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A Probabilistic Machine Learning Approach to
Scheduling Parallel Loops with Bayesian Optimization

Khu-rai Kim, Student Member, IEEE, Youngjae Kim, Member, IEEE, and Sungyong Park, Member, IEEE

Abstract—In this paper, we propose a new parallel loop scheduling algorithm: Bayesian optimization augmented factoring
self-scheduling (BO FSS). BO FSS is an automatic self-tuning variant of the factoring self-scheduling (FSS) algorithm. It
automatically tunes the internal parameter of FSS by solving an optimization problem using Bayesian optimization (BO), a black-box
optimization algorithm. By the nature of BO, our framework only requires execution time measurement of the target loop for tuning.
To apply BO, we model the loop execution time with two types of Gaussian process (GP) based models. Notably, our locality-aware
GP model accelerates the convergence of BO by taking temporal locality effect into account. We implement our method on the GCC
implementation of the OpenMP standard. Using our implementation, we evaluate the performance of BO FSS against other scheduling
algorithms, including recently introduced workload-aware scheduling methods. Also, to quantify our method’s performance variation
on different workloads (workload-robustness in our terms), we use the minimax regret metric. According to the proposed metric, BO
FSS shows the most robust performance compared to other considered algorithms. Lastly, within the considered workloads, BO FSS
improves the execution time of FSS as much as 22% and 5% on average.

Index Terms—Parallel Loop Scheduling, Bayesian Optimization, Parallel Computing, OpenMP

F

1 Introduction

Loop parallelization is the de-facto standard method for
performing shared-memory data-parallel computation.

Parallel computing frameworks such as OpenMP [1] have en-
abled the acceleration of advances in many scientific and
engineering fields such as astronomical physics [2], climate
analytics [3], and machine learning [4]. A major challenge
in enabling efficient loop parallelization is to deal with the
inherent imbalance in workloads [5]. Under the presence of
load imbalance, some computing units (CU) might end up re-
maining idle for a long time, wasting computational resources.
It is thus critical to schedule the tasks to CUs efficiently.

Early on, dynamic loop scheduling algorithms [6], [7],
[8], [9], [10], [11], [12] have emerged to attack the parallel
loop scheduling problem. However, these algorithms exploit
a limited amount of information about the workloads, such
as static imbalance, resulting in an inconsistency in terms of
performance [13]. In our terms, they do not achieve robust
performance across a large range of workloads, hence not
workload-robust. Static imbalance is an imbalance inherent
to the workload. Unlike dynamic imbalance, which is an
imbalance caused randomly during runtime, static imbalance
can sometimes be accurately estimated before execution and
can help improve the performance of applications. Workload-
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aware methods that utilize static imbalance information such
as the history-aware self-scheduling (HSS) [14] and the bin-
packing longest processing time (BinLPT) [15], [16] algo-
rithms, have recently been introduced. Unfortunately, these
methods are inapplicable when the static imbalance informa-
tion, or a workload-profile, is not provided. It should be noted
that many high-performance computing (HPC) applications
have workloads where the static imbalance pattern is not
known in advance before execution or merely is non-existent.
As a result, workload-aware methods can only be applied
to a limited range of workloads. Because of the aforemen-
tioned limitations in dynamic and workload-aware methods,
additional efforts must be made to find an algorithm best-
suited for a particular workload. Practitioners need to try out
different scheduling algorithms and manually tune them for
the best performance, which is tedious and time-consuming.

In this paper, we propose Bayesian optimization aug-
mented factoring self-scheduling (BO FSS), a workload-robust
parallel loop scheduling algorithm. BO FSS automatically
infers properties of the target loop only using execution
time measurements of the loop. Since BO FSS doesn’t rely
on a workload-profile, it is applicable to a wide range of
workloads. First, we show that it is possible to achieve ro-
bust performance if we are able to appropriately tune the
internal parameters of a classic scheduling algorithm to each
workload individually. Based on this observation, BO FSS
tunes the parameter of factoring self-scheduling (FSS) [7], a
classic dynamic scheduling algorithm, only using execution
time measurements of the target loop. This is achieved by
solving an optimization problem using a black-box global op-
timization algorithm called Bayesian optimization (BO) [17].
BO is notable for being data efficient; it requires a minimal
number of measurements until convergence [18]. It is also
able to handle the presence of noise in the measurements
efficiently. These properties lead to successful applications
such as compiler optimization flag selection [19], garbage
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collector tuning [20], and cloud configuration selection [18].
By executing the target workload multiple times, our system
gradually improves scheduling efficiency.

To apply BO, we need to provide a surrogate model that
accurately describes the relationship between the scheduling
algorithm’s parameter, and the resulting execution time. By
extending our previous work in [21], we propose two types of
surrogate models. First, we model the total execution time
contribution of a loop as Gaussian processes (GP). Second,
for workloads where the loops are executed multiple times,
we propose a locality-aware GP model. Our locality-aware GP
can model the execution time more accurately by incorporat-
ing the temporal locality effect using exponentially decreasing
function kernels [22]. Whenever applicable, our locality-aware
construction results in faster convergence.

We implement BO FSS as well as other classic scheduling
algorithms such as chunk self-scheduling (CSS) [6], FSS [7],
trapezoid self-scheduling (TSS) [8], tapering self-scheduling
(TAPER) [10] on the GCC implementation [23] of the OpenMP
parallelism framework. Then, we evaluate the performance
of BO FSS against these classical algorithms and workload-
aware methods such as HSS and BinLPT. To quantify and
compare the robustness of BO FSS, we adopt the minimax
regret metric [24], [25]. We select workloads from the Rodinia
3.1 [26] and the GAP [27] benchmark suites for the evaluation.
Results show that our method outperforms other scheduling
algorithms by improving the execution time of FSS as much
as 22% and 5% on average. In terms of workload-robustness,
BO FSS achieves the lowest regret of 22.34, which is 21%p less
than the method achieving the second-lowest regret.

The key contributions of this paper are as follows:
• We show that, when appropriately tuned, FSS can

achieve robust performance (Section 2). In contrast,
the performance of dynamic scheduling and workload-
aware methods varies across different workloads.

