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ABSTRACT
Although data partitioning is required to enable parallelism on dis-

tributed memory systems, data partitions are not first class objects

in most distributed programming models. As a result, automatic

parallelizers and application writers encode a particular partition-

ing strategy in the parallelized program, leading to a program not

easily configured or composed with other parallel programs.

We present a constraint-based approach to automatic data par-

titioning. By introducing abstractions for first-class data parti-

tions, we express a space of correct partitioning strategies. Candi-

date partitions are characterized by partitioning constraints, which
can be automatically inferred from data accesses in parallelizable

loops. Constraints can be satisfied by synthesized partitioning code

or user-provided partitions. We demonstrate that programs auto-

parallelized in our approach are easily composed with manually par-

allelized parts and have scalability comparable to hand-optimized

counterparts.
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1 INTRODUCTION
Data partitioning is an essential step to exploit parallelism on dis-

tributed memory systems. For example, for a data parallel loop,

parallelism can be realized by partitioning the data into subregions
(subcollections of the original data) and running the set of loop it-

erations accessing a particular subregion. In general, for a given set

of parallel tasks, only some partitions of the data are legal, because

at a minimum the data accessed by a task must be included in that

task’s subregion arguments. Furthermore, as programs generally

have multiple data access patterns in different loops, the possible

legal partitions are those satisfying all the constraints of all loops,

while the performant partitions are a subset of the legal partitions.

In this view of program parallelization, the crux of parallelizing

for distributed execution is identifying and satisfying these data

partitioning constraints.

In this paper, we present a constraint-based approach to data

partitioning. We first extract partitioning constraints under which
data partitions will preserve program execution semantics. Parti-

tioning constraints are inferred automatically from data accesses

in programs and serve as a specification for implementations of

data partitioning. Many different partitioning strategies may sat-

isfy a system of partitioning constraints. To find implementations

that match the specification, we employ a constraint solver that

synthesizes partitioning code in DPL, the Dependent Partitioning

Language [26], a domain-specific language for data partitioning

(we give an overview of DPL below).

The constraint solver can also exploit externally provided invari-

ants on partitions to discharge some or all partitioning constraints —

this is the mechanism bywhich users or other systems (e.g., external

libraries) can provide additional information to the automatic parti-

tioning algorithm about the environment in which the parallelized

code will execute. This feature is particularly appealing in scenarios

where applying auto-parallelization to the whole program is infea-

sible or inefficient. For example, this approach naturally handles

the common case where the code to be parallelized must accept

input from another program component with a fixed data parti-

tioning. Partitioning constraints serve as an interface conveying

information about existing partitions from previously or manually

parallelized parts to our automated data partitioning algorithm.

1.1 Overview
We illustrate our constraint-based approach using the program in

Figure 1a, which showcases a common pattern of using indirect

https://doi.org/10.1145/3295500.3356199
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1 for (p in Particles):
2 c = Particles[p].cell
3 Particles[p].pos += f(Cells[c].vel, Cells[h(c)].vel)
4 for (c in Cells):
5 Cells[c].vel += g(Cells[c].acc, Cells[h(c)].acc)

(a) Parallelizable loops

1 task T1(Particles, Cells1, Cells2):
2 for (p in Particles):
3 c = Particles[p].cell
4 Particles[p].pos += f(Cells1[c].vel, Cells2[h(c)].vel)
5 task T2(Cells3, Cells4):
6 for (c in Cells3):
7 Cells3[c].vel += g(Cells3[c].acc, Cells4[h(c)].acc)
8 parallel for (i in P1):
9 T1(P1[i], P2[i], P3[i])
10 parallel for (j in P4):
11 T2(P4[j], P5[j])

(b) Loops parallelized using tasks

P1[i] ⊆ Particles

P1

P2[i] ⊆ Cells

P2

P3[i] ⊆ Cells

P3

P4[j] ⊆ Cells

P4

P5[j] ⊆ Cells

P5Part
icle

s[·]
.cel

l

h

h

(c) Partitioning constraints

Figure 1: Example

accesses to establish relationships between different physical enti-

ties. This program is excerpted from a larger program written in

Regent [23], which is the language we use for all code examples

and for our implementation. Regent provides a sophisticated set

of data partitioning primitives, and so is a natural vehicle for our

work.

The program in Figure 1a stores properties of particles and cells

in regions Particles and Cells. A region is a collection of values.

All elements of a region have the same type, and every element

has a unique index. The values in a region may have fields, such
as the cell, vel, and acc fields used in Figure 1a. Regent provides

typical looping constructs over the elements of regions. The first

loop iterates over Particles to update the position of each particle

p. The index c of the cell where each particle resides is stored in

Particles[p].cell (line 2). The change in each particle’s position
is then computed using the velocity of the cell at c and its neighbor
h(c) (line 3). The second loop updates the velocity of each cell

similarly (line 5).

The program in Figure 1b parallelizes the loops in Figure 1a

using first-class data partitions; partitions are a primitive concept

in Regent. Each partition Pi is an array of subregions (i.e., subsets
of a region) and each parallel for loop launches tasks for subre-
gions in the partition, each of which runs a subset of the original

loop iterations. Subregions are names for subsets of collections and

subregions can be recursively partitioned into subregions them-

selves. As is standard, tasks are designated functions that can be

run asynchronously (in parallel). Tasks in Regent can take regions,

partitions or scalars as arguments.

1 P1 = equal(Particles, N)
2 P2 = image(P1, Particles[·].cell, Cells)
3 P3 = image(P2, h, Cells)
4 P4 = equal(Cells, N)
5 P5 = image(P4, h, Cells)

(a) Program A

1 P2 = P4 = equal(Cells, N)
2 P1 = preimage(Particles, Particles[·].cell, P2)
3 P3 = P5 = image(P2, h, Cells)

(b) Program B

Figure 2: DPL programs solving the constraints in Figure 1c

The parallel program in Figure 1b preserves the semantics of the

sequential program in Figure 1a provided the partitions P1, . . . , P5
are legal, i.e., when they make the following indirect accesses safe:

• Cells1[c].vel at line 4;
• Cells2[h(c)].vel at line 4; and
• Cells4[h(c)].acc at line 7.

The space of legal partitions can be expressed by partitioning
constraints that are inferred automatically from programs. Figure 1c

shows the partitioning constraints that capture the conditions un-

der which P1, . . . , P5 in Figure 1b are legal. Each node in the graph

corresponds to a partition. The node labeled with P1 denotes a par-
tition of Particles, whereas the others are (potentially different)

partitions of Cells. Shaded nodes represent partitions that must

be complete; a partition is complete when its subregions include all

elements of the region. Nodes for partitions P1 and P4 are shaded
because they must cover the iteration space of the loops at lines

1 and 4. Edges between nodes specify constraints on partitions.

The edge from P2 to P3, labeled with the function h, requires that
each subregion P3[j] contain the image of P2[j] under h, that is,
∀(k,v) ∈ P2[j]. ∃v ′. (h(k),v ′) ∈ P3[j]. The edge from P4 to P5
describes the same constraint but on P4 and P5. The other edge

between P1 and P2 is interpreted similarly:

∀(k,v) ∈ P1[i]. ∃v ′. (Particles[k].cell,v ′) ∈ P2[i]
Figure 2 gives two partitioning strategies satisfying the con-

straints in Figure 1c, expressed as DPL programs that construct

partitions using the high-level partitioning operators equal, image,
and preimage. DPL is the partitioning sublanguage of Regent that

computes partitions of regions at runtime. DPL has additional op-

erators but these are the most commonly used. The main idea in

DPL is that some partitioning operators, such as equal, create par-
titions of regions directly, while others compute a new partition as

a function of an existing partition (thus the name dependent parti-
tioning language). Sophisticated data partitions can be constructed

by composing the small set of primitive DPL operators.

