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Abstract—Despite the impressive growth and size of
super-computers, the computational power they provide
still cannot match the demand. Efficient and fair resource
allocation is a critical task. Super-computers use Resource
and Job Management Systems to schedule applications,
which is generally done by relying on generic index policies
such as First Come First Served and Shortest Process-
ing time First in combination with Backfilling strategies.
Unfortunately, such generic policies often fail to exploit
specific characteristics of real workloads. In this work, we
focus on improving the performance of online schedulers.
We study mixed policies, which are created by combining
multiple job characteristics in a weighted linear expression,
as opposed to classical pure policies which use only a single
characteristic. This larger class of scheduling policies aims
at providing more flexibility and adaptability. We use space
coverage and black-box optimization techniques to explore
this new space of mixed policies and we study how can
they adapt to the changes in the workload. We perform an
extensive experimental campaign through which we show
that (1) even the best pure policy is far from optimal and
that (2) using a carefully tuned mixed policy would allow
to significantly improve the performance of the system. (3)
We also provide empirical evidence that there is no one size
fits all policy, by showing that the rapid workload evolution
seems to prevent classical online learning algorithms from
being effective.

I. INTRODUCTION

The number of applications that require the usage

of super-computers is increasing rapidly. Hardware pro-

ducers, despite their best efforts, are simply unable to

match this ever-growing demand. As a result, we have

today a large number of applications competing for

limited resources. Thus, ordering the jobs in a way that

guarantees maximum efficiency and fairness is more

crucial than ever.

Super-computers rely on Resource and Job Manage-

ment Systems (RJMS), for monitoring and control. A

major part of any RJMS is the job scheduler, whose main

task is to decide in which order the jobs will be executed.

However, taking the right decision is a complex problem

that requires considering a large number of factors.

Some of which are clear and visible but most are not.

In the face of such growing complexity, many system

administrators opt for the “simple” answer: use simple

dispatching rules that are based on intuition and that offer

certain guarantees, e.g First Come First Served (FCFS) to

prevent starvation or Shortest processing time First (SPF)

because it favors interactivity. However, they are far from

optimal and many studies [1]–[3] show that there is still

room for software optimization. A common practice for

RJMS is to keep execution logs that detail the history of

the platform: the characteristics of the submitted jobs,

their arrival times and other important information. In

this work, we explore the possibility of employing this

historical data to adapt to future workload using more

flexible scheduling policies. We base our experiments on

EASY [4], which is one of the most popular backfilling

schemes, and we propose a data-driven experimental

campaign through which we exploit real execution traces

in the form of logs extracted from the parallel workload

archives [5]. First, we show the limits of simple, index

policies. Then, we propose a new class of policies, which

we call “Mixed policies”. Using this class we prove that

simple policies are far from optimal and that under the

correct conditions, we can obtain significant gains.

• We show that simple scheduling policies used in

the scientific literature and in industrial applications

like FCFS and SPF are far from optimal and that

Smallest Area First (SAF), another simple policy,

performs better overall.

• We also prove that it is possible to generate policies

that significantly outperform these pure policies by

mixing job features such as the estimate processing

time, the required resources, and the waiting time

in a simple weighted linear combination.

• We present a mapping of the space of possible

policies through which we show that the evolution

of the workload through time is very chaotic, which

prevents online learning algorithms from being ef-

fective.

The remainder of this paper is organized as follows.

Section II presents the context under which the ex-

perimental campaign was performed. In Section III we

provide a background on the works done to improve the

performance of EASY and aggressive backfilling, and

the works that implement machine learning techniques

to improve the performance of schedulers in general.

Sections IV and V respectively define the index policies

686

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00077



and the methodology that was used throughout the work.

In Section VI we compare a set of pure policies, and in

Section VII we present and test the proposed method

to obtain mixed scheduling policies. Finally, we give

some concluding remarks and an open discussion in

Section IX.

II. CONTEXT

A scheduler uses a scheduling heuristic to order the

jobs in an execution queue and a metric, also called ob-

jective, to measure the quality of the scheduling method.