• We apply BO to tune the internal parameter
of FSS (Section 3). Results show that our approach
achieves good performance consistently across different
workloads (Section 5).

• We propose to model the temporal locality effect
of workload using locality-aware GPs (Section 3.3).
Our locality-aware GP incorporates the effect of temporal
locality using exponentially decreasing function kernels.

• We implement BO FSS over the OpenMP parallel
computing framework (Section 4). Our implementa-
tion includes other classic scheduling algorithms used for
the evaluation and is publicly available online.

• We propose to use minimax regret for quantify-
ing workload-robustness of scheduling algorithms
(Section 5). According to the minimax regret criterion,
BO FSS shows the most robust performance among
considered algorithms.

2 Background and Motivation
In this section, we start by describing the loop schedul-
ing problem. Then, we show that dynamic scheduling and
workload-aware methods lack workload robustness. Our anal-
ysis is followed by proposing a strategy to solve this problem.

2.1 Background
Parallel loop scheduling. Loops in scientific comput-
ing applications are easily parallelizable because of their
embarrassingly-data-parallel nature. A parallel loop schedul-
ing algorithm attempts to map each task, or iteration, of a
loop to CUs. The most basic scheduling strategy called static
scheduling (STATIC) equally divides the tasks (Ti) by the
number of CUs in compile time. Usually, a barrier is implied
at the end of a loop, forcing all the CUs to wait until all tasks
finish computing. If an imbalance is present across the tasks,
some CUs may complete computation before other tasks,
resulting in many CUs remaining idle. Since execution time
variance is abundant in practice because of control-flow di-
vergence and inherent noise in modern computer systems [5],
more advanced scheduling schemes are often required.
Dynamic loop scheduling. Dynamic loop scheduling has
been introduced to solve the inefficiency caused by execution
time variance. In dynamic scheduling schemes, each CU self-
assigns a chunk of K tasks in runtime by accessing a cen-
tral task queue whenever it becomes idle. The queue access
causes a small runtime scheduling overhead, denoted by the
constant h. The case where K = 1 is called self-scheduling
(SS) [28]. For SS, we can achieve the minimum amount of
load imbalance. However, the amount of scheduling overhead
grows proportionally to the number of tasks. Even for small
values of h, the total scheduling overhead can quickly become
overwhelming. The problem boils down to finding the optimal
tradeoff between load imbalance and scheduling overhead.
This problem has been mathematically formalized in [6], [29],
and a general review of the problem is provided in [30].

2.2 Factoring Self-Scheduling
Among many dynamic scheduling algorithms, we focus on the
factoring self-scheduling algorithm (FSS) [7]. Instead of using
a constant chunk size K, FSS uses a chunk size that decreases
along the loop execution. At the ith batch, the size of the next
P chunks, Ki, is determined according to

R0 = N, Ri+1 = Ri − PKi, Ki =
Ri

xiP
(1)

bi =
P

2
√
Ri

θ (2)

x0 = 1 + b20 + b0

√
b20 + 4 (3)

xi = 2 + b2i + bi

√
b2i + 4. (4)

where Ri is the number of remaining tasks at the ith batch.
The parameter θ in (2) is crucial to the overall performance
of FSS. The analysis in [31] indicates that θ = σ/µ results
in the best performance where µ and σ2 are the mean (E[Ti])
and variance (V[Ti]) of the tasks. However, in Section (2.3),
we show that this θ does not always perform well. Instead,
we suggest a strategy that determines θ for each workload
individually by solving an optimization problem.
The FAC2 scheduling strategy. Since determining µ and
σ requires extensive profiling of the workload, the original au-
thors of FSS suggest an unparameterized heuristic version [7].
This version is often abbreviated as FAC2 in the literature.
and has been observed to outperform the original FSS [9], [11]
despite being a heuristic modification.
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(a) Accuracy of load estimation (b) Low static imbalance (c) High static imbalance

Fig. 1. ((a), top) Discrepancy between the workload-profile and actual execution time of the tasks. ((a), bottom) Discrepancy between the load of
the chunks created by BinLPT, and their actual execution time. (b-c) Effect of the internal parameter (θ) of FSS on a workload with homogeneous
tasks ((b), low static imbalance, lavaMD workload) and a workload with non-homogeneous tasks ((c), high static imbalance, pr-journal workload).
The value of the parameter suggested by the original FSS algorithm is marked with a blue cross, while the actual optimal solution targeted by our
proposed method is marked with a blue star. The error bands are the 95% empirical bootstrap confidence intervals of the execution time mean.

2.3 Motivation

Limitations of workload-aware methods. The HSS and
BinLPT strategies have significant drawbacks despite being
able to fully incorporate the information about load imbal-
ance. First, both the HSS and BinLPT methods require an
accurate workload-profile. This is a significant limiting factor
since many HPC workloads are comprised of homogeneous
tasks where the imbalance is caused dynamically during run-
time; there is no static imbalance in the first place. Also, even
if a workload-profile is present, it imposes a runtime memory
overhead of O(N) for each loop. For large-scale applications
where the task count N is huge, the memory overhead is a
significant nuisance.

Both the HSS and BinLPT algorithms also have their
own caveats. The HSS algorithm has high scheduling over-
head [16]. We show in Section 5 that HSS performs well
only when high levels of imbalance (such as in the pr-wiki
workload) are present. The performance of BinLPT algorithm
is highly sensitive to the accuracy of the workload-profile. In
practice, discrepancies between the true workload and the
workload-profile are inevitable. We illustrate this fact using
the pr-journal graph analytics workload in the upper plot
of Figure 1a. For example, we estimate the load of each task
using the in-degree of the corresponding vertex in the graph.
The grey region is the estimated load of each task, while
the red region is the measured load. As shown in the figure,
the estimated load does not accurately describe the actual
load. Likewise, the chunks created by BinLPT using these
estimates are equally inaccurate, as shown in the lower plot
of Figure 1a. If the number of tasks is minimal, some level of
discrepancy may be acceptable. Indeed, the original analysis
in [16] considers at most N = 3074 tasks. In practice, the
number of tasks scales with data leading to a very large N .