In Figure 2, program A derives P2, P3, and P5 from equal parti-
tions of P1 and P4; the equal operator creates a complete partition

of a region with (approximately) equal size subregions. Partitions

P2, P3 and P5 use image partitions to satisfy the partitioning con-

straints. The image operator uses an existing partition and a func-

tion to define a compatible partition of a region. For example, if



A Constraint-Based Approach to Automatic Data Partitioning SC ’19, November 17–22, 2019, Denver, CO, USA

P2 = ⟨r1, . . . , rn⟩, then the statement P3 = image(P2, h, Cells) cre-
ates P3 = ⟨h(r1), . . . , h(rn )⟩, where h(ri ) ⊆ Cells. Figure 3a gives a
visual representation of the image operator: The region on the left

is already partitioned into two subregions, indicated by the sets of

light and dark elements. The image of function fmapping elements

of the lefthand region to elements of the righthand region then

defines two subregions of the righthand region.

Program B implements a different strategy, first creating an

equal partition of Cells for both P2 and P4. Note that P2 is assigned
a complete partition even though the partitioning constraint does

not require it to be complete; as long as P2 contains the image

of Particles[·].cell, it can have extra elements. To construct

the partition P1 from the already defined P2, program B uses the

preimage operator. As illustrated in Figure 3b, preimage takes an

existing partition of the region on the righthand side and constructs

a compatible partition using the preimage of the function; i.e., if

the provided partition is ⟨r1, . . . , rn⟩ and the function is h, then the

computed partition is ⟨h−1(r1), . . . , h
−1(rn )⟩. Finally, P3 and P5 are

computed using the image of P2 under h.
Without any prior knowledge about Cells and Particles, it is

not clear whether the partitioning strategy in Figure 2a or Figure 2b

is better. Program A has an additional pair of partitions of Cells,
which is not necessarily worse than program B if communication

due to the extra partitions is justified; in a scenario where spatial

distribution of the particles is significantly skewed, program B can

suffer from load imbalance in the first loop in Figure 1b, whereas

program A is immune to this issue because the subregions of P1
have equal size. On the other hand, if the particles in each subregion

of P1 are spread throughout the domain, each subregion of P2 can
be as big as Cells, leading to excessive communication.

Given that we cannot identify an optimal DPL program that

satisfies the constraints at compile-time, we use heuristics to guide

the constraint resolution process. For example, when a given set

of partitioning constraints admit multiple DPL programs, our con-

straint solver chooses the one with the fewest partitions (program

B in this example). This approach does not always produce satis-

factory solutions when important information about the execution

context is missing. Programs also often have parts that are hard

to auto-parallelize well, or may not be possible to auto-parallelize

at all. Our approach can gracefully handle these situations by al-

lowing programmers to provide additional constraints encoding

knowledge of which strategies are best and/or existing partitions

used outside the scope of auto-parallelization. For example, if the

loops in Figure 1a were embedded in an outer loop where particles’

f(i) = (i + 1)%5

P[0]0

P[0]1

P[0]2

P[1]3

P[1]4

P ′[1] 0

P ′[0] 1

P ′[0] 2

P ′[0] 3

P ′[1] 4

(a) P ′ = image(P,f,−)

P[0]0

P[0]1

P[0]2

P[1]3

P[1]4

P ′[0] 0

P ′[0] 1

P ′[1] 2

P ′[1] 3

P ′[0] 4

(b) P ′ = preimage(−,f, P)

Figure 3: Image and preimage operators

1 parallel for (i in pParticles):
2 for (p in pParticles[i]):
3 new_cell = locate(pParticles[i][p].pos)
4 if (pParticles[i][p].cell != new_cell)
5 pParticles[i][p].cell = new_cell
6 find j such that new_cell ∈ pCells[j]
7 if (i != j):
8 send pParticles[i][p] to pParticles[j]
9 assert(image(pParticles,Particles[·].cell,Cells) ⊆ pCells)

Figure 4: Example with a user-provided constraint

pointers to cells are updated every iteration, the DPL program in

Figure 2b would need to repartition Particles every iteration to

reflect the updates. If only a few particles change cells on each iter-

ation, then repartitioning the entire Particles region is wasteful.

A simple way to mitigate this inefficiency is to exchange particles

manually; the pseudo-code in Figure 4 sends a particle to the right

“owner” whenever the cell to which the particle moves belongs to a

subregion different from the current one. The most important part

in this pseudo code is the assertion at line 10 specifying the invari-

ant on pParticles and pCells, i.e., that the subregion pCells[i]
contains all the cells pointed to by the particles in pParticles[i].
The constraint solver uses this assertion to discharge all partition-

ing constraints in Figure 1c except those on P3 and P5, for which
the solver emits the following DPL program using pCells to derive
P3 and P5:

P3 = P5 = image(pCells, h, Cells)

This example demonstrates the key benefit of constraint-based

approaches that separate specification from implementation [3];

as long as the manual particle exchange code maintains the in-

variant, the entire program mixing parts that are parallelized by

different means is correct. Furthermore, by providing constraints

the user has a high-level but precise interface for informing the

auto-parallelization process, and writing these interface constraints

is much less work than parallelizing the entire code manually.

This paper makes the following contributions:

• We present the design of a static analysis that automatically

infers partitioning constraints from programs.

• We design a constraint solver that synthesizes DPL code

from partitioning constraints.

• We evaluate the implementation of our constraint-based ap-

proach using the Regent compiler [23]. For a set of Regent

programs that are already hand-optimized for distributed

memory execution [20, 24], their sequential counterparts

auto-parallelized in our approach achieved comparable per-

formance (within 5%).

In the following sections, we design the static analysis for con-

straint inference (Section 2) and the constraint solver (Section 3).

We then describe key optimizations on DPL programs (Section 5),

and we present experimental results (Section 6).

2 CONSTRAINT INFERENCE
Figure 5 shows the syntax of the partitioning constraint language.

Ground terms are regions (using symbol R) and partitions (using
symbol P ); recall that a region is an indexed set of a fixed type
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Regions R Partitions P
Constraints C ::= ϕ | E ⊆ E | C ∧C
Predicates ϕ ::= PART(E, R) | DISJ(E) | COMP(E, R)
Expressions E ::= P | E ∪ E | E ∩ E | E − E

| image(E, f , R) | preimage(R, f , E) | equal(R)

Figure 5: Constraint language syntax

(possibly with fields) and a partition is an indexed set of subregions

of a region. A partitioning constraint is a conjunction of subset

constraints and predicates on partitions. A predicate PART(E,R)
means that E is a partition of the region R; i.e., each subregion E[i]
must be a subset of the region R:

PART(E,R) ≜ ∀i .E[i] ⊆ R.

A predicate DISJ(E) requires E to be a disjoint partition and a

COMP(E,R) requires E to be a complete partition of R:

DISJ(E) ≜ E[i] ∩ E[j] = ∅ when i , j

COMP(E,R) ≜
⋃
i E[i] = R

A subset constraint E1 ⊆ E2 denotes that each subregion E2[i]
contains the corresponding subregion E1[i]:

E1 ⊆ E2 ≜ ∀i . E1[i] ⊆ E2[i]

This relation implicitly requires that the set of indices of E2 subsume

that of E1. The subset constraint is anti-symmetric, i.e.,

E1 = E2 ≜ E1 ⊆ E2 ∧ E2 ⊆ E1.

