
∗
j ZΣj−1Z

′) ,

Then, from standard Bayesian regression theory6

(
V †

j

)−1
= v−1

j Σ−1
j−1 +

c2
j

v∗j
Z ′ (ZΣj−1Z

′)−1
Z

and (
V †

j

)−1
m†

j = v−1
j Σ−1

j−1 (αj−1 + mj) +
cj

v∗j
Z ′ (ZΣj−1Z

′)−1 (
ỹk − Zm∗

j

)
.

�

The proposal on the entire block is thus

q(α1, ..., αN−1|α0, ỹk, αN ) =
k∏

j=1

q(αj |αj−1, ỹk, αN )
N−1∏

j=k+1

q(αj |αj−1, αN ). (24)

We can now propose from q(α1, ..., αN−1|α0, ỹk, αN ) and compare with the true density given by

(20) in a Metropolis algorithm. This is a direct generalisation of the algorithm in Section 3.2.

We can see that if there are no observations within the block then the true density given by (20)

is exactly that of Section 3.2 and we have exactly the same proposal as in Section 3.2. Similarly,

we obtain exactly the same setup when if observe αk exactly, so that Z = Id. Section 3.2, is

when the we exactly observe αk, so that Z = Id. The computational complexity of the method,

which involves simulating from (24) and evaluating the Metropolis acceptance probability, is of

order N − 1, as in Section 3.2.

We shall use this proposal for our general method, involving an arbitrary number of mea-

surements in the block under consideration. The general method will be apparent by examining
6Recall that it is well known that if β ∼ N(b0, S0) and y|β ∼ N(Xβ, Ω), then β|y ∼ N(bp, Sp) where

S−1
p = S−1

0 + X ′Ω−1X,

S−1
p bp = S−1

0 b0 + X ′Ω−1y.
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the case of two observations within the block, ỹk and ỹl, where 0 < k < l < N. In this case the

full conditional density we wish to draw from becomes

f(α1, ..., αN−1|α0, ỹk, ỹl, αN ) =

f(ỹk|αk)f(ỹl|αl)
N∏

j=1

f(αj |αj−1)

 /f(ỹk, ỹl, αN |α0)

=
k∏

j=1

f(αj |αj−1, ỹk, ỹl, αN )
l∏

j=k+1

f(αj |αj−1, ỹl, αN )
N−1∏

j=k+1

f(αj |αj−1, αN ). (25)

We can see that at the beginning of the block, before the two observations occur, the con-

ditional densities involve both future observations. This is reflected in the terms of the first

product of (25). In general, for several observations in a block, the initial states will depend

upon all future measurements in the block. This can raise computational difficulties for propos-

als as the computational complexity of our algorithm could be non-linear in N . However, we

avoid this problem by only conditioning upon the next observation rather than the other future

observations in the block. This is illustrated by examining our proposal distribution,

q(α1, ..., αN−1|α0, ỹk, ỹl, αN ) =
k∏

j=1

q(αj |αj−1, ỹk, αN )
l∏

j=k+1

q(αj |αj−1, ỹl, αN )
N−1∏

j=k+1

q(αj |αj−1, αN ).

(26)

where the terms q(αj |αj−1, ỹ, αN ) are given by (??) and q(αj |αj−1, αN ) by the DG proposal of

Section 3.2. The crucial aspect is that we only condition upon the next observation, as seen by

inspecting the first product term of (26). This ensures that our algorithm is fast and linear in

N in terms of computational complexity. In practice, sampling from (26) is hardly any more

complicated computationally than sampling from the proposal of Section 3.2. As in Section 3.2

we use a multivariate student t distribution q̃(αj |αj−1, ỹ, αM ) which has mean and variance, mj

and Vj respectively.

We shall now outline the MCMC method for the general case where the collection of ob-

servations within the block under consideration are denoted by ỹ∗. We shall assume that the

MCMC method has been running for j iterations so that our current value for the block is α∗(j).

We use the Metropolis method, detailed below, to perform the MCMC scheme.

