
UBIS: Utilization-aware cluster scheduling

Karthik Kambatla
Facebook

kasha@fb.com

Vamsee Yarlagadda
Cloudera

vamsee@cloudera.com

Íñigo Goiri
Microsoft Research
inigog@microsoft.com

Ananth Grama
Purdue University
ayg@cs.purdue.edu

Abstract—Data center costs are among the major enterprise
expenses, and any improvement in data center resource uti-
lization corresponds to significant savings in true dollars. We
focus on the problem of scheduling jobs in distributed execution
environments to improve resource utilization. Cluster schedulers
like YARN and Mesos base their scheduling decisions on resource
requirements provided by end users. It is hard for end-users to
predict the exact amount of resources required for a task/ job,
especially since resource utilization can vary significantly over
time and across tasks. In practice, users pick highly conservative
estimates of peak utilization across all tasks of a job to ensure job
completion, leading to resource fragmentation and severe under
utilization in production clusters. We present UBIS, a utilization-
aware approach to cluster scheduling, to address resource frag-
mentation and to improve cluster utilization and job throughput.
UBIS considers actual usage of running tasks and schedules
opportunistic work on under-utilized nodes. It monitors resource
usage on these nodes and preempts opportunistic containers when
over-subscription becomes untenable. In doing so, UBIS utilizes
wasted resources while minimizing adverse effects on regularly
scheduled tasks. Our implementation of UBIS on YARN yields
improvements of up to 30% in makespan for representative
workloads and 25% in individual job durations.

Index Terms—distributed computing; scheduling; cluster
schedulers

I. INTRODUCTION

Modern cluster schedulers, like YARN [20], support a

resource-request model, where users (via applications or

frameworks) can request a specified amount of resources like

CPU and memory. The requested resources are allocated when

they become available. Availability is determined by the aggre-

gate of cluster resources, less the sum of all prior allocations.

YARN refers to these allocations as containers; henceforth

also referred to as regular containers. The resources of a

container are reserved exclusively for its use and cannot be

used by other containers even if they are not used by the

owning container. This leads to resource wastage.

To limit this resource wastage, users must request tight

(over)estimates of required resources. In practice though, it

is hard to accurately estimate the resource requirements of

a job or its constituent tasks because: (i) resource usage of

a task varies over time, and (ii) resource usage can vary

across tasks of the same job based on the input they process.

Users are expected to estimate and request the peak usage

across all tasks to ensure job completion. This problem is

further exacerbated by the fact that end-users use convenience

wrapper libraries like Apache Hive [2] to create a majority

of these jobs and are consequently unaware of their char-

acteristics. For these reasons, users often rely on defaults,

picking conservative estimates of peak utilization, or using

Fig. 1: Allocation and utilization in a 2200-node production YARN
cluster at Yahoo!

requirements from other work-flows that are known to work.

Over-provisioning tasks in this manner can lead to severe

under-utilization in clusters [5, 7]. Figure 1 shows resource

allocation and utilization on a 2200-node production YARN

cluster at Yahoo! over a week. The figure shows that both

memory and CPU usage are consistently under 50%, even

when the cluster is fully allocated — the area between solid

and dotted lines corresponds to resources allocated but not

used. This typical resource utilization profile motivates our

effort.

In this paper, we present UBIS (utilization-based incremen-

tal scheduling), a scheduling approach that considers both

user-specified requests and the actual utilization of previously

allocated containers. Once the cluster is fully allocated (i.e.,

no additional tasks can be scheduled based on un-allocated

cluster resources), UBIS opportunistically allocates resources

not utilized by prior allocations. We refer to these allocations

as opportunistic containers. These opportunistic containers

use slack in the cluster to improve cluster utilization and

job throughput. Oversubscribing node and cluster resources

in this manner poses challenges. Oversubscription can be-

come untenable when tasks simultaneously start using more

resources, potentially leading to performance degradation and

task failures. UBIS preempts opportunistic containers to ease

any resource contention, but note that these preemptions limit

throughput gains from opportunistic scheduling.

Improvements in resource utilization through oversubscrip-

tion must not interfere with other desirable features of clus-

ter schedulers, such as fairness. Pareto-efficient weighted-

fairsharing [1, 9] enables equitable sharing of resources among

multiple tenants1. The notion of opportunistic resources,

where all tenants are interested in regular resources but only

a subset of tenants are interested in opportunistic resources,

1Pareto efficiency describes a fully allocated cluster where it is impossible
to assign a tenant more resources without adversely affecting another tenant.

358

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00045

introduces an additional dimension of fairness, making it

harder to reason about overall fairness. UBIS addresses this

by tracking fairness for regular and opportunistic resources

separately: regular resources are fairly allocated to tenants,

followed by a fair allocation of opportunistic resources among

the subset of tenants that can tolerate opportunistic contain-

ers. Finally, owing to the scale and complexity of typical

deployments, it is unrealistic to expect any runtime inputs

from end-users. Any improvements must be transparent to

users, preferably requiring no modifications to the user jobs

themselves.

We present an implementation of UBIS in Apache YARN.

Cluster administrators can turn on UBIS on a per-node basis

to oversubscribe resources at the node and control scheduling

through two knobs for allocating and preempting opportunis-

tic tasks respectively. While most batch-processing jobs can

tolerate preemptions in lieu of potential throughput gains,

certain latency-sensitive applications might not be able to

tolerate preemptions. These jobs can opt out of opportunistic

allocations.

Our contributions can be summarized as follows:

1) Techniques for opportunistic allocation of un-utilized

resources for improved utilization and job throughput,

along with (1) graceful handling of untenable oversub-

scription through preemption of opportunistic containers,

and (2) configuration knobs to control aggressiveness of

opportunistic scheduling.