Expressions are DPL operators that construct partitions; we use

DPL operators in constraints to syntactically describe partitions

of interest. The union, intersection, and difference operators on

partitions are applied subregion-wise; for example, a union of two

partitions results in a partition whose ith subregion is a union of

the ith subregions of the operands:

(E1 ⋄ E2)[i] ≜ E1[i] ⋄ E2[i] where ⋄ ∈ {∪,∩,−}

The image operator creates a partition of a function’s range from

an existing partition of the function’s domain; the expression

image(E, f ,R) is a partition of R derived from E using f as follows:

image(E, f ,R)[i] ≜ {
(
f (k),v ′

)
∈ R | (k,v) ∈ E[i]}.

(Note that the function f takes the indices of each subregion as

arguments, not its values.) The preimage operator is an inverse of

image, i.e., deriving a partition of a function’s domain from an exist-

ing partition of the function’s range; the expression preimage(R, f ,E)
is a partition of f ’s domain R derived from E as follows:

preimage(R, f ,E)[i] ≜ {(k,v ′) ∈ R |
(
f (k),v

)
∈ E[i]}.

Again, Figure 3 visualizes the image and preimage operators for

an example function f. Lastly, the equal operator creates parti-

tions without using any other partitions; the expression equal(R)
creates a partition of R with approximately equal size subregions.

(Integer arguments denoting the number of subregions are elided

in partitioning constraints because they do not affect constraint

solving.)

Algorithm 1 shows the constraint inference algorithm, which

takes a loop and produces a system of partitioning constraints. The

algorithm is concerned only with parallelizable loops. A loop is

parallelizable when values defined in one loop iteration are never

consumed by other iterations of the same loop. For brevity, we

characterize parallelizable loops syntactically as follows.

Algorithm 1: Constraint inference algorithm
1 Procedure Infer(loop):
2 // Assume loop has the form for (i in R):body
3 // Assume body is normalized

4

5 // The function fID is the identity function, i.e., fID(x ) = x .
6 // Note that image(PR, fID, R) = PR.
7 Env← {i 7→ λr .image(PR, fID, r )} (PR is fresh)
8 C← PART(PR, R) ∧ COMP(PR, R)
9 for each statement s ∈ body do
10 // Region accesses appear only in statements of these forms:

11 if s is y = S[x] or S[x] = y or S[x] += y :
12 E ← Env(x)(S)
13 C ← C ∧ PART(P, S) ∧ E ⊆ P (P is fresh)

14 if s is y = S[x] :
15 Env ← Env ∪ {y 7→ λr .image(E, S[·], r )}
16 elseif s is S[x] += y and E , PR :
17 C ← C ∧ DISJ(PR)
18 elseif s is y = f(x) :
19 Env ← Env ∪ {y 7→ λr .image(Env(x)(r ), f, r )}
20 elseif s is y = x :
21 Env ← Env ∪ {y 7→ Env(x)}

• Region accesses are either centered or uncentered. A region

access R[e] is centered when e is the loop variable (or an

alias), and is uncentered otherwise.

• An uncentered access is admissible only when it has an

index expression derived from another region access (e.g.,

R[S[e]]) or it has the form R[f(i)] where i is the loop

variable.

• A parallelizable loop is an outermost loop of the form

for (i in R): . . .

for some region R (the iteration space of the loop), which

satisfies these conditions:

– All write accesses to regions are centered. (A centered

reduction is considered a centered read access followed

by a centered write access.)

– A region with an uncentered reduction (e.g., R[S[e]] +=
. . . ) does not have any other read access or a reduction

with a different operator.

– A region with an uncentered read (e.g., . . . = R[S[e]])
does not have any other write access.

This syntactic definition is sound but incomplete; i.e., there are loops

that a more sophisticated analysis, such as polyhedral analysis [7],

can prove parallelizable but our syntactic check cannot.

At the highest level, ourmethod for constraint-based partitioning

has three components:

• Initially a separate partition (represented by a unique parti-

tion variable) is assigned to every region access in a paral-

lelizable loop. Another unique partition variable is associated

with the loop index. For each of these variables, we gener-

ate constraints that guarantee the partition will have all the

elements needed to execute correctly.

• We solve the constraints by rewriting them into an equiva-

lent form where each remaining constraint corresponds to
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Program Constraints

for (p in Particles):
PART(P1, Particles) ∧
COMP(P1, Particles) ∧

c = Particles[p].cell PART(P2, Particles) ∧ P1 ⊆ P2 ∧

Particles[p].pos +=
f(Cells[c].vel)

PART(P3, Cells) ∧
image(P1, f1, Cells) ⊆ P3 ∧
PART(P4, Particles) ∧ P1 ⊆ P4
(f1 = Particles[·].cells)

Figure 6: Example of constraint inference

Program Constraints
for (i in R): PART(P1, R) ∧ COMP(P1, R) ∧

S[g(i)] += R[i]
PART(P2, S) ∧ image(P1, g, S) ⊆ P2 ∧

DISJ(P1) ∧ PART(P3, R) ∧ P1 ⊆ P3

Figure 7: Example with a disjointness predicate on the itera-
tion space

a concrete dependent partitioning operation; the partition-

ing code can be read directly from the resolved form of the

constraints.

• Allowing a separate partition for every region access ad-

mits the widest possible range of partitioning strategies, but

can result in solutions with multiple equivalent partitions.

We unify partition variables with isomorphic constraints to

reduce the final number of partitions that need to be created.

The following example illustrates the constraint inference steps

for the first loop in Figure 1a.

Example 1. Algorithm 1 first conjoins the following predicates on
a partition symbol P1 for the iteration space Particles (line 8):

PART(P1, Particles) ∧ COMP(P1, Particles)
The algorithm also maintains an environment that maps each variable
to a lambda function that returns an image expression of a region
argument. The initial environment at line 7 has a mapping of the loop
variable p to a function λr .image(P1, fID, r ). For the region access
Particles[p].cell, the algorithm introduces a partition symbol
P2 and generates the following constraints (lines 11-13):

PART(P2, Particles) ∧ P1 ⊆ P2

Note that the expression image(P1, fID, Particles) is simplified to
P1. Since the value of this region access is assigned to the variable
c, the algorithm updates the environment (lines 14-15), which then
becomes the following:

{p 7→ λr .image(P1, fID, r ), c 7→ λs .image(P1, f1, s)},
where f1 = Particles[·].cell. For the uncentered region access
Cells[c].vel, the algorithm infers the following constraints on a
new partition symbol P3 (lines 11-13), where the subset constraint has
an image expression in the lower bound:

PART(P3, Cells) ∧ image(P1, f1, Cells) ⊆ P3

Finally, the centered reduction Particles[p].pos += . . . is han-
dled similarly to other centered accesses, resulting in the partitioning
constraint in Figure 6.

Note that the partitioning constraint in Figure 6 does not have a

disjointness predicate on the partition of the iteration space. If the

final solution uses a non-disjoint partition of the iteration space,

there is redundant computation because some loop iterations are

executed multiple times. This redundancy is useful in cases (as

demonstrated by Zhou et al. [30]) when recomputing loop iterations

on separate nodes is cheaper then the internode communication

the redundant computation replaces. In Section 5, we discuss how

we can optimize communication from uncentered reductions using

an aliased (non-disjoint) partition of the iteration space.

