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Algorithm-Based Fault Tolerance for Matnx Operations

KUANG-HUA HUANG, MEMBER, IEEE, AND JACOB A. ABRAHAM

Abstract- The rapid progress in VLSI technology has reduced
the cost of hardware, allowing multiple copies of low-cost pro-
cessors to provide a large amount of computational capability for
a small cost. In addition to achieving high performance, high
reliability is also important to ensure that the results of long
computations are valid. This paper proposes a novel system-level
method of achieving high reliability, called algorithm-basedfault
tolerance. The technique encodes data at a high level, and algo-
rithms are designed to operate on encoded data and produce
encoded output data. The computation tasks within an algorithm
are appropriately distributed among multiple computation units
for fault tolerance. The technique is applied to matrix com-
putations which form the heart of many computation-intensive
tasks. Algorithm-based fault tolerance schemes are proposed to
detect and correct errors when matrix operations such as
addition, multiplication, scalar product, LU-decomposition, and
transposition are performed using multiple processor systems.
The method proposed can detect and correct any failure within a
single processor in a multiple processor system. The number of
processors needed to just detect errors in matrix multiplication is
also studied.

Index Terms- Algorithm-based fault tolerance, checksum
matrix, error correction, error detection, matrix operations,
multiple processor systems, processor arrays, systolic arrays,
transient errors.

I. INTRODUCTION

M/[ ANY scientific research areas require a large amount
of high computation power to solve their problems.

The rapid progress in VLSI technology has reduced the cost
of hardware, and a cost-effective means of achieving high
system performance is to use multiple copies of identical
processors. Matrix operations are performed in the inner
loops of computation-intensive tasks such as signal and im-
age processing, weather prediction, and finite element
analysis. These operations often constitute the performance
bottleneck for such tasks. Multiple processor systems such as
massively parallel processor (MPP) [1] and systolic arrays
[2] have been proposed to solve this problem.

In addition to achieving high system performance, it is
important that reliable results be obtained from such systems.
High reliability could be achieved by the use of existing
fault-tolerant systems. Fault tolerance can be obtained either
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by masking the errors caused by physical failures or by de-
tecting them, isolating the faulty unit, and reconfiguring the
system around the faulty unit. Fault masking is usually done
by replicating the hardware and voting on the outputs of the
replicated modules, but this is extremely costly in terms of
hardware. An alternative is to detect errors by testing or by
coding techniques. Unfortunately, the increase in transient
errors caused by decreasing geometries means that off-line
testing alone cannot be used to detect erroneous modules.
Techniques are therefore needed to detect errors concurrently
with normal operation.

Existing fault-tolerant techniques which are applicable to
transient errors can be divided into two categories: error
masking, and concurrent error detection followed by recon-
figuration. The error masking techniques, which tolerate fail-
ures and provide continuous system operation, include triple
modular redundancy (TMR) [3] and quadded logic [4]; these
require at least a factor of 2 or 3 in additional hardware
redundancy to tolerate single module failures. Concurrent
error detection techniques, which are designed to signal er-
rors but not mask them, include totally self-checking (TSC)
circuits [5], alternating logic [6], recomputing with shifted
operands (RESO) [7], and watchdog processors [8]. Ex-
amples using TSC techniques require 73 percent hardware
redundancy in a processor for detecting single bit errors and
94 percent for detecting unidirectional errors [9]. Alternating
logic requires 100 percent time redundancy plus an average
value of 85 percent redundancy in hardware to detect a single
failure [6]. RESO is an effective technique for applications
where the CPU is not busy all the time; however, for
computation-intensive tasks, it uses 100 percent time redun-
dancy for recomputation and comparison of results to detect
errors. All of these detection techniques require backup hard-
ware for fault tolerance. Also, many of these techniques are
based on the single stuck-at fault model, which cannot cover
all the physical failures in VLSI chips [10].

This paper proposes a new technique called algorithm-
basedfault tolerance which can be used to detect and correct
errors caused by permanent or transient failures in the hard-
ware. This technique is not as generally applicable as some
of the classical techniques such as TMR (which can be ap-
plied to any module); however, in the specific cases where it
applies, fault tolerance can be achieved with a surprisingly
low overhead. The technique is applied specifically to matrix
operations in this paper.