2) Notion of multi-dimensional fairness to accommodate

resources of multiple priorities in a cluster.

3) Implementation of the techniques in Apache YARN,

demonstrating improvements of up to 30% in makespan2

for a representative workload and 25% in individual job

durations.

II. PROBLEM MOTIVATION

In this section, we examine sample YARN workloads to

investigate the source of under-utilization and make a case for

utilization-aware scheduling.

A. Resource wastage at the job level

We select wordcount and the tera-suite of jobs – TeraGen,

TeraSort, and TeraValidate for profiling. These jobs mimic

common data-access patterns and are commonly used for

performance comparisons. Wordcount counts the number of

occurrences of each word in input data, and represents a

variety of applications that compute statistics for given input

– logs, clickstreams etc. Teragen is a map-only job, where

each task generates some random data. Terasort sorts the data

generated by TeraGen, and TeraValidate validates that the

output of TeraSort is indeed sorted. The Tera-suite of jobs

is representative of an ETL (extract-transform-load) pipeline.

Figure 2 shows the memory usage for sample runs. All jobs

request default 1 GB containers. For each job, the figure plots:

(i) the overall mean, defined as the mean of all per-container

mean usages, (ii) the mean peak, defined as the mean of all

2Makespan is the total execution time for the workload.

Fig. 2: Memory usage for commonly used Hadoop examples

per-container peak usages, and (iii) the overall peak, defined as

the max of all per-container peak usages. The overall peak is

the least amount of memory that can be requested; requesting

less memory will lead to task and job failures. From the plots,

we make the following observations:

1) The mean peak usage is noticeably higher than the overall
mean. This is because the resource usage of a task varies

over its different stages — read input, process, and write

output — each stage with a different resource usage

profile.

2) The error bars in the figure for both overall mean and

mean peak usage show that resource usage can vary

significantly across tasks of the same job.

3) The overall mean is roughly half the overall peak, show-

ing that only half of a container’s resources are typically

used.

These results show that under-utilization can be significant,

even if users submitting these jobs are sophisticated enough

to track the peak usage of constituent tasks.

B. Resource wastage in workflows

Enterprise users typically use convenience libraries (like

Hive) to submit workflows (SQL queries), posing additional

challenges. Since the constituent jobs are created at runtime,

even a sophisticated user cannot specify the peak resource

usage for each job in the workflow. Hive allows specifying

resource requirement for the entire workflow, requiring the

user to specify the peak usage across all tasks of all jobs that

are part of the workflow. However, enterprise users are often

unaware of constituent jobs, let alone their resource usage. It

is common for these users to use conservative defaults these

software packages ship with, pick values by trial-and-error for

which the query succeeds, or even copy values that worked

for another query that is potentially more resource intensive.

One way to lower this under-utilization is to improve

workflow systems to better estimate the resource requirements

of constituent jobs. For instance, prior work [8] estimates the

duration of constituent jobs, and a similar approach may apply

to estimating resource requirements. Improved estimates will

still be a tight bound on the peak usage, which could be

significantly higher than the mean usage as discussed earlier.

359

III. PROBLEM STATEMENT

UBIS aims to improve effective cluster utilization, which

directly translates to metrics that impact end-users: makespan

of workloads and individual jobs. For a given workload,

makespan is the duration between workload submission and

completion. A workload can be viewed as a directed acyclic

graph (DAG) of jobs, where each job comprises several tasks.

A single job is the basic unit of a workload, and makespan

for a job is simply the job duration.

Consider a cluster with R resources (R is a multidimen-

sional vector, with dimensions representing CPU, memory, and

potentially other resources), and a workload comprising of N
jobs with a total of n tasks. We denote by Ri the maximum

resource requirement of task Ti, as specified by the user. Note

that Ri can be computed by maximizing along each dimension

over the execution of the task. At any given time, the scheduler

schedules the largest subset of tasks that fit on the cluster,

G = {Ti|
∑

Ri ≤ R}; adding one more task to the set would

lead to
∑

Ri > R. We represent by Ui the actual utilization

of task Ti running on the cluster. As shown in §II, Ui < Ri,

and Rs =
∑

Ri −
∑

Ui captures the slack in the cluster due

to under-utilization.

UBIS proposes to schedule opportunistic tasks to use this

slack, Rs. One could allocate the largest subset of tasks that

fit in this slack, O = {Ti|
∑

Ri < Rs}. However, utilizing all

available slack can cause resource contention (with possible

task failures) due to temporal variations in resource utilization.

The associated loss in performance is captured by Δti, where

ti is the duration of task Ti. Under extreme contention, a select

number of tasks (p) might need to be preempted to ensure

that oversubscription remains tenable. We make the following

observations:

1) Makespan is inversely related to the number of tasks run

in parallel.

2) Makespan grows with task duration (ti +Δti).
3) Δti grows with number of parallel tasks due to resource

contention. An unsustainable number of parallel tasks

may lead to thrashing.

4) Makespan grows with number of preemptions (p).

Optimal makespan corresponds to the largest value of

utilized slack for which resource contention is manageable;

i.e.,
∑

Δti and p remain small. This depends on the work-

load, as well as cluster resources. Further, improvements in

utilization and makespan must not interfere with other aspects

of cluster scheduling. Our design of UBIS has the following

considerations:

C1 The cluster should remain operational; none of the nodes

should fall over due to the additional load of opportunistic

containers.

C2 Job durations should be predictable and at least on par

with the case of no opportunistic containers.

C3 Resource allocation should continue to honor fairness

requirements, as outlined in [9], for both regular and

opportunistic allocations.

C4 Jobs should be allocated regular containers no later than

the base case of no opportunistic containers.