Algorithm 2: Metropolis method: partially observed diffusions

1. Sample z = (z1, ..., zN−1)′ ∼ q̃(z|α0, ỹ
∗, αN ).

2. Evaluate

p(z, α∗(j)) = min

{
1,

f(z|α0, ỹ
∗, αN )

q̃(z|α0, ỹ∗, αN )
q̃(α∗(j)|α0, ỹ

∗, αN )
f(α∗(j)|α0, ỹ∗, αN )

}
. (27)
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3. With probability p(z, α∗(j)), set α∗(j+1) = z; otherwise set α∗(j+1) = α∗(j).

In the following section we consider the application of this method to a model which is of

state space form, see Harvey (1993), when the Euler discretisation is applied. This allows an

assessment of the scheme as we know the true posterior density of the discretised states, via

Kalman recursion methods, conditional upon the observations. This is a model in which the

state innovations are correlated. We find that our simple method works extremely well for this

example. In Section 4.4, we examine the stochastic volatility (SV) model, estimating both the

parameters and the discretised states.

4.3 Example 1: Gaussian factor structure

4.3.1 The model

We start with a simple model where analytic calculations are possible. Consider a bivariate,

linear process

y(t) = σ1b1(t) + α2(t),

where α2 is a Gaussian OU process given by the solution to

dα2(t) = k(µ − α2)dt + σ2db2(t), with k > 0.

We assume that b1 and b2 are independent standard Brownian motions. Hence if t is large the

Brownian motion component will dominate the variation in y(t), but over the short run α2 can

have a substantial impact.

This means we can put this model into our model structure by writing

y(τi) = Zα(τi), where Z = (1 0) ,

and

dα1(t) = κ(µ − α2)dt + σ2db2(t) + σ1db1(t)

dα2(t) = κ(µ − α2)dt + σ2db2(t), with k > 0.

Importantly the first component of the system α(t) = {α1(t), α2(t)}′, is exactly but infrequently

observed. The second component can only be infered through the observation of the first.

The model may be placed into companion form, of (1), as

dα(t) = µ(α)dt + Ωdw, (28)
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where, writing ι as a vector of ones,

µ (α) = κ(µ − α2)ι, Σ = ΩΩ′ =

 σ2
1 + σ2

2 σ2
2

σ2
2 σ2

2

 .

The Euler approximation to (28) is

αj+1 = αj + κδ(µ − α2j)ι +
√

δΩvj , (29)

where vj are independent bivariate standard Gaussian variates. Together with the observations

on the Euler scale

ỹMi = ZαMi, i = 1, ..., T,

the expression (29) forms a Gaussian, linear model allowing exact analysis of the Euler dis-

cretisation of the model for any specific value of δ. In particular we can directly calculate the

posterior of the complete data f(α+|y; θ), where θ = (κ, µ, σ2
1, σ

2
2)

′. The Gaussian densities can

be efficiently handled using the Kalman filter and associated smoother (e.g. Harvey (1989) and

Durbin and Koopman (2002)).

This model is chosen to test our simulation methodology as we have the smoothing density

of our states for the Euler approximation. We can therefore compare our output to the true

smoothed density. Overall this model should provide an information about the robustness of

our efficient and relatively simple algorithm.

4.3.2 Results

We take T = 12 and a unit frequency of observation, so we have observations at actual times

0, 1, 2, ..., 11. We take M = 4 (δ = 0.25) resulting in a total of 45 states α0, ..., α44. We take

our parameters to be (κ, θ, σ2
2) = (0.3, 0.5, 0.03) and σ2

1 = 0.03. The MCMC sampler is run

using just 2 blocks with the degrees of freedom in our multivariate t set to 30. The number of

simulations for our MCMC sampler is 20, 000, while we discarded the first ??? in order to take

into account of the effect of burnin.

The true posterior mean of the states in displayed, in Figure 2, with the 95% intervals

obtained from our MCMC results. Recorded is the true value, computed using the moments of

a normal distribution via the Kalman smoother, together with the 95% intervals obtained from

our MCMC results. Figure 2(a) shows the results for the observed component α1, while Figure

2(b) shows the corresponding results for α2. We would expect the true smoothed values to lie

inside the bounds, which is what we see.
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Figure 2: OU plus Brownian motion example. We use a 2 block and ν = 30 degree of freedom

sampler. True and estimated means for posterior trajecties together with 95% confidence interval

from MCMC results. (a) observed component α1, (b) unobserved component α2.

