
DAG-Aware Joint Task Scheduling and Cache
Management in Spark Clusters

Yinggen Xu, Liu Liu, Zhijun Ding∗
The Key Lab of Embedded System and Service Computing, Tongji University, Shanghai, China

∗Email: dingzj@tongji.edu.cn

Abstract—Data dependency, often presented as directed a-
cyclic graph (DAG), is a crucial application semantics for the
performance of data analytic platforms such as Spark. Spark
comes with two built-in schedulers, namely FIFO and Fair
scheduler, which do not take advantage of data dependency struc-
tures. Recently proposed DAG-aware task scheduling approaches,
notably GRAPHENE, have achieved significant performance
improvements but paid little attention to cache management.
The resulted data access patterns interact poorly with the built-in
LRU caching, leading to significant cache misses and performance
degradation. On the other hand, DAG-aware caching schemes,
such as Most Reference Distance (MRD), are designed for FIFO
scheduler instead of DAG-aware task schedulers.

In this paper, we propose and develop a middleware Dagon,
which leverages the complexity and heterogeneity of DAGs to
jointly execute task scheduling and cache management. Dagon
relies on three key mechanisms: DAG-aware task assignment
that considers dependency structure and heterogeneous resource
demands to reduce potential resource fragmentation, sensitivity-
aware delay scheduling that prevents executors from long waiting
for tasks insensitive to locality, and priority-aware caching that
makes the cache eviction and prefetching decisions based on
the stage priority determined by DAG-aware task assignment.
We have implemented Dagon in Apache Spark. Evaluation on
a testbed shows that Dagon improves the job completion time
by up to 42% and CPU utilization by up to 46% respectively,
compared to GRAPHENE plus MRD.

I. INTRODUCTION

Spark is a prevalent data analytics framework that general-

izes MapReduce parallel and distributed data processing [22].

It uses an in-memory resilient distributed datasets (RDDs) [21]

to bypass expensive disk and network I/O accesses. Many

data analytics workloads inherently exhibit strong data depen-

dencies. Such dependencies are usually presented as Directed

Acyclic Graph (DAG). For instance, machine learning and

query workloads usually have jobs exhibiting multiple levels

of dependencies. However, Spark built-in schedulers, namely

FIFO and Fair scheduler [7], and LRU caching are unaware

of complexity and heterogeneity of application DAGs.

Many prior studies [10], [9], [6], [21], [14] have shown

that application DAGs are usually constructed according to

large and complex data dependencies. A median DAG can

reach a depth of five with thousands of tasks [10]. The main

source of heterogeneity in DAGs comes from the difference in

task durations (ranging sub-seconds to hundreds of seconds),

resource usages, and data locality sensitivity.

DAG-aware scheduling is not totally new. In Spark,

DAGScheduler [21] examines the type of RDD dependencies

to build a DAG of stages for job execution. Each stage cannot

start running until its precedent stages are completed. At each

scheduling step, the scheduler needs to select a stage and

allocate resources to its tasks via a scheduling algorithm.

However, the built-in scheduling algorithms, i.e., FIFO and

Fair, often generate schedules for one DAG. Long-running

chains of stages have no other stages to overlap with, which

reduces task parallelism and results in resource fragmentation

in executors. The classic critical path based scheduler [8] con-

siders the complexity of DAGs by queuing stages in the order

of the critical path length, but it ignores the different resource

usages of tasks at each stage. A recently proposed DAG-

aware scheduler, Graphene [10], considers both complexity

and heterogeneity of DAGs. It accelerates job completion by

focusing on long-running tasks and tasks with tough-to-pack

resource demands (called troublesome tasks). However, as it

pays little attention to cache management, the data access

pattern resulted by Graphene is difficult to be exploited by

the current DAG-aware caching policies [19], [14].

Once a stage is selected, Spark TaskSchedulerImpl launches

its tasks into executors according to data locality using delay

scheduling [20]. Based on the current wait time, the scheduler

calculates the allowed data locality that the executors can

launch the tasks. If an executor cannot launch a task with

the allowed locality, it waits for the next scheduling period,

allowing other executors to launch tasks. Some executors that

have few local data accesses often have to wait and be idle,

even though the tasks at this stage are insensitive to data

locality. Thus, the resource wastage due to idle executors

often outweighs the benefit of data locality achieved by delay

scheduling. Timely removal of an executor without many

local data accesses can avoid resource wastage. However, in

Spark, once a container goes away, its executors need to stick

around during the application lifetime to share cached data

across multiple stages of application DAGs. Currently, there

lacks research towards a stage-aware data locality strategy in

prevalent data analytic platforms such as Spark.

In Spark, BlockManager within individual executors adopts

the LRU policy for cache management. As LRU simply evicts

the least recently used blocks, it is oblivious to the data

access pattern due to DAG-aware scheduling. There are recent

studies that aim to improve the cache hit ratio in DAG-aware

environments. For example, LRC [19] evicts the cached data

blocks with the smallest reference count. But they do not

consider the time-spatial distribution of data references, which

378

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00047

often causes inefficient use of the cache space since it may

take a long time before a cached data block has its next

access. Based on stage reference distance defined by stage ID,

MRD [14] evicts the furthest data in the cache to be used while

prefetching the nearest data that will be needed. However, the

caching scheme is designed to follow the data access pattern

caused by FIFO scheduler, and thus often makes erroneous

cache decisions in case of DAG-aware task scheduling.

In this work, we aim for joint DAG-aware task scheduling

and cache management. We propose and develop a middleware

Dagon, which aims to improve resource utilization and appli-

cation performance in Spark clusters. Dagon relies on three

key designs that leverage DAG information, i.e., dependency

structure and heterogeneous resource demands, various data-

locality sensitivities of individual stages, and cache efficien-

cy awareness to tackle the aforementioned scheduling and

caching issues. We make the following contributions.

• We propose to exploit the different task resource demands

of DAG stages and apply dynamic resource configuration

to run tasks for each stage. It enables an executor to

achieve the maximum throughput based on the actual

resource demands of individual tasks.