A. Jobs

We consider an online scheduling model, where the

jobs arrive at different times unknown in advance. The

information available about the job upon its arrival

are: the requested resources (number of requested pro-

cessors), the requested processing time also called the

estimated processing time (an estimation/upper limit of

the processing time given by the user) and the arrival

time itself. The scheduler chooses one or more of the

waiting jobs to execute at each time-step. The jobs

cannot be preempted.

B. Scheduling heuristic: EASY-backfilling

Scheduling is the process of selecting the order in

which the jobs will be executed. One of the most popular

techniques used to perform such task is the backfilling

algorithm [4]. Backfilling works by finding holes in the

scheduling Gantt chart and moving forward smaller jobs

to fill these holes.

EASY [4] is a scheduling algorithm that uses a queue

to select and backfill jobs. Algorithm 1 recalls how it

works. At any time a scheduling decision is required

(i.e. job submission or termination), the scheduler goes

through the job queue in a primary order predetermined

by the selected index policy and starts them until it

encounters a job that cannot be started immediately. At

this point, the scheduler makes a reservation for this

particular job which ensures that it will not be delayed

from its initial position. Then, it goes through the rest

of the job queue in a backfilling order and execute any

jobs as long as it does not delay the unique reservation

mentioned earlier. This is known as backfilling. One

of the most popular variations of the EASY algorithm

is EASY-FCFS-FCFS where the jobs are ordered and

backfilled by their arrival time.

All the comparisons and the techniques in the remain-

der of this paper are applied to the primary queue and the

backfilling policy to fixed to SPF. We chose this setting

because in [2], Lelong et al. showed that reordering the

primary queue is more beneficial than simply reordering

the backfilling queue and in [6], The authors showed that

SPF is a good policy for backfilling.

Algorithm 1: EASY Algorithm

Input : Queue Q of waiting jobs sorted by

increasing submission times.

Order primary queue according to an index policy
1 for job j in Q do
2 if j can be started then
3 Start j
4 Remove j from Q
5 else
6 Reserve j at the earliest possible time

according to the estimated running times

of the currently running jobs.

7 break
8 end
9 end

Backfill according to SPF
10 L ← Q - [reserved job]

11 Order L according to SPF

12 while L not empty do
13 Start all the jobs that can be backfilled without

delaying the reservation from Q
14 end

C. Metric

Throughout this paper we use the bounded slowdown

(BSLD) metric as it is accepted as one of the most

popular one metrics to measure the performance of

scheduling heuristics [7], [8]. The BSLD of a job j is

defined as follows:

BSLDj = max

(
waitj + pj
max(pj , τ)

, 1

)
, (1)

where waitj and pj are respectively the waiting time

and the processing time of job j. τ is a constant that

prevents the slowdown of smaller jobs from surging. We

set τ to 10 seconds for the experiments.

For this paper, we focus on the average BSLD for all the

jobs over a period of time. The average BSLD of n jobs

is computed in the following way:

averageBSLD =
1

n

n∑
j=1

BSLDj (2)

It is worth noting however that our work does not

particularly depend on our choice of metric. The average

BSLD could be replaced by any objective function or

metric the user seeks to optimize.

III. RELATED WORK

A great amount of research has been devoted to

improving the performance of EASY. Most are based on

the idea of manipulating the main and/or the backfilling

queues. In [9] Perkovic et al. proposed the use of
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speculative backfilling to counter the almost systematic

overestimation of the execution time of submitted jobs.

However, these works do not address dependencies be-

tween the workload and the objectives [10]. The dynP

scheduler [2] offers an online approach to tune EASY

queue. dynP requires the full simulated schedule for

each of the candidate policies in every scheduling step,

which makes the scheduling cost much higher than

simple EASY. Several works attempted to use machine

learning techniques to predict and enhance HPC systems

performance. In [11], Papadopoulou et al. developed an

approach to predict the communication cost. They con-

structed a set of descriptive metrics and used a multiple

variable regression model. Their approach proved to be

successful in predicting and subsequently controlling the

cost of communication.