However, we do need a disjoint partition of the iteration space

when the loop has an uncentered reduction access (lines 16-17 in Al-

gorithm 1). Figure 7 shows an example where an uncentered reduc-

tion on the region S imposes a disjointness constraint on the parti-

tion P1 of the iteration space R. To seewhy disjointness is mandatory

in this case, we need to understand how uncentered reductions are

typically handled in distributed memory systems [6, 9, 21]. Unlike

centered reductions, which are applied immediately, uncentered

reductions require two steps. First, each distributed task allocates

a temporary buffer to keep the reduction contribution from each

iteration that it owns. Then, temporary buffers are merged, either

eagerly or lazily, back to the partitions that the subsequent read

accesses use. Because this merge step aggregates all contributions

in temporary buffers, each contribution must be counted exactly

once to preserve the original semantics. Therefore, the iteration

space must be partitioned disjointly in this case.

Algorithm 1 runs in linear time in the size of the program and

produces partitioning constraints sound with respect to the seman-

tics of parallelizable loops. These partitioning constraints always

have at least one trivial solution, obtained by replacing each subset

constraint with an equality.

3 CONSTRAINT SOLVER
In this section, we describe a constraint solver that takes partition-

ing constraints as input and produces DPL programs as solutions.

A DPL statement P = E is expressible in the constraint language of

Figure 5, and a DPL program is just a sequence of DPL statements.

Our constraint solver transforms the input partitioning con-

straint into a resolved form, the constraint conjoined with exactly

one equality Pi = Ei for each partition symbol Pi . Once the parti-
tioning constraint is solved, the added equalities form one solution

program. In the rest of this section, we explain the algorithm to

resolve partitioning constraints and the heuristics to minimize the

number of partitions constructed by the output program.

3.1 Resolution
Conceptually, a partitioning constraint C can be resolved by the

following procedure:

(1) Synthesize expressions E1, . . . ,En for all partition symbols

P1, . . . , Pn in C .
(2) Check consistency of the strengthened constraint

C ∧ P1 = E1 ∧ . . . ∧ Pn = En .

(3) If the consistency check fails, go to (1) and synthesize differ-

ent expressions.

The consistency check in step (2) verifies that each predicate in the

constraint is entailed by other predicates or known lemmas of DPL
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L1 PART(equal(R), R) ∧ DISJ(equal(R)) ∧ COMP(equal(R), R)
L2 PART(image(E, f , R), R) L3 PART(preimage(R, f , E), R)
L4 PART(P1, R) ∧ PART(P2, R) (⋄ ∈ {∪, ∩, −})

=⇒ PART(P1 ⋄ P2, R)
L5 E1 ⊆ E2 ∧ COMP(E1, R) ∧ PART(E2, R) =⇒ COMP(E2, R)
L6 COMP(E1, R) ∨ COMP(E2, R) =⇒ COMP(E1 ∪ E2, R)
L7 COMP(E1, R1) =⇒ COMP(preimage(R2, f , E1), R2)

L8 DISJ(E2) ∧ E1 ⊆ E2 =⇒ DISJ(E1)
L9 DISJ(E1) ∨ DISJ(E2) =⇒ DISJ(E1 ∩ E2)
L10 DISJ(E1) =⇒ DISJ(E1 − E2)
L11 DISJ(E1 ∪ E2) =⇒ DISJ(E1) ∧ DISJ(E2)
L12 DISJ(E1) =⇒ DISJ(preimage(R, f , E1))
L13 E1 ⊆ E3 ∧ E2 ⊆ E3 =⇒ E1 ∪ E2 ⊆ E3
L14 E1 ⊆ preimage(R1, f , E2) ∧ PART(E2, R2)

=⇒ image(E1, f , R2) ⊆ E2

Figure 8: DPL lemmas for resolution

operators, shown in Figure 8. Any set of expressions that pass this

check is a solution that satisfies the input constraint.

All lemmas in Figure 8 are direct consequences from definitions

of the DPL operators and properties of sets. The first four lemmas

enumerate all possible cases where partitions of a region R can

be constructed. Lemmas L5-7 (resp. lemmas L8-12) state when the

completeness (resp. disjointness) of a partition is propagated to

others.

Algorithm 2 shows the constraint solving algorithm tailored to

partitioning constraints inferred by Algorithm 1. This algorithm

tries to minimize backtracking due to adding an equation that

causes the constraint system to become inconsistent (have no solu-

tions). The solver picks promising candidates using the following

insights based on the lemmas in Figure 8:

(1) If a partition symbol P has subset constraints E1 ⊆ P , . . . ,
Ek ⊆ P where each Ei is closed, i.e., contains no partition

symbol, the union E1 ∪ · · · ∪ Ek of these expressions is a

good candidate for P (lemma L13).

(2) The only way to create a fresh disjoint partition is the equal
operator (lemma L1) and only intersection, difference, and

preimage operators preserve the disjointness of operands

(lemmas L9, L10, and L12). Therefore, a partition symbol

with a DISJ predicate must be created using only these oper-

ators. Likewise, complete partitions can be expressed only by

equal (lemma L1), union (lemma L6), and preimage (lemma

L7), or combinations of these operators.

(3) For a subset constraint E1 ⊆ E2, disjointness “flows” from
right to left (lemma L8).When both sides of a subset predicate

E1 ⊆ E2 must be disjoint, the solver resolves all symbols in

the expression E2 and then derives E1.
(4) The preimage operator can produce partitions that satisfy

subset constraints containing image (lemma L14). Combined

with observation (2), these lemmas imply that the solvermust

use a preimage partition to discharge a subset constraint of

the form image(E1, ...) ⊆ E2 when both E1 and E2 must be

disjoint.

Algorithm 2 can always solve partitioning constraints generated

by Algorithm 1: Because Algorithm 1 introduces a fresh partition

symbol for the RHS of each added subset constraint, the subset

constraints never form a cycle. Thus, the solver can always find a

Algorithm 2: Constraint solving algorithm

1 Procedure Solve(C , S):
2 // C is a partitioning constraint to solve.

3 // S is a partial solution found so far.

4

5 // Each call to Solve() picks one remaining constraint, adds

6 // an equality to attempt to solve it, and calls Solve()

7 // recursively to solve the rest of the system.

8 for each P = E ∈ S do
9 // Replace P by E , eliminating P from the constraint C

10 C ← C[P 7→ E]
11 Remove all tautologies E ⊆ E from C
12 for each image(P, f , R) ⊆ E ∈ C for a closed E do
13 // Assume ∃R′.PART(P, R′) ∈ C
14 Snext ← Solve(C, S ∧ P = preimage(R′, f , E))
15 // If the system is not inconsistent (∅), return the solution

if Snext , ∅ : return Snext
16 for each P with subset constraints Ei ⊆ P for closed Ei s do
17 Snext ← Solve(C, S ∧ P =

⋃
i Ei ))

18 if Snext , ∅ : return Snext
19 // depth(P ) ≜ k when E1 ⊆ · · · ⊆ Ek ⊆ P
20 for d = max({depth(Pi ) | Pi ∈ C }), 1 do
21 for each PART(P, R) ∧ DISJ(P ) ∈ C s.t. depth(P ) = k do
22 Snext ← Solve(C, S ∧ P = equal(R))
23 if Snext , ∅ : return Snext
24 for each COMP(P, R) ∈ C do
25 Snext ← Solve(C, S ∧ P = equal(R))
26 if Snext , ∅ : return Snext
27 // Lemmas in Figure 8 are used for this resolution

28 if ∀Csub ∈ C .C −Csub =⇒ Csub : return S
29 else: return ∅

trivial solution that uses equal partitions for iteration spaces and

has equalities strengthened from all subset constraints. However,

this naïve solution is inefficient because it does not reuse partitions

from one parallelizable loop in the others. To maximize the partition

reuse in the solution, the constraint solver performs unification of

partition symbols, which is the topic of the next subsection.

The following examples demonstrate how Algorithm 2 resolves

partitioning constraints.