Effect of tuning the parameter of FSS Similarly,
classical scheduling algorithms such as FSS are not workload-
robust [13]. However, we reveal an interesting property by
tuning the parameter (θ) of FSS. Figure 1b and Figure 1c
illustrate the evaluation results of FSS using the lavaMD
(a workload with low static imbalance) and pr-journal (a
workload with high static imbalance) workloads with different
values of θ, respectively. The solution suggested in the original

FSS algorithm (as discussed in Section 2.2) is denoted by
a blue cross. For the lavaMD workload (Figure 1b), this
solution is arguably close to the optimal value. However,
for the pr-journal workload (Figure 1c), it leads to poor
performance. The original FSS strategy is thus not workload-
robust since its performance varies greatly across workloads.

In contrast, by using an optimal value of θ (blue star),
FSS outperforms all other algorithms as shown in the plots.
Even in Figure 1c where HSS and BinLPT are equipped with
an accurate workload-profile, FSS outperforms both methods.
This means that tuning the parameter of FSS on a per-
workload basis can uncover a new algorithm with robust
performance.
Motivational remarks Workload-aware methods and clas-
sical dynamic scheduling methods tend to vary in applicability
and performance. Meanwhile, classic scheduling algorithms
such as FSS achieve optimal performance when they are
appropriately tuned to the target workload. This performance
potential of FSS points towards the possibility of creating a
novel robust scheduling algorithm.

3 Augmenting Factoring Self-Scheduling
with Bayesian Optimization
In this section, we describe BO FSS, a self-tuning variant of
the FSS algorithm. First, we provide an optimization per-
spective on the loop scheduling problem. Next, we describe a
solution to the optimization problem using BO. Since solving
our problem requires modeling of the execution time using
surrogate models, we describe two ways to construct surrogate
models.

3.1 Scheduling as an Optimization Problem
The main idea of our proposed method is to design an optimal
scheduling algorithm by finding its optimal configurations
based on execution time measurements. First, we define a
set of scheduling algorithms S = {Sθ1 , Sθ2 , . . .} indexed by
a tunable parameter θ. In our case, S is the set of configu-
rations of the FSS algorithm with the parameter θ discussed
in Section 2.2. Within this set of configurations, we choose
the optimal configuration that minimizes the mean of the
total execution time contribution (Ttotal) of a parallel loop.
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Algorithm 1: Bayesian optimization
Initial dataset D0 = {(θ0, τ0), . . . , (θN , τN )} for t ∈ [1, T ]

do
1. Fit surrogate model M using Dt.
2. Solve inner optimization problem.
θt+1 = argmaxθ α(θ|M,Dt)

3. Evaluate parameter. τt+1 ∼ Ttotal(Sθt+1
)

4. Update dataset. Dt+1 = Dt+1 ∪ (θ, τ)
end

This problem is now of the form of an optimization problem
denoted as,

minimize
θ

E[Ttotal(Sθ) ]. (5)

Problem structure. Now that the optimization problem
is formulated, we are now supposed to apply an optimiza-
tion solver. However, this optimization problem is ill-formed,
prohibiting the use of any typical solver. First, the objective
function is noisy because of the inherent noise in computer
systems. Second, we do not have enough knowledge about the
structure of T . Different workloads interact differently with
scheduling algorithms [13]. It is thus difficult to obtain an
analytic model of T that is universally accurate. Moreover,
most conventional optimization algorithms require knowledge
about the gradient ∇θT , which we do not have.
Solution using Bayesian optimization. For solving this
problem, we leverage Bayesian Optimization (BO). We ini-
tially attempt to apply other gradient-free optimization meth-
ods such as stochastic approximation [32]. However, the noise
level in execution time is so extreme that most gradient-
based methods fail to converge. Conveniently, BO has recently
been shown to be effective for solving such kind of optimiza-
tion problems [18], [19], [20]. Compared to other black-box
optimization methods, BO requires less objective function
evaluations and can handle the presence of noise well [18].
Description of Bayesian optimization. The overall flow
of BO is shown in Algorithm 1. First, we build a surro-
gate model M of Ttotal. Let (θ, τ) denote a data point of
an observation where θ is a parameter value, and τ is the
resulting execution time measurement such that τ ∼ Ttotal.
Based on a dataset of previous observations denoted as
Dt = {(θ1, τ1), . . . , (θt, τt) }, a surrogate model provides a
prediction of Ttotal(θ) and the uncertainty of the prediction.
In our context, the prediction and uncertainty are given as the
mean of the predictive distribution (µ(θ | Dt)) and its variance
(σ2(θ | Dt)).

Using M, we now solve what is known as the inner
optimization problem. In this step, we choose to exploit our
current knowledge about the optimal value or explore entirely
new values that we have yet tried out. In the extremes,
minimizing µ(θ | Dt) gives us the optimal parameter given
our current knowledge, while minimizing σ2(θ | Dt) gives us
the parameter we are currently the most uncertain. The
solution is given by a tradeoff of the two ends (often called
the exploration-exploitation tradeoff), found by solving the
optimization problem

θi+1 = arg max
θ

α(θ |M,Dt) (6)

where the function α is called the acquisition function. Based
on the predictions and uncertainty estimates ofM, α returns

Fig. 2. Visualization of our execution time models. The execution time of
the parallel loop (red bracket) is denoted as T , while the execution time
of the tasks in the parallel loop (green bracket) is denoted as Ti. The
outer loop (blue bracket) represents repeated execution (L times) of the
parallel loop within the application, where Ttotal is the total execution
time contribution of the loop.

our utility of trying out a specific value of θ. Evidently, the
quality of the prediction and uncertainty estimates of M
are crucial to the overall performance. By maximizing α,
we obtain the parameter value that has the highest utility,
according to α. In this work, we use the max-value entropy
search (MES) [33] acquisition function. After solving the
inner optimization problem, we obtain the next value to try
out, θt+1. We can then try out this parameter and append
the result (θt+1, τt+1) to the dataset. For a comprehensive
review of BO, please refer to [17]. We will later explain our
OpenMP framework implementation of this overall procedure
in Section 4.