In Section II, a module level fault model applicable to
VLSI is described. Section III describes the general tech-
nique, and the design of algorithms to achieve fault tolerance
in matrix operations is described in Section IV. Modi-
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fications of existing processor arrays to exploit the algo-
rithms are given in Section V, and the overhead in hardware
and time for fault tolerance determined in each case. The
number of processors required to just detect errors in matrix
multiplication is also discussed.

II. A MODULE LEVEL FAULT MODEL

As the geometric features of integrated circuits become
smaller, any physical defect which affects a given area on a

chip will affect a greater amount of the circuitry and will
cause a larger block of logic to become faulty. Thus, the
commonly used gate-level single stuck-at fault models are

not satisfactory. In this paper we will use a very general fault
model, which allows a module (such as a processor or com-

putation unit in a multiple processor system) to produce,
under failure, any erroneous output values which are clearly
logic 0 or 1 when they are interpreted by another module. We
will assume that at most one module is faulty within a given
period of time which will be reasonably short compared to the
mean time between failures; this assumption is reasonable if
periodic testing is performed to flush out the latent failures.
The processors communicate with each other and with

memory, and we must account for failures in the commu-

nication lines. Fortunately, effective error correcting schemes
such as Hamming codes [11] and alternate retry [12] exist for
communication lines and memories. The input/output latch
registers of a processor can be counted as part of the commu-
nication circuitry since a fault in the latch registers affects the
data transfer but not the computation itself. In this paper, we

will therefore focus on the fault tolerance of the processors.

III. ALGORITHM-BASED FAULT TOLERANCE

This section describes the basic ideas behind the
algorithm-based fault tolerance technique.

Hardware failures within the modules of a system can be
tolerated by the use of redundant modules which can perform
the same computation (TMR, for example). Such a technique
is quite general, and can be used to protect any computational
module from failures. The price which has to be paid for this
generality is, unfortunately, the high cost of the overall fault-
tolerant system. This paper proposes a novel approach which
achieves fault tolerance with extremely low cost by tailoring
the fault tolerance scheme to the algorithmn to be performed.
As will be seen later, the technique is especially useful for
high-performance systems where multiple processors are

used for high throughput. Fault tolerance is particularly nec-

essary in such systems because of the large amount of hard-
ware and the high computation rate, and only a few additional
processors are needed to tolerate failures in our scheme.

Algorithm-based fault tolerance is distinguished by three
characteristics: the encoding of the data used by the algo-
rithm, the redesign of the algorithm to operate on the encoded
data, and the distribution of the computation steps in the
algorithm among computation units. These will be described
in more detail below.

Conventional data encoding is usually done at the word
level in order to protect against errors which affect bits in a

word. Since a faulty module could affect all the bits of a word
it is operating on, we need to encode data at a higher level.
This can be done by considering the set of input data to the
algorithm and encoding this set; in the matrix schemes to
follow, we will use row and column checksums as the en-
coding, for example.
The original algorithm must then be redesigned to operate on

these encoded data and produce encoded output datli. The
information portion of the encoded data must be easy to
recover, in order that the scheme be practical. The modified
algorithm could, of course, take more time to operate on the
encoded data when compared to the original algorithm, and
this time overhead must not be excessive.

Finally, the computation tasks within the algorithm must
be appropriately distributed among multiple computation
units, so that failure of any unit affects only a portion of the
data. The redundancy in the encoding would enable the cor-
rect data to be recovered. The error detection and correction
schemes must be designed so that a faulty module (which
caused erroneous data in the first place) will not mask the
error during the detection or correction steps.
The remainder of the paper develops an algorithm-based

fault tolerance scheme for matrix operations when they are
performed in different types of multiple processor systems.

IV. A MATRIX ENCODING SCHEME AND THE COMPUTATIONS
PRESERVING THE ENCODING

The encoding for matrices is obtained from the two-
dimensional product code [13], but the encoding is done at
the word (integers or floating point numbers) level rather than
at the bit level. The encoded matrices are called checksum
matrices in this paper. Algorithms are designed to operate on
these encoded matrices to produce encoded output matrices.
Checksum matrix schemes have been used to avoid inaccu-
racies due to roundoff errors [21], [22]. Since there is redun-
dancy in the encoding, they have also been used as error
checks in desk calculations [21]. This paper will discuss
systematic methods of using the checksum matrices to detect
and correct errors in computations with multiple processors.
The checksum matrix technique is different from the

