
Stitch It Up: Using Progressive Data Storage to
Scale Science

Jay Lofstead
Sandia National Labs
gflofst@sandia.gov

John Mitchell
Sandia National Labs
jamitch@sandia.gov

Enze Chen
University of California, Berkeley

chenze@berkeley.edu

Abstract—Generally, scientific simulations load the entire sim-
ulation domain into memory because most, if not all, of the
data changes with each time step. This has driven application
structures that have, in turn, affected the design of popular IO
libraries, such as HDF-5, ADIOS, and NetCDF. This assumption
makes sense for many cases, but there is also a significant
collection of simulations where this approach results in vast
swaths of unchanged data written each time step.

This paper explores a new IO approach that is capable of
stitching together a coherent global view of the total simulation
space at any given time. This benefit is achieved with no
performance penalty compared to running with the full data
set in memory, at a radically smaller process requirement, and
results in radical data reduction with no fidelity loss. Additionally,
the structures employed enable online simulation monitoring.

Index Terms—storage, io, database, python, analytics, spparks,
kinetic monte carlo

I. INTRODUCTION

Welding and additive manufacturing (AM) models [1] have

been successfully incorporated into the spparks [2], [3] kinetic
Monte Carlo framework. For the purpose of engineering

design and analysis, material microstructures are predicted by

simulating the process of melt, fusion and solidification. In

these models, a heat source, typically a laser, creates a very

localized melt pool and surrounding region called the heat

affected zone (HAZ); outside of the HAZ, the temperature is

below the threshold for grain growth and evolution. In the

case of welding, the laser heat source moves along a joint

melting and fusing material from both sides of the joint which

subsequently solidifies. At any particular instance during the

process, models need only consider the localized HAZ around

the laser location. Material in the remaining areas outside of

the HAZ remains unchanged. This is the key concept and

genesis of motivation for Stitch-IO.

In contrast, the traditional approach creates the entire sim-

ulation domain, over which the laser travels, in-core. Compu-

tation is attempted across the entire domain, but only causes

data changes in the HAZ as the laser moves across the domain.

For IO, the entire domain is written for each output. From a

computational standpoint, this is wasteful since most of the

data at any particular time step on the simulation domain is

unchanged and trivially predictably so. Also, because of the

local nature of the process described above, compute resources

are wasted on most of the domain excepting the time the laser

moves into that process’s area.

Using the traditional computational and IO approach, prac-

tical engineering simulations of welding and additive man-

ufacturing are impossible. Length scale differences between

grains and manufactured parts necessitate use of enormous

computational resources. Metallic microstructures are typically

measured and simulated in length units of μm, while typical

welded structures and AM components are measured in cm
and larger. Spparks uses a regular grid of lattice sites to

simulate and model grain growth and evolution where the

ideal distance between sites is 1 μm. Each site is associated

with a grain which is typically represented by a 32-bit integer.

Consider a small weld simulation 5 cm long (50 000 μm) with

a plate thickness of 0.07 cm (700 μm) and 0.4 cm (4000 μm)

HAZ width. This translates to a computational lattice having

50000 × 700 × 4000 = 140 billion sites; the computation is

very small in size relative to typical component parts, yet

would require the very largest computers and would likely

be very difficult if not impossible to run. In another example,

Lockheed Martin recently used a metal 3-D printer to create a

titanium cap for a fuel tank. This part is 1.16m in diameter [4].

Relevant simulations to predict microstructures for this build

are currently impossible. Stitch-IO and spparks are two steps

towards making that possible. The extreme data volumes for

realistic simulations of microstructure during AM demands

rethinking the data storage further—even when considering

just 0.1% of the volume is actual material. Fitting the entire

model into memory cannot be done for any machine that exists

today.

This fuel tank cap is far from the only example. A spray

system Sandia is investigating wants to understand deposition

and layering of material over a seemingly small space, yet

because of length scale considerations, practical computations

are limited because of the traditional computational and IO ap-

proach. Building such a model at the scales required similarly

will not fit into memory anywhere.

A third example class can be described in finite element

models. Consider an impact event creating a shock wave that

propagates through a material. As the wave moves, state of

the material is affected in the region of the shock front but

nothing ahead or behind the wave (outside a given window)

changes.

All of these examples share an extreme total simulation

domain size along with “productive” compute being localized

to just a small portion of that domain on any given time

52

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00016

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

step. Trying to run such a model using traditional techniques

and using traditional IO libraries is extremely wasteful, if

not impossible. Given the tiny compute active area for the

simulation, being able to run these extreme-scale simulations

on a laptop or small cluster seems like a reasonable goal. We

do not need the extreme compute capability nor the world

class storage capacity. Herein we address both of these goals.
To address this compute waste, spparks has been adapted

so that only the portion of the domain affected by the current

computation is loaded into memory for any step. When the

affected region reaches a boundary, it can exit to reset for the

next incremental area. For output, it either generates an image

suitable for creating a movie or a text file representing the

data in that simulation area. The image or text file approaches

are the best available options due to a lack of a suitable IO

library to handle only writing a portion of the simulation

domain for any given time step and being able to automatically

stitch together a coherent view of a given region at any time.

For other kinds of analyses, neither option provides an ideal

solution.
Stitch-IO provides a new way to think about IO. Instead

of writing the whole domain each time, just the portion that

changes can be written in a lossless format that is capable of

reconstituting a complete simulation domain on request. The

entire domain size is never requested nor directly known. Time

is a fundamental construct that addresses how to reconstruct

a coherent domain view.
Various spparks-based applications and the class of finite

element codes benefit from this approach. This paper describes

the design approach and quantifies the overheads and costs

associated with the choices. The decisions made have also

opened up new opportunities for running these simulations.

For example, it is possible to run multiple simulation instances,

each in a different part of the simulation domain, all writing

to the same file at the same time. Simultaneously, an analysis

application can probe the file to reveal the progress written.