• Motivated by the complex structure and heterogeneous

resource demand in DAGs, we design a DAG-aware task

assignment policy to reduce potential resource fragmen-

tations. The resulted data access patterns are easy to be

exploited by the cache management.

• We design a sensitivity-aware delay scheduling policy

that takes into account the different data locality sensitiv-

ities of DAG stages to avoid unnecessary executor idling.

• We design a priority-aware cache management scheme

that considers the time-spatial distribution of data refer-

ences and exploits the data access patterns due to the

DAG-aware task assignment.

We have implemented Dagon in Spark running on Apache

YARN [16] cluster manager. We have evaluated its efficacy

with applications from SparkBench suite [12]. Experimental

results by running various applications show that Dagon

reduces the job completion time by up to 42% while increases

CPU utilization by 46% compared to GRAPHENE plus MRD.

Dagon also can be tailored for other DAG-based data analytic

platforms such as Apache Tez [1].

In the following, Section II gives motivational case studies.

Section III elaborates the design and development of Dagon.

Section IV presents the implementation details. Section V

reports the experimental results. Related work is reviewed in

section VI. We conclude the paper in Section VII.

II. MOTIVATIONAL CASE STUDIES

A. Case Studies and Challenges

DAG-blind Task Scheduling. We use the DAG shown in

Figure 1 to illustrate the complexity and heterogeneity issues

with the current Spark task assignment. Each box with a

solid outline represents an RDD. The shaded rectangles are

partitions, and they are in black if the data blocks are already

Fig. 1. A DAG with dependencies and various resource requirements.

(a) FIFO scheduler. (b) DAG-aware scheduler.

Fig. 2. Scheduling stages by two different schedulers.

cached in memory. The boxes with a dotted outline represent

stages. The labels on the top of stages are their task resource

demands and durations (represented as 〈resource, duration〉).
For the sake of clarity, we assume that there is only one

executor with 16 vCPUs available. Also, each task can start

and finish its execution within the estimated duration given its

required resource capacity.

Figure 2 shows the details of the resource scheduling dia-

gram for an executor. Figure 2(a) shows that FIFO scheduler

simply allocates 12 vCPUs to three tasks of stage 1 at

time 0 according to the stage ID. However, its ignorance of

heterogeneous resource demand, that is, each task of stage

2 requires 6 vCPUs instead of 4 vCPUs, causes 4 vCPUs

wastage from time 0 to time 4. After time 4, there is no

other work to overlap the long-running chain of stages (i.e.,

stage 2, stage 3, stage 4), which reduces task parallelism

and results in severe resource fragmentation from time 4 to

time 13. The cause is that FIFO scheduler picks tasks of the

short-running chain of stages (i.e., stage 1, stage 4) at time 0,

without considering the DAG structure. In contrast, a DAG-

aware scheduler can exploit the heterogeneous demand and

DAG structure to reduce resource fragmentation as shown in

Figure 2(b). For example, it picks one task of stage 1 and

two tasks of stage 2 at time 0, resulting in the full resource

usage from time 0 to time 2. Since it schedules tasks of the

long-running chain of stages with a higher priority, more tasks

overlap from time 2 to time 8, which improves task parallelism

and reduces resource fragmentation.

Stage-oblivious Locality Enhancement. To reveal the poten-

tial performance loss caused by delay scheduling, we conduct

a case study on a cluster of seven machines (each with 16-core

CPUs and 128GB RAM). For clarity, the number of replicas of

379

Fig. 3. Effect of four various locality wait times on the stage duration.

HDFS is set to one. Each executor is configured with 4 cores

and 32 GB memory. The rest of the experimental environments

were configured identically to the default settings. A represen-

tative workload from SparkBench suite [12], i.e., KMeans, is

executed by disabling and enabling delay scheduling.

We first set all spark.locality.wait parameters to 0 to disable

delay scheduling policy. Figure 3 shows that the durations of

stage 0 and 16 are 15 and 13 seconds, respectively. Each

of other stages (1∼15 and 17) has a duration of about 3

seconds. We then enable delay scheduling by setting all

spark.locality.wait parameters to the default value of 3s. The

result shows that delay scheduling reduces the duration of

stage 1∼15 and stage 17 from about 3 seconds to 0.7 seconds.

However, it significantly increases the duration of stage 0 from

15 seconds to 27 seconds, and stage 16 from 13 seconds to

20 seconds. We also run the workload with 1.5s or 5s delay,

delay scheduling increases the duration of stages 0 and 16 by

60%, compared to that without delay scheduling.

The results show that different stages have different data

locality sensitivities. For stages 0 and 16, a task with rack

locality achieves approximately the same performance com-

pared with a task with node locality or process locality. Thus,

although enabling delay scheduling can improve data locality

for stages 0 and 16, it cannot improve the performance of the

two stages. For stages 1∼15 and 17, a task with node locality

or rack locality takes almost 15x more time to complete

than a task with process locality. Enabling delay scheduling

to improve data locality for these stages can significantly

reduce their durations. We also note that in order to improve

data locality, delay scheduling would make some executors

be idle. Resource wastage due to idle executors caused by

delay scheduling often outweighs the benefit of data locality

enhancement when tasks of a stage are insensitive to locality

level, e.g., stages 0 and 16 of KMeans workload.

To further illustrate executor idling due to delay scheduling,

we show two executors’ resource usage profiles corresponding

to the default spark.locality.wait setting (i.e., 3s delay) in

Figure 4. After the 1st second, stage 0 starts and task scheduler

has about 40 pending tasks with node locality and 184 pending

tasks with rack locality for executors A and B. After the 12th

second, the task scheduler has 0 and 25 pending tasks with

node locality for executors A and B, respectively. Thus, after

Fig. 4. Pending tasks and resource usage profiles for executors A and B.

the 12th second, the task scheduler still can launch the 25

pending tasks with node locality into executor B and refreshes

the accumulated wait time to set node locality as the allowed

level. As a result, delay scheduling makes executor A be idle

from the 12th second to the 24th second since the scheduler

has no pending task with node locality for executor A. The

similar situation occurs in stage 16 (i.e., from the 39th to

the 59th second). As stages 0 and 16 are insensitive to data

locality, we propose to launch the pending tasks with rack

locality into executor A to avoid expensive executor idling.