checksum codes used in arithmetic units or in communication
paths for error detection; these codes are designed to detect
errors at the bit level in words or characters. Here, the en-
coding is at the vector or matrix level. For example, the
optimal rectangular code (ORC) presented in [ 14] is a binary
product code. The ORC is designed to correct errors in tapes
(data storage) and the checksum matrices are designed to
correct errors in computations. The results here will be used
later to design fault-tolerant multiple processor structures for
matrix operations.
The row, column, and full checksum matrices for an

n-by-m matrix A (denoted by An, m) with elements a, j are
defined as follows. (The elements aij could be either integers
or floating point numbers.)

Definition 4.]. The column checksum matrix A. of the
matrix A is an (n + 1)-by-m matrix, which consists of the
matrix A in the first n rows and a column summation vector
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in the (n + I)st row; the elements of the surnmation vector
are generated as

for 1 ' j . m.
.n

an+l,]= l aij
i=1

A
Using the notation in [21], Ac = ,where eT is a 1-by-n

vector [1"1 1 1* 1] and the vector eTA is the column
summation vector.

Definition 4.2: The row checksum matrix Ar of the matrix
A is an n-by-(m + 1) matrix which consists of the matrix A
in the first m columns and a row summation vector in the
(m + l)st column; the elements of the summation vector are
generated as

m
ai,m+l =

j=1
for 1 ' i ' n. (2)

Ar = |A Ae|, where Ae is the row summation vector.
Definition 4.3: The full checksum matrix Af of the ma-

trix A is an (n + l)-by-(m + 1) matrix, which is the column
checksum matrix of the row checksum matrix Ar.

Definition 4.4: Each row or column in the full checksum
matrix is called a checksum encoded vector and is denoted
byIC-SEV.
From the definitions, we can see that each checksum ma-

trix has its separate information matrix (A) and summation
vectors. To apply the checksum technique, each matrix is
stored in its full checksum matrix format and is manipulated
in the full, row, or column checksum matrix format de-
pending on 'the matrix operations. Five matrix operations
exist which preserve the checksum property; they are given
in the following theorems. We use the symbol "*" for both
matrix and scalar multiplication; it is clear from the context
which operation is intended.
Theorem 4.1: (i) The result of a column checksum matrix

(A.) multiplied by a row checksum rmatrix (Br) is a full check-
sum matrix (Cf). (ii) The corresponding information matrices
A, B, and C have the following relation:

A *B = C.

Proof:

A AB ABe
e eTAB eTABe

Fig. 1 depicts the checksum matrix multiplication.
LU decomposition of a matrix is a time-consuming part of

the procedure used to solve large linear equations

C*x b

where C is an n * n matrix, b is a given n * 1 vector, and x is
an unknown n * 1 vector.

If the equation C * x = b can be solved by Gaussian
elimination without pivoting, then the matrix C, with ele-
ments cij, can be decomposed into the product of a lower
triangular matrix with an upper triangular matrix

C = L * U

A X B1. C.~~~~~~~~ c

CHECKSUM lCHECKSUM l

Fig. 1. A checksum matrix multiplication.

where U = (uiik) and L = (4k ) are evaluated [2] as follows:

'Ci = C~,

k+
i Ci,
= jk + l, k( Uk,])

O
li, k 1

kCi,k * (llukk)

Uk,j = k,

when i < k,
when i = k,

when i > k,

when k > j,
when k c j.

If the pivoting is required in order for the procedure to
work, then C can be factored into L and U; but, in general, they
are not triangular matrices [15].
From [21, p. 265] we get the following theorem.
Theorem 4.2: When the information matrix C is LU

decomposable, the full checksum matrix of C, Cf, can be
decomposed into a column checksum lower matrix and a row
checksum upper matrix.

Proof: Let the decomposition of C be C = LU,

C Ce
-Cf = C Ce

can be decomposed as LIUU where

LLi= - and U=|IUIUel.

Theorem 4.3: (i) The result of the addition of two full
checksum matrices (Af and Bf) is a full checksum matrix (Cf).
(ii) Their corresponding information matrices have the
relation

A +B = C. o

Corollary 4.1: The result of the addition of two CSEV's is
a CSEV.
Theorem 4.4: The product of a scalar and a full checksum

matrix is a full checksum matrix.
Corollary 4.2: The product of a scalar and a CSEV is a

CSEV.
Theorem 4.5: The transpose of a full checksum matrix is a

full checksum matrix. o
Matrix addition, multiplication, scalar product, LU

decomposition, and transpose thus preserve the check-
sum property.