C5 Scalability of the scheduler should not be affected.

C6 Effect of opportunistic scheduling on the execution of

regular containers should be minimal.

C7 Cluster administrators should be able to turn on UBIS

without the need for any end-user action.

Constraints C1 - C5 are essential for clusters to adopt UBIS.

C3, C4 and C5 capture scheduling requirements, while C1 and

C2 capture requirements on the execution environment. C6 and

C7 are desirable and make for good user experience, but are

not essential.

IV. UBIS DESIGN

In this section, we outline our proposed solution to the

underlying optimization problem, and discuss how our solution

addresses constraints listed in the previous section.

A. Identifying the opportunity

UBIS identifies resource slack at each node by actively

monitoring resource usage of each container. UBIS augments

the node heartbeat 3 to include utilization information as

well as an over-allocation threshold (Talloc); Talloc, a value

between 0 and 1, specifies the extent of oversubscription

allowed on that node. The scheduler allocates opportunistic

containers only if utilization is less than Talloc × Rn, where

Rn is the node resource capacity for running containers.

B. Scheduling opportunistic containers

In both Yarn and Mesos, resources are allocated to nodes

on node heartbeats. When a node heartbeats, (1) the scheduler

updates its state (resource availability and container state

changes) and (2) allocates containers by iterating through

waiting jobs, in the order determined by fairness constraints,

and checking if the node meets the resource and locality

requirements. The scheduler continues to allocate containers

to the node, as long as it has enough resources to meet a job’s

pending request.

Algorithm 1 presents the UBIS scheduling algorithm. UBIS

schedules regular containers the same way the base scheduler

does (lines 11 to 19) by calling AllocateRegularContainer as

long as there are enough unallocated resources to meet a pend-

ing request. Once the scheduler allocates regular containers, it

schedules opportunistic containers (lines 21 to 29) by calling

AllocateOpportunisticContainer as long as there are enough

un-utilized resources on the node to meet a pending request.

AllocateOpportunisticContainer differs from AllocateRegular-
Container only in how the node’s availability is computed;

resource availability for opportunistic containers is computed

based on node utilization (Util) and Talloc (line 21). Note

that the scheduler assumes the newly allocated containers will

utilize all allocated resources; this headroom accommodates

minor fluctuations in usage of running containers.

3In most cluster schedulers, worker nodes heartbeat container liveness
information to the master periodically.

360

Algorithm 1: UBIS scheduling for a node, N

Result: Container allocations for the node

1 Cap← GetNodeCapacity(N)
2 Allocreg ← GetRegularAllocation(N)
3 Util← GetUtilization(N)
4 Talloc ← GetOverAllocThreshold(N)

5

6 foreach opportunistic container C do
7 PromoteIfPossible(C)

8 end
9

10 Allocnew ← 0
11 Availreg ← Cap−Allocreg

12 while Allocnew < Availreg do
13 Alloctmp ← AllocateRegularContainer(N)
14 if Alloctmp is valid then
15 Allocnew ← Allocnew +Alloctmp

16 else
17 break

18 end
19 end
20

21 Availopp ← Talloc × Cap− Util
22 while Allocnew < Availopp do
23 Alloctmp ← AllocateOpportunisticContainer(N)
24 if Alloctmp is valid then
25 Allocnew ← Allocnew +Alloctmp

26 else
27 break

28 end
29 end

C. Avoiding adverse effects of opportunistic containers

The addition of opportunistic containers for improved uti-

lization can lead to contention, sometimes not allowing the

node agent (or OS) to react with a corrective action, thereby

rendering the node unusable. These concerns correspond to

the constraints C1 and C2 mentioned in §III.
To avoid these adverse conditions, UBIS proposes that the

node agent proactively preempt opportunistic containers to

avoid severe contention. The effects of contention vary for

different resources: memory contention can lead to task fail-

ures, whereas CPU contention causes performance degradation

for low contention; only high contention with unsustainable

context-switch overhead leads to failures. For malleable re-

sources like CPU, we can tolerate 100% utilization for short

bursts of time. Accordingly, UBIS introduces a per-resource

preemption-threshold, Tpreempt, (a value between 0 and 1);

if the aggregate container utilization goes beyond Tpreempt

for a preset number of heartbeats, the node agent preempts

enough opportunistic containers to bring the utilization under

the threshold. Note that the scheduler does not play an active

role in this preemption to ensure responsiveness, but follows

up with appropriate allocations when notified in a subsequent

(a) Regular (b) Regular + Opportunistic
Fig. 3: Task schedule and execution for a job with 3 tasks. X-axis
plots time and Y-axis represents nodes N1, N2, and N3.

heartbeat.

UBIS also places certain safeguards in addition to proactive

preemption. Opportunistic containers are run at a lower prior-

ity than regular containers, as allowed by the operating system

and the execution environment. On Linux, we leverage the

host operating system through cgroups to limit the aggregate

container utilization to the configured threshold. Cgroups may

also be used to isolate regular containers by offering malleable

resources (CPU, disk, and network) only on a best-effort

basis to opportunistic containers. If opportunistic containers

are consistently deprived, they are preempted to be scheduled

elsewhere, potentially as regular containers.

D. Promotions and opt-out provisions

The effect of allocating opportunistic containers, occasion-

ally at the expense of delayed regular containers, depends on

the workload. Most jobs do not have service level agreements

(SLAs) and increased parallelism helps improve makespan.