Many researchers focused on predicting the running

time of jobs as a mean to take better scheduling deci-

sions. In [12] Duan et al. proposes a hybrid Bayesian-

neural network approach to model and predict the run

times of scientific application. It requires a detailed

analysis of the system and the jobs. It also incorporates

expert domain knowledge. The most relevant work that

uses running time predictions is the EASY++ algorithm

presented in [1], where Tsafrir et al. used a history-

based system generated predictions of jobs lengths to

backfill instead of user estimations. This method proved

to be quite successful despite its relative simplicity. This

work was followed by Gaussier et al. [3] where they

used a machine learning technique to obtain even better

predictions. In [13] a framework was proposed to auto-

matically detect and diagnose performance anomalies in

HPC systems.

Perhaps the most comparable works to the one pre-

sented in this paper are [14] and [8]. In [14], the authors

developed DeepRM, a multi-resource cluster scheduler

that uses deep reinforcement learning to solve the prob-

lem of packing with multiple resource demands. In [8]

Carastan-Santos and Camargo used synthetic workloads

to create general heuristics that improve the slowdown

metric. They combined the basic job characteristics in

a non-linear function and they used linear regression to

devise new heuristics. Both [14] and [8] rely on synthetic

data to train their approach.

IV. INDEX POLICIES

We study two distinct types of index policies in this

work, namely pure and mixed policies. Both types are

based on job characteristics.

A. Job characteristics

We use the following job characteristics during the

experimental campaign:

• qj : (requested resources) the number of processors

the user requested.

• p̃j : (requested/estimated processing time) the es-

timated processing time provided by the user, it

also serves as an upper limit to the time the job

is allowed to run. The actual processing time pj
can only be obtained after the execution of the job.

• waitj : (waiting time) How long a job j spent in the

waiting queue:

waitj = current time− submission timej
• ρj : (estimated ratio)

p̃j

qj
.

• aj : (estimated area j) p̃jqj .

• expj : (estimated expansion Factor)
waitj+p̃j

p̃j
: the

ratio of the total time a job is expected to stay in

the system (waiting time plus estimated processing

time) normalized by its estimated processing time.

This characteristic is rather special since it reflects

the estimated value of the objective function. Note

that the BSLD could have been used instead of

the expansion Factor but it makes very little to

no difference in term of ordering since only the

smaller jobs (which usually have the least impact

on performance) are marginally concerned.

Scheduling using expj is expected to be a good or

at least an important strategy. But it is unknown

how it will perform at this point since it does not

account for qj .

B. Pure policies
With each of the six aforementioned job character-

istics, we construct two scheduling policies: one that

prioritizes the lowest score given by the characteristic

and another the highest. So we have the following 12

pure policies:

• FCFS: First Come First Served

• LCFS: Last Come First Served

• SPF: Smallest estimated Processing time First

• LPF: Longest estimated Processing time First

• SQF: Smallest Resource Requirement First

• LQF: Largest Resource Requirement First

• SAF: Smallest estimated Area First

• LAF: Largest estimated Area First

• LEXP: Largest estimated Expansion Factor First

• SEXP: Smallest estimated Expansion Factor First

• LRF: Largest estimated Ratio First

• SRF: Smallest estimated Ratio First

In this work, we only focus on these 12 pure policies.

Many others were not included. Our aim is not to do an

exhaustive review of all the policies in the literature but

to illustrate certain characteristics of generic scheduling

policies.

C. Mixed policies
We now introduce the concept of mixed poli-

cies and the method we use to construct them.
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A job j is characterized by a feature vector

xj = (qj , p̃j , waitj , ρj , expj , aj).
At each scheduling decision, we define the score of any

job j using Equation (3).

score(w, xj) = wTxj w ∈ R
n (3)

where w is the weight vector of the mixed policy: each

feature xi has a corresponding weight wi. These weights

are what determine how the mixed policy behaves. The

absolute value of a weight |wi| indicates the importance

of the corresponding characteristic xi when ordering the

jobs. While the sign determines the ordering itself, a

positive value means that shorter/smaller jobs are prior-

itized, while a negative value means that longer/larger

jobs are prioritized.