In this case, we can demonstrate a multi-writer, multi-reader

application.
Our contributions are as follows:

• An approach for ignoring total simulation domain size

while storing data.

• An approach for direct data analysis and visualization us-

ing typical analysis tools while the simulation is running.

• An approach for recreating a coherent simulation domain

view at any given time and sub-region specified.

For this paper, the bottom line is the following: We have en-
abled many new simulations previously impossible by radically
reducing required compute resources; we provide a lossless
data compression approach all without an increase in wall
clock time compared to a full, in-memory model.

The rest of the paper is structured as follows. First, a

walkthrough of the design constraints and decisions that have

led to Stitch-IO are presented in Section II. An experimental

evaluation follows in Section III. A review of related work is

in Section IV. Section V discusses conclusions we can draw

and future work plans.

II. DESIGN

The target application classes for Stitch-IO all benefit by

performing compute in small areas at a time over multiple

runs or initializations. Given this goal, the focus is on enabling

writing the smallest reasonable part of a simulation domain at

any given time and then being able to assemble a coherent

view of an arbitrary part of the entire simulation domain for

analysis. This section first presents the idea of stitching and

then discusses design constraints and decisions.

A. How Stitching Works

The idea with stitching is to reformulate the compute

problem from a full domain exploration divided over parallel

processes into a series of compute volumes (cvs). Then, the
simulation can work on each compute volume at small scale

progressively building up the full simulation results. While

this may seem excessively slow, recall that breaking down

the problem this way enables many different simulations not

previously possible. Further, it does it in a way that adds little

to no additional wall clock (charged) compute time compared

to if the work was done at full scale with the full domain in

memory. And since it runs on a small fraction of the processes,

the computational cost is tiny and the data storage is a small

fraction of what it would be were the full domain written for

each output.

Consider Figure 1. If the simulation was run at full scale,

the entire domain would be decomposed and distributed across

many processes; each process taking one blue block of domain

which is shown divided by the blue lines (the whole domain).

The teardrop shape in the lower left orange box represents a

weld pool melt as part of a welding simulation. During a time

step, the weld simulation is highly localized. All of the action

during a time step takes place in the vicinity of the teardrop

(the HAZ). The orange box containing the teardrop represents

the compute volume for a single spparks run. That means that

as far as spparks knows, it is running the problem just over

the region defined by the orange box. Once spparks completes

working across the orange box, it exits for the next phase.

The next phase is to generate an additional domain area,

such as the purple block. Spparks initializes this data for the

simulation by writing the initial state and exiting. It needs the

edge of the previous area in order to properly initialize the

new cv seamlessly with the previous cv. Then spparks restarts

again, initializing and reading from the purple block so that it

can move the teardrop area across the purple area. Next comes

the green block using the same event sequence. This continues

until the melt pool hits an edge of the full simulation domain

where it wraps around in a serpentine pattern or finishes a

layer and moves vertically.

Figure 2 depicts grain evolution during simulation of the

AM weld model with stitching. Much like the progression of

a physical AM process, only the first cv has to be initialized at

the start of the simulation as the melt pool only affects sites

along the bottom edge; the rest of the domain is assumed

to be unaffected and therefore does not have to be stored

in the Stitch-IO file (represented in black). As the melt

53

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

process decomposition
for SPPARKS w/o stitching

cv for stitching full domain
Fig. 1: Breaking down the domain for stitching.

pool progresses, it moves in a serpentine pattern, reversing

directions with each transverse increment, evident by the grain

inclinations along the raster direction. The cvs are generated

one at a time, and only the current one is used for computation

and IO—what is shown is a result of stitching together the

previously computed cvs. Note that all sites outside of the

current HAZ are constant at later time steps, which is reflected

by the color of the grains in the figure not changing. In the

end, Stitch-IO is able to recover the full simulation domain

by stitching together the individual cvs in a manner that is

commensurate with the progression of the AM build.

Not surprisingly, the batch script for running a stitching
application is a bit more complex to account for the initialize-

process-shift cycle. The upside is that the script can likely also

be used on a laptop running Linux with little to no modification

(excepting job control commands and directory paths). The

code runs the same in both environments. During development

of Stitch-IO, testing was performed on laptops, desktops,

and a capacity cluster at Sandia. In all cases, everything ran

correctly.

B. Design Constraints

There are several design features that are a strong departure

from existing IO libraries. As mentioned in the Introduction,

Stitch-IO seeks to scale arbitrarily while still being able

to address extreme scale problems. Some design constraints

address this directly while others address scientist productivity.
1) Arbitrary Blocks: Given the small subset of the simula-

tion domain used for each time step, some storage mechanism

independent of the entire domain size, but with arbitrary

bounds, is required. We chose to store blocks annotated with

the bounds within the total simulation domain it represents

along with a timestamp to aid reconstructing the total simu-

lation domain. Further, the entire simulation domain is never

defined. Instead, it is inferred based on what is written. It is

possible to query what the total bounds written have been so

far, but that is learned indirectly through the extremes for each

block written.

2) Floating Point Time Values: While typical IO libraries

focus on integer-based time steps, this is not natural for

a simulation, which are run using time scales frequently

corresponding to the speed of physics phenomena. Using an

integer-based time step is an abstraction that counts the time

increments rather than representing the actual time elapsed in

the simulation physics. Instead of maintaining this abstraction,

we enable floating point time to the user, but use an integer

index into that list of times internally. We address the IEEE

floating point inexact matching problem through a tolerance

mechanism to match a selected time against anything that

exists already. We use both an absolute tolerance and a relative

tolerance value. The combination of these offers a flexible way

to address round-off errors and is user-configurable on a run-

by-run basis.