3.2 Modeling Execution Time with Gaussian Processes
As previously stated, having a good surrogate modelM is es-
sential. Modeling the execution time of parallel programs has
been a classic problem in the field of performance modeling.
It is known that parallel programs tend to follow a Gaussian
distribution when the execution time variance is not very
high [34]. This result follows from the central limit theorem
(CLT), which states that the influence of multiple i.i.d. noise
sources asymptotically form a Gaussian distribution. Consid-
ering this, we model the total execution time contribution of
a loop as

Ttotal =
L∑

ℓ=1

T (Sθ) + ϵ (7)

where L is the total number of times a specific loop is
executed within the application, indexed by ℓ. Following the
conclusions of [34], we naturally assume that ϵ follows a
Gaussian distribution. Note that, at this point, we assume T
is independent of the index ℓ. For an illustration of the models
used in our discussion, please see Figure 3.
Gaussian Process formulation. From the dataset Dt, we
infer the model of the execution time Ttotal(θ) using Gaus-
sian processes (GPs). A GP is a nonparametric Bayesian
probabilistic machine learning model for nonlinear regression.
Unlike parametric models such as polynomial curve fitting
and random forest, GPs automatically tune their complexity
based on data [35]. Also, more importantly, GPs can naturally
incorporate the assumption of additive noise (such as ϵ in (7)).
The prediction of a GP is given as a univariate Gaussian dis-
tribution fully described by its mean (µ(x|Dt)) and variance
(σ2(x|Dt)). These are computed in a closed form as

µ(θ|Dt) = k(θ)T (K + σ2
nI)

−1y (8)

σ2(θ|Dt) = k(θ, θ)− k(θ)T (K + σ2
ϵ I)

−1 k(θ) (9)
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(a) Locality effect ℓ-axis view (b) Locality effect θ-axis view (c) Samples from the Exp. kernel

Fig. 3. (a) (b) Visualization of the temporal locality effect on the execution time of the kmeans workload. (a) ℓ-axis view. The error bars are the
95% empirical confidence intervals. (b) θ-axis view. The red squares are measurements of the earlier executions (ℓ ≤ 10) while the blue circles are
measurements of the later executions (ℓ > 10). (c) Randomly sampled functions from a GP prior with an exponentially decreasing function kernel.

where y = [τ1, τ2, . . . , τt], k(θ) is a vector valued function
such that [k(θ)]i = k(θ, θi), ∀θi ∈ Dt, and K is the Gram
matrix such that [K ]i,j = k(θi, θj), ∀θi, θj ∈ Dt; k(x, y)
denotes the covariance kernel function which is a design
choice. We use the Matern 5/2 kernel which is computed as,

k(x, x′; σ2, ρ2) = σ2 (1 +
√
5r +

5

3
r2) exp(−

√
5r) (10)

where r = ||x− x′||2/ρ2. (11)

For a detailed introduction to GP regression, please refer
to [36].
Non-Gaussian noise. Despite the remarks in [34] saying
that parallel programs mostly follow Gaussian distributions,
we experience cases where the execution time of individual
parallel loops does not quite follow a Gaussian distribution.
For example, occasional L2, L3 cache-misses results in large
deviations, or outliers, in execution time. To correctly model
these events, it is advisable to use heavy-tail distributions such
as the Student-T. Methods for dealing with such outliers are
described in [37] and [38]. However, to narrow the scope of our
discussion, we stay within the Gaussian assumption.

3.3 Modeling with Locality-Aware Gaussian Processes
Until now, we only consider acquiring samples of Ttotal by
summing our measurements of T . For the case where the
parallel loop in question is executed more than once (that
is, L > 1), we acquire L observations of T in a single run of
the workload. By exploiting our model’s structure in (7), it is
possible to utilize all L samples instead of aggregating them
into a single one. Since the Gaussian distribution is additive,
we can decompose the distribution of Ttotal such that

Ttotal =
L∑

ℓ=1

T (Sθ, ℓ) (12)

∼
L∑

ℓ=1

N (E[T (Sθ, ℓ)],V[T (Sθ, ℓ)], ) (13)

= N (
L∑

ℓ=1

E[T (Sθ, ℓ)],
L∑

ℓ=1

V[T (Sθ, ℓ)] ) (14)

≈ N (
L∑

ℓ=1

µ(θ, ℓ | Dt),
L∑

ℓ=1

σ2(θ, ℓ | Dt) ). (15)

Note the dependence of T on the index of execution ℓ.
From (14), we can retrieve Ttotal from the mean (E[T (Sθ, ℓ)])
and variance (V[T (Sθ, ℓ)]) estimates of T , which are given by
modeling T using GPs as denoted in (15).
Temporal locality effect. However, this is not as simple
as assuming that all L measurements of T are independent
(ignoring the argument ℓ of T ). The execution time distribu-
tion of a loop changes dramatically within a single application
run because of the temporal locality effect. This is shown
in Figure 3 using measurements of a loop in the kmeans
benchmark. In Figure 3a, it is clear that earlier executions
of the loop (ℓ ≤ 10) are much longer than the later executions
(ℓ > 10). Also, different moments of executions are effected
differently by θ, as shown in Figure 3b. It is thus necessary to
accurately model the effect of ℓ to better distinguish the effect
of θ.
Exponentially decreasing function kernel. To model the
temporal locality effect, we expand our GP model to include
the index of execution ℓ. Now, the model is a 2-dimensional
GP receiving ℓ and θ. Within the workloads we consider, the
temporal locality effect is shown an exponentially decreasing
tendency. We thus assume that the locality effect can be
represented with exponentially decreasing functions (Exp.) of
the form of e−λℓ. The kernel for these functions has been
introduced in [22] for modeling the learning curves of machine
learning algorithms. The exponentially decreasing function
kernel is computed as

k(ℓ, ℓ′) =
βα

(ℓ+ ℓ′ + β)
α . (16)

Random functions sampled from the space induced by the
Exp. kernel are shown in Figure 3c. Notice the similarity
of the sampled functions and the visualized locality effect
in Figure 3a. Modeling more complex locality effects such
as periodicity can be achieved by combining more different
kernels. An automatic procedure for doing this is described
in [39].
Kernel of locality-aware GPs. Since the sum of covariance
kernels is also a valid covariance kernel [36], we define our
2-dimensional kernel as

k(x, x′) = kMatern(θ, θ
′) + kExp(ℓ, ℓ

′) (17)
where x = [ θ, ℓ ], x′ = [ θ′, ℓ′ ]. (18)
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Fig. 4. System overview of BO FSS. Online denotes the time we are actually executing the workload, while offline denotes the time we are not
executing the workload. For a detailed description, refer to the text in Section 4.