Inefficient Cache Management. An efficient cache manage-

ment scheme should consider the time-spatial distribution of

data accesses. The LRU policy does not. We revisit the DAG

shown in Figure 1 and FIFO scheduler shown in Figure 2(a).

Table I (top) shows the data accesses due to FIFO scheduler,

and the cached data blocks due to LRU caching (DAG-

oblivious) and MRD caching (DAG-aware) [14].

In Table I, a letter with/without the underline denotes a

cache hit/miss. For simplicity, we assume that each RDD block

has a uniform size and the cache can store three blocks. At

time 4, two tasks of stage 2 (S2) are launched, and blocks C1
and C2 are accessed. However, LRU caches three blocks of

stage 1’s output RDD B (i.e., B1, B2 and B3) since they have

the last write time, making erroneous cache decisions. In fact,

we can see that RDD B is only needed in the computation of

stage 4 (S4) at time 12, where both RDD B and RDD E are

required and corresponding tasks can only be launched after

RDD E has become available. From time 0 to time 12, LRU

leads to 7 cache hits in total.

MRD caching considers the data access pattern caused by

FIFO scheduler according to stage ID. It evicts the furthest

data in the cache to be used, while prefetching ones that will

soon be accessed. For example, after stage 1 has completed

(i.e., time 4), MRD does not cache the recently used output

RDD B, which is needed in stage 4. Considering that stage 2

will be scheduled by FIFO scheduler, it prefetches block C1,

C2 and C3, which results in three cache hits for stage 2. With

380

TABLE I
COMPARISON OF ACCESSED AND CACHED DATA BLOCKS.

Time FIFO Accessed Data LRU MRD

0 S1,S1,S1 A1,A2,A3 A1,A2,A3 A1,A2,A3
2
4 S2,S2 C1,C2 B1,B2,B3 C1,C2,C3
6 S2 C3 C2,D1,D2 C3,D1,D2
8 S3,S3 D1,D2,D3 D2,C3,D3 D1,D2,D3

12 S4 B1,B2,B3,E1,E2 D3,E1,E2 B1,E1,E2

Time DAG-aware Accessed Data LRU MRD

0 S1,S2,S2 A1,C1,C2 A1,A2,A3 A1,A2,A3
2 S1,S2 A2,C3 C2,D1,D2 C1,C2,C3
4 S1,S3,S3 A3,D1,D2,D3 C3,B1,D3 D1,D2,D3
6
8 S4 B1,B2,B3,E1,E2 B3,E1,E2 B1,E1,E2

12

the knowledge of data access pattern caused by FIFO, MRD

outperforms LRU, obtaining 12 cache hits in total.

Table I (bottom) shows the data accesses due to the DAG-

aware scheduler, and the cached data blocks due to LRU and

MRD caching schemes. We can see that both LRU and MRD

perform poorly with a DAG-aware scheduler. In case of LRU,

there are only five cache hits. We take a closer look at MRD

since it is DAG-aware. From time 0 to time 2, MRD only

obtains two cache hits for stages 1 and 2. Overall, MRD

obtains 8 cache hits. The problem is that according to stage ID,

MRD is unable to understand the data access pattern caused

by DAG-aware task scheduling. The case study illustrates the

need of a caching scheme that is designed to work jointly with

a DAG-aware scheduler.

B. Opportunities

One major feature of Spark fits well to deal with the iterative

and interactive applications due to its capability of sharing

cached data across multiple stages of application DAGs.

However, the current Spark task scheduling and caching often

cause significant performance loss, because of DAG-blind

task scheduling, stage-oblivious locality enhancement, and

inefficient cache management. The root cause is due to its

unawareness of the complexity and heterogeneity of DAGs.

Throughout the case studies, we have observed three oppor-

tunities, 1) task assignment should consider DAG information

and focus on the long-running chains of stages to reduce poten-

tial resource fragmentation, 2) delay scheduling should avoid

unnecessary executor idling when the tasks of some stages are

insensitive to data locality, and 3) cache management should

be designed to work jointly with DAG-aware task assignment.

These motivate us to design joint task scheduling and cache

management in Spark to improve the resource utilization and

application performance.

III. DAGON DESIGN

We present the design of Dagon, a middleware for DAG-

aware task scheduling and cache management in Spark. Dagon

exploits the complex structure and heterogeneous resource

TABLE II
NOTATIONS IN THE DAGON’S DAG-AWARE TASK ASSIGNMENT.

Si, Fi Start and finish times of stage i
qit Resource quantity consumed by stage i at time t
di Resource demand of each task in stage i
wi Number of resource-duration units needed for stage i
pvi Unprocessed workload of stage i and its successors

demands in DAGs, enhances data locality in a flexible man-

ner, and prioritizes cache management for DAG-aware task

scheduling. It consists of three main components: DAG-

aware task assignment, sensitivity-aware delay scheduling, and

priority-aware cache replacement.

• DAG-aware task assignment dynamically allocates ex-

ecutor resources to each stage based on a priority-based

heuristic. It overlaps the execution of long-running chains

of stages to reduce resource fragmentation.

• Sensitivity-aware delay scheduling enhances task data

locality based on locality sensitivities of individual stages

to avoid low resource utilization due to executor idling.

• Priority-aware cache replacement makes the cache

eviction and prefetching decisions based on the stage

priority value determined by DAG-aware task assignment.

A. DAG-aware Task Assignment

The assignment problem is how to allocate the resource

capacities of executors to each stage at runtime such that

the dependencies between stages are satisfied, the resource

capacities are not exceeded, and the job completion time is

minimized. We formulate DAG-aware task assignment as an

optimization problem, and then present a heuristic priority-

based approach. The key notations are listed in Table II.