A. Effecron the WordLengttgtlt wlte &uig the
Checksum Technique

Since the checksum elements are the sum of several matrix
elements, we must consider the possible problems with word
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lengths. When matrix elements are stored as floating point
numbers, the checksum technique does not significantly
affect the word length. For example, even for n 200, a
checksum element may be up to 4 * 104 times the maximum
number in the information matrix; this is, however, only an
increase of 4 in the exponent for base 16 systems and 16 for
base 2 systems.
When processing the matrix with integer elements, the

same word length r can be used to store the elements of
summation vectors if residue arithmetic [16] is applied to the
computations on the summation vectors with a modulus
M = 2 . Equations (1) and (2) in Definitions 4.1 and 4.2
must be modified, however, to be

n

an+ Ij =Eaij mod M for I (3)

-m

ai,m+l = E aij mod M
j=l

for1 ' i n.

A summation vector is obtained simply by performing resi-
due arithmetic on the original matrix elements modulo 2'.
From the properties of residue arithmetic [16],

(x + y) mod q = (x mod q + y mod q) mod q

and

(x *y) mod q = (x mod q * y mod q) mod q.

Theorems 4.1-4.5 are also true when the summation vectors
of a checksum matrix are defined by (3) and (4).

B. Characteristics of Checksum Matrices

The definitions of matrix distance and vector distance are

introduced in this section; they will be used to verify the
fault-tolerance possibilities of checksum matrices.

Definition 4.5: The matrix (vector) distance between two
matrices (vectors) is the number of elements in which they
differ.

Definition 4.6: The weight of a matrix is the number of
nonzero elements.

Let Sp,q be the set of all (unique) p by q full checksum
matrices.

Definition 4.7: The minimum matrix distance of a set of
full checksum matrices is the minimum of the matrix dis-
tances between all possible pairs of full checksum matrices in
the set.

Theorem 4.6: The minimum matrix distance of Sp,q is 4.
Proof: A full checksum matrix is a product code' [13]

since each row and column of a full checksum matrix is a

distance 2 vector. From Elias' Theorem [17], we know that the
minimum weight of a nonzero full checksum matrix is 4. For
any two matrices A and B belonging to Sp, q and A : B, let
matrix C be

C-A-B =A + (-I)B.

From Theorems 4.3 and 4.4, we know that the matrix C
belongs to Sp,q So, the weight of matrix C is equal to or larger
than 4. Thus, the minimum matrix distance of Sp,q is 4. []

Therefore, a single erroneous element can be corrected in
a full checksum matrix.

C. Error Detection, Location, and Correction

When we use as many processors as necessary to perform
matrix operations, a processor only performs computations
for one or a few elements of the output matrix; thus, only a
limited number of elements could be incorrect. For the case
of only one erroneous element in a full checksum matrix,
exactly one row and one column will have an incorrect check-
sum. The intersection of this row and column locates the
erroneous matrix element. A procedure used to detect, lo-
cate, and correct a single erroneous element in a fuill check-
sum matrix is listed in the'following.

1)- Error Detection:
a) Compute the sum of information elements in each

row and column.
b) Compare each computed sum to the corresponding

checksum in the summation vector. (Note: since there may be
roundoff errors for floating point operations, a small tolerance
[18] should be allowed for in the comparison.)

c) An inconsistent row or column is detected by an
inequality in b).

2) Error Location:
a) An error is located at the intersection of the inconsis-

tent row and inconsistent column.
3) Error Correction:

a) The erroneous element can be corrected (i) by adding
the difference of the computed sum of the row or column data
elements and the checksum to the erroneous element in the
information part, (ii) or by replacing the checksum by the
computed sum of the information elements in the summation
vector, in the case where the checksum is incorrect.
A large roundoff error in an element of the output matrix

can be detected and treated in the same manner as a processor
with a transient fault. When a large roundoff error occurs in
the checking procedure (but not in the computation of the
elements), only one inconsistent row or column is detected,
and this can be ignored. The procedure will detect the case
where more than one element has a large roundoff error; the
probability of detection will be better than that for a uni-
processor (discussed in Section V-D).

