
Robust Dynamic Resource Allocation via
Probabilistic Task Pruning in Heterogeneous

Computing Systems
James Gentry, Chavit Denninnart, Mohsen Amini Salehi
High Performance Cloud Computing (HPCC) Laboratory,

School of Computing and Informatics, University of Louisiana at Lafayette, USA
gentry@hpcclab.org, {cxd9974, amini}@louisiana.edu

Abstract—In heterogeneous distributed computing (HC) sys-
tems, diversity can exist in both computational resources and
arriving tasks. In an inconsistently heterogeneous computing
system, task types have different execution times on heteroge-
neous machines. A method is required to map arriving tasks
to machines based on machine availability and performance,
maximizing the number of tasks meeting deadlines (defined as
robustness). For tasks with hard deadlines (e.g., those in live
video streaming), tasks that miss their deadlines are dropped.
The problem investigated in this research is maximizing the
robustness of an oversubscribed HC system. A way to maximize
this robustness is to prune (i.e., defer or drop) tasks with low
probability of meeting their deadlines to increase the probability
of other tasks meeting their deadlines. In this paper, we first
provide a mathematical model to estimate a task’s probability of
meeting its deadline in the presence of task dropping. We then
investigate methods for engaging probabilistic dropping and we
find thresholds for dropping and deferring. Next, we develop
a pruning-aware mapping heuristic and extend it to engender
fairness across various task types. We show the cost benefit of
using probabilistic pruning in an HC system. Simulation results,
harnessing a selection of mapping heuristics, show efficacy of
the pruning mechanism in improving robustness (on average by
'25%) and cost in an oversubscribed HC system by up to '40%.

Index Terms—Heterogeneous Computing (HC), Probabilistic
Pruning, Mapping Heuristic, Robustness.

I. INTRODUCTION

A Heterogeneous Computing (HC) system can be described
by two types of heterogeneity: inconsistent and consistent [1],
[2]. Inconsistent machine heterogeneity refers to differences in
machine architecture (e.g., CPU versus GPU versus FPGA [3]–
[5]). Consistent machine heterogeneity describes the differ-
ences among machines of a certain architecture (e.g., dif-
ferent clock speeds). Compute services offered by cloud
providers are a good example of an HC system. Amazon
cloud [6] offers inconsistent heterogeneity in form of vari-
ous Virtual Machine (VM) types, such as CPU-Optimized,
Memory-Optimized, Disk-Optimized, and Accelerated Com-
puting (GPU and FPGA). Within each type, various VMs are
offered with consistent performance scaling with price [6].
Moreover, both consistent and inconsistent heterogeneity can
exist in arriving tasks. For example, an HC system dedicated
to processing live video streams is responsible for many
categorically different types of tasks: changing video stream
resolution, changing the compression standard, changing video

bit-rate [2]. Each of these task types can be consistently
heterogeneous within itself (e.g., it takes longer to change
resolution of 10 seconds of video, compared to 5).

Many HC systems (e.g., [7], [8]) present both consistent
and inconsistent heterogeneity in machines used and task types
processed [9]. These systems present cases where each task
type can execute differently on each machine type, where
machine type A performs task type 1 faster than machine
type B does, but is slower than other machine types for
task type 2. Specifically, compute intensive tasks run faster
on (i.e., matches better with) a GPU machine whereas tasks
with memory and disk accesses bottlenecks (e.g., in-memory
databases [10]–[12]) runs faster on a CPU-based machine.

All of this heterogeneity results in uncertainty for a given
task’s execution time, thus, inefficiency of resource alloca-
tion [1]. Accordingly, a major challenge in HC systems is
to assign tasks to machines to optimize performance goal
of the system [1]. We define robustness as the degree to
which a system can maintain performance in the face of
uncertainty [13]. The overall goal of this study is to maximize
the robustness of an HC system.

Each task is considered to have a hard individual deadline,
past which, no value remains in executing the task. Hence,
tasks are dropped (i.e., removed) from the system when their
deadline passes [14], [15]. When the HC system is under load,
such that it is impossible for all tasks to complete before
their deadlines, the system is considered oversubscribed. The
performance metric based on which we measure robustness of
an HC system is the number of tasks that meet their deadlines
in the system. Therefore, the specific goal of this study is to
maximize the number of tasks meeting their deadlines in the
HC system (referred to as task success) in the face of uncertain
execution times in an oversubscribed system. A model of
machine and task heterogeneity [16] must be available to the
resource allocation system, and the system must harness this
awareness to overcome with the uncertainty of the HC system.

When tasks have hard deadlines, time spent executing tasks
that are ultimately dropped is wasted time. This wasted time
cascades down the queue of tasks, delaying the execution of
other tasks, and increasing the number of missed tasks in
the future—decreasing system robustness. To mitigate this,
tasks with a low probability of success should not be mapped,

375

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00047

and if they are, they should be dropped before execution. If
probabilistically pruning these unlikely-to-succeed tasks yields
more tasks completing on-time in oversubscribed HC systems,
how do we maximize the robustness gained thereby?

To address this question, in this research, we propose a prun-
ing mechanism (as depicted in Figure 1) that is composed of
two methods, namely deferring and dropping. Task deferring
deals with postponing assignment of unlikely-to-succeed tasks
to a next mapping event with the hope that the tasks can be
mapped to a machine that provides a higher chance of success
for them. Alternatively, when the system is oversubscribed,
the pruning mechanism transitions to a more aggressive mode
and drops the tasks that are unlikely to succeed. Before
determining deferring and dropping details, we need to model
the impact of task dropping on the probability of success for
the tasks behind the dropped task. Then, we determine the
appropriate probability for dropping and deferring. We propose
a method to dynamically determine when the resource alloca-
tion system should transition to a more aggressive mode and
engage in task dropping. We compare and analyze robustness
obtained from deploying our proposed pruning mechanism
against an HC system that either does not perform pruning
or has a basic pruning implemented.

Maximizing robustness of HC systems in terms number
of tasks meeting their deadlines can potentially cause bias
towards executing certain task types and affects fairness of the
system. As such, we develop a mapping method to maintain
fairness while maximizing robustness.

Our hypothesis is that the proposed pruning mechanism not
only improves robustness of an HC system, but can impact the
incurred cost of using resources. This is particularly important
for users who deploy heterogeneous cloud VMs [17]. As such,
we investigate the impact of the proposed probabilistic pruning
mechanism on the incurred cost of using heterogeneous cloud
VMs and compare it against common mapping methods.

In summary, the contributions of this paper are as follows:
• Mathematically modeling the impact of task dropping on

the success probability of other tasks behind the dropped
one.

• Developing a method to determine probablistic dropping
and deferring thresholds in the pruning mechanism.

• Proposing a method to dynamically engage task dropping
in response to oversubscription in an HC system.

• Developing a pruning-aware and a fairness-aware map-
ping heuristic for an HC system.