Consider the job execution illustrated in Figure 3. The job

has three tasks, each task runs for 2t units of time when

run as a regular container. Without opportunistic containers

(Figure 3a), a new regular task is scheduled every t units

of time and the job takes 4t units of time to finish. With

opportunistic containers enabled (Figure 3b), the third task is

scheduled opportunistically on node N3 at time 1.5t, ahead

of the regular container allocation at 2t. During the time

interval 2t to 3t, the job has fewer regular containers than

the base case, violating constraint C4. Despite this violation,

this particular job benefits from the opportunistic allocation

finishing at time 3.5t, even though the opportunistic task takes

slightly longer than the regular task.

To limit C4 violations, UBIS attempts to promote oppor-

tunistic containers to regular containers. Same node promo-

tions are easy and always beneficial; the scheduler and the

worker node need to update their book-keeping and adjust any

isolation settings. Cross node promotions are more involved: if

the job does not have a way to checkpoint and migrate the task

in a work-preserving manner, the task must be killed restarted

on another node. As a result, cross-node promotion may lead

to longer runtime than letting the opportunistic container run.

Since common frameworks (MapReduce and Spark) do not

preserve work across task restarts, UBIS does not promote

containers across nodes. If a job’s SLA requirements are tight

and same node promotions alone are not enough to guarantee

them, UBIS allows these jobs to opt out of opportunistic

allocations. The number of jobs that fall into this category

361

is typically small.

Note that jobs may also adopt a hybrid approach. Instead

of categorically opting out of opportunistic allocation, they

may choose to not accept opportunistic containers at specific

points of execution. For instance, a MapReduce job with large

shuffle data might not want to run reduce tasks in opportunistic

containers, since the cost of preemption is high; on the other

hand, opportunistic containers are well-suited to speculative

tasks.

E. Honoring fairness

Fairness-based schedulers [1, 9, 10] are widely used to

share resources among cluster users. Ghodsi et al.[9] outline

desirable characteristics of a fairness-based cluster scheduler

and show that Dominant Resource Fairness (DRF) honors each

of these characteristics:

Sharing incentive. Users should have an incentive to share a

cluster; if there are n users, each user should be allocated at

least 1
n of all resources in the cluster. Otherwise, they might

be better off running their own partition.

Strategy-proof. A user should not get a larger allocation by

misrepresenting her resource requirements. For example, a

user should not get more resources just by asking for larger

containers.

Envy-free. A user should not prefer the allocation of another

user.

Pareto-efficiency. On a fully allocated cluster, a user cannot be

assigned more resources without adversely affecting another

user’s allocation.

The Hadoop FairScheduler [1] implements both max-min

fairness and DRF, and the user can choose one of them. UBIS

builds on the fairness of the base scheduler by applying the

base scheduling algorithm to allocate regular and opportunis-

tic containers. Allocation of regular containers is identical

to the base case: unallocated cluster resources are fairly

allocated among interested tenants. Opportunistic containers

are allocated only when the scheduler cannot allocate any

more regular containers. Allocation of opportunistic containers

applies the base scheduling algorithm to the pool of un-utilized

resources, instead of unallocated resources, leading to a fair

allocation of un-utilized resources among interested tenants. If

a job opts out of opportunistic containers, it is not allocated

any un-utilized resources and its share is distributed among

other jobs.

Since UBIS applies DRF to unallocated/ un-utilized re-

sources to allocate regular and opportunistic containers respec-

tively, it satisfies each of these characteristics.

Theorem 1. UBIS satisfies sharing incentive property.

Proof. Assume that UBIS does not satisfy the sharing in-
centive property. On a cluster with n users, a user’s total

allocation is less than 1
n of all resources. At least one of

regular or opportunistic allocation must be less than 1
n of the

corresponding resources available.

Case 1. User’s regular allocation is less than 1
n of regular

resources. Since regular resources are allocated by applying

DRF, this means DRF does not satisfy sharing incentive

property, which contradicts our assumption.

Case 2. User’s opportunistic allocation is less than 1
n of

opportunistic resources. If the user has opted out of oppor-

tunistic allocations, this is expected; even on a partition with
1
n of cluster resources, the user would not be allocated any

opportunistic containers. If the user has not opted out of

opportunistic allocations, again the allocation was by applying

DRF, and this contradicts our assumption that DRF satisfies

sharing incentive.

Similarly, building on the proofs in [9], one can show by

contradiction that UBIS honors all the listed characteristics.

In fact, UBIS incentivizes sharing the cluster more than plain

DRF. In addition to unallocated resources, users sharing the

cluster are allocated opportunistic containers when other users

are not fully utilizing their regular allocations. UBIS drives

the utilization higher by being pareto-efficient in both regular

and opportunistic resources.

F. Scalability

Scheduler scalability depends on: (i) in-memory state as-

sociated with nodes, jobs, containers, and (ii) handling node

heartbeats and allocating containers on these nodes (serial-

ization at the scheduler). UBIS does not alter the number

of nodes, jobs, or heartbeats. UBIS, however, allocates more

containers than the base case: this does not impede scalability

from a processing perspective, since all these containers would

be allocated at some point, but does lead to a marginally larger

memory footprint. UBIS also augments the node heartbeat

to include node utilization information; this leads to a slight

increase in network traffic and time for processing node heart-

beats. In practice, the overhead of these changes is marginal.

From our experience developing and supporting YARN on

production clusters, this is quite manageable.

V. EVALUATION

We provide the necessary background on YARN and outline

the changes we made to realize UBIS in YARN. Our evalua-

tion of this implementation is two-fold: (i) sensitivity analysis

aimed at understanding the effect of different factors in a

controlled environment; and (ii) real-world analysis running

UBIS on a 20 node cluster running a workload representa-

tive of typical production workloads to quantify performance

improvements.