Clearly, "false alarms" are possible where roundoff errors
may cause the checks to indicate that a processor is faulty.
Prevention of such alarms requires a detailed analysis of the
numerical aspects of the problem and is beyond the scope of
this paper. We believe that it is better, in many cases, to
obtain such an alarm for a large roundoff error, rather than to
have an i'naccurate result.

V. APPLiCATION OF THE CHECKSUM MATRIX TECHNIQUES TO
MULTIPLE PROCESSOR SYSTEMS

Checksum matrix operations produce code outputs which
provide some degree of error-detecting and correcting capa-
bility, as discussed in Section IV. However, a faulty module
may cause more than one element of the result to be erroneous
if it is used repeatedly during a single matrix operation.
Therefore, the process of redesigning the algorithm and dis-
tributing the computation steps among multiple processing
units should be considered carefully to prevent masking of
errors; examples are given in this' section.
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In Section V-A, the checksum technique is applied to
mesh-connected processor arrays for dense matrix multi-
plication, and to systolic processor arrays for band matrix
multiplication. We will investigate the fault tolerance and
required redundancy for each architecture. In Sections V-B
and V-C, the checksum technique is applied to processor
arrays for matrix L(J-decomposition and matrix inversion.
Section V-D will discuss the error coverage of the checksum
technique used with uniprocessors.

A. Matrix Multiplication

In this section, the checksum matrix scheme is used to
detect and correct errors when matrix multiplications are
performed using mesh-connected processor arrays and sys-
tolic arrays. These architectures are investigated and
compared from a fault-tolerance viewpoint; it is shown that
Qnly small redundancy ratios -0(1/n) for hardware and
0(log2(n)/n) for time -are required for processor array
systems to achieve fault-tolerant matrix operations. The
redundancy ratio is defined as the ratio of the hardware or
time overhead required by the fault-tolerance technique to the
hardware or time complexity of the original system without
fault tolerance. We also investigate the minimum number of
processors required to produce a checksum matrix in a matrix
multiplication in which errors caused by a faulty processor
can be detected.

1) Mesh-Connected Processor Arrays: Fig. 2 shows a
small mesh-connected processor array with row/column
broadcast capability [19]. (A row/column broadcast pro-
cessor array consists of a common data bus for each row or
column of processors, and data can be broadcast to all pro-
cessors in the row or column at the same time.) In this ex-
ample, the input data streams for the multiplication of two
4-by-4 matrices with summation vectors are also indicated.
The operation of the array is as follows. For the matrix

elements ai,j on the left-hand side of the array, the top four
rows consist of the elements of the information part of matrix
Ac and the fifth row is the summation vector; the elements aij
are broadcast from the left boundary of the array to pro-
cessors in the ith row at time j. For the matrix elements bjkk
on the top of the array the leftmost four columns comprise
the elements of the information part of matrix B, and the fifth
column is the summation vector; the elements b; k are broad-
cast to processors in the kth column at time j. At time j, the
processor Pi, k which is located on the intersection of the ith
row and kth column of the array, performs the product of ai,j
and b, k and accumulates the product in a register. Thus, after
n time steps (4, in the example), each processor calculates an
element of the matrix Cf and any single error can be located and
corrected, as mentioned in Section IV.
The redundancy required for performing the checksum ma-

trix multiplication in an (n + 1)-by-(n + 1) mesh-connected
array is discussed here; the (n + l)th row and column pro-
cessors are used to calculate the summation vectors. These
2n + 1 processors are the hardware overhead required by the
checksum technique. After the result matrix Cf is obtained,
we can use the first n processors of the (i + I)th row of the
processor array to calculate the sum of the ith row of the

C - Processor

r a14 a a (a l14 13 12 ir=

Ia24 a2 3 a22 2r7
I

r - - - - - - -_--1b41 b42 b43 b44 b45

b b 32 b31 b32 33 b34 b35i
b b b b b
2 1 292 23 24 25

'b b b b b
11 12 13 141 15

a3 a a a T T Ta34 a33 a32 3

44 43 42 411

a54 aS aa;
1 4 53 52 51I

Fig. 2. Multiplication of two dense checksum matrices in a mesh-connected
processor array.

matrix C in log2(n)' time units of scalar addition, where
1 ' i ' n. This will prevent a faulty processor in the ith row
from producing a sum which will mask the previous error.
The (n + 1)th row of the matrix Cf can be similarly summed
by the first row of the processor array. An additional time unit
is needed to compare the computed sum to the corresponding
element in the summation vector to detect any inconsistent
row. The same amount of time-10g2(n) units- is required
to check the consistency of the columns of the matrix Cf.
Table I shows the complexity of a nonchecksum matrix mul-
tiplication performed in a mesh-connected processor array
and the redundancy required by the multiplication with the
checksum technique.