• Analyzing the cost benefit of the pruning mechanism.
Simulation results approve our hypotheses and show that the

pruning mechanism can enhance robustness and the incurred
cost. Importantly, the mechanism is more impactful under
higher oversubscription levels. This paper is organized as
follows. Section II situates this work in relation to existing
literature. Section III establishes the problem and describes our
system model. Then, Section V presents our proposed solution.
Baseline heuristics are described in Section VI, along with
the constraints and parameters of the experiment. Section VII
presents and analyzes the simulation results. Finally, Section
VIII concludes the paper and offers direction for future works.

II. RELATED WORKS

Mapping tasks in HC systems have been shown to be an
NP-complete problem [18], [19]. As such, there are multiple
prior efforts that achieve sub-optimal solutions and they are
either influence or being similar to our work. Here are some
notable mentions.

To model task execution times, Shestak et al. [13], instead
of using a scalar value, lay the groundwork for the use
of probability mass functions (aka PMF). The method for
convolution of execution times to form completion times
for a queue of tasks is established. Our work builds upon
their use of PMFs and robustness measurement, while also
adding the conditions of probabilistically drop executing tasks
and pending tasks. Khemka et al. [14] investigate resource
allocation in oversubscribed heterogeneous systems. They test
task utility functions based on priority, utility class, and
urgency. They use a matrix with deterministic execution times,
whereas we model the times probabilistically. Also, unlike
our approach of probabilistically determining if a task should
be dropped, their task dropping occurs only after a task’s
utility goes below a static threshold. In [20], Salehi et al.
model the stochastic nature of the heterogeneous task types
on heterogeneous machine types using a matrix of probability
mass functions (PMFs) to improve robustness of dynamic
resource allocation. A mathematical model for calculating
the completion time of stochastically modeled tasks in the
presence of task dropping is provided. However, Salehi et al.
only consider dropping tasks after their deadlines have passed.

Delimitrou and Kozyrakis [21] propose Paragon which is
an immediate (i.e., not batch) dynamic scheduling system for
heterogeneous data centers. They use singular value decom-
position of historical data to classify incoming tasks based on
their heterogeneity. The classifications are used in a greedy
algorithm to select a list of candidate resources based on
interference, and then from that, the best fit based on het-
erogeneity [22]. Unlike our work that considers probabilistic
execution times for decision making, their mapping heuristics
operates based on scalar execution times. The performance
metrics are also different, as their tasks do not have deadline
to consider, Paragon is only concerned system throughput.

In [23], Li et al. introduce the affinity (i.e., match) of
heterogeneous cloud VMs to change coding of video streams.
They observed that depending on their content types, video
files have different performances on heterogeneous VM types.
Particularly, they notice that slow-motion video contents gain
from compute intensive VMs, such as GPUs, whereas fast-
motion videos do not gain much from such VMs. They
concluded that categorizing videos based on their content
types and deploying an inconsistently heterogeneous set of
cloud VMs can reduce the incurred cost of using cloud
without compromising quality. In another work [2], Li et al.
dynamically composes an inconsistently HC system to process
a heterogeneous set of video streaming tasks. However, they
do not consider the case of task dropping.

Malawski et al. [24] evaluate dynamic mapping of deadline-
and cost-constrained tasks in cloud. They support dropping
workflows that would result in a loss of high priority tasks

376

completion, however, their metrics to quantify and evaluate
each task’s worthiness are different. Unlike our work, they
focus on homogeneous cloud VMs. Tetrisched [25] is a
mapping method for consistent HC systems used for YARN
and MapReduce. It operates based on mixed integer linear
programming and considers task execution time on different
machines types. Our system uses a similar set of information
to for mapping, however, it also leverages task deferring to
find a better match for tasks and considers task dropping to
alleviate oversubscription and improve robustness.

III. SYSTEM MODEL

The motivation for this research comes from an HC system
used for processing live video streaming services [26] (e.g.,
YouTube Live and Twitch.tv [27]). In these services, video
content is initially captured in a certain format and then
processed (aka transcoded) to support diverse viewers’ display
devices [28]. As there is no value in executing live video
streaming tasks that have missed their individual deadlines,
they are dropped from the HC system. It has been shown that,
in such a system deploying an inconsistently HC system helps
processing inconsistently heterogeneous task types (e.g., tasks
to change resolution and tasks to change compression stan-
dard) and ensuring an uninterrupted streaming experience [23].
Figure 1 shows an overview of the system. Tasks are queued
upon arrival and are mapped to available heterogeneous ma-
chines (m1,m2, ...,mn) in batches.

...

m1

m2

mn

PET matrix

~ ~

arriving tasks

batch queue

machine queues

m1

mn

m2
MAPPER

...

Pruning Mechanism

DROPPINGDEFERRING

Fig. 1: Pruning mechanism. Heterogeneous tasks are mapped to
heterogeneous machines in batches. In each mapping, the pruner
drops or defers tasks based on their probability of success.

To capture the stochastic nature in execution time of each
task type (e.g., those arising from data-size differences in
tasks), we use Probability Mass Functions (PMF). In an
inconsistently HC system, the execution time PMF of different
task types on different machine types are maintained in a
matrix called a Probabilistic Execution Time (PET) [1], [20].
As we consider the HC systems are deployed to offer a
specific service (e.g., video streaming), the type of arriving
task requests are limited and known. As such, the PET matrix
has a limited and constant size. In practice, the PMFs of
the PET matrix can be built from historic execution time
information of each task type on each machine type and
modeling them via a histogram in an offline manner [29].
Thus, we assume that such a PET matrix is available in our
HC system.

In our system, as seen in Figure 1, heterogeneous tasks
dynamically arrive into a batch queue of unmapped tasks with
no prior knowledge of the timing or order. The intensity of
tasks arriving to the HC system (i.e., oversubscription level)
also varies. To limit the compound uncertainty and maintain
accuracy of mapping decisions, machines use limited-size
local queues to process their assigned tasks in a first-come-
first-serve (FCFS) manner. A mapping event occurs upon
arrival of a new task or when a task gets completed. Before
the mapping event, tasks that have missed their deadlines are
dropped (removed) from the system. Then, the mapping event
attempts to map tasks from the batch queue. This happens
until either the machine queues are full, or there are no more
unmapped tasks. We assume that once a task is mapped to a
machine, its data is transferred to that machine and it cannot be
remapped due to data transfer overhead. It is assumed that each
task is independent and executes in isolation on a machine,
with no preemption and no multitasking [30], [31].

To map tasks to machines, the mapper creates a temporary
(virtual) queue of machine-task mappings and calculates the
completion time distribution of each unmapped task on het-
erogeneous machines, as explained in the next section.