3) Automatic Block Stitching: By moving away from de-

ploying a simulation such that the entire simulation domain is

in memory at the same time, we gain the ability to scale from

a laptop up to a cluster to a supercomputer, depending on the

storage availability and how long the scientist is willing to wait

bounded by the problem size limitations. The welding example

demonstrates the relatively small grain count affected by any

time step. There is a strict upper bound on how far this can be

decomposed before the efficiency gains of parallelism are lost

due to excessive communications. The expectation is around

1000 processes, which is about the upper limit for a relatively

efficient computation no matter the entire simulation domain

size. Other models may have different natural decomposition

limits. For the problem classes being addressed that have not

been possible or feasible before, this small size advantage

to address extreme-scale problems opens technology choices

others have abandoned due to overheads and bottlenecks at

extreme scale.

Moving to a block-based IO setup is crucial to handle large

simulation domains without tremendous wasted space. For any

given read operation, pieces from many blocks are assembled

into a whole such that the newest values no newer than the

requested time within the requested region are returned.

Continuity is handled by running from the starting time

until the next time that meets or exceeds the maximum

specified. Discontinuity in data is handled through the “no

value present” values. This intentional design choice allows

arbitrary data selection even where there are oddly shaped

gaps. The application understands these values and properly

initializes them prior to performing the calculations.

4) Relational Database Functionality: Relational databases

with proper indices and SQL queries have long been a pow-

erful way to select data. By embracing this technology in

an area not typically enamored of the overheads a database

engine requires is a risk but offers functionality benefits with

little additional effort. Given the small scale, the benefits

outweigh the potential penalties, as explored in the evaluation

54

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

(a) t = 26MCS (b) t = 98MCS (c) t = 198MCS

Fig. 2: Example of grain evolution produced by the spparks AM weld model with stitching.

below. Transactions offer consistency guarantees enjoyed for

enterprise workloads and can be expanded to support parallel

clients trivially [5], [6].

5) Native Python Support: Crucial to the way that scientists

work today, Python has become the analysis tool of choice for

many and is growing rapidly. We embrace this by offering a

fully-functional Python interface in addition to the native C

library interface used by the simulations. Additionally, by the

nature of database transactions, the Python interface can be

used during the simulation run without causing the simulation

to fail due to a busy file or to return incorrect or incomplete

information.

C. Design Details

The various design constraints described above all address

how to make a system with the right flexibility and features to

address the problem domains motivating this work. The actual

design and implementation depart from traditional IO design

wisdom in many ways and are discussed below, followed by

a detailed description of Stitch-IO itself.

1) Why a database?: Stitch-IO’s design and implementa-

tion are built around a single decision: Use an embedded

relational database engine to handle concurrency, simplify

searching for blocks for stitching, and offer resilience. In our

case, the initial choice is SQLite [7]. This public domain re-

lational database is used in millions of embedded applications

worldwide and has low system requirements and constraints.

It offers a server-less mode that is ideally suited for an

application like Stitch-IO. The full ACID transactions support

and journaling offer both consistency and resiliency without

having to write any additional code. Further, the ability to

place an index on relevant columns needed for block selection

when stitching allows efficient selection and ordering to be

performed, and avoids the typical list-scan approach native

to traditional IO libraries. At scale, the traditional scanning

approach may not even be possible due to the list size.

An indexed database table on storage can still be accessed

efficiently.

The current approach for stitching is not optimal. First,

the return buffer is initialized with the “no value present”

value. Next, blocks are returned ordered by timestamp and

then in X , Y , and Z copying any element that falls within

the bounds of the requested dimensions into the return buffer

based on a joint array traversal of both the return buffer and the

currently selected intersecting block. For the portion of each

block within the requested region, Stitch-IO simply copies the

values into the element location. Since these blocks are ordered

by time with the newest last, it ensures that the latest value for

any location ends up in the return buffer. More efficient block

intersection queries and potentially moving from newest to

oldest using some bookkeeping about what values have been

updated may prove more efficient. Exploring more efficient

approaches is left to future work.

While a disjoint model with data stored in a separate

location from the metadata was initially considered (similar to

what EMPRESS [8] can do), SQLite adequately supports blobs

enabling a simpler overall design. For some very large-scale

applications, where total data in the Stitch-IO format might be

O(1PB), splitting the data apart from the metadata may be a

better approach. Exploring this is left partially for future work

and partially has already been explored with EMPRESS.

2) C and Python interface: C/C++ and Fortran interfaces

for IO libraries have been the standard for over 30 years;

however, the rapid development of rich data analytics tools

integrated with Python and the Fortran-like array manipulation

possible with NumPy arrays have led a growing number of

scientists to demand good Python support for data access

and analysis. The tool variety, flexibility, and quality has

in some ways made existing heavyweight analysis tools ob-

solete. Fixed user interfaces to access data are no longer

sufficient. Standardized data access approaches that integrate

with existing tools, such as Pandas DataFrames, along with the

native NumPy and SciPy functionality have led to scientists

being able to quickly get analysis tasks coded and completed

compared to traditional approaches.

These trends show no sign of slowing and demand that any

new IO and data format work seamlessly in this environment

or be subjected to obscurity. To ensure that Stitch-IO works

well in this environment, the APIs were developed in both

Python and C simultaneously with testing harnesses written in

both languages to ensure that all functionality worked properly

and naturally in both languages.

55

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

As a side benefit, Python has native SQLite support offering

a way to inspect the “raw” Stitch-IO file and potentially imple-

ment alternative data access and analysis routines not offered

by the stock API. This additional flexibility and functionality

is sorely missing on existing IO libraries. This embrace of

standard tools at even a low level within a library signals a

shift in thinking from “How do I build the most efficient tool

at a cost of complexity and flexibility?” to “How do I build a

tool that works well for the user and offers a convenient way

for them to go beyond what I provide?” Any new data storage

and access approach should consider this shift to best serve

the applications and scientists we are trying to support.