A. Implementation

Background. YARN currently supports CPU and memory as

resources4. YARN ships with three schedulers – FairScheduler,

CapacityScheduler and FifoScheduler – the first two are com-

monly used. We implemented the UBIS scheduling algorithm

(Algorithm 1) in both FairScheduler and CapacityScheduler,

but limit our discussion to FairScheduler. We refer to the

4YARN has recently added support for scheduling generic resources, but
the node agents track only CPU and memory.

362

Tab. I: Workload for sensitivity analysis
Job Task memory usage

Sleep Fixed 200 MB
G-Sleep-50 Up to 50% of allocated heap
G-Sleep-75 Up to 75% of allocated heap

G-Sleep Up to 99% of allocated heap

existing implementation as the base implementation and the

augmented version as the UBIS implementation.

Collecting resource utilization. The NodeManager (YARN’s

node agent) already monitors the CPU and memory usage

of individual containers using the proc filesystem on Unix-

based operating systems. We augmented this to compute the

aggregate CPU and memory usage across all YARN containers

on the node. We send this information to the scheduler via

the periodic node heartbeat to include: (i) aggregate container

resource utilization and (ii) over-allocation threshold (Talloc).

This additional information — memory and CPU utilization

are an integer and a float, respectively, and Talloc is a float

for each resource — adds little overhead to the node heartbeat

payload.

Allocating opportunistic containers. On receiving the node

heartbeat, our UBIS implementation allocates regular con-

tainers the same way the base implementation does. After

scheduling regular containers, the scheduler allocates oppor-

tunistic containers to use the resources that are allocated to

other containers, but are not being actively utilized. Note

that the containers being allocated in this heartbeat are yet

to be started and hence have zero utilization at the time of

allocation. In our implementation, we conservatively assume

that these newly allocated containers will use all the resources

allocated to them. So, the effective resource availability on

a node for opportunistic allocations is its capacity, less last

reported utilization and prior allocations in this heartbeat

(capacity − actual utilization − prior allocations). This

conservative estimate helps us avoid situations in which all

containers start simultaneously and overload the worker node.

Keeping oversubscription viable on the node. In the event

of tasks simultaneously using more resources, over-allocation

could lead to severe contention and potential task failures.

UBIS proposes the use of a per-resource Tpreempt; we imple-

mented this in YARN for CPU and memory. If the resource

usage goes over this threshold, we preempt enough opportunis-

tic containers to control resource contention. For a malleable

resource like CPU, we tolerate brief spikes and preempt con-

tainers only on sustained contention. To accommodate this, we

add another tunable parameter called preemption-threshold-
count; containers are preempted only if the contention sustains

for preemption-threshold-count number of aggregate container

usage checks. By default, an aggregate container usage check

is triggered every 1 second and the preemption-threshold-count
is set to three. These parameter defaults have been inferred

from empirical observations of real environments.

B. Sensitivity Analysis

Our sensitivity analysis is aimed at understanding the effect

of various parameters on the number of opportunistic alloca-

(a) Effect on opportunistic allocations.

(b) Effect on preemptions.
Fig. 4: Effect of Talloc on opportunistic allocations and preemptions.
Tpreempt = 0.9f. Sleep task duration = 1 min.

tions and preemptions, and any workload characteristics that

determine the extent of improvement from this opportunistic

scheduling. For this analysis, we use a modified version of the

MapReduce sleep job. The sleep job runs a specified number

of map and reduce tasks, each of which sleep for a specified

duration. These sleep tasks use minimal resources — 200 MB

for the JVM and small fraction of a core. We modified this

job to gradually grow task memory usage to a specified limit,

by allocating memory on the heap. Table I captures the four

variations of the modified sleep job we use in this analysis.

We ran the sensitivity analysis experiments on a single node

cluster with 72 physical cores and 256 GB RAM. Of this, 64

cores and 130 GB memory are allotted to YARN containers.

Each job has 315 map tasks, each running on a 〈1 core, 2

GB〉 container and 0 reduce tasks. In a MapReduce job, one

container (1 core) is used by the ApplicationMaster5, leaving

63 cores for the tasks themselves. We chose 315 map tasks

per job so each job has 5 waves of map tasks.

Note that even though we tightly control the resource usage

of containers for this sensitivity analysis, the order of container

resource requests and allocations is non-deterministic and

can affect scheduler allocations of regular and opportunistic

containers. The relative timings of container starts can also

affect actual aggregate utilization, and therefore the number of

preemptions due to resource starvation. To limit the effect of

this variability, we run each job five times serially and use the

mean values for all metrics we compute for our conclusions.

Effect of over-allocation threshold (Talloc). Figure 4 captures

the effect of Talloc on: (i) the percentage of opportunistic

containers allocated relative to the total number of containers

5In Yarn, the ApplicationMaster negotiates resources with the scheduler
and launches tasks for the application (job) on worker nodes.

363

Fig. 5: Percentage of preemptions at different values of Tpreempt.
Talloc = 0.8f. Sleep task duration = 1 min.

(Figure 4a); and (ii) the percentage of opportunistic containers

subsequently preempted due to resource contention relative to

the total number of containers (Figure 4b).

Jobs with low per-task utilization (more unused resources)

have a higher percentage of opportunistic containers; the

vanilla Sleep job has the highest percentage of opportunistic

containers. The percentage of opportunistic containers grows

with Talloc; the percentage of opportunistic containers in-

creases from 30% − 40% at Talloc = 0.5 to 48% − 60% at

Talloc = 0.9. The rate of growth is lower at higher values

of Talloc. Jobs with greater variability in utilization have more

preemptions; the preemption percentage for G-Sleep is highest,

and the vanilla Sleep job has no preemptions. As containers

use more resources, the earlier value for utilization used by

the scheduler becomes an underestimate, leading to resource

contention and preemptions. Talloc only marginally affects the

rate of preemptions. In Figure 4b, the increase in preemptions

between Talloc values 0.5 and 0.9 is less than 10% of total

containers.