Figure 3(a) shows the average acceptance rate of the MCMC sampler at different points in

the sample. Figure 3(b) shows the MCMC trajectories and correlograms for two middle states

α15 = (α15,1, α15,2)′ and α30 = (α30,1, α30,2)′, the first component of the state being the regularly

observed part, the second the unobserved part. Clearly, the dependence is low as indicated by

the trajectory plots and the correlograms. The inefficiencies, drawn in Figure 3(c), for all the

states are very low. The inefficiencies, compared to a direct Monte Carlo sampler, over the

states are a higher than in the case where we conditioned upon the end points, at around values

of 4 for the observed part of the state and from 12 to 5 for the unobserved part of the state.

4.4 Example 2: Stochastic volatility example

Here we shall consider the standard stochastic volatility used for stock or exchange rate returns,

see for instance Hull and White (1987), Ghysels, Harvey, and Renault (1996) and Shephard

(1996). The continuous time setup has

y(t) = α1(t),
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Figure 3: Double OU example. (a) average acceptance probability against time. (b) Correlogram

for observed and unobserved components of α15 and α30. (c): Inefficiency for observed and

unobserved components against index.

at times 0 ≤ τ1 < τ2 < ... < τT with dα1(t)

dα2(t)

 =

 µ + β exp {α2(t)}
κ(µ − α2)

 dt +

 exp {α2(t)/2} 0

0 ω

 dw1(t)

dw2(t)

 ,

where w1 and w2 are standard Brownian motions. Here

• α1 represents the log-price process,

• α2 the spot log-variance process,

• µ the drift, and β the risk premium,

• κ the persistence of the volatility process, while µ is the mean of the log–variance process

and ω is the corresponding volatility of volatility,

• Cov(w1(t), w2(t)) = ρt, where ρ is viewed as a leverage parameter (e.g. Black (1976) and

Nelson (1991)).

In typical applications both µ and β are hard to estimate and so in this experiment we will

set them to be zero in this experiment.
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Figure 4: Log-OU Volatility example. We use knots (15,5,10) and set ν = 30, δ = 1 and n = 600.

(a) The true volatility path together with the posterior mean from the MCMC sumulations.

(b)The Metropolis acceptance probabilities for all the states.

Let us denote the parameters as θ = (κ, µ, σ2)′. Representing in the usual manner, the

complete data as α+, we sample, using the approach of Section 4.2, from f(α+|θ; y) then from

f(θ|α+). Sampling from f(θ|α+) is relatively straightforward as we essentially have a linear

model, apart from the initial distribution term. The sampling scheme is given in the Appendix,

section 8.2.

We shall illustrate the performance of our approach by simulating a time series of length

T = 600, unit spacing in time between observations. We take κ = 0.03, µ = −0.6 and ω =
√

0.03.

Initially we use M = 1. We vary the number of knots systematically as 15, 10 and 5 and set the

degrees of freedom in our multivariate t to be ν = 30. The results are given in Figures 4 and

5. From Figure 4(b), it is clear that the acceptance probabilities on the states (log-volatilities)

vary between 0.4 and 0.6. The posterior mean for the log-volatility is clearly close to the true

log-volatility. For the parameters, it is clear from Figures 4 and 5 that there is relatively little

dependence across MCMC sweeps for µ and κ, whilst ω2 exhibits more dependence.
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Figure 5: Log-OU Volatility example with k = 0.03, θ = −0.6, σ2 = 0.03. We use knots (15,5,10)

and set ν = 30, δ = 1 and n = 600. TOP: Histogram and correlogram for k. MIDDLE:

Histogram and correlogram for θ. BOTTOM: Histogram and correlogram for θ.

5 Major application

6 Discussion and extensions

6.1 Addition of jump processes

Jumps are often added to stochastic differential equations. In the SV literature they appear

in the literature both in the price process and in the volatility process. A paper which looks

at their empirical importance is Chernov, Gallant, Ghysels, and Tauchen (2002), who used

EMM to carry out the estimation. Some recent stimulating papers on the MCMC analysis of

continuous time models with jumps include Roberts, Papaspiliopoulos, and Dellaportas (2001),

Fruhwirth-Schnatter and Soegner (2001) and Griffin and Steel (2002). These papers all focus on

the Barndorff-Nielsen and Shephard (2001) OU volatility models, which are quite specialised.