3) Both Parallel and Serial: Since Python is typically not

run with MPI or some other parallelization framework, having

a serial library version is crucial. It is important that this serial

version does not, in any way, affect anything done with a

parallel version of the library or data storage and vice versa.

To address this, the primary Python test cases are serial with

some parallel cases available in a second set. The C test

cases are primarily parallel with some serial tests as well.

While this does change the interface to the open command

to include the MPI communicator for parallel builds, that is

the sole API difference between the two. Under the covers,

additional changes that support better concurrency controls for

the parallel build are used.

4) API Complexity: The basic spparks examples all use

32-bit integers as their standard element values; however, this

is not sufficient for all cases and additional API variations

are available for 64-bit floating point and integer values.

Further, the element value may also be a vector. This is

specified through the use of the length descriptor. Multiple

fields, potentially of different types, can be created, written,

and read all from the same file. The API is only a little more

than basic open, write, read, list_vars, and close.

D. Design

Stitch-IO consists of the Python module interface, a C

interface and implementation, and the underlying data storage

mechanism, currently SQLite. A typical call sequence in

Python is illustrated in Algorithm 1. The basic flow is an

open, create a field, and set basic parameters. After this,

we query the field to be simulated and read to obtain both

existing data and “no value present” values for untouched parts

of the simulation domain. The actual computation is inserted

next. Finally, we write the resulting blocks as the simulation

time progresses. For spparks, there is an outer loop in the job

script moving the region and then an inner loop inside spparks
for moving across the computation volume.

Some of these lines may not be completely obvious.

create_field (line 2) takes a type from an enum (1

= 32-bit integer), the per-site length (vector length for the

location), and the “no value present” value (−1). One of

Stitch-IO’s features is the use of a floating point time value

to better match the simulation time. The abs_tol is the

absolute tolerance for matching time while the rel_tol is

the relative tolerance. These are combined into the comparison

Algorithm 1 Stitch-IO Python Call Sequence

1: fid = stitch.open (‘filename.st’)

2: field = stitch.create field (fid, ‘spin’, 1, 1, -1)

3: abs tol = 1.0e-9

4: rel tol = 1.0e-15

5: nvp = -1

6: t1 = 0.0

7: b1 = numpy.fromiter ([0, 6, 0, 2, 0, 2], . . .)

8: s1 = numpy.ones (b1)

9: stitch.set parameters (fid, abs tol, rel tol, nvp)

10: . . .

11: field = stitch.query field (fid, ‘spin’)

12: data, new t = stitch.read block (fid, field, t1, b1)

13: . . .

14: new t = stitch.write block (fid, field, t1, b1, s1)

15: . . .

16: stitch.close (fid)

to determine if the time matches or not. The req_time
is the time value provided by the user and time is a time

value created previously. A time is considered matching if the

following condition is met:

|time− req time| < [abs tol+ (req time× rel tol)]
Line 6 is the time value. Line 7 creates a bounding box

from (0, 0, 0) to (6, 2, 2). Line 8 is a buffer containing the

values to write. Lines 12 and 14 have an interesting return

value: new_t. This is a “new time” flag. For writing, this

flag signals if the time written existed previously or not. This

is useful for sanity checking a simulation run.

III. EXPERIMENT DESIGN

Experiments are divided into three sets to better evaluate the

comparison points. First we evaluate strong and weak scaling

for a full domain setup showing the Stitch-IO performance

against the native spparks IO techniques including no output,

text file output, image file output, and Stitch-IO file output.

Next, we evaluate stitching where we run spparks with both

Stitch-IO and text file IO to gauge performance. Third, we

run a set of stitching tests just using a testing harness and

the Stitch-IO library compared against a full domain HDF5

example to investigate the resulting output sizes and the

potential for using an alternative like HDF5 instead of Stitch-

IO.

For the strong scaling experiments, we chose a total simula-

tion domain of 1200×1200×88 for an initial test. We can run

this on a single process or as many as 512. This is empirically

about the upper limit for a reasonable communication vs.

computation overhead trade-off. For weak scaling, we set the

per process data size at 100,000 sites with a single field. We

run at least 5 experiments for each configuration.

The evaluation is performed on the Chama capacity cluster

at Sandia National Laboratories. It consists of 1232 nodes

each with two 2.6GHz Intel Sandy-Bridge CPUs with 8

cores/socket. Each node has 64GB of DDR3 RAM and

connects with a 4X QDR InfiniBand network configured in

56

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

a fat tree. The file system is the site shared GPFS offering

4.6PB of storage. There are also 8 login nodes each with the

same hardware as the compute nodes. All nodes run RHEL 7.

A. Full Domain spparks

A performance comparison between using the Stitch-IO

library and the alternative IO techniques, including no output,

are performed. Strong and weak scaling results are presented

in Figure 3 and Figure 4 respectively. Because we were

not stitching (described below) and only measuring Stitch-IO

performance, the AM weld application was not used; both

the strong and weak scaling studies were conducted using the

spparks Potts model. The comparisons are with single text

IO (all processes collect to one that writes to a single file),

distributed text IO (each process writes to its own file), and

image IO (all processes collect to one that generates an image

writing the resulting JPG image to storage). The text IO is very

inefficient mimicking the H5dump output. This was the default

output format created by the spparks developers because it was
easy to edit when working on different physics models. Image

IO is a more typical output except when numerical values are

necessary.

1) Strong Scaling: Simulation domain sizes were chosen

to be on the order of 100 million total lattice sites so

that performance evaluations could be completed reasonably

quickly for a typical-sized problem. This represents a simple

welding or additive manufacturing scenario with a single

layer. This is large enough to test the physics, but small

enough to run in reasonable time. This led to dimensions of

1200×1200×88 sites. As seen in Figure 3, we observed that

Stitch-IO performance was comparable to other forms of IO

and had nearly ideal scaling behavior up to 256 processors.