Effect of preemption threshold (Tpreempt). Figure 5 captures

the effect of Tpreempt on the percentage of opportunistic

containers preempted relative to the total number of containers.

As expected, the rate of preemptions goes down as we increase

Tpreempt. A wider gap between Talloc and Tpreempt allows for

more fluctuation in actual utilization, and hence leads to lower

preemptions. As noticed earlier, jobs with greater variability

have more preemptions.

C. Results from a realistic deployment

To understand the benefits of UBIS in real cluster envi-

ronments, we deployed our FairScheduler implementation on

a 20-node cluster. Table II captures the resources available

on each node and the amount of resources allotted for use

by YARN containers. Each node had 32 physical cores, of

which we allot 28 for use by YARN containers. YARN has the

notion of virtual cores (vcores) to allow allocating a fraction

of a physical core to a container and realize the notion of a

homogeneous CPU unit in a potentially heterogenous cluster.

For our experiments, we split each physical core to 2 virtual

Tab. II: Per-node resources on the 20 node deployment
Resource Node capacity Yarn
Memory 256 GB 130 GB
CPU 32 cores 28 cores as 56 vcores
Disk 12 disks 12 disks
Network 10G 10G

Fig. 6: Percentage improvement in (1) makespan for job-mix and (2)
aggregate job duration for different values of Talloc.

cores leading to 56 vcores per node. While we have ample

memory (256 GB) on each node, we allocate only 130 GB to

YARN, since none of our containers need more than 2 GB.

YARN has access to all 12 disks available on each node. Each

task is assigned one working directory for temporary files, the

most notable being intermediate shuffle data.

The cluster has 1 master node and 19 worker nodes leading

to aggregate YARN capacity of 1064 vcores and 2.41 TB of

memory.

1) Representative workload

First, we run a workload that represents a typical big-

data workload as observed in production deployments. The

workload consists of three pipelines submitted simultaneously

and run in parallel:

1) A TPC-DS Hive query (query-35) that operates on a 3TB

dataset. TPC-DS [16] is an industry-standard benchmark

for decision support systems including big-data systems.

2) An ETL (extract-transform-load) pipeline captured by the

teragen, terasort and tervalidate jobs. Teragen generates

a terabyte of random data representing ingestion of data

into a Hadoop cluster (extract). Terasort sorts the data

generated by teragen (transform). Teravalidate validates

whether the output of Terasort is indeed sorted (load).

3) A CPU intensive job - Wordcount - that counts the

occurrences of words in a 1 TB of randomly generated

input data. Wordcount represents the class of jobs that

compute statistics on a large corpus of data; examples

include clickstream counting or log analysis.

These jobs also differ in their I/O access patterns: the

proportion of input data read from distributed storage, inter-

mediate data written to local disks, and output data written

back to distributed storage [15]. For our evaluation runs, we

set the task resource requirements to the peak usage observed

in our trial runs with different CPU and memory settings.

Figures 6, 7, and 8 capture the results of running these

representative workloads. We focus our analysis on metrics

directly impacting the end-user — the makespan of the entire

workload (duration between first job’s submission and last

job’s completion), individual job and task durations. For these

runs, we vary Talloc and fix Tpreempt at 0.95 for memory and

0.99 for CPU.

364

Fig. 7: Percentage deterioration in cumulative task runtimes for
different values of Talloc.

Fig. 8: Individual job durations for different values of Talloc.

Figure 6 plots the improvement in makespan of the entire

workload and aggregate job duration (computed as sum of

all job durations) against Talloc. The percentage improve-

ment is computed as (100 × (baseline − actual)/baseline),

where baseline corresponds to the traditional (non-UBIS)

implementation. The peak improvement is 30% for makespan

and 25% for aggregate job duration. Overall, improvement

in both metrics increases with Talloc from 0.5 to 0.9 and

then decreases from 0.9 to 0.95. As Talloc increases, we

see that the percentage of opportunistic containers increases

improving cluster utilization and the amount of parallelism.

Task contention and number of preemptions also increase

steadily with Talloc as the number of opportunistic containers

increases leading to task and job slowdowns, respectively. The

net improvement in makespan or aggregate job duration is

essentially the positive difference between higher utilization

(from increased parallelism) and slow-down (due to contention

and preemptions). For this workload and set of cluster re-

sources, a value of 0.9 is optimal for Talloc. Note that the

dip at 0.95 is marginal, and not as drastic as one would

expect. We believe this is because of two reasons: (i) the

percentage of opportunistic containers tapers off after a point

as discussed in §V-B, and (ii) our implementation is less

aggressive with opportunistic allocation at higher values of

Talloc as it assumes the containers allocated in the current

heartbeat need all allocated resources.

Figure 7 plots the deterioration in aggregate task duration

(sum of duration of all tasks in the workload) owing to

increased contention discussed earlier. We believe this con-

Fig. 9: Scheduler robustness: Percentages of CPU usage, opportunis-
tic containers and speedup for different workload configurations.

tention stems from the lack of isolation, especially for disk

accesses. Deterioration is computed similar to the improve-

ment (100× |baseline− actual|/baseline). As expected, the

aggregate task duration steadily increases with Talloc. While

we anticipate a strict linear correspondence, we believe the

slight deviations from linearity are due to the non-determinism

in actual task start times and the duration of overlap.