IV. CALCULATING TASK COMPLETION TIME IN THE
PRESENCE OF TASK DROPPING

Upon dropping a task in a given machine queue, the
completion time PMF of those tasks behind the dropped tasks
is improved. Intuitively, dropping a task, whose deadline has
passed or has a low chance of success, enables the tasks behind
it to begin execution sooner, thus, increasing their probability
of success and subsequently, overall robustness of the HC
system. Each task in queue compounds the uncertainty in the
completion time of the tasks behind it in the queue. Dropping
a task excludes its PET from the convolution process, reducing
the compound uncertainty as well.

The pruning mechanism we propose in this research should
be able to calculate the impact of dropping a task on the
probability of success (i.e., robustness) of tasks behind the
dropped tasks. In this section, we provide the mathematical
model to calculate the completion time and probability of
meeting deadline of a task located behind a dropped task.

Recall that each entry (i, j) of PET matrix is a PMF
represents the execution time of task i’s task type on a machine
type j. In fact, PET (i, j) is a set of impulses, denoted Ei j,
where ei j(t) represents execution time probability of a single
impulse at time t. Similarly, completion time PMF of task i
on machine j, denoted PCT (i, j), is a set of impulses, denoted
Ci j, where ci j(t) is an impulse represents the completion time
of task i on machine j at time t.

Let i a task with deadline δi arrives at time α and is given
a start time on idle machine j. In this case, the impulses
in PET (i, j) are shifted by α to form its PCT (i, j) [20].
Then, the robustness of task i on machine j is the probability
of completing i before its deadline, denoted pi j(δi), and is

377

calculated based on Equation 1.

pi j(δi) =
t≤δi

∑
t=α

ci j(t) (1)

In case machine j is not idle (i.e., it has executing or pending
tasks) and task i arrives, the PCT of the last task in machine
j (i.e., PCT (i− 1, j)) and PET (i, j) are convolved to form
PCT (i, j). This new PMF accounts for execution times of all
tasks ahead of task i in the machine queue j. For example, in
Figure 2, an arriving task i with δi = 7 is assigned to machine
j. Then, PET (i, j) is convolved with the PCT of the last task
on machine queue j to form PCT (i, j).

4 53

.25 .25

.50

4 65

.125

.3125.3125

87

.0625

.1875

1 32

.25 .25

.50

* =

PET of task i
with deadline 7

PCT of task i-1 in
machine queue j

convolved PCT of task i
assigned to machine j

time time time

pr
ob

ab
ili

ty

pr
ob

ab
ili

ty

pr
ob

ab
ili

ty

Fig. 2: Probabilistic Execution Time (PET) of arriving task i is
convolved with the Probabilistic Completion Time (PCT) of the last
task on machine j to form PCT (i, j).

The completion time impulses are generated differently
based on the way task dropping is permitted in a system. Three
scenarios are possible: (A) Task dropping is not permitted; (B)
Only pending tasks can be dropped; and (C) Any task, includ-
ing the executing one, can be dropped. We note that the initial
idea of calculating these completion time PMFs were proposed
in [20]. However, in the following, we mathematically model
and provide the closed form solution for calculating comple-
tion time PMFs. Considering the space limit, interested readers
can refer to [20] for further explanations.

(A) Task dropping is not permitted, i.e., when all mapped
tasks must execute to completion, Equation 2 is used to
calculate the impulses, denoted cNoDrop

i j (t), of Ci j from the
convolution of PET (i, j) and PCT (i−1, j).

cNoDrop
i j (t) =

k<t

∑
k=1

[ei j(k)·cNoDrop
(i−1) j (t− k)] (2)

(B) Only pending tasks can be dropped. In this case, the
impulses in PCT (i− 1, j) that occur after the deadline of
task i are not considered in calculating PCT (i, j), as that
would indicate task i is dropped due to its deadline passing.
Therefore, the formulation changes to reflect the impact of
truncated PCT (i−1, j) in the convolution process. Owing to
the complexity of calculating PCT (i, j), in this circumstance,
we develop a helper function, denoted f (t,k), as shown in
Equation 3, that helps Equation 4 to discard impulses from
PCT (i− 1, j) ≥ δi. To calculate impulse ci j(t), note that if
t < δi, then t−k < δi. In this case, Equations 4 and 3 operate
the same as Equation 2. However, for cases where t ≥ δi, we
use the helper Equation 3 to generate an impulse by discarding

impulses of PCT (i− 1, j) ≥ δi. Later, in Equation 4, we add
impulses in i−1 that occur after δi to account for when task
i−1 completes at or after δi.

f (t,k) =


0, ∀(t− k)≥ δi

ei j(k)·cpend
(i−1) j(t− k), ∀(t− k)< δi

(3)

cpend
i j (t) =


k<t
∑

k=1
f (t,k)+ cpend

(i−1) j(t), ∀t ≥ δi

k<t
∑

k=1
f (t,k), ∀t < δi

(4)

(C) All tasks (including executing one) can be dropped. In
fact, in this case, the completion time impulses are obtained
similar to Equation 4. However, the special case happens when
t = δi because at this time, if task i has not completed, it
is dropped. For the purposes of calculating PCT (i, j) using
Equation 5, PCT (i−1, j) is guaranteed to be complete by its
deadline. Therefore, as Equation 5 shows, all the impulses after
δi are aggregated into the impulse at t = δi. We should note
that, the discarded impulses, i.e., those of task i−1 that occur
at or after δi, must be added to Ci j, to indicate the probabilities
that task i−1 completes after task i’s deadline.

cevict
i j (t) =



k<∞

∑
k=t

cpend
i j (k)+ cevict

(i−1) j(t), t = δi

cpend
i j (t), ∀t > δi

k<t
∑

k=1
f (t,k), ∀t < δi

(5)

We note that, calculating completion time poses a not in-
significant overhead. However, the overhead can be mitigated
by pre-processing and memoizing portions of the convolution
and finalizing it just in time at mapping time. It is also possible
to approximate PMFs by aggregating impulses.

V. MAXIMIZING ROBUSTNESS VIA PRUNING MECHANISM

A. Overview
In the beginning of the mapping event, if the system is iden-

tified as oversubscribed, the pruning mechanism (aka pruner)
examines machine queues. Beginning at the executing task
(queue head), for each task in a queue, the success probability
(robustness) is calculated. Tasks whose robustness values are
less than or equal to the dropping threshold are removed from
the system. Then, the mapping method determines the best
mapping for tasks in the batch queue. Prior to assigning the
tasks to machines, the tasks with low chance of success are
deferred (i.e., not assigned to machines) and returned to the
batch queue to be considered during the next mapping events.
This is in an effort to increase robustness of the system by
waiting for a machine with better match to become available
for processing the deferred task. To design the pruner for an

378

HC system, three sets of questions regarding deferring and
dropping operations are posed that need to be addressed.