For 256 processors and beyond, we observed degradation in

scaling behavior for Stitch-IO that was reflected, to varying

degrees, in the other IO methods as well. We speculate

that the worsening performance and higher variability at 512

processors is due to file system contention, although a deeper

analysis is required for verification. However, in all cases, we

found Stitch-IO to perform between 2 to 10 times faster than

spparks single text IO and achieve much better scaling; note

that single file text IO has burdensome communication issues

because it requires each processor to send its chunk of data to

a single output processor; this is not the case for distributed

text IO which is faster and scales better. The resulting Stitch-

IO file size was 1.4GB on average, which is almost 4 times

smaller than the average size of the text files (5.5GB). Thus
the Stitch-IO file is able to store output data more compactly

than the text file; furthermore, Stitch-IO file sizes did not vary

by more than 1MB as the number of processors was scaled

up.

The strong scaling results show that Stitch-IO still holds

with the pack. Note that the natural scalability limit for the

spparks code is revealed between 256 and 512 processes.

2) Weak Scaling: A weak scaling study was also conducted;

in this case, the number of sites per process was kept around

5× 105 sites/process. This led to the domain dimensions

Fig. 3: Application strong scaling

shown in Table I. Figure 4 shows results for the same IO

formats. Again, Stitch-IO remains competitive with other

formats up to 512 processors, and still runs 2 to 10 times

faster than spparks IO with a single text file. Once again, the

Stitch-IO file is 3 to 4 times smaller than the text file on

average, with the ratio increasing for more processors. All of

the curves deviate from ideal behavior, which suggests that

the increased parallel overhead is not exclusively a Stitch-IO

issue. This result shows that it is feasible to use Stitch-IO

as an IO tool on larger parallel computing clusters, though

we emphasize far fewer than 512 processors are required if

stitching.

The weak scaling results show that the Stitch-IO library

has similar performance to the other reasonably performant

IO techniques. The single text file approach is a typical N-1

gather-write pattern.

Fig. 4: Application weak scaling

57

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

B. Stitching spparks

For performance measurements, the domain size was pro-

gressively doubled as shown in Table II. When running sp-
parks without stitching, a weak scaling type approach was

used: The number of processors was doubled while attempting

to keep the number of sites per process at approximately

7031 sites/process; without stitching, the required number

of processors and file sizes increase rapidly (see Figure 6).

The domain sizes we chose were limited by the traditional

approach and its computability on a reasonable number of

processors. When simulating the same domains with stitching,
the number of processors was kept constant at 16 (approx.

6230 sites/process) on the individual cv, which is accessible

by desktop machines. Output was written every 2MCS (Monte

Carlo Sweeps) to a Stitch-IO file and distributed text files for

stitching and no stitching tests, respectively.

First we compare spparks performance with and without

stitching for the AM weld model. There were approximately

7031 sites/process in the simulations without stitching and

the same area was used for the stitching simulations on

just 16 processors (approximately 6230 sites/process). Each
simulation was run for full coverage and output was produced

every 2MCS. The numbers next to the data points indicate the

number of processes used for that computation. The results are

shown in Figure 5. While spparks without stitching generally

ran faster for all cases, it used many times more processors

than stitching (up to 26 times more). Stitching has much

improved scaling and runs at about the same performance or

sometimes a bit slower than spparks, despite using only 16

processors. Figure 6 shows a comparison of the file sizes for

Stitch-IO compared against the single text file output. The size

of the output file(s) are plotted against the domain size for

both cases. The Stitch-IO file is 2 to 75 times smaller than the

corresponding set of text files (note the log scale on the y-axis),
which is a dramatic reduction in storage requirements without

any fidelity loss due to aggressive compression techniques

typically employed to achieve such results.

C. File Size Comparison

Comparing the resulting file size against alternative options

is important for two reasons. First, with lossless data reduction

being a feature for Stitch-IO, it is important to show the

resulting file size reduction to give an indication of how well

the data reduction works in practice. Below are several test

cases to show how well this data reduction is accomplished.

Second, with the design decision to use a database rather

than a compact file format for Stitch-IO, evaluating how the

overheads involved in using the database compared against

other techniques is important. Naively, Stitch-IO has a gener-

ous number of indices to make querying faster. In other work

we have performed [8], using indices on about half of the

database columns ends up using half of the storage space as

the database scales. More careful planning for which columns

having an index can improve performance will shrink this

overhead. These optimizations are left for future work.

103

104

Av
er

ag
e

ru
nt

im
e

(s
ec

on
ds

)

w/ stitching 16 procs
w/o stitching

Domain size (X by Y by 1)
X= 750
Y= 300

32
64 128

256

512

1024

= num procs
 w/o stitching

1500
300

3000
300

3000
600

3000
1200

3000
2400

Fig. 5: Average runtime (seconds) for simulations with stitch-
ing (orange) and without stitching (blue). Error bars represent

1 standard deviation. Simulations with stitching were per-

formed using 16 processors for all domain sizes while those

without stitching were scaled from 32 up to 1024 processors.

102

103

104

105

Fi
le

 s
iz

e
(M

B)

32

64

128

256

512

1024

16
16

16
16

16
16

Domain size (X by Y by 1)

w/ stitching
w/o stitching

num procs =

X= 750
Y= 300

1500
300

3000
300

3000
600

3000
1200

3000
2400

Fig. 6: File sizes (MB) for simulations with stitching (orange)

and without stitching (blue), with the data stored in Stitch and

text files, respectively. The number of processors in each case

match that for Figure 5.