Intuitively, this definition implies that we assume the effect
of scheduling (resulting from θ) and locality (resulting from ℓ)
to be superimposed (additive).
Reducing computational cost. The computational com-
plexity of computing a GP is in O(T 3) where T represents
the total number of BO iterations. The locality aware con-
struction uses all the independent loop executions resulting
in computational complexity in O((LT )

3
). To reduce the

computational cost, we subsample data along the axis of
ℓ by using every kth measurement of the loop, such that
ℓ ∈ {1, k + 1, 2k + 1, . . . , L}. As a result, the computa-
tional complexity is reduced by a constant factor such that
O((Lk T )

3
). In all of our experiments, we use a large value of k

so that L/k = 4.

3.4 Treatment of Gaussian Process Hyperparameters
GPs have multiple hyperparameters that need to be prede-
termined. The suitability of these hyperparameters is directly
related to the optimization performance of BO [40]. Unfor-
tunately, whether a set of hyperparameters is appropriate
depends on the characteristics of the workload. Since real-life
workloads are very diverse, it is thus essential to automatically
handle these parameters. The Matern 5/2 kernel has two
hyperparameters ρ and σ, while the Exp. kernel has two
hyperparameters α and β. GPs also have hyperparameters
themselves, the function mean µ and the noise variance
σ2
ϵ . We denote the hyperparameters using the concatenation

ϕ = [µ, σϵ, σ, ρ, . . . ].
Since the marginal likelihood p(Dt|ϕ) is available in a

closed form [36], we can infer the hyperparameters using
maximum likelihood estimation type-II or the fully Bayesian
treatment. The fully Bayesian treatment has been empirically
shown to give better optimization performance in the context
of BO [40], [41]. It is performed by approximating the integral

α(x |M,Dt) =

∫
α(x |M, ϕ,Dt)p(ϕ|Dt)dθ (19)

≈ 1

N

∑
ϕi∼p(ϕ|Dt)

α(x |M, ϕi,Dt), (20)

using samples from the posterior ϕi where N is the number
of samples. For sampling from the posterior, we use the no-u-
turn sampler (NUTS, [42]).

4 System Implementation
We now describe our implementation of BO FSS1. Our im-
plementation is based on the GCC implementation of the

1. Source code is available in https://github.com/Red-Portal/
bosched

OpenMP 4.5 framework [1]. An illustration of BO FSS is shown
in Figure 4. The overall workflow is as follows:

0 First, we randomly generate initial scheduling pa-
rameters θ0, . . . , θN0 using a Sobol quasi-random se-
quence [43].

1 During execution, for each loop in the workload, we
schedule the parallel loop using the parameter θt. We
measure the resulting execution time of the loop and
acquire a measurement τt.

2 Once we finish executing the workload, store the pair
(θt, τt) to disk in JSON format.

3 Then, we run the offline tuner, which loads the dataset
Dt from disk.

4 Using this dataset, we solve the inner optimization prob-
lem in (6), acquiring the next scheduling configuration
θt+1.

5 At the subsequent execution of the workload, t ← t + 1,
and go back to 1 .

Offline means the time we finish executing the workload,
while online means the time we are executing the workload
(runtime).
Implementation of the offline tuner. We implement the
offline tuner as a separate program written in Julia [44],
invoked by the user. When invoked, the tuner solves the
inner optimization problem, and stores the results in disk.
For solving the inner optimization problem, we use the
DIRECT algorithm [45] implemented in the NLopt library
[46]. For marginalizing the GP hyperparameters, we use the
AdvancedHMC.jl implementation of NUTS [47].
Search space reparameterization. BO requires the do-
main of the parameter to be bounded. However, in the case
of FSS, θ is not necessarily bounded. As a compromise, we
reparameterized θ into a fixed domain such that

minimize
x

E[Ttotal(Sθ(x)) ] (21)

where θ(x) = 219 x−10, 0 < x < 1. (22)

This also effectively converts the search space to be in a
logarithmic scale. The reparameterized domain is chosen by
empirically investigating feasible values of θ.
User interface. BO FSS can be selected by setting the
OMP_SCHEDULE environment variable, or by the OpenMP run-
time API as in Listing 1.

Listing 1
Selecting a scheduling algorithm

omp_set_schedule(BO_FSS); // selects BO FSS

https://github.com/Red-Portal/bosched
https://github.com/Red-Portal/bosched
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TABLE 1
Benchmark Workloads

Suite Workload Profile Characterization # Tasks (N) Application Domain Benchmark Suite
lavaMD Uniformative 1 N-Body 8000 Molecular Dynamics Rodinia 3.1
stream. No Dense Linear Algebra 65536 Data Mining Rodinia 3.1
kmeans Uniformative 2 Dense Linear Algebra 494020 Data Mining Rodinia 3.1
srad v1 Uniformative 1 Structured Grid 229916 Image Processing Rodinia 3.1
nn Uniformative 1 Dense Linear Algebra 8192 Data Mining Rodinia 3.1
cc-* Yes Sparse Linear Algebra N/A 3 Graph Analytics GAP
pr-* Yes Sparse Linear Algebra N/A 3 Graph Analytics GAP
1 Uniformly partitioned workload.
2 Imbalance present only in domain boundaries.
3 Input data dependent; number of vertices of the input graph.

Modification of the OpenMP ABI. As previously de-
scribed, our system optimizes each loop in the workload in-
dependently. Naturally, our system requires the identification
of the individual loops within the OpenMP runtime. However,
we encounter a major issue: the current OpenMP ABI does not
provide a way for such identification. Consequently, we have
to modify the GCC 8.2 [23] compiler’s OpenMP code generation
and the OpenMP ABI. The modified GCC OpenMP ABI is
shown in Listing 2. During compilation, a unique token for
each loop is generated and inserted at the end of the OpenMP
procedure calls. Using this token, we store and manage the
state of each loop. Measuring the loop execution time is done
by starting the system clock in OpenMP runtime entries such as
GOMP_parallel_runtime_start, and stopping in exits such
as GOMP_parallel_end.