1) Problem Formulation: Consider a job DAG defined as

follows. A set of stages V has to be scheduled, and a set

of dependency relationships E between stages need to be

preserved. In each scheduling period t, a stage i ∈V consumes

a variable quantity of the resource, qit . The problem is then

to determine, for each stage i ∈ V , its start time Si � 0,

its finish time Fi > Si and its resource allocation profile

qi = {qit} (i ∈ V ; t = 0, 1, · · · , T). These decision variable

values should minimize the overall job completion time, i.e.,

max{Fi : i ∈V}, while satisfying the following constraints.

First, as each stage cannot be started until its parent stages

are finished, we must preserve the dependency relationships.

Let Pi denote the set of parent stages of stage i. For any p∈ Pi,

the following constraint guarantees that the stage i is started

after the stage p is finished.

Si � Fp (p ∈ Pi) (1)

Then, let wi be the workload of stage i. The stage workload

is measured by the total resource requirement of its tasks

in terms of the number of resource-duration units (vCPU-

minute). One vCPU-minute stands for one vCPU used for one

minute. Consider the execution of stage 1 in Figure 1. It con-

sists of three tasks. Each task requires 〈4vCPUs, 4minutes〉.

381

Fig. 5. Example of a resource allocation profile for stage i, qi = {qi,0−1 =
6, qi,2 = 0, qi,3−5 = 3, qi,6 = 2, qi,7 = 4, qi,8 = 3}. We portray qi in the gray
area. Consider the case that stage i consists of 5 tasks and each task requires
〈2vCPUs, 3minutes〉. To run stage i, we assign its first three, the fourth and
fifth tasks at periods 0, 3 and 6, respectively. Two scenarios occur. Case 1)
Resource over-allocation and resource fragmentation occur during period [2, 3]
and period [7, 9], respectively, due to the notable fluctuation in the quantity of
resource. Case 2) Since qi,3−5 mod 2vCPUs = 1(�= 0), 1 vCPU is un-utilized
during period [3, 6].

Algorithm 1 DAG-aware Priority-based Task Assignment.

1: Executors = 〈Exec1, · · · , Execm〉 // executors available
2: TaskSeti; di; pvi; SuccessorSeti (i ∈V) // stage i’s setting
3: repeat
4: if Any free resource is available on Executors then
5: Sort stages in SQ according to pvi in DESC order;
6: for each stage i in SQ do
7: (task, exec) =DelayScheduling (TaskSeti, di, Executors);
8: if task �= null then
9: pvi = wi +∑ j∈SuccessorSeti

w j; // update i’s priority
10: exec. f reeCPUs−di; // update exec’s free resource
11: assign task to executor exec;
12: break the loop;
13: end if
14: end for
15: end if
16: until All stages completed.

The stage workload is 48 vCPUs-minutes. The workload w1

can be processed in 4 minutes by 12 vCPUs, or in 8 minutes

by 8 vCPUs in four minutes and 4 vCPUs on additional four

minutes, or in 12 minutes by 4 vCPUs. Generally, for any

workload wi, it must be processed within the execution of stage

i by acquiring sufficient amount of resource. The requirement

can be represented by the constraints

Fi−1

∑
t=Si

qit � wi and
Si−1

∑
t=0

qit =
T

∑
t=Fi

qit = 0 (i ∈V) (2)

where T is the length of control horizon. Due to the limited

available resource, the total quantity of resource allocated to

all stages in each period t cannot exceed the resource capacity

of executors, RC. That is,

∑
i∈V

qit � RC (t = 0, 1, · · · , T). (3)

Note that some of the resource allocation profiles qi =
{qit} (i∈V ; t = Si,Si+1, · · · ,Fi−1) may have notable fluctua-

tions in resource availability, which can harm job performance.

Figure 5 illustrates such a case (i.e., case 1). Thus, we add the

following constraint.

qi,t−1 −qit

qi,t−1
� r and qit = qi,t+Δt (i ∈V ; t = Si, Si +1,

· · · , Fi −1 : qi,t−1 �= qit ; Δt = 1, 2, · · · , l −1)
(4)

where r ∈ [0, 1] denotes the maximum rate of resource change

per scheduling period and l ∈ Z>0 denotes the minimum

change interval. The first part in Eq. (4) avoids the sudden

large reduction in resource availability. The second part is used

for the continuity of constant resource quantities.

The formulation of the optimization problem for the DAG-

aware task assignment is summarized as follows:

Minimize max{Fi : i ∈V} (5)

Subject to

Eqs. (1), (2), (3) and (4)

qit mod di = 0 (i ∈V ; t = 0, 1, · · · , T)

where di is the resource demand of each task in stage i, and

qit mod di = 0 makes sure that the resources allocated to stage

i in scheduling period t can be fully utilized by its tasks

(referring to case 2 in Figure 5 for a counterexample).

2) Priority-based Approach: The formulated DAG-aware

resource allocation is a generalization of the resource-

constrained project scheduling problem [13] and hence be-

longs to the class of NP-hard problems. Existing algorithms

cannot yield a near-optimal solution in a time acceptable to

Spark framework, especially with the increase in the number

of stages. In addition, since Spark is often deployed in a multi-

tenant cluster, the resource capacity available to an application,

i.e., variable RC in Eq. (3), often changes during runtime.

It means that the optimization model needs to be resolved

multiple times. To this end, we present a heuristic priority-

based algorithm for efficient DAG-aware resource allocation.

The key idea of the heuristic priority-based approach is to

use the constantly updated priority value of each stage to make

task assignment decisions. We define the priority value pvi of

stage i as the currently unprocessed workload of stage i and

all its successor stages, i.e.,

pvi = wi + ∑
j∈SuccessorSeti

w j (6)

where SuccessorSeti denotes the set of stages that cannot be

started before stage i is finished. Thus, the ready-to-execute

stages with a higher priority value are more likely to be on

the long-running chains of stages.