Table I presents a set of weak scaling parameters and

results, where the number of sites per process was kept around

5× 105 sites/process. The Stitch-IO file size was 3 to 4 times

smaller than the size of the corresponding text file, the only

other viable option at scale. This would be the worse case

setup since we would use the same number of processes

for the stitching case as we do for the full model in other

cases. Note that while HDF5 is a clear winner up through an

860×860×88 model, stitching is already winning in terms of

size beyond that. Given an approximate size of 1000 sites/in,
modeling anything of non-trivial size is better off using Stitch-

58

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

IO for the data storage. Other factors of note are that the

representative HDF5 format is a single dataset variable per

time step while for the Stitch-IO case, it is one database

entry per process per time step. In spite of this disparity,

the per-variable overheads in HDF5 eventually overwhelm the

decomposed Stitch-IO approach. Were an HDF5 file to be used

in a similar way, even if the overhead ratio does not change, it

would be overwhelmingly large. Understanding the increasing

overheads for variables at scale in an HDF5 file is not within

scope for this paper. Stitch-IO maintains strictly the overheads

associated with rows in a database table linearly.

Additional tests using various data compression techniques

with HDF5 are also beyond scope for this paper. Given the

extreme lossless data reduction Stitch-IO achieves, no HDF5

integrated approach can approach this lossless “compression”

ratio. Performing these comparisons is left for future work.

Table II shows a comparison for doing a traditional-style

full domain model. Num procs is the number of processes for

simulations without stitching. The Text file size is the sum of

all distributed text files, and it is considerably larger than the

size of the corresponding single Stitch-IO file. When running

spparks without stitching, a weak scaling type approach was

used: The number of processors was doubled while attempting

to keep the number of sites per process at approximately

7031 sites/process; without stitching, the required number of

processors and file sizes increase rapidly (see Figure 6). In

this case, the Stitch-IO file size is radically smaller than the

existing text output file size. HDF5 has not been integrated into

spparks preventing a direct comparison; however, as a point of

reference, in Table I, the Stitch-IO file has (Num procs × MCS
iter outputs) chunks written to the file. The HDF5 file has one

variable entry per MCS iter output. In the most extreme case,

there are 540 variables in the HDF5 file. If it were adjusted

to accurately store the various chunks similar to how Stitch

IO works, the total size will explode based on the overheads

these tests demonstrate.

D. Discussion

While Stitch-IO is not always the fastest IO technique,

it is comparable to the other techniques and far better than

the single text file approach in all cases. The real runtime

advantages for Stitch-IO lie in the stitching examples. Note

that for the process count, when compared against HDF5 it

has no worse performance and uses a small fraction of the

space without resorting to lossy compression.

SQLite has one disadvantage we work around. When a

process takes a write lock, the entire database is locked

using POSIX file system locks. This is a deep part of the

SQLite design and therefore not easily changed. To address

concurrency, we serialize all access with token passing. All

of the experiments performed used this technique to address

concurrency. API compatible approaches, such as Berkeley-

DB [9], [10], that only lock the table and use a file for locks,

are alternatives and are being evaluated. A deeper exploration

of the trade-offs between these two databases for applications

like Stitch-IO are underway.

The real functional advantages for Stitch-IO are still being

explored. The daunting full domain sizes and/or the amount

of effectively idle compute to run these kinds of models

has prevented them from being expressed for computers. The

stitching approach and the Stitch-IO library have reframed the

problem approach enabling many cases previously thought im-

practical or impossible. The initial cases have been compelling

for the application scientists leading them to be advocates

to their peers with similarly intractable problems. Given the

first successful demonstrations for welding and a 2-D additive

manufacturing setup, multiple additional groups within Sandia

have clamored for access to the code so that they can finally

perform simulations for problems they feared would not be

possible for the foreseeable future. It is also being promoted

to the DOE complex as a whole as a potential solution to

intractably large simulation requirements.

IV. RELATED WORK

The related work is divided into sections on data manage-

ment, computational models, and visualization.

A. Data Management

Traditional IO libraries, such as HDF5 [11], NetCDF [12],

ADIOS [13], and PnetCDF [14] all work under the assumption

of a fixed simulation domain size. While this works for

existing applications, there are application classes where this

does not work well. For example, the introduction offers new

simulation classes currently not possible.

Structurally, ADIOS does not enforce the domain bounds,

but it does assume that the whole domain is present for read-

ing. Should data be missing, it would be deemed a corrupted

file. Stitch-IO makes no data availability assumptions and

instead uses a “no data present” value much like NetCDF

offers to represent requested areas that do not have a value

yet. Unlike NetCDF, instead of storing the “no value present”

value at each location, data is simply not stored.

Stitch-IO offers unprecedented lossless data compression

for the application classes targeted. While many libraries

(HDF5, ADIOS) support data compression plug-ins, these are

mathematical compression rather than just eliminating all of

the data that does not change over time. Lossy compression

methods achieve extreme data reductions, but at a fidelity loss.

Other difference-based compression approaches [15], [16]

have been evaluated, but they require some way to either an-

notate that the data changed or something to compare against

to determine if the value differs. The Stitch-IO approach

eliminates both the annotation and comparison by only having

a region slightly larger than the area affected computationally

in memory at a time guaranteeing that no unaffected data will

either be stored or compared against for data storage. This is

also the region written for each output which avoids writing

any unaffected portions of the simulation domain.

Systems like BORG [17] and EDO [18] try to rearrange

data to optimize placement. Stitch-IO’s focus is on not writing

redundant data in the first place.

59

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Weak scaling parameters and comparison of file sizes.

Num procs MCS iter outputs Domain size Num sites Stitch-IO file size Text file size HDF-5 file size

4 15 150 × 150 × 88 1980000 23 MB 59 MB 1.3 MB
8 22 216 × 216 × 88 4105728 47 MB 137 MB 4.0 MB

16 30 300 × 300 × 88 7920000 91 MB 277 MB 11 MB
32 65 426 × 426 × 88 15969888 186 MB 608 MB 46 MB
64 90 600 × 600 × 88 31680000 363 MB 1.26 GB 124 MB

128 160 860 × 860 × 88 65084800 753 MB 2.67 GB 391 MB
256 300 1200 × 1200 × 88 126720000 1.42 GB 5.53 GB 1.7 GB
512 540 1700 × 1700 × 88 254320000 2.91 GB 12.1 GB 5.9 GB

TABLE II: Parameters used in the stitching performance study.