Example 2. Suppose we have this partitioning constraint from
Figure 7:

PART(P1, R) ∧ COMP(P1, R) ∧ DISJ(P1) ∧ PART(P2, S)
∧ image(P1, g, S) ⊆ P2 ∧ PART(P3, R) ∧ P1 ⊆ P3.

Because P1 has a DISJ predicate, the solver uses an equal partition
for P1 (line 22). After substituting P1 with equal(R), the original
constraint simplifies to:

PART(P2, S) ∧ image(equal(R), g, S) ⊆ P2
∧ PART(P3, R) ∧ equal(R) ⊆ P3.

Since P2 and P3 have closed expressions on the LHS of their subset
constraints, the solver simply strengthens them into equalities (line
17) and produces the following solution (after performing common
subexpression elimination):

P1 = equal(R) P2 = image(P2, g, S) P3 = P1
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Algorithm 3: Constraint solver algorithm with unification

1 Procedure UnifyAndSolve(C1 ∧ . . . ∧CN ):
2 // Each Ci is represented by a set of conjuncts

3 Sort C1, . . . , CN in descending order of |Ci |
4 C ← C1

5 for i = 2, N do
6 C′ ← Ci
7 while C′ , ∅ do
8 G ← the next biggest common subgraph in C and C′

9 if G = ∅ :
10 C ← C ∧C′

11 C′ ← ∅
12 else:
13 U ← P ′

1
= P1 ∧ . . . ∧ P ′K = PK induced by G

14 if Solve(C ∧C′, U ), ∅ :
15 // Filter out unified terms

16 C′ ← C′[P ′
1
7→ P1] · · · [P ′K 7→ PK ] −C

17 return Solve(C , ∅)

Example 3. Suppose now we have an extra predicate DISJ(P2) in
the partitioning constraint as follows:

PART(P1, R) ∧ COMP(P1, R) ∧ DISJ(P1) ∧ PART(P2, S)
∧ image(P1, g, S) ⊆ P2 ∧ DISJ(P2) ∧ PART(P3, R) ∧ P1 ⊆ P3.

Then, the solver notices that P2, the RHS of the subset constraint
image(P1, g, S) ⊆ P2, must be disjoint, and creates an equal partition
for P2 (line 22) and a preimage partition for P1 (line 14):

P2 = equal(S) P1 = preimage(R, g, P2).

The partition symbol P3 is resolved similarly to Example 2.

3.2 Unification
A single unification step strengthens the original constraint by

conjoining an equality between unifiable partition symbols. Par-

tition symbols are unifiable only when they represent partitions

of the same region. The constraint after unification can be further

simplified by replacing one of the unified symbols with the other.

Example 4. The partition symbols P1, P2, and P4 in Figure 6 can
be unified as follows:

PART(P1, Particles) ∧ COMP(P1, Particles)
∧ PART(P3, Cells) ∧ image(P1, f1, Cells) ⊆ P3.

Because unification can introduce equalities inconsistent with the

original constraint, the constraint after unification might not have

any solution. For example, unification can make some subset con-

straints recursive as follows:

PART(P1,R) ∧ PART(P2,R) ∧ image(P1, f ,R) ⊆ P2 ⇐=

PART(P1,R) ∧ image(P1, f ,R) ⊆ P1 ∧ P1 = P2.

This recursive constraint can be satisfied only by constructing a

fixpoint of the function f , which is not expressible in our constraint

language. Therefore, the goal of unification is to find a maximal

set of unifications that preserves consistency of the partitioning

constraint.

Finding all viable unifications requires an exhaustive search in

the general case. To make the search efficient, we focus on unifi-

cations that reduce the number of subset constraints; intuitively,

P1[i] ⊆ Particles

P1

P2[i] ⊆ Cells

P2

P3[i] ⊆ Cells

P3

P4[j] ⊆ Cells

P4

P5[j] ⊆ Cells

P5Part
icle

s[·]
.cel

l

h

h

(a) Common subgraph

P1[i] ⊆ Particles

P1

P2[i] ⊆ Cells

P2

P3[i] ⊆ Cells

P3

Part
icle

s[·]
.cel

l

h

(b) After unification (P2 = P4 ∧ P3 = P5)

Figure 9: Unification as a common subgraph problem

if unification between partition symbols eliminates some subset

constraints, the constraint after unification is no more difficult to

resolve than the original one. Such unifications manifest as isomor-

phic subgraphs in a graph that represents a partitioning constraint.

In this constraint graph each node corresponds to a partition symbol,

an unlabeled edge from P1 to P2 represents the subset constraint
P1 ⊆ P2, and an edge labeled with a function symbol f encodes

the subset constraint image(P1, f ,R) ⊆ P2. (Other cases need not

be expressed by this graph, because the inference algorithm only

generates subset constraints of the two forms.) Isomorphic sub-

graphs in this graph correspond to partition symbols connected by

the same subset constraints (after renaming symbols). Thus, unify-

ing partition symbols in these isomorphic subgraphs also merges

multiple subset constraints, one from each subgraph, into one.

Example 5. Figure 9a shows a constraint graph for the following
constraint (predicates are elided):

· · · ∧ image(P1, Particles[·].cells, Cells) ⊆ P2
∧ image(P2, h, Cells) ⊆ P3 ∧ image(P4, h, Cells) ⊆ P5.

In Figure 9a, the subgraph of P2 and P3 is isomorphic to that of P4
and P5. The solver unifies P2 and P4 and P3 and P5, with the result
shown in Figure 9b.

Algorithm 3 shows the constraint solver algorithm with uni-

fication. The algorithm uses Algorithm 2 to check if the system

of constraints after unification is still solvable (line 13). Although

finding the largest common subgraph in a constraint graph (line 7)

is known to be NP-complete [14], in practice unification is not a sig-

nificant cost as constraint graphs are small and we do not attempt

to find the absolutely maximal common subgraph. Furthermore,

the algorithm greedily tries to unify the first few largest subgraphs

in a constraint graph (line 3), based on the observation that these

subgraphs often contain other smaller subgraphs. In the average

case, common subgraphs can be identified simply by constructing

a product graph of constraint graphs. Assuming the unification

succeeds in a constant number of trials, the asymptotic time com-

plexity of this greedy algorithm isO(NM2), where N is the number

of constraints to unify andM is the number of graph nodes.
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1 for (i in Y):
2 range = Ranges[i]
3 for (k in range):
4 Y[i] += Mat[k].val * X[Mat[k].ind]

(a) SpMV code

1 P1 = equal(Y, N)
2 P2 = image(P1, fID, Ranges)
3 P3 = IMAGE(P2, Ranges[·], Mat)
4 P4 = image(P3, Mat[·].ind, X)

(b) Synthesized DPL code

Figure 10: SpMV example

3.3 External Constraints
As seen in Section 1, programmers often have invariants on existing

partitions used in manually parallelized parts. The constraint solver

can exploit these invariants by adding them to the partitioning

constraint for a program and holding their partition symbols fixed

(no expressions are synthesized for external constraints).

Example 6. The program in Figure 4 specifies an invariant on
partitions pCells and pParticles, which can be added to the parti-
tioning constraint from Example 5 as follows:
· · · ∧ image(P1, Particles[·].cells, Cells) ⊆ P2
∧ image(P2, h, Cells) ⊆ P3 ∧ image(P4, h, Cells) ⊆ P5
∧ image(pParticles, Particles[·].cells, Cells) ⊆ pCells

The solver finds unifications between P1 and pParticles, P2, pCells,
and P4, and P3 and P5, yielding the following constraint:
· · · ∧ image(pParticles, Particles[·].cells, Cells) ⊆ pCells
∧ image(pCells, h, Cells) ⊆ P3 .