The deterioration in task duration, however, does not affect

job durations much, due to increased concurrency in the

system. Figure 8 plots the actual job duration (in minutes)

for the Tera-suite and Wordcount jobs against Talloc. For

larger jobs with several waves of map tasks (Terasort and

Wordcount), the job duration decreases as Talloc increases

before tapering off past 0.9. For smaller jobs with fewer

map tasks that all fit in a single wave, the job duration does

not improve. At higher values of Talloc, the increased task

contention leads to a slight increase in job duration. Better

isolation of tasks, including support for disk and network

isolation, would help avoid the effect of over-subscription on

these smaller jobs.

The optimal values for Talloc and Tpreempt depend on the

cluster and the workload running on it. One can pick Tpreempt

based on the amount of contention the nodes can tolerate.

A high value like 0.99 might work well for a malleable

resource like CPU as it allows short bursts in usage. For a non-

malleable resource like memory, leaving some headroom will

allow the worker agent to take corrective action; 0.95 worked

fine in our experiments. A good value for Talloc depends

more on the workload — workloads with steady usage could

use a higher value. Based on our experiments presented in

this section, we anticipate a value in the range of 0.75–0.9
to work well for most clusters. Picking the exact optimal

value is more involved: trial-and-error is straight-forward and

might work well for clusters whose workload characteristics

do not change much over time. Gradient descent algorithms

could help arrive at the optimal value sooner by restricting

the values sampled. One could also use a different value on

different nodes and pick the value that corresponds to the best

utilization/ preemption tradeoff.

365

2) Robustness

Having established the gains in throughput for a representa-

tive workload, we verify the robustness of UBIS. Specifically,

we verify that: (i) UBIS adds minimal overhead on an already

well-utilized cluster; and (ii) running small jobs with short

tasks opportunistically while running a large job does not

affect the job duration of the large job. However, as explained

in §II, it is hard to fully utilize a cluster without oversubscrip-

tion, given the difference in peak and mean usage of tasks.

Instead, we set Talloc to the mean node utilization; since the

node utilization is already at Talloc, the scheduler should not

allocate any opportunistic containers. Figure 9 plots the CPU

usage, number of opportunistic containers, and speedup for

different workload configurations. TS stands for Terasort on 2

TB data, WC for Wordcount on 100 MB data, and Talloc is

in parentheses.

First, we run a large Terasort job that sorts 2 TB of data on

the same 20 node cluster without opportunistic scheduling. We

notice that the CPU is more contended than memory and focus

our analysis on CPU usage. This Terasort run (identified as TS

(0) in the figure) forms the base case and is used for speedup

calculations of other configurations. For the base case, mean

CPU usage is 16.38% with a standard deviation of 9%.

Next, we run the same Terasort job with Talloc set to 0.2.

Since the node utilization is already close to this value, we see

no opportunistic containers allocated. We see minor increase

in CPU utilization (mean of 17.15%) and a corresponding

speedup of 1.22%. We attribute this minor improvement to

the non-deterministic nature of task execution.

When we increase Talloc to 0.8, as expected, we see oppor-

tunistic allocations (25% of total tasks) leading to noticeable

improvements in CPU utilization and speedup (15.28%). Now,

along with this large Terasort job, we submit a small Word-

count job that counts the number of occurrences of the words

in a 100 MB corpus of data. We notice a slight increase in

the number of opportunistic containers, with negligible change

in CPU usage. These opportunistic containers are allocated to

both Terasort and Wordcount jobs. The Terasort job still sees

a considerable speedup of 10.8%.

VI. RELATED WORK

Resource scheduling for distributed computing has been an

area of active research for a long time, from Condor [19] for

HiPC workloads to MapReduce [6] and Dryad [13] for data-

centric workloads. For brevity, we limit our discussion to the

most relevant work aimed at improving cluster utilizaiton.

Most modern schedulers — Apollo [4], Borg [21],

Corona [3], Mesos [12], Omega [18], Quincy [14], YARN [20]

— adopt fine grained resource scheduling, where the scheduler

allocates resources based on per-task resource estimates; this

avoids the internal fragmentation in fixed-size slot based

approaches. However, as illustrated in §II, users are typically

not equipped to estimate individual task resource requirements.

Instead of resource estimates, Quasar [7] asks users for

performance-oriented requirements (latency, runtime) for the

workloads. Quasar then uses fast classification techniques,

based on some profiling information and data from previous

workloads, to determine workload characteristics including the

impact of interference. Quasar uses this information to identify

the best workloads to run together and resource allocations.

Other recent efforts focus on improving existing cluster

schedulers. Yaq [17] proposes proactively queuing contain-

ers on worker nodes to be executed as soon as resources

become available, instead of reactively scheduling on node

heartbeats. Tetris [11] employs multi-dimensional bin-packing

to run containers with resource requirements complementary

to the current usage on the node to reduce contention. UBIS

complements both these approaches and we believe integrating

with these approaches would lead to further improvements in

utilization and job throughput.

Apollo [4] and Borg [21] both propose a hierarchy of tasks,

where some tasks run with better SLAs than others, and are

closest to our work. Apollo adopts token-based scheduling

and proposes using opportunistic allocations similar to our

approach, but does not base its allocation on actual utilizaiton.

Instead, it relies on application schedulers optimistically re-

questing opportunistic containers. Apollo does not guarantee

fairness either, but employs probabilistic resource fairness to

limit unfairness.

Borg [21] employs priority based admission control and

scheduling; the jobs can be broadly classified into prod (high

priority monitoring and long-running production services/jobs)

and non-prod (lower priority batch and best-effort) jobs. Borg

reclaims resources from running tasks and could allocate

these resources to the lower priority non-prod tasks; the latter

can get preempted if the machine runs out of resources.