For general diffusions we might add a vector jump by writing

dα(t) = µ{α(t−); θ}dt + Θ{α(t−); θ}dw(t) + dz(t), (30)

where z(t) is a pure jump process. In principle this jump process can be quite intricate, allowing
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infinite numbers of jumps in any finite amounts of time. Here we will follow the bulk of the

literature in specialising the framework to the case where z is a compound Poisson process

z(t) =
N(t)∑
j=1

cs,

where here cj is assumed to be iid from some distribution D(α(t−); θ). Here N(t) is a counting

process with, potentially, an intensity

λ(t) = λ {α(t−); θ} .

Recall λ(t) has the interpretation as the derivative of the conditional expectation of the expec-

tation of the counting process with respect to time.

From this structure it is clear that (30) is no longer a Markov chain, which is unfortunate

from a number of viewpoints. It is more productive to wrap this model into a Markov companion

form

dβ(t) =

 dα(t)

dz(t)

 .

We can use the augmentation idea directly on the augmented process β(t). Now over small

time intervals

zj+1 = zj + njcj , nj ∼ Po {λ {αj ; θ}} , cj ∼ D (αj ; θ) .

Of course this process is not fully observed, but this yields no new issues as the previous Sections

developed methods to handle this problem.

6.2 Discrete time analysis of partially observed systems

There is a considerable literature on partially observed systems in discrete time. Clearly this is

highly related to the continuous case. When the system is Gaussian then in many situations the

model can be placed into a Gaussian state space form and can be computationally efficiently

handled using the Kalman filter and associated smoother. Discussions of this is given in, for ex-

ample, Harvey (1989) and Durbin and Koopman (2002). Alternatively, unobserved components

are often modelled as discrete state Markov chains, in which case the Baum, Petrie, Soules,

and Weiss (1970) algorithm is well known in many areas of science. In economics this style of

analysis is often associated with the work of Hamilton (1989).

Non-Gaussian discrete-time state space models have been studied by many authors. Early

examples include Carlin, Polson, and Stoffer (1992), Carter and Kohn (1994) and Shephard

(1994). Papers which focus on discrete time stochastic volatility models include Kim, Shephard,
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and Chib (1998), Chib, Nardari, and Shephard (2002) and Eraker, Johannes, and Polson (2002),

who also discuss some of the related literature on this subject.

6.3 Filtering

Economists are often interested in the sequence of items such as αi,0|y1, ..., yi, θ. Although

MCMC can compute this, by simulating from α1,0, ..., αi,0|y1, ..., yi, θ for each i (e.g. Shephard

(1994)), it is unbearably slow as this is carried out from scratch for each i. Instead we focus on

the recent literature on particle filters which focus directly on the sequential problem. Leading

references in this regard, in the context of partially observed systems, are Gordon, Salmond, and

Smith (1993), Kim, Shephard, and Chib (1998), Pitt and Shephard (1999), Jacod and Del Moral

(2001), Jacod, Del Moral, and Protter (2001) and Johannes, Polson, and Stroud (2002). The

last three references are particularly relevant as they develop these methods in the context of

partially observed SDEs. A non-particle filter alternative to this approach has been developed

by Gallant and Tauchen (1998), whose backprojection method approximates E (αi,0|y1, ..., yi).

We can use the extended DG sampler to carry out particle filtering for partially observed

SDEs. Here we briefly outline how this would work. Throughout we surpress dependence on θ.

The basic approach of particle filtering is to start with a sample from αi,0|y1, ..., yi, which

we write

α
(j)
i,0 , j = 1, 2, ..., J.

The approach of the particle filter is to use this sample to produce a sample of size J from

αi+1,0 = αi,M |y1, ..., yi+1. Having reproduced the system one step forward we can repeat this

through time, tackling the whole problem by a simple recursion. But how do we quickly simulate

from αi,M |y1, ..., yi+1 given samples the samples α
(j)
i,0 ?