Since the LHS of the subset constraint on P3 is closed, the solver
strengthens it to an equality and eventually produces this solution:

P1 = pParticles P2 = P4 = pCells
P3 = P5 = image(pCells, h, Cells).

4 GENERALIZING IMAGE AND PREIMAGE
Some programs have loops where the iteration space is deter-

mined by values of a region, typically arising in sparse matrix

algorithms. The SpMV code using Compressed Sparse Row (CSR)

format in Figure 10a is one such example. In this code, the matrix

is represented by the region Mat where the field val contiguously

stores the non-zero values of the matrix and the field ind stores the
column indices of those non-zeros. The inner loop at line 3 then

iterates over columns of the ith row in the matrix using the value

Ranges[i], a pair of lower and upper bounds of indices in Mat.
These loops with data dependent iteration spaces require parti-

tioning operators that derive partitions using functions from indices

to sets of indices. In Figure 10a, the region Ranges maps each it-

eration of the outer loop to a set of iterations of the inner loop,

and thus partitions for regions accessed in this inner loop, such as

Mat and X, must be constructed by collecting (and flattening) the

image of this map. We can define such DPL operators IMAGE and
PREIMAGE as follows:

IMAGE(E, F ,R)[i] ≜ {
(
l ,v ′

)
∈ R | (k,v) ∈ E[i] ∧ l ∈ F (k)}

PREIMAGE(R, F ,E)[i] ≜ {
(
l ,v ′

)
∈ R | (k,v) ∈ E[i] ∧ k ∈ F (l)}

The image and preimage operators in Section 2 are a special case

of these operators; for example, with a lifting f↑ of a function f on

indices, where f↑(x) = { f (x)}, we have that

image(E, f ,R) = IMAGE(E, f↑,R).

Our framework can handle IMAGE and PREIMAGE just like image
and preimage with the following minor modifications:

• Algorithm 1 now handles inner loops with data dependent it-

eration spaces (which are handled similarly to assignments).

• Lemmas L12 and L14 in Figure 8 do not hold for IMAGE and
PREIMAGE.

The DPL code synthesized for the SpMV code is shown in Fig-

ure 10b.

Note that the partitioning strategy in Figure 10b can lead to

suboptimal performance when the the number of non-zeros in each

row is uneven, because the partition of the matrix is derived from

an equal partition of Ranges. In this case the user can construct a

balanced partition of Ranges using, for example, a graph partition-

ing heuristic, such as the one proposed by Ravishankar et al. [22],

and provide it as an external constraint.

5 OPTIMIZATIONS
As described in Section 2, uncentered reductions on distributed

memory systems are implemented using temporary buffers, be-

cause different tasks can make changes to the same element, and

these changes must be reconciled to ensure the result is correct.

Distributed runtime systems, such as Legion [6], require programs

to specify which partitions need these buffers. However, using a

reduction buffer of the size of the whole partition is often inefficient

because the buffering is required only on the part that is accessed

by multiple parallel processes. Furthermore, if the partition for

uncentered reductions is disjoint, which means each location in

the region is updated only by one process, no reduction buffer is

necessary. In the rest of this section, we describe two optimizations

in the solver to minimize the size of reduction buffers.

5.1 Relaxing Disjointness Requirements for
Iteration Spaces

One strategy to synthesize a disjoint partition for uncentered reduc-

tions (thereby eliminating the reduction buffer) is to use an equal
partition for these reductions and derive a preimage partition for

the iteration space as in Example 3: The solver requires P2 (the

partition symbol for the uncentered reduction in Figure 7) to be a

disjoint partition by introducing an extra predicate DISJ(P2), and
the resolution algorithm produces a solution where P2 is assigned
to equal(S) and P1 to a preimage partition derived from P2. With

this solution, the loop in Figure 7 need not request a reduction

buffer to parallelize its uncentered reductions.

This strategy does not work when a loop has multiple uncentered

reductions using different functions. If the solver uses an equal
partition for these uncentered reductions, then the partition of the

iteration space, which must be disjoint because of the uncentered

reductions, must contain all preimages of those different functions

and the solver cannot prove it to be disjoint using the resolution

lemmas. The following example illustrates this issue with multiple

uncentered reductions.
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Program Constraints
for (i in R):

S[f(i)] += R[i]
S[g(i)] += R[i]

PART(P1, R) ∧ COMP(P1, R) ∧ DISJ(P1)
∧ PART(P2, S) ∧ image(P1, f, S) ⊆ P2
∧ PART(P3, S) ∧ image(P1, g, S) ⊆ P3

(a) Original loop

Program Constraints
for (i in R):

if (f(i) in S):
S[f(i)] += R[i]

if (g(i) in S):
S[g(i)] += R[i]

PART(P1, R) ∧ COMP(P1, R) ∧DISJ(P1)
∧ PART(P2, S) ∧ image(P1, f, S) ⊆ P2
∧ PART(P3, S) ∧ image(P1, g, S) ⊆ P3

(b) Relaxed loop

parallel for (p in P1):
for (i in P1[p]):

if (f(i) in P2[p]): P2[p][f(i)] += P1[p][i]
if (g(i) in P3[p]): P3[p][f(i)] += P1[p][i]

(c) Parallelized loop

Figure 11: Example with multiple uncentered reductions
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(a) Original loop
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(b) Parallelized loop

Figure 12: Example execution of loops in Figure 11

Example 7. Figure 11a shows the partitioning constraint for a loop
with two uncentered reductions. Using an equal partition for both
P2 and P3 would lead the solver to an assignment of P1 to a union
of preimages preimage(R, f, ..) and preimage(R, g, ..), which cannot
satisfy the predicate DISJ(P1).

The obvious alternative of assigning a disjoint partition to only

one of the uncentered reductions would still require a reduction

buffer for the other uncentered reduction. However, the disjointness

requirement can be lifted completely by rewriting the loop into a

relaxed form, shown in Figure 11b. This loop has a guard for each

uncentered reduction. In a serial execution these guards are trivial

(always true), but when regions used in these guards are replaced by

partitions (shown in Figure 11c), the guards prevent contributions

in the original loop from being applied multiple times. Therefore,

the solver no longer needs a DISJ predicate on the iteration space

partition and can use the union of preimages, which was not viable

before the relaxation. Figure 12 shows how guard conditions work;

even though some iteration space elements appear in more than one

subregion of the iteration space partition, each iteration contributes

to each reduction only once.

This relaxation is not always beneficial, because it introduces

redundant computation and extra communication due to overlap

among subregions of the iteration space partition, and is not always

R

P [0]

P [0]

P [0]

P [1]

P [1]

S

fS (P )[0]

fS (P )[0]

fS (P )[0]

f −1R (fS (P ))[0]

(fS (P ) − fS (f −1R (fS (P )) − P ))[0]

Figure 13: Private sub-partition theorem

applicable. We heuristically relax loops only when all loops using

the same region as the iteration space can be relaxed.

5.2 Finding Private Sub-Partitions
In cases when the relaxation is not applied, the optimizer tries

to subtract a private sub-partition from the reduction partition. A

private sub-partition of a partition P is a disjoint partition Pp that

satisfies Pp ⊆ P . Since the private sub-partition is disjoint, the

program need not request a reduction buffer. However, the parallel

loop must be modified to account for the fact that now the reduction

partition is divided into two parts; if the original reduction partition

P is divided into a private sub-partition Pp and the rest Ps = P −Pp ,
then the original parallel loop:

parallel for (j in P ′):
for (i in P ′[j]):
P[j][g(i)] += P ′[j][i]

must be rewritten to:

parallel for (j in P ′):
for (i in P ′[j]):
if (g(i) in Pp[j]): Pp[j][g(i)] += P ′[j][i]
else: Ps[j][g(i)] += P ′[j][i]

Although there is no general construction of private sub-partitions

for a partition, we can use the following theoremwhen the partition

is derived by the image operator from another disjoint partition.