Num procs Domain size Num sites Stitch-IO file size Text file size

32 750 × 300 × 1 225000 105 MB 156 MB
64 1500 × 300 × 1 450000 170 MB 663 MB

128 3000 × 300 × 1 900000 300 MB 2.68 GB
256 3000 × 600 × 1 1800000 497 MB 8.92 GB
512 3000 × 1200 × 1 3600000 890 MB 31.8 GB

1024 3000 × 2400 × 1 7200000 1.64 GB 122 GB

PLFS [19] and similar approaches that reform how data is

stored to enable faster access still manage the entire simulation

domain for every time step. Comparatively, Stitch-IO avoids

the vast majority of IO by implicitly rather than explicitly

writing null or unchanged values for the entire simulation

domain for areas that were not affected during this time step.

SciDB [20] provides the closest functionality to Stitch-IO.

However, SciDB differs in some fundamental ways. First,

SciDB is organized for offering generally 2-D arrays into a

form where data elements can be searched and queried. Stitch-

IO is fundamentally 3-D arrays, with the option for a tensor at

each site, but optimized for finding blocks rather than finding

individual data values.

Other attempts to use database technology as part of IO

operations and storage have varied over the years. No, et

al. [21] investigated using a relational database to store meta-

data that linked to a separately stored data file. This work never

materialized into a popular IO library product presumably

because the database was a fixed service (MySQL or Postgres)

and not directly portable with the data to an archive or a

different platform. Stitch-IO addresses this limitation by using

an easily portable single package.

R-trees and other decomposition techniques are efficient at

querying sub-volumes within a space. It assumes that a given

space will have multiple areas. If each output is a different

volume, a new set of R-trees is required for each output.

Stitch-IO is different in that there is one virtual space per

time step that is comprised of the most recent data written to

each location. There is not a single, coherent view of this

data on which to place an R-tree index. Multi-version B-

trees [22] similarly want to work against a small data item.

The equivalent for scale-up simulations is the entire simulation

domain. This storage technique may be useful as an alternative

implementation, but evaluating this is left for future work.

The StitchData [23] machine learning data management

system has no connection with this project.

B. Computational Models

Mathematically, the stitching approach is no different from

any other full-fidelity simulation. For example, an adaptive

mesh refinement approach adjusts the computation mesh based

on how the simulation progresses leading to some areas

having more detail than others. Other approaches that use

prediction to find the “busy” areas using previous time steps

and extrapolation and reduced order modeling have similar

limitations. These other approaches either guess or use cal-

culation to determine what to compute. For stitching, it is

either known ahead of time where the computation will be

required or immediately obvious based on the just completed

computation, eliminating the need for any potential prediction

errors or additional computation. Stitching runs the full model

everywhere, but takes advantage of the limited changes per

time step to isolate both what part of the simulation domain

is calculated on as well as what data is stored. Dynamic load

balancing approaches shift work around based on where the

most work is needed. Unlike the stitching approach, the whole

domain is still preserved for each output.

Out-of-core techniques are more similar in that they only

compute on part of the domain at a time. However, they

still assume they will cover the entire domain for every time

step. Stitching works based on knowing that only part of the

domain requires computation on any given time step and only

computing and storing data accordingly.

A deeper evaluation and discussion of the science applica-

tions and benefits are being prepared for publication separately.

C. Visualization

Time-space partitioning trees [24], and other approaches to

accelerate visualization are somewhat similar. Primarily, these

visualization techniques rely on a minimum difference to avoid

re-computation and can introduce small, potentially invisible,

errors. These visualization techniques are assuming the entire

simulation domain potentially changes each time step, such

as is common for CFD applications. As these simulations

progress, some areas may settle, at least temporarily, into

minimal, inconsequential changes related to rendering. For the

60

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

stitching approach, we never lose fidelity because we only

compute on areas that are changing for the given time step.

V. CONCLUSIONS AND FUTURE WORK

Stitch-IO offers a new way to think about IO library

construction that is strongly organized to support the ap-

plication needs resulting in a radically smaller storage size

and reasonable time expenditures. The incorporated database

technology offers richer data selection features without having

to recreate such functionality on a custom data storage format.

For future work, we wish to demonstrate Stitch-IO with

a finite element model to understand what surprises this

environment may offer. Our initial explorations have suggested

few, if any, surprises. Exploring the potential analysis benefits

for using the storage approach even though there is a fixed

simulation domain and the entire domain is output for each

step is also desired.

Additional potential customers within the NNSA complex

are also being recruited to address their intractable simulation

data needs as well. These additional cases may offer new

models that prove difficult to address, such as non axis aligned

bounding boxes and non-rectangular simulation domain de-

compositions. While an aligned, rectangular bounding box can

allow this to work today, it is not ideal. Exploring these options

may reveal additional opportunities for optimization.

This library is available (at publication time) on GitHub

under an LGPL v2.1 license.

ACKNOWLEDGEMENTS

We thank Steve Plimpton for guidance on integrating Stitch-

IO into spparks and helpful scaling study discussions and

Stewart Silling and Veena Tikare for support and helpful

discussions related to this work. We are grateful to the follow-

ing Sandia programs for funding this work: 1) ASC Physics

and Engineering Models (P&EM) Advanced Manufacturing,

Materials Performance and Solid Mechanics, 2) Integrated

Modeling and Applications, and 3) Advanced Certification

Program. This work was also supported in part under the U.S.

Department of Energy NNSA ATDM project funding and the

U.S. Department of Energy Office of Science, under the SSIO

grant series, SIRIUS project and the Data Management grant

series program manager Lucy Nowell.