The problem is to sample from

f(αi,1, ..., αi,M |y1, y2, ..., yi+1) 	
J∑

j=1

f(αi,1, ..., αi,M |α(j)
i,0 , yi+1),

where the approximation becomes ever more accurate as J → ∞, for if we can do this we can

discard all the elements of the sample except for the desired αi,M |y1, ..., yi+1. Now

f(αi,1, ..., αi,M |α(j)
i,0 , yi+1) ∝ I(yi+1 = Zαi,M )

M−1∏
j=0

f(αi,j+1|αi,j),

so in principle we can sample from this object.

A simple approach to dealing with this problem is to make the following proposals, using L

which is much larger than J .
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1. Set l = 1.

2. Sample k randomly from 1, 2, ..., J .

3. Use the extended DG sampler to make a proposal from

αi,1, ..., αi,M |α(k)
i,0 , yi+1.

Call this sample α(l).

4. Write the density of the DG sampler as g and compute the weight

wl =
f(α(l)|α(k)

i,0 , yi+1)

g(α(l)|α(k)
i,0 , yi+1)

.

5. Let l = l + 1. Discard all the samples except α
(l)
i,M , which is placed into memory. Goto 2

until l = L.

This produces a population of new particles

α
(1)
i,M , ..., α

(L)
i,M

and associated weights

w1, ..., wL.

We resample the new particles, using probabilities proportional to the weights, to produce

a population of size J . As L → ∞ this produces an asymptotically valid population from

αi,M |y1, ..., yi+1 just using the theory of sampling, importance resampling (Rubin (1987) and

Rubin (1988)). As αi,M = αi+1,0 this solves the task we set ourselves.

6.4 Model comparison

An advantage of the Bayesian MCMC approach to inference is that there is a principled way

in which to compare the fit of various competing diffusion based models. Bayesian’s compare

models through their marginal likelihoods

f(y) =
∫

f(y|θ)f(θ)dθ

=
f(y|θ)f(θ)

f(θ|y)
,

for any value of θ where f(θ|y) > 0. A discussion of this general problem can be found in

Chib (2001) who recommends numerically approximating f(y|θ) and f(θ|y) with θ taken as
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E(θ|y), which can be found using the MCMC analysis. This approach was implemented for fully

observed diffusions by Elerian, Chib, and Shephard (2001). No real new issues of principle arise

here, however it is now harder to estimate f(y|θ). This quantity can be approximated a single

θ using the particle filter discussed in the previous subsection.

6.5 Model checking

Model checking can be carried out via the one-step ahead forecast densities of the observables

yi. In this exposition we will assume this is a univariate series, although similar ideas can be

developed for the multivariate case. Throughout we will work with

ui+1 = Pr(yi+1|y1, ..., yi; θ).

Such a time series of distribution functions should be iid uniform on the interval 0 to 1 if the

model is correct. This is discussed in the context of non-Gaussian time series models by, for

example, Smith (1985), Shephard (1994) and Kim, Shephard, and Chib (1998), although earlier

work goes back to at least Rosenblatt (1952). The later paper on this topic by X, Gunther, and

Tay () has attracted some attention. Work on using this idea in the context of exactly observed

diffusions is given in Elerian, Chib, and Shephard (2001).

In this context the main challange is actually computing ui+1. However, the output from

the particle filter solves this problem for it produces a sample from αi,0|y1, ..., yi. Hence we can

use this sample to propergate the a sample from αi+1,0|y1, ..., yi, which gives us a sample from

yi+1|y1, ..., yi; θ. Thus we can just estimate ui+1 by counting the number of simulations below

the observed value.

7 Conclusion

This paper has provided a unified likelihood based approach for inference in observed and par-

tially observed multivariate diffusions. This is based on a effective proposal scheme which is

developed out of some work by Durham and Gallant (2002) and represents an extension of

some earlier work of Kim, Shephard, and Chib (1998) and Elerian, Chib, and Shephard (2001).

This MCMC method is rather robust and can, in principle, work even in the context of large

dimensional diffusions or diffusions with many state variables.

We extend the basic analysis to talk about how to deal with jumps in the model. The

framework also provides a consistent way of dealing with other issues such as model choice,

model checking and filtering.
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8 Appendix

8.1

We will show that for N > k > j then under the Euler law

αk|αj , αN ∼ N
(
αj + m∗

j , v
∗
j Σ(αj−1)

)
, m∗

j =
(k − j)
N − j

(αN − αj) , v∗j = δ
(k − j) (N − k)

(N − j)
.