First set of questions surround the probability thresholds
at which tasks are dropped or deferred. How to identify
these thresholds and the relation between them. A related
question arises is, should a system-level probability threshold
be applied for task dropping? Or, should there be individual
considerations based on the characteristics of each task? If
so, what characteristics should be considered, and how should
they be used in the final determination? Second, there is
the matter of when to begin task dropping, and when to
cease. That is, how to dynamically determine the system is
oversubscribed and transition the pruner to a more aggressive
mode to drop unlikely-to-succeed tasks such that the overall
system robustness is improved. Pruning can potentially lead
to unfair scheduling across tasks types—constantly pruning
compute-intensive and urgent task types in favor of other tasks
to maximize the overall robustness. Hence, the third question
is how the unfairness across task types can be prevented?
Should the system prioritize task types that have been pruned?
If so, how much of a concession should be made?

B. Determining Dropping and Deferring Thresholds
1) Dynamic Per-Task Dropping Threshold: At its simplest,

the task dropper can apply uniform dropping threshold for all
tasks in a machine queue. However, a deeper analysis tells us
that not all tasks have the same effects on the probability of
on-time completion for the tasks behind them in queue. This
can be taken into account to make the best decision about
which tasks should stay and which are dropped.

In addition to determining task robustness, other features
of completion time PMF can be valuable in making decisions
about probabilistic task dropping. We identify two task-level
characteristics that further influence the robustness of tasks
located behind a given task i: (A) the position of task i
in machine queue, and (B) the shape (i.e., skewness) of
completion time PMF of task i.

In fact, the closer a task is to execution, the more tasks are
affected by its completion time. For instance, with a machine
queue size of six, an executing task affects the completion
time of five tasks queued behind it, where the execution time
of a task at the end of the queue affects no tasks. Therefore,
the system should apply a higher dropping threshold for tasks
close to queue head.

Skewness is defined as the measure of asymmetry in a prob-
ability distribution and is calculated based on Equation 6 [32].
In this equation, N is the sample size of a given PMF, Yi
is an observation, and Ȳ is the mean of observations. A
negative skewness value means the tail is on the left side of
a distribution whereas a positive value means that the tale
is on the right side. Generally, |S| ≥ 1 is considered highly
skewed, thus, we define s as bounded skewness and we have
−1≤ s≤ 1.

S =

√
N(N−1)
N−2

× ∑
n
i=1 (Yi− Ȳ)3/N

σ3 (6)

A negatively skewed PMF has the majority of probability
occurring on the right side of PMF. Alternatively, because

the bulk of a probability is biased to the left side of a
PMF, a positive skew implies that a task is completed sooner
than later. The middle PMFs in Figure 3 each represents a
completion time with a robustness of 0.75, however, they show
different types of skewness. Using this information, we can see
that two tasks with the same robustness can have different
impacts on the robustness of tasks behind them in queue.
Tasks that are more likely to complete sooner (i.e., positive
skewness) propagate that positive impact to tasks behind them
in queue. The opposite is true for negatively skewed tasks.
Reasonably, we can favor tasks with positive skewness in task
dropping. Figure 3 shows the effects of different types of
skews on the completion times of tasks behind them in queue.
Subfigure 3b shows the negative effects of negative skew
whereas Subfigure 3c shows the positive effect of positive
skew on the robustness of the next task in the queue.

2 43

.0625

.375
.25

65

.0625

.25

1 32

.25 .25

.50

1 32

.25 .25

.50

.6875 robust.75 robust

* =
(a) No Skew

1 32

.60

.15
.25

2 43

.0375

.400

.225

65

.0625

.275

1 32

.25 .25

.50

.6625 robust.75 robust

* =
(b) Left Skew

2 31

.25 .25

.50

2 43

.125

.3125.3125

65

.0625

.1875

1 32

.25 .25

.50

.75 robust.75 robust

* =
(c) Right Skew

Fig. 3: Demonstration of effect of task i’s skewness on completion
time PMF of task i+1 (right-most PMFs) with a deadline 5 (δi+1 =
5). The left-most PMFs show execution time PMF of task i+1 and
the middle ones show completion time PMF of task i (δi = 3).

Using the skewness and queue position, the system can
adjust a base dropping threshold dynamically, for each task
in a machine queue. The adjusted dropping threshold for a
given task i, denoted φi, is calculated based on Equation 7. To
favor tasks with positively skewed completion time PMF, we
negate the skewness (si). To account for position of task i in
machine queue, denoted κi, we divide the negated skewness
by the position. Addition of 1 is just to avoid division by zero
and ρ is a parameter to scale the adjusted dropping threshold.

379

Ideally, this will allow more tasks to complete before their
deadline, leading to a higher robustness in an HC system.

φi =
−si·ρ
κi +1

(7)

This dynamic adjustment of the probability is done only in
the dropping stage of the pruner. When it comes to deferring
tasks, the task position is always the same (i.e., the tail of the
queue), and it is too early to consider the shape of the tasks
PMF, as there are, as yet, no tasks behind it in queue.

2) Inferring Deferring Threshold from Dropping Threshold:
At its simplest, the pruner can use a single threshold to decide
whether to defer mapping a task, as well as to decide whether
to drop a mapped task. However, considering deferring thresh-
old less than or equal to the dropping threshold, causes
mapping a task with a robustness lower than the dropping
threshold. Nonetheless, unless a task is dropped ahead of that
mapped task, such a task is going to be dropped during the
next engagement of the task dropper and leads to a poor per-
formance. Therefore, considering deferring threshold higher
than the dropping threshold benefits the overall robustness
of the system. This is because the pruner waits for more
robust mapping decisions and considers a gap between the
requirements to map a task (i.e., deferring threshold), and the
threshold required to dropping a task. In Section VII-C, we
explore the appropriate gap between deferring and dropping
thresholds so that the robustness of HC system is maximized.

C. Aggressive Pruning by Engaging Task Dropping

To maximize robustness of the system, the aggression of
the pruning mechanism has to be dynamically adjusted in
reaction to the level of oversubscription in the HC system.
The pruning mechanism considers the number of tasks missed
their deadlines since the past mapping event as an indicator of
the oversubscription level in the system. We use the identified
oversubscription level as a toggle that transitions the pruner
to task dropping mode. However, in this case, the pruner can
potentially toggle to dropping mode as a result of an acute
spike in task-arrival, and not a sustained oversubscription state.

To judge the oversubscription state in the system, the pruner
operates based on moving weighted average number of tasks
that missed their deadlines during the past mapping events. Let
dτ the oversubscription level of the HC system at mapping
event τ; and µτ the number of tasks missing their deadline
since the past mapping event. Parameter λ is tunable and is
determined based on the relative weight assigned to the past
events. The oversubscription level is the calculated based on
Equation 8. In the experiment section, we analyze the impact
of lambda and determine an appropriate value for it.

dτ = µτ·λ+dτ−1·(1−λ) (8)

Another potential concern is minor fluctuations about the
toggle switching the dropping off and then back on. We
employ a Schmitt Trigger [33] to prevent minor fluctuations
around dropping toggle. We set separate on and off values
for the dropping toggle. Based on our initial experiments,
we determined the Schmitt Trigger to have 20% separation

between the on and off values. For instance, if oversubscription
level two or higher signals starting dropping, oversubscription
value 1.6 or lower signals stopping it.