Listing 2
Modified GCC OpenMP ABI

void GOMP_parallel_loop_runtime(void (*fn) (void *), void *
data, unsigned num_threads, long start, long end, long
incr, unsigned flags, size_t loop_id)

void GOMP_parallel_runtime_start(long start, long end, long
incr, long *istart, long *iend, size_t loop_id)

void GOMP_parallel_end(size_t loop_id)

5 Evaluation
In this section, we first describe the overall setup of our
experiments. Then, we compare the robustness of BO FSS
against other scheduling algorithms. After that, we evaluate
the performance of our BO augmentation scheme. Lastly, we
directly compare the execution time.

5.1 Experimental Setup
System setup. All experiments are conducted on a single
shared-memory computer with an AMD Ryzen Threadripper
1950X 3.4GHz CPU which has 16 cores and 32 threads with
simultaneous multithreading enabled. It also has 1.5MB of
L1 cache, 8MB of L2 cache and 32MB of last level cache.
We use the Linux 5.4.36-lts kernel with two 16GB DDR4
RAM (32GB total). Frequency scaling is disabled with the
cpupower frequency-set performance setting. We use the
GCC 8.3 compiler with the -O3, -march=native optimization
flags enabled in all of our benchmarks.
BO FSS setup. We run BO FSS for 20 iterations starting
from 4 random initial points. All results use the best parame-
ter found after the aforementioned number of iterations.
Baseline scheduling algorithms. We compare BO FSS
against the FSS [7], CSS [6], TSS [8], GUIDED [48], TA-
PER [10], BinLPT [16], HSS [14] algorithms. Apart from the

HSS and BinLPT algorithms, the details of the implementa-
tion of CSS, TSS and TAPER tend to vary. We organized
the details of our implementations of these algorithms in
Table 4, which is at the end of our paper. The implementation
details of FSS has already been shown in Section 2.2. We
use the implementation of BinLPT and HSS provided by the
authors of BinLPT2. For the FSS and CSS algorithms, we
estimate the statistics of each workloads (µ, σ) beforehand
from 64 executions. The scheduling overhead parameter h
is estimated using the method described in [49]. We use the
default STATIC and GUIDED implementations of the OpenMP
4.5 framework using the static and guided scheduling flags.
For the TSS and TAPER schedules, we follow the heuristic
versions suggested in their original works, denoted as TRAP1
and TAPER3, respectively.
Benchmark workloads. The workloads considered in our
experiments are summarized in Table 1. We select work-
loads from the Rodinia 3.1 benchmark suite [26] (lavamd,
streamcluster, kmeans, srad v1) where the STATIC
scheduling method performs worse than other dynamic
scheduling methods. We also include workloads from the GAP
benchmark suite [27] (cc, pr) where the load is predictable
from the input graph.
Workload-profile availability. We characterize the
workload-profile availability of each workload in the
Workload-Profile column in Table 1. For workloads with
homogeneous tasks (lavaMD, stream., srad v1, nn), static
imbalance does not exist. Most of the imbalance is caused
during runtime, deeming a workload-profile uniformative. On
the other hand, the static imbalance of the kmeans workload
is revealed during execution, not before execution. We thus
consider the workload-profile to be effectively unavailable.

TABLE 2
Input Graph Datasets

Dataset |V| |E| deg−(v)1, deg+(v)2

mean std max
journal [50] 4.0M 69.36M 17, 17 43, 43 15k, 15k
wiki [51] 3.57M 45.01M 13, 13 33, 250 7k, 187k
road [52] 24.95M 57.71M 2, 2 1, 1 9, 9
skitter [53] 1.70M 22.19M 13, 13 137, 137 35k, 35k
1 In-degree of each vertex.
2 Out-degree of each vertex.

Input graph datasets. We organize the graph datasets used
for the workloads from the GAP benchmark suite in Table 2,
acquired from [54]. |V| and |E| are the vertices and edges in

2. Retrieved from https://github.com/lapesd/libgomp

https://github.com/lapesd/libgomp
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Fig. 5. Execution time comparison of BO FSS, FSS and FAC2. We estimate the mean execution time from 256 executions. The error bars show the
95% bootstrap confidence intervals. The results are normalized by the mean execution time of BO FSS. The methods with the lowest execution
time are marked with a star (*). Methods not significantly different with the best performing method are also marked with a star (Wilcoxon signed
rank test, 1% null-hypothesis rejection threshold).

the graphs, respectively. The load of each task (Ti) in the cc
and pr workloads is proportional to the in-degree and out-
degree of each vertex [55], respectively. We use this degree
information for the workload-profile. Among the datasets
considered, wiki has the most extreme imbalance while road
has the least imbalance [55].
Workload-robustness measure. To quantify the notion of
workload-robustness, we use the minimax regret measure [25].
The minimax regret quantifies robustness by calculating the
opportunity cost using an algorithm, computed as

R(S,w) = U(S,w)−minS∈S U(S,w)

minS∈S U(S,w)
× 100 (23)

R(S) = max
w∈W

R(S,w) (24)

where U(S,w) is the utility of the scheduling algorithm S on
the workload w, and W is our set of workloads. We choose
Uw(S,w) to be the relelative execution time normalized by
that of the best performing algorithm. Note that among
different robustness measures, the minimax regret is very
pessimistic [24], emphasizing the worst-case performance.

5.2 Evaluation of Workload-Robustness
Table 3 compares the minimax regrets of different scheduling
algorithms with that of BO FSS. Each entry in the table
is the regret subject to the workload and scheduling algo-
rithm (R(S,w)). The final row is the regret subject to the
scheduling algorithm (R(S)). BO FSS achieves the lowest
overall regret of 22%p. In contrast, both static and dynamic
scheduling methods achieve similar level of regret. This obser-
vation is on track with the previous findings [13]; none of the
classic scheduling methods dominate each other.

Remember that we select workloads where STATIC per-
forms poorly. Our robustness analysis thus only holds for
comparing dynamic and workload-aware scheduling methods.
Remarks. The results for workload-robustness using the
minimax regret metric show that BO FSS achieves signifi-
cantly lower levels of regret compared to other scheduling
methods. As a result, BO FSS performs consistently well.
Even when BO FSS does not perform the best, its perfor-
mance is within an acceptable range.