Algorithm 1 shows the pseudo-code of the priority-based

DAG-aware task assignment. At each step, it selects the stage

with the highest priority value among the stages that are ready

to execute (lines 5 ∼ 6). For a given stage, if delay scheduling

assigns tasks to an executor, the stage’s priority value and the

executor’s available resource will be updated (lines 8 ∼ 11).

Here, we consider the general case where a stage can have

tasks with heterogeneous resource demands (denoted as di in

382

TABLE III
DAG-AWARE TASK ASSIGNMENT FOR THE EXAMPLE IN FIGURE 1.

Schedule
Stage 1 Stage 2

Free CPUs Stepw1 pv1 w2 pv2

48 52 36 64 16
Stage 2 48 52 24 52 10 1
Stage 1 32 36 24 52 6 2
Stage 2 32 36 12 40 0 3

32 36 12 40 12
Stage 2 32 36 0 28 6 4

Algorithm 2 Locality Sensitivity-aware Delay Scheduling.

Input: TaskSeti; di; Executors;
Output: (task, exec);

1: allowedLocality= TaskSeti.getAllowedLocalityLevel(curTime);
2: Sort stage i’s valid locality levels in LQ in ASC order;
3: for each exec in Executors do
4: for each locality in LQ do
5: if TaskSeti has a pending task with locality on exec and

exec. f reeCPUs ≥ di then
6: if locality ≤ allowedLocality or task. f inishTime <

TaskSeti.earliestCompletionTime then
7: return (task, exec);
8: else
9: break the loop;

10: end if
11: end if
12: end for
13: end for

line 10). By dynamically allocating executor resources to each

stage according to the priority order, Dagon prioritizes the

long-running chains of stages to overlap their executions.

Consider the example DAG in Figure 1. Table III illustrates

some steps in Dagon DAG-aware task assignment process for

the DAG. Initially, the ready-to-execute stages include stage 1

and stage 2. The priority value of stage 2 (pv2) is sum(w2 =
36, w3 = 24, w4 = 4) that equals to 64, which is larger than

that of stage 1, i.e., sum(w1 = 48, w4 = 4) that equals to 52.

As a result, Dagon selects stage 2 to run a task, then the

workload of stage 2 w2 becomes 24 and the priority value

pv2 becomes 52. For the next steps, Dagon always selects the

stage with the higher priority value if there are available CPUs.

When stage 2 has no unprocessed workload (w2 = 0) at step

4, the ready-to-execute stages will be stage 1 and stage 3. The

process continues until all stages are completed. Finally, we

can observe that the task assignment obtained by the heuristic

priority-based algorithm is the same as that in Figure 2(b).

B. Sensitivity-aware delay scheduling

The data locality problem occurs because delay scheduling

lets an executor be idle when the executor is unable to launch a

task with the required locality. We address it through a simple

sensitivity-aware technique. The key idea of the approach is to

use idle executors to launch tasks at a lower locality level than

it is required. However, launching tasks with a lower locality

can cause a significant delay in the duration of some stages

that are sensitive to locality. Thus, we only assign low-locality

tasks that do not affect the earliest completion time of the stage

Fig. 6. Example of reference priority for two data blocks.

to the idle executors. We estimate the earliest completion time

of stage i, ecti, based on its number of pending tasks ptni, the

current task parallelism t pi and the average duration of tasks

tdi. It is represented as

ecti =
 ptni / t pi �∗ tdi . (7)

Algorithm 2 shows the pseudo-code for the sensitivity-aware

delay scheduling in Dagon. In line 1, the stage’s maximum al-

lowed locality level for launching tasks is calculated according

to native delay scheduling, based on the current wait time. It

then sorts the valid locality levels of the stage in ascending

order. For each executor, it searches the stage’s pending tasks

in the executor in order of the locality level and selects one

when task resource demand can be satisfied. If the locality

of the selected task is not higher than the allowed locality or

this task will finish earlier than the earliest completion time

of the stage, it accepts the task. Otherwise, it skips the current

executor and processes the next one. Note that the the finish

time of a pending task (line 6) is estimated as the average

duration of the finished tasks with the same locality level.

Finally, it replaces the native delay scheduling in Algorithm 1

(line 7) with the sensitivity-aware delay scheduling.

C. Priority-aware cache replacement

We present Least Reference Priority (LRP) caching to work

with DAG-aware task assignment. It makes the cache eviction

and prefetching decisions based on the stage priority value

calculated from Eq. (6). The reference priority is defined as:

Definition 1 (Reference Priority). For each data block, the
reference priority is defined as the priority value of each stage
that uses the data block.

LRP tracks the reference priority of each data block. As a

stage is completed, LRP deletes the corresponding reference

priority for its data blocks, and uses the next highest one.

Figure 6 shows an example of reference priority for two data

blocks. Block 1 has three reference priorities 30, 10 and 60.

If stage 1 is completed, the reference priority of 60 will be

deleted for both block 1 and block 2, and thence the highest

reference priority of block 1 becomes 30, and that of block

2 becomes zero. LRP always evicts the data block whose

reference priority is the lowest, and prefetches the data block

whose reference priority is the highest.

LRP has two desirable properties. First, it is suitable for use

with the DAG-aware priority-based task assignment. Intuitive-

ly, the higher the priority value of a stage is, the larger is the

reference priority of its needed data and thus more likely its

383

Fig. 7. Dagon architecture (in blue a new component; in gray a modification.)

needed data is cached when the stage is scheduled. Second, it

makes efficient use of cache space. Dagon always schedules

the stage with the highest priority value, which means that the

data with a larger reference priority is the recently needed one,

and those with a smaller reference priority will be used later

in the future. Thus, according to the reference priority, LRP

can proactively delete inactive data (i.e., with zero reference

priority) and evict the furthest data to be used. Also, it

prefetches the recently needed data when the available cache

space exceeds a certain threshold.

IV. SYSTEM IMPLEMENTATION

Figure 7 shows the overall architecture of Dagon. From

the history log or online statistics, the new component named

AppProfiler learns the application DAG and estimates the task

duration and resource demand for each stage. When a user

runs a workload for the first time, it submits the workload

with a small dataset to obtain the profile and then re-submits

it with the full dataset. The modifications for Spark to support

the features of Dagon include DAGScheduler, TaskScheduler,

BlockManagerMaster, and BlockManager.