D. Proposed Mapping Heuristics

In this part, we develop two mapping heuristics based on
the theory explored in this study. The first heuristic, PAM,
leverages pruning mechanism to maximize robustness. How-
ever, the second mapping heuristic, in addition to maximizing
robustness, aims at achieving fairness across task types.

The batch heuristics are two-phase processes, a first phase
finds the best machine for each task, by virtue of a per-
heuristic objective. In the second phase, from task-machine
pairs obtained in the first phase, each heuristic chooses the
best task-machine pair for each available machine queue slot.
After all slots are filled, virtual mappings are assigned to the
machine queues and the mapping method is complete.

1) Pruning Aware Mapper (PAM): This heuristic uses the
PET matrix to calculate task robustness and then operates
based on the pruning mechanism. Before making any map-
ping decision, PAM analyzes the oversubscription level and
performs task dropping on machine queues, if necessary.

In the first phase, for each unmapped task, PAM finds the
machine offers the highest robustness. Then, tasks that do not
meet the deferring threshold are pruned. The second phase
finds the task-machine pair with the lowest completion time
and maps it to that machine’s virtual queue. Ties are broken
by choosing task with the shortest expected execution time.

2) Fair Pruning Mapper (PAMF): Probabilistic task prun-
ing potentially favors task types with shorter execution times,
resulting in unfairness. This is because shorter tasks usually
have a higher probability of completion within their deadlines.
PAMF heuristic aims at mitigating this unfairness.

PAMF favors task types that have suffered from pruning. By
relaxing the pruning thresholds for tasks of unfairly treated
task types, the system can prevent bias against them. We
define sufferage value at mapping event e for each task type f ,
denoted εe f , that determines how much to decrease (i.e., relax)
the base pruning threshold. Note that we define 0 as no suffer-
age. We define fairness factor (denoted ϑ) as a constant value
across all task types in a given HC system by which we change
sufferage value of task types. This fairness factor denotes
how quickly any task’s sufferage value changes in response
to missing a deadline. A high factor results in large relaxation
of probabilistic requirements. Updating the sufferage value
occurs upon completion of a task in the system. A successful
completion of a task of type f in mapping event e results in
lowering the sufferage value of task type f by the fairness
factor, i.e., εe f = ε(e−1) f −ϑ, whereas for an unsuccessful task
we add the fairness factor, i.e., εe f = ε(e−1) f +ϑ. We note that
we limit sufferage values (εe f) to be between 0 to 100%. Then,
the mapping heuristic determines the fair pruning threshold for
a given task type f at a mapping event e by subtracting the
sufferage value from the base pruning threshold.

Updated pruning threshold enables PAMF create a more fair
distribution of completed tasks by protecting tasks of unfairly-

380

treated types from pruning. Once we update pruning thresholds
for suffered task types, the rest of PAMF functions as PAM.

VI. EXPERIMENTAL SETUP

A. Overview

To conduct a comprehensive performance evaluation, we
simulate a computing system with eight inconsistently hetero-
geneous machines (i.e., M = 8). To generate the probabilistic
execution time PMFs (PET), the mean execution time results
from twelve SPECint benchmarks on a set of eight machines1

was determined. These mean execution times for each bench-
mark on each system formed the mean values for our task-
machine execution times. The function describing execution
time of the tasks on a machine is assumed to be a unimodal
distribution; from a gamma distribution using the task-machine
mean execution time, and with a shape randomly picked from
the range [1:20], 500 execution times were sampled. From
these times, a histogram was generated to produce a discrete
probability mass function (PMF). This was repeated for each
task type on each machine, and the resultant eight machine
by twelve task type matrix of PMFs was stored as the PET
matrix which remains constant across all of our experiments.

B. Generating Workload

Our simulation is of a finite span of time units, starting and
ending in a state where the system is idle. As the system comes
online, and tasks begin to accumulate in the queue, the system
is not in the desired state of oversubscription. The same is true
of the end of the simulation, when the last tasks are finishing,
and no more are arriving to maintain the oversubscribed state.
In an effort to minimize the effects of the non-oversubscribed
portion of the simulation from the data, the first and last
hundred (100) tasks to complete are removed from the results.
Only the remaining tasks from the oversubscribed portion of
the simulation are used in the analysis.

Based on other workload investigations [14], [15], a gamma
distribution is created with a mean arrival rate for all task types
that is synthesized by dividing the total number of arriving
tasks by the number of task types. Except an experiment in
Subsection VII-G, the variance of this distribution is 10% of
the mean. Each task type’s mean arrival rate is generated by
dividing the number of time units by the estimated number of
tasks of that type. A list of tasks with attendant types, arrivals
times, and deadlines is generated by sampling each task type’s
distribution. For a given task i, the deadline is calculated as
δi = arri + avgi + (β·avgall), where arri is the arrival time,
avgi is the mean execution time for that task type (range from
50 to 200 ms) , β is a slack coefficient, and avgall is the mean
of all task type’s execution. This slack allows for the tasks to
have a chance of completion in an oversubscribed system.

1The 8 machines are: Dell Precision 380 3 GHz Pentium Extreme, Apple
iMac 2 GHz Intel Core Duo, Apple XServe 2 GHz Intel Core Duo, IBM
System X 3455 AMD Opteron 2347, Shuttle SN25P AMD Athlon 64 FX-60,
IBM System P 570 4.7 GHz, SunFire 3800, and IBM BladeCenter HS21XM.

C. Baseline Mapping Heuristics

1) MinCompletion-MinCompletion (MM): This heuristic
has been extensively used in the literature [20], [34]–[36]. In
the first phase of the heuristic, the virtual queue is traversed,
and for each task in that queue, the machine with the minimum
expected completion time is found, and a pair is made. In the
second phase, for each machine with a free slot, the provisional
mapping pairs are examined to find the machine-task pair with
the minimum completion time, and the assignment is made
to the machine queues. The process repeats itself until all
machine queues are full, or until the batch queue is exhausted.

2) MinCompletion-Soonest Deadline (MSD): Phase one is
as in MM. Phase two selects the tasks for each machine with
the soonest deadline. In the event of a tie, the task with the
minimum expected completion time is selected. As with MM,
after each machine with an available queue slot receives a
task from the provisional mapping in phase two, the process
is repeated until either the virtual machine queues are full, or
the unmapped task queue is empty.

3) MinCompletion-MaxUrgency (MMU): Urgency of task i
on machine j is defined as Ui j = 1/(δi−E(Ci j)), where E(Ci j)
is the expected completion time of task i on machine j.