5.3 Evaluation of Bayesian Optimization Augmentation
A fundamental part of the proposed method is that BO
FSS improves the performance of FSS by tuning its internal

Fig. 6. Parameter space and surrogate model fit on the srad v1 work-
load. The colored regions are the 95% predictive confidence intervals
of the GP (green region) and Student-T process (blue region). The red
circles are the data points used to fit both surrogate models.

Fig. 7. Convergence plot of the locality-unaware GP and the locality-
aware GP on the skitter workload. We ran 10 iterations BO 30 times
from beginning to end, and computed the 95% boostrap confidence
intervals.

parameter. In this section, we show whether our BO augmen-
tation improves the performance of FSS compared to those
of its original counterpart and its heuristic variant FAC2. We
run BO FSS, FSS, and FAC2 on workloads with both high
and low static imbalances. The results are shown in Figure 5.
Overall, we can see that BO FSS consistently outperforms FSS
and FAC2 with the exception of srad v1 and cc-skitter.
On workloads with high imbalance such as pr-journal and
pr-wiki, the execution time improvements are as high as 30%.

Performance degradation on srad v1. Interestingly, BO
FSS does not perform well on two workloads: srad v1 and
cc-skitter. While the performance difference in cc-skitter
is marginal, the difference in srad v1 is not. This phe-
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TABLE 3
Minimax Regret of Scheduling Algorithms

Workload Ours Static Workload-Aware Dynamic
BO FSS STATIC HSS BinLPT GUIDED FSS CSS FAC2 TRAP1 TAPER3

lavaMD 0.00 17.55 N/A N/A 7.25 3.00 0.36 0.25 10.33 42.64
stream. 0.00 10.79 N/A N/A 2.39 10.36 1.25 0.68 2.00 2.45
kmeans 0.00 23.02 N/A N/A 8.01 17.62 1.50 1.17 2.30 6.41
srad v1 22.34 10.92 N/A N/A 16.75 11.74 26.03 0.00 16.43 17.61
nn 4.76 5.06 N/A N/A 0.00 0.55 7.00 6.06 4.39 5.14
cc-journal 0.00 2.88 66.98 196.63 11.94 2.47 2.98 6.15 3.65 0.66
cc-wiki 0.00 6.94 58.57 154.31 10.37 2.77 6.58 5.29 7.88 5.27
cc-road 0.00 8.57 81.88 251.71 7.19 1.37 1.55 1.23 1.97 1.71
cc-skitter 5.28 2.28 61.69 129.08 3.57 1.03 1.05 1.06 0.73 0.00
pr-journal 0.00 29.66 5.52 66.89 42.93 29.01 29.07 29.17 29.33 28.81
pr-wiki 15.30 45.20 0.00 42.26 85.34 46.99 47.28 46.82 46.53 46.87
pr-road 0.00 0.32 41.65 138.32 6.60 0.41 0.42 0.42 0.40 0.41
pr-skitter 0.00 11.51 23.21 68.91 29.97 11.66 11.21 11.34 12.06 11.26

R(S) 22.34 45.20 81.88 251.71 85.34 46.99 47.28 46.83 46.53 46.87

nomenon is due to the large deviations in the execution time
measurements as shown in Figure 6. That is, large outliers
near θ = 0.4 and θ = 0.8 cause to deviate the GP prediction
(green line), reducing the Gaussianity of the noise. Since GPs
assume the noise to be Gaussian, they are not well suited for
this kind of situation. A possible remedy is to use the Student-
T process [37], [38], shown as the blue line. In Figure 6, the
Student-T process is much less affected by outliers, resulting
in a tighter fit.

Comparison of Gaussian Process Models. We now com-
pare the simple GP construction in Section 3.2 and the
locality-aware GP construction in Section 3.3. We equip BO
with each of the models, and run the autotuning process
beginning to end 30 times. The convergence results are shown
in Figure 7. We can see that the locality-aware construction
converges much quickly. Note that the shown results are
averages. In the individual results, there are cases where the
locality-unaware version completely fails to converge within
a given budget. We thus suggest to use the locality-aware
construction whenever possible. It achieves consistent results
at the expense of additional computation during tuning.
Remarks. Apart from srad v1, BO FSS performs better
than FSS and FAC2 on most workloads. This indicates that
the Gaussian assumption works fairly well in most cases. We
can conclude that our BO augmentation improves the per-
formance of FSS on both workloads with high and low static
imbalances. Our interest is now to see how this improvement
compares against other scheduling algorithms.

5.4 Evaluation on Workloads Without Static Imbalance
This section compares the performance of BO FSS against
dynamic scheduling methods on workloads where a workload-
profile is unavailable or uniformative. The benchmark results
are shown in Figure 8. Out of the 5 workloads considered, BO
FSS outperforms all other methods on 3 out of 5 workloads.
On the nn workload, the difference between all methods is
insignificant. As discussed in Section 5.3, BO FSS performs
poorly on the srad v1 workload. Note that the same tuning
results are used both for Section 5.3 and this experiment.
Thus, with proper treatment of outliers, it is possible that
BO FSS could have shown better results.

Fig. 8. Execution time comparison of BO FSS against dynamic schedul-
ing methods. We estimate the mean execution time from 256 executions.
The error bars show the 95% bootstrap confidence intervals. The results
are normalized by the mean execution time of BO FSS. The methods
with the lowest execution time are marked with a star (*). Methods not
significantly different with the best performing method are also marked
with a star (Wilcoxon signed rank test, 1% null-hypothesis rejection
threshold).

Remarks. Compared to other dynamic scheduling methods,
BO FSS achieves more consistent performance. However,
because of the turbulence in the tuning process, BO FSS
performs poorly on srad v1. It is thus important to ensure
that BO FSS correctly converges to a critical point before
applying it.
5.5 Evaluation on Workloads With Static Imbalance
This section evaluates the performance of BO FSS against
workload-aware methods using workloads with a workload-
profile. The evaluation results are shown in Figure 9. Except
for the pr-wiki workload, BO FSS dominates all considered
baselines. Because of the large number of tasks, both the
HSS and BinLPT algorithms do not perform well on these
workloads. Meanwhile, the STATIC and GUIDED strategies
are very inconsistent in terms of performance. On the pr-wiki
and pr-journal workloads, both methods are nearly 30%
slower than BO FSS. This means that these algorithms lack
workload-robustness unlike BO FSS.