Theorem 5.1. Let fR (P) and f −1R (P) be defined as follows:

fR (P) ≜ image(P , f ,R) f −1R (P) ≜ preimage(R, f , P)

For a disjoint partition P of a region R, the following expression con-
structs a private sub-partition of fS (P) for any f and S :

fS (P) − fS (f
−1
R (fS (P)) − P).

Proof. (Sketch) Each image subregion fS (P)[i] contains all ele-
ments pointed to by those in P[i]. Then, the sub-expression f −1R (fS (P))
extends each subregion P[i] with the elements from the other sub-

regions P[j] (j , i) that also point to the subregion fS (P)[i]. Sub-
tracting P from this expanded partition leaves each subregion with

only the elements originally from other subregions. Therefore, its

image (i.e. fS (f
−1
R (fS (P)) − P)) represents the shared part in the

original image partition fS (P), and thus its complement is a private

sub-partition. □

Figure 13 illustrates the private sub-partition construction in Theo-

rem 5.1.
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Once the solver identifies a private sub-partition from a parti-

tion, a reduction buffer needs to be allocated only for the shared

part. This construction can be generalized to cases when the reduc-

tion partition consists of multiple image partitions, for which the

solver simply takes an intersection of all private sub-partitions in

individual image partitions.

6 EVALUATION
We have implemented our constraint-based approach in Regent, a

high-level programming language for HPC applications with first-

class support for data partitions [23]. Regent detects and enforces

data dependencies between tasks by analyzing the relationships

between region and partition arguments of tasks. Data movement

between data partitions is automatically resolved by Legion [6], the

runtime system for Regent. Regent also provides all DPL operators

in Figure 5 [26]. The constraint inference algorithm and solver are

implemented as an optimization pass in the Regent compiler.

As Regent is a task-based programming language, the inference

algorithm examines parallelizable loops in tasks. When paralleliz-

able loops are nested, the outermost loop is chosen as the target of

parallelization. The final stage of auto-parallelization is a source-

to-source transformation that converts the original program into a

form that uses subregions in all region accesses, as illustrated in

Figure 1b. All parallelizable loops are also amenable to CUDA code

generation supported by the Regent compiler.

Guards introduced by the optimizations in Section 5 can be

expensive to check when the subregions are sparse. To amortize

the cost the compiler replaces them with a cache that remembers

values of guard conditions. Alternatively, we could split the loop to

statically disambiguate accesses to multiple regions, as Koelbel and

Mehrotra [18] and Adve and Mellor-Crummey [2] distinguished

accesses to local data from those to non-local data. We decided not

to use this transformation because of the potential combinatorial

explosion of cases in the output program.

We evaluate our implementation using the SpMV code in Fig-

ure 10 as well as four larger Regent programs: Stencil [27], Mini-

Aero [15], Circuit [24], and PENNANT [13]. For the latter Re-

gent programs, we measure weak scaling performance of auto-

parallelized versions of these programs and compare them with

hand-optimized counterparts. All programs have a “main” loop

where they spend most of the execution time, and this main loop

consists only of parallelizable loops. The hand-optimized versions

have already been optimized for scalability in previous work [20,

24].

All experiments were performed on Piz Daint [1], a Cray X50

system; each compute node is equipped with one Intel Xeon E5-

2690 CPU with 12 physical cores, one NVIDIA Tesla P100, and 64GB

of system memory.

Table 1 presents a breakdown of compilation time for benchmark

programs. The table also shows the size of each program in terms of

the number of auto-parallelized loops and total compilation times of

hand-optimized counterparts as a baseline. The constraint inference

and solver algorithms and the rewriting to parallel code constitute

less than 10 percent of the total compilation time, and the binary

code generation is a dominant component. Note that the baseline

does not strictly match the time for generating a binary from the

auto-parallelized code, because the auto-parallelizer produces a

program that is different from the hand-optimized counterpart.

Figure 14 summarizes the weak scaling performance of bench-

mark programs. Performance numbers in plots were measured once

programs reached a steady state. All computation tasks running

within the measurement window used only GPUs.

6.1 SpMV Microbenchmark
Figure 14a shows weak scaling performance of the SpMV code

in Figure 10. In the experiments, we use a diagonal matrix where

each row has a fixed number of non-zeros. With this balanced

synthetic matrix the auto-parallelized SpMV code achieved 99%

parallel efficiency on 256 nodes.

6.2 Stencil
Stencil is a 9-point stencil program for a 2D grid. The stencil con-

sists of a center and eight neighbor points, two for each direction

in 2D space. The uncentered access for each neighbor point cor-

responds to a distinct subset constraint, for which the constraint

solver synthesizes an image partition of an affine function.

Figure 14b shows performance of the hand-optimized code and

the auto-parallelized code. The auto-parallelized version achieves

93% parallel efficiency on 256 nodes, whereas the parallel efficiency

of the hand-optimized version is 98%. In terms of absolute per-

formance, the auto-parallelized version is slower than the hand-

optimized version by 3% on average. The discrepancy is due to

an optimization for communication manually applied to the hand-

optimized version: The code maintains a copy of the halo part in

its own region, which consolidates inter-node data movement for

halo exchanges in each direction into a single transfer, while the

eight partitions used by the auto-parallelized version require two

data transfers per direction.

6.3 MiniAero
MiniAero is a proxy application that solves the Navier-Stokes equa-

tion for compressible flows. MiniAero uses a 3D hexahedron mesh

with faces shared between neighboring hexahedron cells. The simu-

lation calculates flux between cells pointed to by each face. All tasks

in the simulation loop read face properties and update cell proper-

ties via uncentered reductions using pointers in each face, similar

to Figure 11a; the optimizer applies the optimization in Section 5.1

to these reductions to eliminate reduction buffers completely.

Figure 14c shows performance of hand-optimized and auto-

parallelized versions of MiniAero. Both achieve 98% parallel ef-

SpMV Stencil Circuit MiniAero PENNANT

Constraint inference 1.7ms 5.0ms 28.4ms 58.5ms 110.7ms

Constraint solver 1.7ms 4.0ms 4.3ms 5.8ms 13.1ms

Code rewrite 49ms 0.3s 0.3s 1.6s 1.9s

Binary generation 2.3s 6.5s 7.2s 22.8s 31.4s

Total 2.4s 6.8s 7.5s 24.4s 33.4s

Num. parallel loops 1 2 3 26 37

Baseline N/A 8.7s 8.3s 22.7s 27.6s

Table 1: Compilation time breakdown
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(a) SpMV (0.4 × 109 non-zeros/node)
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(b) Stencil (0.9 × 109 points/node)
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(c) MiniAero (2.1 × 106 cells/node)
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Figure 14: Weak scaling performance

ficiency on 256 nodes, but the auto-parallelized version is 2% slower

on average. This difference is explained by different mesh gener-

ators used in the two versions: The mesh generator in the hand-

optimized code duplicates faces when they point to cells from two

different subregions so that faces surrounding cells in each sub-

region can be contiguously indexed. On the other hand, because

the auto-parallelized code uses a mesh generated for sequential

execution, faces in each face subregion can be non-contiguously in-

dexed, leading to a small performance degradation in CUDA kernels

generated by the Regent compiler.