Phase one of MMU is the same as MM. Using the urgency
equation, phase two selects the task-machine pair that has the
greatest urgency, and adds that mapping to the virtual queue.
The process is repeated until either the batch queue is empty,
or until the virtual machine queues are full.

4) Max Ontime Completions (MOC): The MOC heuristic
was developed in [20]. It uses the PET matrix to calcu-
late robustness of task-machine mappings. The first mapping
phase finds, for each task, the machine offering the highest
robustness value. The culling phase clears the virtual queue
of any tasks that fail to meet a pre-defined (30%) robustness
threshold. The last phase finds the three virtual mappings with
the highest robustness and permutes them to find the task-
machine pair that maximizes the overall robustness and maps
it to that machine’s virtual queue. The process repeats until
either all tasks in the batch queue are mapped or dropped, or
until the virtual machine queues are full.

VII. PERFORMANCE EVALUATION

A. Overview

A series of simulations were run using the Louisiana Optical
Network Infrastructure (LONI) Queen Bee 2 HPC system [8].
For each set of tests, for each examined parameter, 30 work-
load trials were performed using different task arrival times
built from the same arrival rate and pattern, and the mean and
95% confidence interval of the results is reported. The arrival
rates are listed in terms of number of tasks per time unit.

Each experiment is a set of 30 workload trials, consisting
of 800 tasks per trial. Each of the experiments investigates
extreme levels of oversubscription where few tasks complete
successfully using baseline heuristics. Each machine in the HC
system has a machine-queue size of six, counting the executing
task and the dropping toggle is one task. For each of the
experiments, unless otherwise noted, the performance metric

381

(and the vertical axis) is the percentage of tasks completed
before their deadline (i.e., overall robustness).

B. Dynamic engagement of probabilistic task dropping

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Weight given to present event vs history ()

0

10

20

30

40

50

60

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
) default schmitt

Fig. 4: Impact of historical oversubscription observations and
Schmitt Trigger on determining oversubscription level of HC system.

In this experiment, our aim is to appropriately configure
oversubscription level (see Equation 8) by determining the
weight that should be assigned to the number of deadlines
missed in the recent mapping event versus the previous values
of the oversubscription level. We also evaluate the impact of
using Schmitt Trigger as opposed to using a single threshold
for dynamic engagement of task dropping. This experiment
was conducted under 34k tasks arriving to the system.

Figure 4 shows that by assigning a higher weight to the
number of dropped tasks in the most recent mapping event,
the overall robustness of the system is increased from 67.7% to
71.9%. This is due in part to the steady nature of task-arrival
our workload trials with only few sudden spikes. Also, we
can observe that applying Schmitt Trigger results in a higher
robustness. Specifically, we observe that λ = 0.9 provides
a statistically and practically higher robustness, hence, is
appropriate for identifying oversubscription level.

We can conclude that under high oversubscription levels,
the best results come from taking immediate action when
tasks miss their deadlines, and then a steady application of
probabilistic task dropping until the situation is decidedly
controlled (i.e., reaching the lower bound of Schmitt Trigger).

C. Impact of deferring and dropping thresholds

The goal of this experiment is to identify the appropriate gap
that should be considered between the deferring and dropping
thresholds (see Section V-B). To find the appropriate deferring
threshold, we add a gap value to the dropping threshold
(e.g., a dropping threshold of 50% would require at least
55% robustness to map a task to a machine). To test this,
three dropping thresholds (25%, 50%, and 75%) are examined
in an experiment increasing the gap on each by 5% until
the deferring threshold reaches 90%. The results, shown in
Figure 5, are generated from an a workload with 34k tasks.

Figure 5 validates our hypothesis by showing that using a
higher deferring threshold leads to higher system robustness.
We observe that if the deferring threshold is chosen high
enough, the impact of dropping threshold on the system
robustness diminishes. That is, with a high dropping threshold

30 40 50 60 70 80 90 100
Defer Threshold (%)

30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
) Dropping Threshold

25% 50% 75%

Fig. 5: Impact of deferring and dropping thresholds. Dropping
threshold is denoted by line type and color.

(e.g., 75%) we obtain the same system robustness with a
low dropping threshold (e.g., 25%). However, we note that
higher dropping threshold can influence the incurred cost
of using an HC system, because they prevent wasting time
processing unlikely-to-succeed tasks that have been mapped
to the system. In the rest of experiments, dropping threshold
50% and deferring threshold 90% is used.

D. Evaluating the impact of fairness factor

Our aim is to study if PAMF heuristic (see Section V)
alleviates unfairness. We test the system using a fairness
factor ranging from 0% (i.e., no fairness) to 25%. Recall
that this fairness factor is the amount by which we modify
the sufferage value for each task type. The sufferage value
for a given task type at a given mapping event is subtracted
from the required threshold, in an effort to promote fairness
in completions amongst task types. For each fairness factor,
we report: (A) The variance in percentage of each task type
completing on time. The objective is to minimize the variance
among these. (B) The overall robustness of the system, to
understand the robustness we have to compromise to attain
fairness. Robustness value is noted above each bar in Figure 6.
We tested oversubscription level of 19k and 34k tasks.

0 5 10 15 20 25
Fairness Factor (%)

0

2

4

6

8

10

Va
ria

nc
e

of
 T

as
k

Ty
pe

s C
om

pl
et

ed
 (%

)

73%

71%
70%

69% 68% 67%

44%

41%

39% 39% 38% 38%

19k 34k

Fig. 6: Evaluating fairness and robustness. Horizontal axis shows
fairness factor modifier to the sufferage value. Vertical axis is the
variance of completed task types. Values above bars show robustness.

Figure 6 shows that significant improvement in fairness
can be attained at the cost of compromising robustness. In
particular, we observe that using 5% fairness factor results
in remarkable reduction in variance of completed tasks that
implies increasing fairness. For instance, for 34k tasks, the
variance drops from 6% to 3.5%, at a cost of '10% reduction

382

in robustness (from 44.2% to 40.5%). This compromise in
robustness is because deferring fewer tasks in an attempt
to improve fairness results in fewer tasks successfully com-
pleted overall. Further increasing fairness factor results in
insignificant changes on fairness and robustness, therefore, we
configure PAMF with 5% fairness factor in the experiments.

E. Evaluating robustness of pruning
In this experiment, we compare the overall robustness of-

fered by PAM and PAMF against that of the baseline heuristics
described in section VI. We conducted this evaluation under
various oversubscription levels, however, due to space limit
and presentation clarity we only show oversubscription levels
with 19k and 34k tasks. We note that the same pattern is
observed with other oversubscription levels evaluated.

19k 34k
Task Arrival Rate (oversubscription level)

0

20

40

60

80

100

Ta
sk

s C
om

pl
et

ed
 O

n
Ti

m
e

(%
) PAM

PAMF
MOC
MM

MSD
MMU

Fig. 7: Comparison of PAM and PAMF against other heuristics.
Horizontal axis shows oversubscription in form of number of tasks.