On the pr-wiki workload which has the most extreme
level of static imbalance, HSS performs significantly better. As
discussed in Section 2.3, HSS has a very large critical section,
resulting in a large amount of scheduling overhead. However,
on the pr-wiki workload, the inefficiency caused by load
imbalance is so extreme compared to the inefficiency caused
by the scheduling overhead, giving HSS a relative advantage.
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Fig. 9. Execution time comparison of BO FSS against workload-aware methods. We estimate the mean execution time from 256 executions. The
error bars show the 95% bootstrap confidence intervals. The results are normalized by the mean execution time of BO FSS. The methods with
the lowest execution time are marked with a star (*). Methods not significantly different with the best performing method are also marked with a
star (Wilcoxon signed rank test, 1% null-hypothesis rejection threshold).

Fig. 10. Effect of mismatching the data used for tuning BO FSS and the
data used for execution. The rows are the data used for tuning of BO
FSS, while the columns are the data used for execution. The numbers
represent the percentage slowdown relative to the matched case. Colder
colors represent higher slowdown (worst performance).

Does the input data affect performance?. BO FSS’s per-
formance is tightly related to the individual property of each
workload. It is thus interesting to ask how much the input data
of the workload affects the behavior of BO FSS. To analyze
this, we interchange the data used to tune BO FSS and the
data used to measure the performance. If the input data plays
an important role, the discrepancy between the tuning time
data and the runtime data would degrade the performance.
The corresponding results are shown in Figure 10 where the
entries are the percentage increase in execution time relative
to the matched case. Each row represents the dataset used
for tuning, while each column represents the dataset used
for execution. The anti-diagonal (bottom left to top right) is
the case when the data is matched. The maximum amount
of degradation is caused when we use skitter for tuning
and wiki during runtime. Also, the case of using journal
for tuning and wiki during runtime significantly degrades
the performance. Overall, the wiki and road datasets turned
out to be the pickiest about the match. Since both wiki and
road resulted in high degradation, the amount of imbalance
in the data does not determine how important the match is.
However, judging from the fact that the degradation is at most
1%, we can conclude that BO FSS is more sensitive to the
workload’s algorithm rather than its input data.

Remarks. Compared to the workload-aware methods, BO
FSS performs the best except for one workload which has
the most amount of imbalance. Excluding this extreme case,
the performance benefits of BO FSS is quite large. We also
evaluate the sensitivity of BO FSS on perturbations to the
workload. Results show that BO FSS is not affected much by

changes in the input data of the workload.

5.6 Overhead Analysis
BO FSS has specific duties, both online and offline. When
online, BO FSS loads the precomputed scheduling parameter
θi, measures the loop execution time and stores the pair
(θi, τi) in the dataset Dt. A storage memory overhead of
O(T ), where T is the number of BO iterations, is required to
store Dt. This is normally much less than the O(N) memory
requirement, where N is the number of tasks, imposed by
workload-aware methods. When offline, BO FSS runs BO
using the dataset Dt and determines the next scheduling
parameter θi+1. Because most of the actual work is performed
offline, the online overhead of BO FSS is almost identical to
that of FSS. The offline step is relatively expensive due to
the computation complexity of GPs. Fortunately, BO FSS
converges within 10 to 20 iterations for most cases. This allows
the computational cost to stay within a reasonable range.

6 Related Works
Classical dynamic loop scheduling methods. To im-
prove the efficiency of dynamic scheduling, many classical
algorithms are introduced such as CSS [6], FSS [7], TSS [8],
BOLD [9], TAPER [10] and BAL [11]. However, most of these
classic algorithms are derived in a limited theoretical context
with strict statistical assumptions. Such an example is the
i.i.d. assumption imposed on the workload.
Adaptive and workload-aware methods. To resolve this
limitation, adaptive methods are developed starting from the
adaptive factoring self-scheduling algorithm [12]. Recently,
workload-aware methods including HSS [14] and BinLPT [15],
[16] are introduced. These scheduling algorithms explicitly
require a workload-profile before execution and exploit this
knowledge in the scheduling process. On the flip side, this
requirement makes these methods difficult to use in practice
since the exact workload-profile may not always be available
beforehand. In contrast, our proposed method is more conve-
nient since we only need to measure the execution time of a
loop. Also, the overall concept of our method is more flexible;
it is possible to plug in our framework to any parameterized
scheduling algorithm, directly improving its robustness.
Machine learning based approaches. Machine learning
has yet to see many applications in parallel loop scheduling.
In [56], Wang and O’Boyle use compiler generated features to
train classifiers that select the best-suited scheduling strategy
for a workload. This approach contrasts with ours since it
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does not improve the effectiveness of the chosen scheduling
algorithm. Recently, Khatami et al. in [57] use a logistic
regression model for predicting the optimal chunk size for a
scheduling strategy, combining CSS and work-stealing. Sim-
ilarly, Laberge et al. [58] propose a machine-learning based
strategy for accelerating linear algebra applications. These
supervised-learning based approaches are limited in the sense
that they are not yet well understood: their performance is
dependent on the quality of the training data. It is unknown
how well these approaches generalize across workloads from
different application domains. In fact, quantifying and im-
proving generalization is still a central problem in supervised
learning as a whole. Our method is free of these issues since
we directly optimize the performance for a target workload.

7 Conclusion
In this paper, we have presented BO FSS, a data-driven, adap-
tive loop scheduling algorithm based on BO. The proposed
approach automatically tunes its performance to the workload
using execution time measurements. Also, unlike the schedul-
ing algorithms that are inapplicable to some workloads, our
approach is generally applicable. We implemented our method
on the OpenMP framework and quantified its performance
as well as robustness on realistic workloads. BO FSS has
consistently performed well on a wide range of real workloads,
showing that it is robust compared to other loop schedul-
ing algorithms. Our approach motivates the development of
computer systems that can automatically adapt to the target
workload.
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