The scoring function is scale-invariant; the order given

by score(λw, xj) is the same as the order given by

score(w, xj) for all λ > 0. Hence, we normalize w and

impose that ||w||1 = 1. This constraint reduces the size

of the search space and stabilizes the learning process

(which will be explained in detail in Section VIII-A).

Every pure policy corresponds to a vertex of the polytope

||w||1 = 1. E.g. FCFS corresponds to (0,0,1,0,0,0) and

LCFS corresponds to (0,0,-1,0,0,0).

Mixed policies are an alternative method to model the

scheduling problem. We move from a discrete optimiza-

tion to a continuous optimization problem. We construct

a search space that is small in size and instead of finding

the best ordering of n independent jobs we intend to

find the best weight for i features where i is much

smaller than n.

V. EXPERIMENTAL METHODOLOGY

We tried to be as transparent as possible and to make

our work reproducible [15]. We provide a snapshot of

the workflow we used throughout this work as a link

to a git repository1, which includes a nix [16] file that

describes all the dependencies and four R notebooks that

allow regenerating all the figures.

We make several simplifying assumptions about the

platform. We discard all topological information related

to the platforms that generated the traces. We do not take

into account the topology of the cluster and we treat it

as a single collection of homogeneous resources where

all processors are considered indistinguishable from each

other and the cost of communication is considered non-

existent.

In this work, we replace the RJMS with a EASY-

backfilling lightweight simulator 1 written in OCaml. It

supports tuning the Primary, Backfilling queues and it

1https://gitlab.inria.fr/szrigui/mixed-policies

Trace
#CPU

(#nodes*node size)
#Duration #Jobs

Average job
duration

KTH-SP2 100 (100*1) 11 Months 27670 8579 (s)
CTC-SP2 338 (338*1) 11 Months 68687 9807 (s)
SDSC-SP2 128 (128*1) 24 Months 49809 6318 (s)
SDSC-BLUE 1,152 (144*8) 32 Months 208716 3184 (s)

TABLE I
WORKLOADS

discard all topological information from the machine.

So equation 2 can be written in the following form:

averageBSLD =
1

n

n∑
j=1

F (xj ,w), (4)

where w represents the weight of the index policy, and

F represents the simulator that will take all the jobs,

execute them, and return the value of BLSD of each job.

A. workload and platform

a) data: The goal is to improve scheduling per-

formance using information extracted from job charac-

teristics. For this reason, we choose real-world traces

(from the parallel workload archives [5]) instead of

artificially generated data. Table I outlines the workload

used throughout the experimental campaign.

For every trace, we ignore the first period since it gen-

erally corresponds to a benchmarking/testing phase and

is not representative of the true workload of the system.

Then, we split the trace on a weekly basis and remove

the jobs that start in one week and finish in another.

B. Starvation

Starvation occurs when a job is denied the resources

necessary for its execution for a very long (possibly

unbounded) period of time. EASY, as defined in sec-

tion II-B, has a risk of causing some jobs to starve. (e.g
using SPF to order the primary queue may cause longer

jobs to starve). The popularity of FCFS in RJMS stems

mainly from its natural ability to prevent starvation.

To avoid starvation, we rely on a simple but effective

thresholding mechanism. When the waiting time of a

job exceeds a certain value, it is moved to the head

of the queue immediately regardless of the scheduling

heuristics in play. When fixing a threshold several factors

needs to be taken into consideration (the size of the

machine, the size of the jobs...). Choosing a very low

value limits the scheduling policy and forces the system

to a quasi-FCFS regime. A high threshold grants the

scheduling policy a lot of freedom but low priority jobs

risk starvation. In this work, the threshold is fixed at

2.105 seconds which roughly translates to 2.31 days [2].