Proof. Now αk

αN

 |αj ∼ N


 1

1

 ⊗ αj + δ

 k − j

N − j

 ⊗ µ(αj−1), δ

 k − j k − j

k − j N − j

 ⊗ Σ(αj−1)

 .

This implies that

αk|αj , αN ∼ N
(
αj + m∗

j , v
∗
j Σ(αj−1)

)
, m∗

j =
(k − j)
N − j

(αN − αj) , v∗j = δ
(k − j) (N − k)

(N − j)
.

as

v∗j =
(k − j) (N − j)

(N − j)
− (k − j)2

N − j
=

(k − j) (N − k)
(N − j)

and

m∗
j = δ (k − j) µ(αj−1) +

δ (k − j)
δN − j

(αN − αj − δ (N − j) µ(αj−1)) .

8.2 Sampling θ|α+ for the log OU-Vol model

In our OU volatility model, the discretisation of the volatility xt = α2t follows,

xt+1 = xt + k(µ − xt)δ + σδ
1
2 ut,

for t = 1, ..., n = M(T − 1). where ut ∼ NID(0, 1). For ease of notation we may write this as,

yt = (β0 β1)(1 xt)′ + σ∗ut,

for t = 1, ..., n. where yt = xt+1−xt

δ , β0 = kµ, β1 = −k, σ∗2 = σ2/δ. We also have the initial

condition,

x1 ∼ NID

(
µ,

σ2

2k

)
= NID

(
β0

−β1
,

δσ∗2

−2β1

)
.

Our full conditional likelihood can now be written as,

f(β0, β1, σ
∗2 | x1, x2, ..., xn) ∝ f(y1, ..., yn−1 | β0, β1, σ

∗2)f(x1 | β0, β1, σ
∗2)p(β0, β1, σ

∗2).

The term p(β0, β1, σ
∗2) is the joint prior which is conjugate to the linear model likelihood

f(y1, ..., yn−1 | β0, β1, σ
∗2). The initial condition term will not be conjugate and is therefore
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ignored in our proposal. This is corrected in the Metropolis-Hastings step. We have the pro-

posal,

g(β0, β1, σ
∗2 | x1, x2, ..., xn) ∝ f(y1, ..., yn−1 | β0, β1, σ

∗2)p(β0, β1, σ
∗2),

where g(β0, β1, σ
∗2 | y1, ..., yn−1) = g(β0, β1 | y1, ..., yn−1; σ∗2)g(σ∗2 | y1, ..., yn−1). Using standard

statistical procedures, see for instance Bernardo and Smith (1994), we may proceed as

Our prior is

p(β0, β1, σ
∗2) ∝ p(β0, β1| σ∗2)p(σ∗2)I(β1 < 0),

where p(β0, β1| σ∗2) is a bivariate Gaussian, N(µβ , Ω−1
β ) and p(σ∗2) ∝ σ∗−2. The indicator term

I(β1 < 0), restricts β1 < 0, hence k > 0 ensuring stationarity. Letting β̂ = (X ′X)−1X ′y and

S2 = (y − Xβ̂)′(y − Xβ̂)/(n − 3) we obtain,

g(σ∗2 | y) = Iga
(

(n − 3)
2

;
(n − 3)

2
S2

)
g(β0, β1|y; σ∗2) = N

(
µ∗

β ; Ω∗−1
β

)
,

where
Ω∗

β = σ∗−2(X ′X) + Ωβ

µ∗
β = Ω∗−1

β {σ∗−2(X ′X)β̂ + Ωβµβ}.
Having sampled from this joint density we decide whether or not to accept our proposal Ψp =

(βp
0 , βp

1 , σ∗2p)′ based upon the Metropolis probability, involving only the initial distribution,

Pr(Ψc −→ Ψp) = min
[
f(x1 | Ψp)
f(x1 | Ψc)

]
,

where Ψc = (βc
0, β

c
1, σ

∗2c)′ is the current parameter vector. This gives the probability of moving

from the current parameter vector to the proposed value. If βp
1 < 0, we retain the current vector,

Ψc. We convert our vector back to the original parameterisation (k, µ, σ2)′ in a simple manner.
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