In Figure 7, we observe that PAM results in a substantial
increase in system robustness versus other heuristics, at nearly
70% and PAMF results in nearly 50% robustness, trading per-
centage of tasks completed for types of tasks completed. MOC,
another robustness-based heuristic, is the closest in robustness
to PAM, rivaling PAMF, at nearly 50%. The inability to proba-
bilistically drop tasks leads to wasted processing and delayed
task mapping, thereby lowering robustness. With robustness
of '25%, the performance of MinMin lags far behind, as
it allocates tasks to machines no matter how unlikely they
are to succeed. The robustness offered by both MSD and
MMU suffers in comparison because these heuristics, instead
of maximizing performance of the most-likely tasks, prioritize
tasks whose deadlines or urgency is closest (i.e., least likely to
succeed tasks). With an oversubscription of 34k tasks, MSD
and MMU only map tasks that fail to meet their deadline.

F. Cost benefit of probabilistic pruning
To investigate the incurred cost of using resources, pricing

from Amazon cloud VMs [6] has been mapped to the machines
in the simulation. Each machine’s usage time is tracked. The
price incurred to process the tasks is divided by the percentage
of on-time tasks completed to provide a normalized view of
the incurred costs in the system.

Figure 8 shows that in an oversubscribed system both PAM
and PAMF incur a significantly ('40%) lower cost per com-
pleted task than MOC and other heuristics. At extreme levels
of oversubscription, the difference between heuristics such as
MMU and MSD and PAM become unchartable, as MSD and

19k 34k
Task Arrival Rate (oversubscription level)

0

100

200

300

400

500

600

Co
st

 /
Pe

rc
en

t T
as

ks
 C

om
pl

et
ed

 O
n

Ti
m

e

PAM
PAMF

MOC
MM

Fig. 8: Impact of probabilistic pruning on incurred costs of using
resources. Horizontal axis shows the oversubscription level.

MMU both prioritize tasks least likely to succeed, whereas
PAM prioritizes those most likely to succeed. While previous
tests have shown PAM outperforms other heuristics in terms of
robustness in the face of oversubscription, these results show
that in most levels of oversubscription, the benefits are realized
in dollar cost as well, due to not processing tasks needlessly.

G. Evaluating video transcoding workload traces
To evaluate PAMF under a real-world setting, we compare

it against MinMin on video transcoding workload traces under
different oversubscription levels (horizontal axis in Figure 9).
The PET matrix captured from running four video transcoding
types on 660 video files (available in https://goo.gl/TE5iJ5)
on four heterogeneous Amazon EC2 VMs, namely CPU-
Optimized, Memory-Optimized, General Purpose, and GPU.
The experimental result confirms our earlier observation and
show that PAMF outperforms MinMin specifically as the level
of oversubscription increases.

10k 12.5k 15k 17.5k
Task Arrival Rate (oversubscription level)

0

20

40

60

80

100

Ta
sk

 C
om

pl
et

ed
 O

n
Ti

m
e

(%
) PAMF MM

Fig. 9: Comparison of PAMF against MinMin using video transcod-
ing workload. The horizontal axis shows the oversubscription level
(number of tasks).

VIII. CONCLUSION AND FUTURE WORKS

The goal of this research was to improve robustness of HC
systems via pruning tasks with low probability of success. We
designed a pruning mechanism as part of resource allocation
system in the system. For pruning, we determined probability
values used by mapping heuristics to either map or defer a task.
We concluded that: (A) when the system is not oversubscribed,
tasks with low chance of success should be deferred (i.e.,
wait for more favorable mapping in the next mapping); (B)
When the system is sufficiently oversubscribed, the unlikely-
to-succeed tasks must be dropped to alleviate the oversubscrip-
tion and increase the probability of other tasks succeed; (C)

383

https://goo.gl/TE5iJ5

The system benefits from setting higher deferring threshold
than dropping threshold. We developed a mapping heuristic,
PAM, based on the probabilistic task pruning and showed that
it can improve system robustness by on average by '25%.
We upgraded PAM to accommodate fairness by compromising
around four percentage points robustness. Evaluation results
revealed that pruning mechanism (and PAM) does not only
improve system robustness but also reduces the cost of using
cloud-based HC systems by '40%.

The idea of pruning developed in this research is generic and
can be plugged to other systems. We plan to extend the prob-
abilistic approach for tasks preemption and its impact on the
convolution process. Another future work is to approximately
compute tasks, in addition to pruning or dropping them from
the system. Finally, as HC systems have various QoS concerns,
domain-specific fairness models should be explored.

ACKNOWLEDGMENTS

We thank reviewers of the paper. Portions of this research
were conducted with high performance computational re-
sources provided by the Louisiana Optical Network Infrastruc-
ture [8]. This research was supported by the Louisiana Board
of Regents under grant number LEQSF(2016-19)-RD-A-25.

REFERENCES

[1] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali, “Repre-
senting task and machine heterogeneities for heterogeneous computing
systems,” Tamkang Journal of Science and Engineering, vol. 3, no. 3,
pp. 195–208, Nov. 2000.

[2] X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya, “Cost-
efficient and robust on-demand video stream transcoding using hetero-
geneous cloud services,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 29, no. 3, pp. 556–571, Mar. 2018.

[3] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and G. Lipari, “Energy-
efficient scheduling for moldable real-time tasks on heterogeneous
computing platforms,” Jnl. of Systems Arch., vol. 74, pp. 46–60, 2017.

[4] Q. Zhao, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi, “A
study of heterogeneous computing design method based on virtualization
technology,” ACM SIGARCH Computer Architecture News, vol. 44,
no. 4, pp. 86–91, 2017.

[5] C.-H. Hong, I. Spence, and D. S. Nikolopoulos, “Gpu virtualization and
scheduling methods: A comprehensive survey,” ACM Computing Surveys
(CSUR), vol. 50, no. 3, pp. 35:1–35:37, Jun. 2017.

[6] “Amazon Web Sevices (AWS) Instance Types,” https://aws.amazon.com/
ec2/instance-types/, accessed May 03, 2018.

[7] Z. Zong, R. Ge, and Q. Gu, “Marcher: A heterogeneous system support-
ing energy-aware high performance computing and big data analytics,”
Big Data Research, vol. 8, pp. 27–38, 2017.

[8] “Louisiana Optical Network Infrastructure (LONI) Resources QB2,”
http://hpc.loni.org/resources/hpc/system.php?system=QB2, accessed
Aug 10, 2018.

[9] J. Smith, V. Shestak, H. J. Siegel, S. Price, L. Teklits, and P. Sugavanam,
“Robust resource allocation in a cluster based imaging system,” Parallel
Computing, vol. 35, no. 7, pp. 389–400, Jul. 2009.