REFERENCES

[1] T. M. Rodgers, J. A. Mitchell, and V. Tikare. A Monte Carlo model
for 3D grain evolution during welding. Modelling and Simulation in
Materials Science and Engineering, 25(6):064006, 2017.

[2] S. Plimpton, A. Thompson, and A. Slepoy. SPPARKS.
http://spparks.sandia.gov/index.html, 2009.

[3] S. Plimpton et al. Crossing the mesoscale no-man’s land via parallel ki-
netic Monte Carlo. Technical Report SAND2009-6226, Sandia National
Laboratories, 2009.

[4] Lockheed Martin. Giant satellite fuel tank sets new record for 3-d
printed space parts. https://news.lockheedmartin.com/2018-07-11-Giant-
Satellite-Fuel-Tank-Sets-New-Record-for-3-D-Printed-Space-Parts,
2018. Accessed: 2018-08-16.

[5] Jay Lofstead, Jai Dayal, Ivo Jimenez, and Carlos Maltzahn. Efficient
transactions for parallel data movement. In Proceedings of the 8th
Parallel Data Storage Workshop, PDSW ’13, pages 1–6, New York,
NY, USA, 2013. ACM.

[6] Jay Lofstead, Jai Dayal, Karsten Schwan, and Ron Oldfield. D2t: Doubly
distributed transactions for high performance and distributed computing.
In IEEE Cluster Conference, Beijing, China, September 2012.

[7] Michael Owens. Embedding an sql database with sqlite. Linux Journal,
2003(110):2, 2003.

[8] Margaret Lawson and Jay Lofstead. Using a robust metadata manage-
ment system to accelerate scientific discovery at extreme scales. In
Proceedings of the 2nd Joint International Workshop on Parallel Data
Storage & Data Intensive Scalable Computing Systems, PDSW-DISCS
’18, pages 13–23. IEEE, 2018.

[9] Oracle berkeley db sql api vs. sqlite api – a technical evaluation.
https://www.oracle.com/technetwork/database/database-technologies/
berkeleydb/learnmore/bdbvssqlite-wp-186779.pdf, September 2010.

[10] Oracle berkeley db sql api vs. sqlite api – integration, benefits
and differences. https://www.oracle.com/technetwork/database/
database-technologies/berkeleydb/bdb-sqlite-comparison-wp-176431.
pdf, November 2016.

[11] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana
Robinson. An overview of the hdf5 technology suite and its applications.
In Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases,
pages 36–47. ACM, 2011.

[12] R Rew, E Hartnett, J Caron, et al. Netcdf-4: Software implementing an
enhanced data model for the geosciences. In 22nd International Con-
ference on Interactive Information Processing Systems for Meteorology,
Oceanograph, and Hydrology, 2006.

[13] Jay F Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and
Chen Jin. Flexible io and integration for scientific codes through the
adaptable io system (adios). In Proceedings of the 6th international
workshop on Challenges of large applications in distributed environ-
ments, pages 15–24. ACM, 2008.

[14] Jianwei Li, Wei keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel netcdf:
A high-performance scientific i/o interface. In Supercomputing, 2003
ACM/IEEE Conference, pages 39–39, Nov 2003.

[15] Bogdan Nicolae and Franck Cappello. Ai-ckpt: Leveraging memory
access patterns for adaptive asynchronous incremental checkpointing. In
Proceedings of the 22Nd International Symposium on High-performance
Parallel and Distributed Computing, HPDC ’13, pages 155–166, New
York, NY, USA, 2013. ACM.

[16] Jay Lofstead, Gregory Jean-Baptiste, and Ron Oldfield. Delta: Data
reduction for integrated application workflows and data storage. In
International Conference on High Performance Computing, pages 142–
152. Springer, 2016.

[17] Medha Bhadkamkar Jorge Guerra Luis Useche, Sam Burnett Jason Lip-
tak, and Raju Rangaswami Vagelis Hristidis. Borg: Block-reorganization
for self-optimizing storage systems. In 7th USENIX Conference on File
and Storage Technologies, 2009.

[18] Yuan Tian, Scott Klasky, Hasan Abbasi, Jay Lofstead, Ray Grout,
Norbert Podhorszki, Qing Liu, Yandong Wang, and Weikuan Yu. Edo:
improving read performance for scientific applications through elastic
data organization. In 2011 IEEE International Conference on Cluster
Computing, pages 93–102. IEEE, 2011.

[19] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul
Nowoczynski, James Nunez, Milo Polte, and Meghan Wingate. Plfs:
a checkpoint filesystem for parallel applications. In Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, page 21. ACM, 2009.

[20] Paul G Brown. Overview of scidb: large scale array storage, processing
and analysis. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 963–968. ACM, 2010.

[21] Jaechun No, Rajeev Thakur, and Alok Choudhary. Integrating paral-
lel file i/o and database support for high-performance scientific data
management. In Proceedings of the 2000 ACM/IEEE conference on
Supercomputing, page 57. IEEE Computer Society, 2000.

[22] Benjamin Sowell, Wojciech Golab, and Mehul A. Shah. Minuet: A
scalable distributed multiversion b-tree. Proc. VLDB Endow., 5(9):884–
895, May 2012.

[23] Stitch data. https://stitchdata.com, May 2019.
[24] Han-Wei Shen, Ling-Jen Chiang, and Kwan-Liu Ma. A fast volume

rendering algorithm for time-varying fields using a time-space partition-
ing (tsp) tree. In Proceedings of the Conference on Visualization ’99:
Celebrating Ten Years, VIS ’99, pages 371–377, Los Alamitos, CA,
USA, 1999. IEEE Computer Society Press.

61

Authorized licensed use limited to: University of Canberra. Downloaded on July 18,2020 at 15:02:07 UTC from IEEE Xplore. Restrictions apply.