Scheduling workflow. When a user deploys an application

with spark-submit script, Spark launches the driver program

on the master node. The driver creates a SparkContext, through

which AppProfiler is instantiated. During the stage execution,

AppProfiler periodically collects data (e.g., task resource usage

and finish event) from executors, and passes re-estimated

resource configuration and task duration to TaskScheduler.

The driver also instantiates DAGScheduler to build a DAG of

stages, TaskScheduler to schedule stages in the priority order,

and BlockManagerMaster to update reference priority profile.

For each stage, TaskScheduler finds tasks via sensitivity-aware

delay scheduling, and launches them into executors using

the estimated resource configuration. Spark driver starts its

executors on the slave nodes, which leads to the distributed

deployment of BlockManager across a cluster.

Eviction and prefetching workflow. BlockManagerMaster

implements the main logic of LRP caching. It maintains and

updates the reference priority profile based on DAG that is

obtained from AppProfiler or built by DAGScheduler, and the

stage priority value provided by TaskScheduler. Once the pro-

file is updated, it sends the updated profile to BlockManager

in the corresponding nodes. BlockManager evicts data blocks

in two ways accordingly to the reference priority profile. First,

from time to time, it proactively checks the data blocks in the

cache and evicts those blocks with a reference priority of zero

to free up the cache space. Second, when the free cache space

is insufficient to accommodate a new data block, it selects the

data block that has the smallest reference priority for eviction.

BlockManager also keeps track of the reference priority of

the evicted data. When the free cache space reaches a certain

threshold, it prefetches the in-disk data block whose reference

priority is the largest. Such a prefetch operation effectively

overlaps the disk access time with computation time. After

an eviction/prefetch event occurs, BlockManager reports the

status of the data block to BlockManagerMaster.

Implementation details. We deployed Spark 2.2.0 equipped

with Dagon on Hadoop Yarn 2.7.1, where an executor

is implemented using Linux containers (LXC) based on

cgroup. We added a new function trackContainer()
to Yarn LinuxContainerExecutor. It reads

the CPU usage and throttled time of tasks

from cgroup/cpuacct/cpuacct.usage and

cgroup/cpu/cpu.stat, respectively. These statistics

are periodically communicated to AppProfiler and used to

estimate the task resource demand for each stage. To prevent

a long tail task due to high parallelism or low locality from

prolonging the stage execution, we modified speculative

execution. For a long tail task, it launches a speculative task

to an executor that has free resource close to the input data.

V. EVALUATION

A. Testbed Setup

We evaluate Dagon on a physical cluster composed of

12 Sugon I620-G20 (16-core CPUs and 128 GB RAM)

and 8 ThinkServer RD650 (20-core CPUs and 128 GB

RAM). Each server has a 6TB hard disk, and is connected

with 10 Gbps Ethernet. Dagon is implemented in Hadoop

Yarn 2.7.1 and Spark 2.2.0. Two servers are configured as

ResourceManager and NameNode. The rest 18 servers

run as the slave nodes for HDFS storage and Spark job

execution. Based on the previous study [15], we configure

each Spark executor with 4 cores and 8GB memory.

For comparison, we implement a recently proposed

dependency-aware scheduler Graphene [10], as well as

reference-distance based cache management scheme M-

RD [14]. Graphene reduces resource fragmentation and im-

proves job completion time by first scheduling troublesome

tasks and then scheduling the remaining tasks. MRD always

evicts and prefetches data blocks for the furthest and nearest

stages that will be scheduled by FIFO scheduler, respectively.

Thus, there is an incoherency between the data access pat-

tern and data caching when applying MRD caching under

Graphene scheduler (denoted as Graphene + MRD).

We use a set of representative workloads from SparkBench

suite [12]. The workloads are grouped into three categories

384

(a) Job completion time. (b) Task execution time. (c) CPU utilization.

Fig. 8. Comparison of Dagon with representative approaches in the job completion time and cluster resource utilization.

(a) The job completion time. (b) Task parallelism of DecisionTree workload. (c) CPU utilization of DecisionTree workload.

Fig. 9. Impact of Dagon’s priority-based task assignment on the job completion time, task parallelism, and CPU utilization.

based on their resource consumption characteristics. It in-

cludes three CPU-intensive (LinearRegression, LogisticRegres-
sion and DecisionTree), two mixed (KMeans and Triangle-
Count), and two I/O intensive (ConnectedComponent and

PregelOperation) workloads. We compare results of Dagon

to the Graphene + MRD approach using these workloads.

B. Effectiveness of Dagon

We firstly compare the job completion time and cluster re-

source utilization achieved by FIFO + LRU, Graphene + LRU,

Graphene + MRD, and Dagon. We use the stock Spark

(i.e., FIFO + LRU) as the baseline. Figure 8(a) shows that

Graphene + LRU reduces the job completion time of CPU-

intensive and mixed workloads by about 15% compared to

FIFO + LRU. It is relatively less effective for two I/O inten-

sive workloads (i.e., ConnectedComponent and PregelOper-
ation) as Graphene’s Spark implementation is a CPU-only

scheduling algorithm. Since MRD can effectively mitigate the

I/O bottleneck for I/O intensive workloads, we observe that

Graphene + MRD outperforms Graphene + LRU by 23% for

ConnectedComponent and PregelOperation in the job comple-

tion time. Graphene + MRD improves performance even more

for other workloads. The results show that Dagon improves

the average job completion time of all workloads by 42%,

31%, and 20% compared to the stock Spark, Graphene + LRU,

and Graphene + MRD, respectively. For ConnectedComponent
workload, Dagon improves the job completion time by 42%

compared to Graphene + MRD. There are two reasons for the

performance improvement. First, Dagon prioritizes the long-

running chains of stages to reduce resource fragmentation

while keeping the data needed by these stages in memo-

ry. Graphene + MRD lacks the coherency between its task

scheduling and caching, which results in performance loss due

to cache misses. Second, Dagon launches low-locality tasks to

idle executors based on the data locality sensitivities of stages,

and thus speeds up the overall job completion.