[10] Z. Wang, H. Qian, J. Li, and H. Chen, “Using restricted transactional
memory to build a scalable in-memory database,” in Proc. of the 9th
European Conference on Computer Systems, 2014, pp. 26:1–26:15.

[11] J. C. Dos Anjos, M. D. de Assuncao, J. Bez, C. Geyer, E. P. De Freitas,
A. Carissimi, J. P. C. Costa, G. Fedak, F. Freitag, V. Markl et al.,
“Smart: An application framework for real time big data analysis on
heterogeneous cloud environments,” in 15th International Conference
on Computer and Information Technology, Oct. 2015, pp. 199–206.

[12] M. Malensek, S. Pallickara, and S. Pallickara, “Minerva: proactive disk
scheduling for QoS in multitier, multitenant cloud environments,” IEEE
Internet Computing, vol. 20, no. 3, pp. 19–27, May. 2016.

[13] V. Shestak, J. Smith, A. Maciejewski, and H. J. Siegel, “Stochastic
robustness metric and its use for static resource allocations,” Jnl. of
Parallel and Distributed Computing, vol. 68, no. 8, pp. 157–173, 2008.

[14] B. Khemka, R. Friese, L. D. Briceo, H. J. Siegel, A. A. Maciejewski,
G. A. Koenig, C. Groer, G. Okonski, M. M. Hilton, R. Rambharos, and
S. Poole, “Utility functions and resource management in an oversub-
scribed heterogeneous computing environment,” IEEE Transactions on
Computers, vol. 64, no. 8, pp. 2394–2407, Aug. 2015.

[15] B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J. Siegel, G. A.
Koenig, S. Powers, M. Hilton, R. Rambharos, and S. Poole, “Utility
maximizing dynamic resource management in an oversubscribed energy-
constrained heterogeneous computing system,” Sustainable Computing:
Informatics and Systems, vol. 5, pp. 14–30, Mar. 2015.

[16] S. AlEbrahim and I. Ahmad, “Task scheduling for heterogeneous com-
puting systems,” Supercomputing Jnl., vol. 73, no. 6, Jun. 2017.

[17] M. Salehi and R. Buyya, “Adapting market-oriented scheduling policies
for cloud computing,” in Proceedings of the 10th international confer-
ence on Algorithms and Architectures for Parallel Processing-Volume
Part I, Jan. 2010, pp. 351–362.

[18] E. Coffman and J. Bruno, Computer and Job-shop Scheduling Theory.
New York, NY: John Wiley & Sons, 1976.

[19] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on non-identical processors,” Journal of the ACM,
vol. 24, no. 2, pp. 280–289, Apr. 1977.

[20] M. A. Salehi, J. Smith, A. A. Maciejewski, H. J. Siegel, E. K. Chong,
J. Apodaca, L. D. Briceño, T. Renner, V. Shestak, J. Ladd et al.,
“Stochastic-based robust dynamic resource allocation for independent
tasks in a heterogeneous computing system,” Journal of Parallel and
Distributed Computing (JPDC), vol. 97, pp. 96–111, Nov. 2016.

[21] C. Delimitrou and C. Kozyrakiss, “QoS-aware scheduling in hetero-
geneous datacenters with Paragon,” ACM Transactions on Computer
Systems, vol. 31, no. 4, pp. 1–34, Dec. 2013.

[22] C. Delimitrou and C. Kozyrakis, “Quality-of-Service-aware scheduling
in heterogeneous data centers with Paragon,” IEEE Micro, vol. 34, no. 3,
pp. 17–30, May 2014.

[23] X. Li, M. Amini Salehi, Y. Joshi, M. Darwich, L. Brad, and M. Bay-
oumi, “Performance analysis and modelling of video stream transcoding
using heterogeneous cloud services,” Accepted in IEEE Transactions on
Parallel and Distributed Systems (TPDS), Sep. 2018.

[24] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms
for cost-and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds,” FGCS, vol. 48, pp. 1–18, 2015.

[25] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter,
and G. R. Ganger, “Tetrisched: global rescheduling with adaptive plan-
ahead in dynamic heterogeneous clusters,” in Proceedings of the 11th
European Conference on Computer Systems, Apr. 2016, pp. 35:1–35:16.

[26] X. Li, M. A. Salehi, and M. Bayoumi, “VLSC: Video Live Streaming
Using Cloud Services,” in Proceedings of the 6th IEEE International
Conference on Big Data and Cloud Computing Conference, ser. BD-
Cloud ’16, Oct. 2016, pp. 595–600.

[27] R. Aparicio-Pardo, K. Pires, A. Blanc, and G. Simon, “Transcoding live
adaptive video streams at a massive scale in the cloud,” in Proceedings
of the 6th ACM Multimedia Systems Conference, Mar. 2015, pp. 49–60.

[28] X. Li, M. A. Salehi, and M. Bayoumi, “High performance on-demand
video transcoding using cloud services,” in Proceedings of the 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, ser. CCGrid ’16. IEEE, May 2016, pp. 600–603.

[29] L. Wasserman, All of Statistics: A Concise Course in Statistical Infer-
ence. New York, NY: Springer Science+Business Media, 2005.

[30] A. Dogan and F. Ozguner, “Genetic algorithm based scheduling of
meta-tasks with stochastic execution times in heterogeneous computing
systems,” Jnl. of Cluster Computing, vol. 7, no. 2, pp. 177–190, 2004.

[31] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation and
load distribution for multiple heterogeneous multicore server processors
across clouds and data centers,” IEEE Transactions on Computers,
vol. 63, no. 1, pp. 45–58, Jan. 2014.

[32] C. L. Bayes and M. D. Branco, “Bayesian inference for the skewness
parameter of the scalar skew-normal distribution,” Brazilian Journal of
Probability and Statistics, pp. 141–163, Dec. 2007.

[33] W. M. Kader, H. Rashid, M. Mamun, and M. A. S. Bhuiyan, “Advance-
ment of cmos schmitt trigger circuits,” Modern Applied Science, vol. 6,
no. 12, pp. 51–58, Nov. 2012.

[34] X. He, X. Sun, and G. Von Laszewski, “QoS guided min-min heuristic
for grid task scheduling,” Journal of Computer Science and Technology,
vol. 18, no. 4, pp. 442–451, 2003.

[35] M. Pedemonte, P. Ezzatti, and Á. Martı́n, “Accelerating the min-min
heuristic,” in Parallel Processing and Applied Mathematics, May 2016,
vol. 11, pp. 101–110.

[36] P. Ezzatti, M. Pedemonte, and Á. Martı́n, “An efficient implementation
of the min-min heuristic,” Journal of Computers & Operations Research,
vol. 40, no. 11, pp. 2670–2676, Nov. 2013.

384

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://hpc.loni.org/resources/hpc/system.php?system=QB2