For a more detailed explanation of our choice of the

threshold value please refer to Section X of the research

report [17].
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(a) SDSC-SP2
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(b) SDSC-BLUE
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(c) CTC-SP2
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(d) KTH-SP2
Fig. 1. Tukey box-plot of the weekly average bounded slowdown of
pure policies for the 4 traces. The policies are sorted in an increasing
order by the mean of the weekly average bounded slowdown for all
the weeks. The three most efficient policies are highlighted.

VI. PERFORMANCE EVALUATION OF PURE POLICIES

A. Comparison

We compare the pure policies presented in Section

IV using the traces from Table I. We consider 45 con-

secutive weeks from CTC-SP2 and KTH-SP2 and 100

consecutive weeks from SDSC-SP2 and SDSC-BLUE,

and we simulate the execution of all the policies for

each week and measure the weekly average BSLD given

in Equation (1).

Figure (1) illustrates the performance for all the 4

traces. The order of the policies with regard to perfor-

mance changes between the traces. In general, the poli-

cies that prioritize shorter jobs, namely SAF and SPF and

LEXP, are better for the average BSLD. SAF comes on

top for all the tested traces followed by SPF and LEXP.

As expected, FCFS is not a good policy for mini-

mizing the average BSLD. Although its exact position

changes between traces, it always ranks among the worst

policies. Interestingly, LEXP, the policy that represents

the estimate of the very metric we are trying to optimize,

is not the top policy, which indicates the importance

of considering the amount of required resources when

taking a scheduling decision.

The good performance of SAF, SPF, and LEXP can

be explained by the fact that the slowdown of a job is

proportional to its length. Longer jobs can wait for a

longer time without having their slowdown grow drasti-

cally. The slowdown of shorter jobs, however, increases

very fast the longer they wait.

B. The one size fits all policy?

From the previous comparison, we can notice that

SAF is overall better than all the other tested policies

to optimize the average BLSD. It gives the lowest mean

on an aggregation of weeks and its outliers are not as

extreme as other policies.

Figure 2 illustrates a more detailed comparison be-

tween SAF and the other policies on a given workload.

We compare the average BSLD of SAF with the average

BSLD of the best pure policy for every week individually.

As expected, SAF performs well for most weeks. It

is either the best policy or very close to the best.

However, we can spot many weeks where another pure

policy performs better than SAF by a significant margin

(e.g. 38, 44, 56, and 85 ). Regardless of which policy

outperformed SAF, the observation is the same for the

four studied traces; SAF is good overall but it remains

far from the optimal in many cases.

Finally, it is worth noting that traces where SAF fails

can be found. For example, for the ANL-Intrepid trace

from the Parallel Workload Archive [5], SPF is the best

pure policy with an average slowdown of 35.92 while

SAF ranks at 7 over 12 with 39.78. Likewise, with the

Sandia trace, LAF is the best with an average slowdown

of 7.353 while SAF ranks again at 7 over 12 with 10.396.

We pick the traces in Table I to study due to their

popularity in the literature [3], [8]. Moreover, the focus

of this work is not to show that a single pure policy is

dominant but to study the possibility of improving the

performance of schedulers using historical data.
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Fig. 2. Comparing SAF, the best pure policy on average, with the best pure policy for every week for the SDSC-SP2 trace.

To make the reading and the analysis easier and to

avoid redundancy, all the experiments in the following

sections are done using a single trace: SDSC-SP2. We

refer the interested reader to Section XI of the research

report [17] for a complete analysis of the other traces

from which similar conclusions can be reached

VII. SCHEDULING USING MIXED POLICIES

In the previous Section, we showed that among all

the pure evaluated policies there is no single policy that

is dominant across all weeks. SAF offers a reasonable

compromise but it fails in many cases. This motivates the

need for developing a scheduling approach that adapts

to the state of the system and the workload.

In this section, for the sake clarity, we limit

the mixed policies vector to only three elements:

xj = (qj , p̃j , waitj). Further results involving all the six

features will be presented in Section VIII.

A. Performance of pure and mixed policies

We consider a set of 100 weeks from SDSC-SP2 and

we separate them in the same way as in Section VI.