Figure 8(b) shows that both Dagon and Graphene

(+ LRU/MRD) lead to longer task execution times at some

stages because of DAG-aware task scheduling. However,

this provides more opportunities for improving task paral-

lelism and reducing resource fragmentation. Compared to

Graphene + MRD, Dagon slightly increases the task execution

time by about 10%. The reason is that Dagon launches low-

locality tasks to idle executors, which may cause longer task

execution time but also results in higher resource utilization.

Figure 8(c) demonstrates Dagon increases the CPU utiliza-

tion by 26%, 18%, and 13% compared with stock Spark,

Graphene + LRU, and Graphene + MRD, respectively. Note

that for I/O intensive workloads, e.g., ConnectedComponent,
Dagon achieves 46% higher utilization than Graphene + MRD

does. Frequent disk I/Os often cause low CPU utilization. Due

to its effective caching, Dagon improves the CPU utilization

significantly for I/O intensive workloads.

C. Benefit of DAG-aware task scheduling in Dagon

We investigate the impacts of Dagon priority-based task

assignment and sensitivity-aware delay scheduling on the job

completion time, task parallelism, and CPU utilization. We use

Spark default task scheduler (FIFO) and delay scheduling for

comparison. Caching is disabled in the experiments.

385

(a) Job completion time. (b) Data locality. (c) CPU utilization.

Fig. 10. Impact of sensitivity-aware delay scheduling on the job completion time, data locality and resource utilization.

Priority-based task assignment. Figure 9(a) compares the

job completion time achieved by FIFO scheduler, Graphene,

and priority-based task assignment of Dagon. It shows that

Dagon slightly outperforms Graphene in the job completion

time. Graphene assumes that all available resources can be

used to launch tasks on time, but the assumption indeed

does not hold because delay scheduling often makes some

executors be idle. The results also reveal that the improvement

in the job completion time also varies because of differ-

ent workload characteristics. For CPU intensive workloads,

i.e., LinearRegression, LogisticRegression and DecisionTree,

Dagon outperforms FIFO by 19%, 19% and 23%, respective-

ly. For mixed workloads, i.e., KMeans and TriangleCount,
Dagon outperforms FIFO by 18% and 13%, respectively.

However, Dagon is less effective for I/O intensive workloads,

i.e., ConnectedComponent and PregelOperation. The cause is

that Spark allows workloads to specify only their resource

demands on CPU (number of cores) for a task, regardless

of I/O demands and resource availability. Thus, while Dagon

and Graphene help to reduce CPU fragmentation, for I/O

intensive workloads they may overuse I/O resources and cause

unexpected contention, canceling out the benefit. Figures 9(b)

and 9(c) show the task parallelism and CPU utilization of

DecisionTree are effectively improved when applying priority-

based task assignment of Dagon. Dagon achieves about 20%

improvement in the job completion time compared to FIFO.

Sensitivity-aware delay scheduling. Figure 10 compares the

job completion time, data locality, and cluster resource utiliza-

tion achieved by delay scheduling and sensitivity-aware delay

scheduling of Dagon, respectively. Figure 10(a) shows that

Dagon outperforms delay scheduling by 24% in the average

job completion time. For different workloads, performance

improvements are different due to the workload characteristics.

In general, the higher the proportion of stages insensitive

to data locality in a workload, the larger is the room for

improvement by Dagon. Figure 10(b) shows that the number

of high-locality tasks of stages insensitive to locality is reduced

by 14% when applying sensitivity-aware delay scheduling of

Dagon. This prevents some executors from wasting resources

due to unnecessary waiting for high-locality tasks. As shown

in Figure 10(c), Dagon increases the average CPU utilization

by 12% compared to delay scheduling.

(a) The cache hit ratio. (b) The job completion time.

Fig. 11. Comparison of caching policies under different schedulers.

D. Benefit of LRP cache policy

We conduct experiments to compare MRD [14] and LRP

(of Dagon) caching under two scheduling modes, i.e., FIFO

and Dagon. We use LRU + FIFO as the baseline. For a fair

comparison, we use the same experimental environment and

workloads as in a previous study [14]. Figure 11 compares

the cache hit ratio and job completion time achieved by four

different combinations. Figure 11(a) shows that although MRD

outperforms LRU by 24% in the cache hit ratio under FIFO

scheduler, it performs poorly with Dagon. The reason is that

MRD is designed for FIFO scheduler, thus it does not accu-

rately cache and prefetch the data mostly needed by Dagon

during workload execution. On the other hand, LRP achieves

11% higher cache hit ratio than MRD does under Dagon.

As a result, in Figure 11(b) we can see that Dagon + LRP

outperforms Dagon + MRD by 18% in the job completion time

for ConnectedComponent workload, but also it improves job

performance for all workloads. We also observe that Dagon

only has marginal performance improvement compared to

FIFO when using MRD. This is due to the fact that all four

workloads are I/O intensive and FIFO benefits more from

MRD caching because of their coordination. In summary, we

can conclude that the LRP cache policy is more effective for

Dagon’s DAG-aware task scheduling.

VI. RELATED WORK

DAG-aware scheduler: CARBYNE [9] and A-scheduler [4],

[5] aim to optimize inter-DAG job scheduling for DAG-

structured computations. In CARBYNE, the short-term left-

over resources of jobs are rescheduled to improve job per-

formance and cluster utilization. A-scheduler is an adaptive

386

approach for Spark Streaming that schedules jobs using dif-

ferent policies based on their dependencies and automatically

adjusts job parallelism and resource shares based on workload

characteristics. For intra-DAG task scheduling, heuristic meth-

ods [11], [15] consider the complex intra-job dependencies so

as to speed up job completion but they assume homogeneous

demands. GRAPHENE [10] builds task schedules offline by

placing the troublesome tasks into a virtual resource-time

space and then places the remaining task subsets. It focuses

on multi-resource packing and data dependency, but not the

coherency between its data access pattern and data caching.