While these non-prod tasks are similar to our opportunistic

containers, there are certain differences. Borg differentiates

between prod and non-prod tasks, but does not track tasks that

use reclaimed resources separately. By tracking opportunistic

containers separately, UBIS allows jobs to decide what to

run in these containers; for instance, a MapReduce job could

choose to run only maps in opportunistic containers. Borg does

not allow individual jobs to choose the number of opportunistic

containers. Borg does not support fairsharing either, which is

critical to enterprise users.

VII. LIMITATIONS AND FUTURE WORK

In the process of evaluating our approach, we have identified

other potential improvements to our approach and implemen-

tation.

Support for I/O resources. Our current implementation in

YARN oversubscribes CPU and memory, without considering

I/O resources. As outlined in Tetris [11], this can lead to un-

tenable oversubscription of resources that are not considered.

Actively scheduling and isolating I/O resources can help re-

duce contention on these resources and limit the deterioration

in task runtimes.

Faster memory monitoring. Current memory monitoring in

YARN, through aggregation of procfs metrics, does not scale

to hundreds of containers we observed. This can be improved

by using advanced operating system libraries like cgroups in

366

Linux.

Cross-node container promotion. UBIS avoids promoting

containers across nodes to avoid losing work. If tasks preserve

their work, say through check-pointing, cross-node promotions

could help in satisfying constraint C4 for all applications

without them having to opt-out of opportunistic containers.

Picking the optimal over-allocation threshold. As discussed

earlier in §V-C1, cluster administrators are expected to arrive at

the optimal value for Talloc through trial-and-error. Automat-

ing this process with the ability to adapt to changing workload

patterns over time would be very useful.

Suitability of individual jobs. Jobs differ in their suitability

to opportunistic containers. For instance, jobs with short tasks

are likely more amenable — (1) they do not run long enough

to cause sustained contention that requires preemptions, (2)

any savings in allocation latency is significant given their short

runtime. Streaming jobs or long-running services, on the other

hand, are likely less suited for the same reasons. Providing a

way to tune opportunistic allocations on a per-job basis and

leveraging past history to determine the amenability of jobs

are promising avenues for future work.

Queuing opportunistic tasks. Cluster schedulers adopt a

reactive approach to scheduling: they schedule containers

when the node reports the availability of resources. Queuing

opportunistic containers, similar to [17], allows the nodes to

execute tasks as soon as they finish one, thereby improving

the utilization further.

VIII. CONCLUSION

In current distributed environments, significant amount of

resources are wasted due to tasks not utilizing all allocated

resources. We attribute this to cluster schedulers that con-

sider only user-specified resource requirements and not actual

container utilization. Improving utilization while honoring

fairness, without adversely affecting application SLAs is hard.

We present UBIS, a utilization-aware approach to schedul-

ing, that allocates un-utilized resources to pending tasks and

gracefully handles resource pressure on the worker nodes.

UBIS guarantees fairness by sharing both un-allocated and

un-utilized resources as per the specified scheduler policies,

and applications can opt out of opportunistic allocations to

ensure their containers are not preempted under resource

pressure. UBIS implementation in YARN shows up to 30%
improvement in workload makespan.

ACKNOWLEDGEMENTS

We thank the Apache YARN community for discussions

and suggestions, particularly Yahoo! for sharing their cluster

statistics and feedback from their prior attempts at oversub-

scription. This work is supported by NSF grants CSR 1422338

and CCF 1533795.

REFERENCES

[1] Apache Hadoop YARN: FairScheduler.

https://s.apache.org/fair-scheduler.

[2] Apache Hive. http://hive.apache.org.

[3] Corona.

https://s.apache.org/corona.

[4] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,

M. Wu, and L. Zhou. Apollo: scalable and coordinated

scheduling for cloud-scale computing. In OSDI, 2014.

[5] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes.

Long-term SLOs for reclaimed cloud computing re-

sources. In SoCC, 2014.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. In OSDI, 2004.

[7] C. Delimitrou and C. Kozyrakis. Quasar: resource-

efficient and qos-aware cluster management. In ASPLOS,

2014.

[8] A. Desai, K. Rajan, and K. Vaswani. Critical path based

performance models for distributed queries. In Microsoft
Technical Report, 2012.

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and I. Stoica. Dominant resource fairness:

Fair allocation of multiple resource types. In NSDI, 2011.

[10] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.

Choosy: Max-min fair sharing for datacenter jobs with

constraints. In EuroSys, 2013.

[11] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,

and A. Akella. Multi-resource packing for cluster sched-

ulers. In SIGCOMM, 2014.

[12] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.

Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos:

A platform for fine-grained resource sharing in the data

center. In NSDI, 2011.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.

Dryad: Distributed data-parallel programs from sequen-

tial building blocks. In EuroSys, 2007.

[14] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Tal-

war, and A. Goldberg. Quincy: fair scheduling for

distributed computing clusters. In SOSP, 2009.

[15] K. Kambatla and Y. Chen. The truth about mapreduce

performance on ssds. In LISA, 2014.

[16] R. O. Nambiar and M. Poess. The making of tpc-ds. In

VLDB, 2006.

[17] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vo-

jnovic, and S. Rao. Efficient queue management for

cluster scheduling. In Microsoft Research Tech Report,
2016.

[18] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and

J. Wilkes. Omega: flexible, scalable schedulers for large

compute clusters. In EuroSys, 2013.

[19] D. Thain, T. Tannenbaum, and M. Livny. Distributed

computing in practice: the condor experience. In CPE,

2005.

[20] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,

M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,

S. Seth, et al. Apache hadoop yarn: Yet another resource

negotiator. In SoCC, 2013.

[21] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,

E. Tune, and J. Wilkes. Large-scale cluster management

at google with borg. In EuroSys, page 18. ACM, 2015.

367