Then, for each week we perform the following:

• Simulate using the two pure policies: (1)FCFS

because of its popularity (although it is not very

effective for the Average BSLD), and (2)SAF be-

cause, as observed in Section VI-A, it is the best

policy overall.

• Generate a large number of weight by performing

a uniform discretization of the search space. We

take a sequence of 100 points from each dimension

which can take a negative or a positive value. Thus,

for three features we have 1003.23 = 8.106 points.

Then we simulate each point and we pick the best

vector i.e. the one that gives the lowest scores for

this week, and which we denote w*.

The results are shown in Figure 3. w* represents the

average BLSD of the best weekly linear combination.

The gain of w* compared to the pure policies varies

significantly. We can classify the weeks into two types.

• Weeks where there is no or a very small differ-

ence in performance between both pure and mixed

policies. The average BSLD of such weeks tends

to be very close to 0. Weeks 43, 92 and 94 are

good examples of this type. Their workload is so

relaxed that no optimization is required. According

to Figure 3, around half of the weeks of SDSC-SP2

belong to this type.

• Weeks where there is a difference in performance

between the policies. For weeks such as 64, 73,

79, and 100, we observe significant variation in

performance and a much higher BLSD. For this

type, we also notice that w* is significantly better

than all other policies. In week 73, for example, w*
reduces the average BLSD by a substantial margin,

approximately 2.5 times less than SAF, the best pure

policy for that week, and 3 times less than FCFS.

Pure policies are thus far from the optimal and a

carefully selected combination of features can give sub-

stantial improvement. However, the value for the best

weight for each week can be quite different from the

others (w*i �= w*j ∀i �= j ∈ 1..100). This shows the

changing nature of the workload through time and will

be discussed in detail in Section VII-C.

B. Learning: scheduling using best combination learned
from a previous part of the trace.

In this section, we evaluate the generalization capacity

of our approach. We investigate how the best combina-

tion w* for a part of the trace performs on another part.

We evaluate this ability by using two different strategies.
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Fig. 3. Comparing the performance of various policies on the SDSC-SP2 trace. w* represents the best policy in hindsight for every week.
w*train is the policy obtained from learning on the Training weeks, and wgreedy gives the results of testing the best policy of one week on the
next.

Policy Training Testing
w* 376.67 357.51

w∗train 682.11 778.44
SAF 691.10 721.54
SPF 706.24 787.92
wgreedy 818.71 902.55
LEXP 820.94 934.21
SQF 970.49 869.41
SEXP 1016.52 1204.73
LRF 1041.18 1134.92
SRF 1147.96 1114.46
FCFS 1180.24 1398.13
LPF 1239.79 1483.35
LQF 1702.14 2191.97
LAF 2109.84 2355.16

TABLE II
COMPARING THE SUM OF THE AVERAGE BSLD FOR SDSC-SP2 FOR

WEEKS: 65 TO 100. THE HIGHLIGHTED VALUES ARE OBTAINED IN

HINDSIGHT.

1) Learning over a long period of time: The idea is

to divide the trace into two equal parts and see how the

best policy on the first half performs on the second.

For this particular trace, we decided to ignore the first

28 weeks because the workload at the beginning of the

trace is rather light, hence all the tested policies perform

similarly. So we consider the first 28 weeks as non-

representative of the actual workload. Then divide the

72 remaining weeks into two parts of equal sizes. We

call the first part Training and the second part Testing.

w*train = argmin
w

64∑
week=28

average BSLDweek(w)

(5)

Weeks 28 to 64 (Training): We aggregate using equation

5 and we find the weights w*train that minimizes the sum

of the weekly average BSLD over all weeks.

Weeks 65 to 100 (Testing): we evaluate w*train on the

new Testing weeks.

The aggregated results are illustrated in Table II and

the details for each week are given in Figure 3.

Training: w*train, the learned policy, slightly outper-

forms SAF in general. But if we look at individual weeks

we see that SAF still has a lower BSLD sometimes over

the training period (e.g. 34 and 52).