Delay scheduling and data locality: Many prior studies

have shown that enhancing task data locality is an effective

approach for job performance improvement [2], [3]. Delay

scheduling [20] significantly improves MapReduce perfor-

mance by slightly relaxing job fairness to enhance task data

locality. However, it is unaware of data locality sensitivities

of DAG stages in Spark. Dawn [17] proposes a dependency-

aware network-adaptive scheduler that aggregates and co-

locates the data and tasks of dependent jobs to improve data

locality and job performance. DelayStage [15] applies delay

scheduling to optimize the launch time of parallel stages so as

to avoid significant fluctuation of resource utilization. Dagon

differs from these efforts in that it uses idle executors due

to delay scheduling to launch tasks at a lower locality level,

based on data locality sensitivities of different DAG stages.

Cache management: LRU is the de facto caching policy

used in Spark and Tez. However, it is oblivious to the data

access pattern in DAG jobs. MemTune [18] adjusts memory

partitions for task execution and data storage at runtime in

Spark. It evicts and prefetches data blocks according to local

dependencies on runnable tasks. LRC [19] keeps track of the

count of references to each data block and evicts the cached

data blocks with the smallest reference count. MRD [14]

examines data access pattern caused by FIFO scheduler and

evicts the furthest data to be used while prefetching the nearest

ones that will be needed. But none of the existing policies

consider the data access pattern caused by DAG-aware task

scheduling, and thus often make erroneous cache decisions.

VII. CONCLUSIONS

This works aim to leverage the complexity and heterogene-

ity of DAGs to jointly execute task scheduling and caching. It

proposes and develops Dagon, a middleware for joint DAG-

aware task scheduling and cache management. Dagon consists

of three key mechanisms, 1) DAG-aware task assignment that

considers dependency structure and heterogeneous resource

demands to reduce resource fragmentation, 2) sensitivity-

aware delay scheduling that prevents executors from wasting

resources due to unnecessary waiting for high-locality tasks,

and 3) priority-aware cache management that makes the cache

eviction and prefetching decisions based on the stage priority

determined by DAG-aware task assignment. Dagon is imple-

mented in Spark. Experiments with benchmark applications

show that Dagon significantly improves job performance and

cluster utilization, compared to the prevalent approaches.

ACKNOWLEDGMENT

This work was supported in part by the National Key

Research and Development Program of China under Grant

2019YFB1704102, the National Natural Science Foundation

of China under Grant No. 61672381, and the Fundamental

Research Funds for the Central Universities under Grant

22120180508. The corresponding author is Prof. Zhijun Ding.

REFERENCES

[1] Apache Tez. http://tez.apache.org/.
[2] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar.

Shufflewatcher: Shuffle-aware scheduling in multi-tenant MapReduce
clusters. In Proc. of USENIX ATC, 2014.

[3] X. Bu, J. Rao, and C.-Z. Xu. Interference and locality-aware task
scheduling for MapReduce applications in virtual clusters. In Proc.
of ACM HPDC, 2013.

[4] D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. Milljicic. Adaptive
scheduling of parallel jobs in Spark streaming. In Proc. of IEEE
INFOCOM, 2017.

[5] D. Cheng, X. Zhou, Y. Wang, and C. Jiang. Adaptive scheduling parallel
jobs with dynamic batching in Spark streaming. IEEE Transactions on
Parallel and Distributed Systems, 29(12):2672-2685, 2018.

[6] M. Chowdhury and I. Stoica. Efficient coflow scheduling without
prior knowledge. ACM SIGCOMM Computer Communication Review,
45(4):393–406, 2015.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple
resource types. In Proc. of USENIX NSDI, 2011.

[8] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
journal on Applied Mathematics, 17(2):416–429, 1969.

[9] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Altru-
istic scheduling in multi-resource clusters. In Proc. of USENIX OSDI,
2016.

[10] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni. GRAPHENE:
Packing and dependency-aware scheduling for data-parallel clusters. In
Proc. of USENIX OSDI, 2016.

[11] Z. Hu, D. Li, Y. Zhang, D. Guo, and Z. Li. Branch scheduling: DAG-
aware scheduling for speeding up data-parallel jobs. In Proc. of ACM
IWQoS, 2019.

[12] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. Sparkbench: a
comprehensive benchmarking suite for in memory data analytic platform
Spark. In Proc. of ACM CF, 2015.

[13] A. Naber and R. Kolisch. Mip models for resource-constrained project
scheduling with flexible resource profiles. European Journal of Opera-
tional Research, 239(2):335–348, 2014.

[14] T. B. Perez, X. Zhou, and D. Cheng. Reference-distance eviction and
prefetching for cache management in spark. In Proc. of ICPP, 2018.

[15] W. Shao, F. Xu, L. Chen, H. Zheng, and F. Liu. Stage delay scheduling:
Speeding up DAG-style data analytics jobs with resource interleaving.
In Proc. of ICPP, 2019.

[16] V. K. Vavilapalli, A. C. Murthy, C. Douglas, et al. Apache Hadoop
Yarn: Yet another resource negotiator. In Proc. of ACM SoCC, 2013.

[17] S. Wang, W. Chen, X. Zhou, L. Zhang, and Y. Wang. Dependency-
aware network adaptive scheduling of data-intensive parallel jobs. IEEE
Transactions on Parallel and Distributed Systems, 30(3):515–529, 2019.

[18] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z. Hu. Memtune:
Dynamic memory management for in-memory data analytic platforms.
In Proc. of IEEE IPDPS, 2016.

[19] Y. Yu, W. Wang, J. Zhang, and K. B. Letaief. LRC: Dependency-
aware cache management for data analytics clusters. In Proc. of IEEE
INFOCOM, 2017.

[20] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Proc. of ACM EuroSys, 2010.

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proc.
of USENIX NSDI, 2012.

[22] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proc. of USENIX
HotCloud, 2010.

387