6.4 Circuit
Circuit simulates electric currents along wires in an unstructured

circuit graph. Each wire has pointers to incoming and outgoing

nodes, which are used for uncentered read accesses and reductions

to the region of nodes. Circuit graphs are randomly generated in a

way that circuit nodes form clusters; a maximum of 20% of wires

connect nodes in two different clusters.

To showcase the ability to exploit external constraints, we use the

existing parallel circuit graph generator that produces inputs to Cir-

cuit and auto-parallelize computation tasks with and without a user

constraint describing the initial partition of nodes produced by the

generator. Figure 14d compares these configurations (Auto+Hint

and Auto) with the hand-optimized code (Manual). Without the

user constraint, the auto-parallelized code uses an equal partition of

circuit nodes, which makes the code match the hand-optimized one

within 5% only up to eight nodes. The circuit generator is designed

to simulate sparsely connected components, and thus assigns the

first 1% of entries in the region of circuit nodes to those connected

to nodes in other clusters. As a result, the equal partition of the

region of nodes puts all these “shared” nodes in one subregion,

making the task using this subregion a communication bottleneck.

To fix this performance issue, we give the solver an interface

constraint describing the externally computed circuit partition. The

parallel circuit generator uses two partitions of the region rn of

circuit nodes, pn_private for private nodes and pn_shared for

shared nodes, and the union of these partitions is a disjoint, com-

plete partition of rn, as expressed by the following user constraint:

DISJ(pn_private ∪ pn_shared) ∧ COMP(pn_private ∪ pn_shared, rn)

With this user constraint, the performance of the auto-parallelized

code stays within 5% of the hand-optimized code on 256 nodes

and shows better performance up to 64 nodes. The latter is due to

the fact that the hand-optimized code always requests reduction

buffers for the entire subset reserved for shared circuit nodes even

when only a few nodes in this subset are shared, whereas the auto-

parallelized code computes tight private sub-partitions to reduce

the size of reduction buffers for uncentered reductions.

6.5 PENNANT
PENNANT is a proxy application for Lagrangian hydrodynamics on

2D meshes. Each polygonal zone in the mesh consists of triangular

sides; each pair of sides share two points. Each side has five pointers

used in uncentered accesses: two pointers to the previous and next

neighbor sides in the same zone, one to the zone, and the last two

to points at the vertices of the zone.

Similar to the random circuit generator in Circuit, PENNANT’s

mesh generator separates points shared by sides in different sub-

regions from those owned by a single subregion of sides. Shared

points reside in the initial entries in the region of points. Because of
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this separation, performance of the auto-parallelized code without

any user constraint (Auto in Figure 14e) keeps up with the hand-

optimized one (Manual) only up to four nodes and then drops due

to the communication bottleneck.

After adding an external constraint describing the partitioning of

points, the auto-parallelized code matches the hand-optimized one

within 6% up to 32 nodes (Auto+Hint1). The auto-parallelized code

still struggles to scale beyond 64 nodes, but for a different reason:

the partitions constructed by the synthesized DPL code exhibit

sparsity patterns inefficiently handled by the underlying runtime

system, even though they are equivalent to those used in the hand-

optimized one in terms of induced inter-node communication. We

circumvent this issue by providing additional constraints to guide

the solver to synthesize simpler DPL code as follows:

• We reused the existing disjoint, complete partitions rs_p
and rz_p of sides and zones, respectively. The parallel mesh

generator guarantees that zones pointed to by the sides in the

ith subregion of rs_p are all contained in the ith subregion

of rz_p (i.e.,image(rs_p, rs[·].mapsz, rz) ⊆ rz_p).

• Additionally, each side s has all its neighbor sides accessed
via rs[s].mapss3 and rs[s].mapss4 in the same subregion:

image(rs_p, rs[·].mapss3, rs) ⊆ rs_p
∧ image(rs_p, rs[·].mapss4, rs) ⊆ rs_p

Although these constraints are recursive, the solver can still

check the consistency as long as a satisfying partition (rs_p)
is provided.

• Finally, themesh generator creates a partition rp_p_private
of private points, which can be used as a private sub-partition

for uncentered reductions using rs[·].mapsp1:

preimage(rs, rs[·].mapsp1, rp_p_private) ⊆ rs_p

With these additional user constraints there is no noticeable differ-

ence between the auto-parallelized and hand-optimized versions

(Auto+Hint2). This example shows the constraint interfaces’ abil-

ity to provide extra information to gracefully deal with cases where

the auto-parallelizers’ heuristics do not quite match reality. Writing

the additional constraints is still much easier than parallelizing the

code by hand, and preserves the option of parallelizing the code in

a different way in a different context or after further improvements

in the underlying runtime system.

7 RELATEDWORK
Many program analysis problems can be reduced to constraint solv-

ing problems for which off-the-shelf solvers exist [4, 10, 12, 28].

The theory of first-class data partitions, however, is not a standard

theory, nor is it obvious how to convert it into one, because the

solutions of our constraints are functional programs with a special

set of function primitives (the DPL operators). One of our contri-

butions is the formalization of automatic parallelization as a space

of possible data partitionings captured by a system of constraints,

together with an algorithm for resolving those constraints.

High Performance Fortran (HPF) [17] and its predecessors [8, 16]

have pioneered the idea of configurable auto-parallelization for

distributed memory machines. These systems have a similar goal

to our work; they provide control over data partitioning via data
distribution, an annotation language for describing primary data

partitions. The compiler then infers non-local data accesses in each

rank and inserts communication and synchronization to preserve

sequential semantics. However, data distributions give users limited

control over data partitioning, making it challenging to compose

programs and fix performance issues, because “distributions were

not themselves data objects” [17]. The key discovery of our work

is that first-class data partitions, which were then considered infea-

sible due to the runtime overhead, can elegantly solve issues with

which the compiler-based systems like HPF would struggle.

Irregular accesses are a major challenge in distributed memory

code generation. Techniques for handling irregular accesses in auto-

parallelization, such as the Inspector/Executor (I/E) method [21, 22,

29], compilation techniques for OpenMP [5, 19], and the remapping

operator in ZPL [11], commonly depend on meta-programmed

partitioning code that tracks data partitions in some custom data

structure. Although these techniques can be effective, the decisions

and heuristics made in the meta-programmed partitioning code are

opaque to programmers, and thus the code is hard to understand

and compose. On the other hand, our work demonstrates that a

programming language with native data partitions makes auto-

parallelization of programs with irregular accesses transparent and

composable.

The sparse polyhedral framework [25], which is used as a foun-

dation for the I/E method, is similar in spirit to our approach; using

sparse polyhedrons as a high-level abstraction, the framework facil-

itates composition of auto-generated inspector code. Sparse polyhe-

drons are also useful for applying compiler transformations to the

inspector code. However, sparse polyhedrons are still internal to

the compiler and thus cannot be used as an interface for mixing the

inspector code with the manually parallelized code, whereas parti-

tions in our approach are a user-facing interface for configuring the

auto-parallelization process. We believe that the two approaches

are complementary to each other.

Distributed code generation for affine programs has been well

studied [2, 7, 17]. The optimizations for affine cases require no fun-

damental changes to our framework and can be easily incorporated

in partitioning operator implementations specific to affine cases.

8 CONCLUSION
In this paper we have presented a constraint-based approach to data

partitioning. Our approach captures conditions under which the

program can be correctly parallelized as partitioning constraints,

and synthesizes partitioning code that satisfies these constraints.

Using partitioning constraints as a specification also allows us to

compose auto-parallelized code with manually parallelized parts in

one program. For a set of benchmark programs, auto-parallelized

versions showed performance comparable to hand-optimized coun-

terparts with much less programmer effort.
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