Testing: Table II show that w*train performs quite well

compared to other policies. But it is still surprisingly

equivalent and even outperformed by SAF.

Figure 3 shows the performance of both individual

weeks. SAF is better for some weeks (namely 68, 81,

and 82) but w*train is better for others like (e.g 73,79,

85). Sometimes both policies give similar results.

Although Training and Testing do not particularly

appear as different, The best weights for Training are not

the best for Testing: there is no one size fits all strategy.

By comparing w* (see Section VII-A) and w*train in

Figure 3, we observe that w*train is far from the best

possible vector even for the weeks used for Training.

2) Learning over a short period of time: We investi-

gate if the policy learned from one week can be effective

on the next by evaluating the vector learned from week

i (w*i) on the next week i+ 1.

In Figure 3, the policy wgreedy represents the results

of simulating the workload of one week using the top

policy from the previous week. There are unfortunately

no patterns to distinguish. The vectors learned from the

previous week seem to evolve and perform in a chaotic

manner. Sometimes they perform better than SAF (weeks

56, 83, and 89), sometimes worse (weeks 20 and 55), and

sometimes on par with SAF.

Using the policy learned from the previous week does

not lead to good performance at all. We hypothesize

that the structure of the workload (the jobs submitted)

changes substantially from one week to the next. Thus,
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online-learning the optimal weights may be very diffi-

cult.

C. Exploring the search space

In this section, we explain why there is no single

vector of weights that is optimal for all cases. We

visualize the search space and observe the position of

the optimum for different weeks.

Figure 4 is a 2D representation of the search space for

4 consecutive weeks of the SDSC-SP2 trace. Each week

is represented by two figures: the left figure displays the

weekly average BLSD where q ≤ 0 and the right figure,

where q ≥ 0. The ↖ and ↗ axes respectively represent

the weights of p̃ and wait. The optimal combination

always lies in the lightest area and is represented by a

red dot.

The coordinates of the optimal point change dras-

tically from one week to another. Using the optimal

point of week 72 to schedule week 73 give poor results

because the optimal point in 72 lies in an area that has a

very high slowdown in week 73. This explains why the

short period learning failed.

Furthermore, with the exception of general similarities

like the half where q ≥ 0 have a lower BSLD than q ≤ 0,

we also observe that the position, shape, and even the

size of the optimal area changes radically from one week

to the next. This explains why online learning seems

compromised without further information.

VIII. INCREASING THE SIZE OF THE SEARCH SPACE:

USING MORE JOBS CHARACTERISTICS

In this section, we investigate the impact of using

all six job characteristics on performance. Indeed, the

experiments in all the previous sections were done with

only the three basic job characteristics: p,q, and wait.
In this Section we extend the search space to include

the three other characteristics introduced in Section IV-A

which are a,r,exp.

A. Black-box optimizers: a quick way to find the optimal

1) Algorithm: In the previous Section, finding the

weekly best mixed policy was done using a uniformly

“exhaustive” search. We made a fine discretization of the

whole search space and we selected the weight vector w*
that provides the lowest average BLSD. Performing an

exhaustive space search becomes costly very fast because

the size of the search space grows exponentially with the

number of job characteristics we include in the linear

combination. Thus another method to find the minimum

is required.

Our goal is to find a combination of weights w* that

minimize equation (4) while enforcing the constraint

(a) week 70: w*(q = 0.30, p̃ = 0.37, wait = −0.33)

(b) week 71: w*(q = 0.27, p̃ = 0.35, wait = 0.38)

(c) week 72: w*(q = 0.32, p̃ = 0.62, wait = 0.06)

(d) week 73: w*(q = 0.47, p̃ = 0.05, wait = 0.48)

Fig. 4. Visualization of the search space for 4 consecutive weeks
70, 71,72, and 73. The two diagonal axis represent p̃ and wait. The
lighter the area is, the better the performance (lower average BSLD).
The optimal area change from one week to the next. The red dot (in the
lightest area) represents w∗ and the blue triangle represents w∗train.

693



w*3

xnes3 xnes6
0

20

40

60

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

week

av
er

ag
e 

bo
un

de
d 

sl
ow

do
w

n

Fig. 5. Comparing average BSLD of the vectors of the 3 original features (xnes3) with the extended vector of 6 features (xnes6) and the
minimum we obtain from space coverage (w*3)

||w||1 = 1. This can easily be done by optimizing the

following objective function:

n∑
j=1

F (score(w, xj)) + λ

(
||w||1 + 1

||w||1

)
(6)

Function F has a priori no particular properties.

Furthermore, we have seen in Section VII-C that the

search space is not convex and it may exhibit several

local minima. Therefore, gradient-based methods cannot

be used and we have to rely on stochastic derivative-

free methods. We initially tried the standard simulated

annealing method [18] but it got frequently stuck in local

optimums. A study of the existing literature [19] led

us to the evolutionary algorithms family that considers

an ensemble of candidates. We tested several algo-

rithms, Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [20] and eXponential Natural Evolutionary

Strategy (XNES) [21] provided the best results. Since

XNES is faster than CMA-ES, we chose the former.

2) Performance: For each week we apply the XNES

algorithm to obtain a solution of Equation (6) for a vector

of dimension 3 (xnes3) and a vector of dimension 6

(xnes6) and we compare the results with the minimum

obtained from the space coverage which we call w*3

(corresponds to the w* used in SectionVII-A). Figure 5

illustrates the results.

For most weeks xnes3 and w*3 give the same result.

For few other weeks, xnes3 managed to slightly out-

perform w*3. This is due to the method used to cover

the search space: Each dimension of the vector gets 200

points distributed uniformly over [-1,1]. XNES does not

have that constraint, hence it can produce policies that

are more “refined”. The differences in performance are

minor which indicate that XNES managed to find a vector

that is the actual or at least very close to the optimum

every time. Thus XNES can be considered as a viable

option to find an optimal vector.

The BSLD of xnes3 and xnes6 are not very different

from each other. For most of the weeks, both vectors

perform equally. In some rare cases (weeks 86 for

example), xnes3 gives a slightly better performance than

xnes6 but the difference is marginal (XNES converged

to a local optimum instead of the global optimum in the

case of 6). On average xnes6 is better than xnes3 but not

by a larger margin.

Increasing the size of the search space by adding

job characteristics improves the results by a small very

margin.

IX. CONCLUSION

Scheduling parallel jobs in a real HPC platform is

a complex task plagued with many uncertainties. De-

termining an efficient scheduling strategy is difficult

due to the volatile nature of the workload. The main

result of this work was to optimize the EASY-Backfilling

algorithm by reordering the primary queue using policies

learned from historical data.

More precisely, we first showed that SAF (Smallest

estimated Area First) performs overall better than more

popular policies FCFS and SPF. Then, we looked at the

scheduling problem from a new perspective by studying

a larger class of heuristics obtained from mixed policies

that enable us to move from a discrete to a continu-

ous search space. We combined several characteristics

extracted from the jobs in a linear expression and we

determined the best weight for each characteristic.

We showed, moreover, that pure policies are far from

the optimal and that important gains can be obtained by

using mixed policies. For some weeks in the simulation,

we obtained results that are up to 3 times better than

the best pure policy. Unfortunately, we observed that the
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structure of the workload changes too much over time

and that whenever a policy performs well on a part of a

trace, it does not mean necessarily that it will be efficient

on another part of the trace.

Using historical data to predict good scheduling poli-

cies for future jobs is not a straightforward task. We

observed that the workload itself changes drastically

from one time period to the next. We have yet to identify

any meaningful pattern to these changes, which raises

the question of whether it is possible to apply machine

learning on real execution logs or not.

Choosing a proper metric to evaluate the performance

of a policy in an online scheduling context is also an

interesting (but hard) task. In particular, the average

BSLD may be enriched since it does not consider the

required resource into consideration.
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