Multiplication ofLarge Matrices with a Limited
Number of Processors

So far, we have oqJy considered the case where each pro-
cessor performs computations for a single output element. In
reality, the number of processors in a system is limited; the
multiplication of larger matrices with a limited number of
processors is discussed in this subsection.
A matrix can be partitioned into several submatrices and

each submatrix can be encoded to be a checksum matrix to fit
the size of a given processor array. The multiplication of
partitioned checksum matrices shown in Fig. 3 will produce
a matrix with multiple summation vectors as shown in Fig. 3;
each small strip is a summation vector of the submatrix on its
top or left. In each checksum submatrix there is, at most, one
erroneous element; thus, the error can be detected and cor-
rected. Such a method requires more than one row and more
than one column of summation vectors.

Fig. 4 shows how a p-by-p processor array can perform
operations on an n-by-n (n = L(p - 1)/2j * p) checksum

'Assuming the data transfer time is negligible. If the data transfer time is not
negligible, either O(n) checkers or the boundary processors can be used to
calculate the checksums without increasing the order of the redundancy ratio.
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TABLE I
THE COMPLEXITY OF A MATRIX MULTIPLICATION PERFORMED IN A

MESH-CONNECTED PROCESSOR ARRAY AND THE REDUNDANCY REQUIRED
BY THE CHECKSUM TECHNIQUE

The complexity The redundancy Redundancy ratio
of the matrix required with
multiplication the checksum
without fault- technique
tolerance
techniques

processor n2 2n + 1 2/n
time n 2 * k * 1og2(n) 2 * k * 1og2(n)/n

k is the ratio of _xecution time of an addition to that of a multiplication
performed in a processor array.

Fig. 3. Partitioned checksum matrices.

summation vector

A.i

veto

summation vector

'1I
p
-4.

+~~~~~p

4 P-*
1 x x x x

x_
x
x

IETh

x: erroneous element

n==Lp-1)/2j* p

Fig. 4. An operation on a checksum matrix performed in an
array of smaller dimension.

matrix with the errors caused by a faulty processor being
corrected. The operation is described as follows.

1) Partition a column checksum matrix A, intop-by-n sub-
matrices Ai and partition a row checksum matrix B, into
n-by-p submatrices Bj.

2) Rotate2 Ai down (j - 1) rows and Bj to the right (i - 1)

2Rotating a matrix down by one row moves the ith row to the (i + I)st row
and the last row to the first row; similarly, rotating a matrix to the right by one
column moves the ith column to the (i + l)st column and the last column to
the first column.

columns and feed them into the array to compute the ele-
ments in the submatrix Ci,j.

3) Repeat step 2) until all of the submatrices are obtained.
During the computation, a faulty processor in the array will

cause an element in each submatrix Cij to be unreliable.
Then there are, at most, l(p - 1)/2J erroneous elements
in the first p rows of the output matrix Cf since there are
L(p - 1)/2j p-by-p submatrices. The rotations on the input
submatrices Aj in Step 2) cause the erroneous elements to be
located in L(p - 1)/2J consecutive3 rows in the first p rows
of Cf, and each row contains, at most, one erroneous element.
Therefore, the errors can be detected from the checksum
property of each row since there are at least [(p + 1)/2J
consecutive rows in the first p rows which are consistent.
Similarly, at least L(p + 1)/2j consecutive columns in the
first p columns of Cf are consistent, and each inconsistent
column in the first p columns contains, at most, one erro-
neous element. Thus, the faulty processor can be located at
the intersection of the first inconsistent row and the first
inconsistent column after the L(p + 1)/2j consecutive con-
sistent rows and columns in submatrix Cl, 1.
From the operations described above, the processor

P(x, y), located at coordinates (x, y) in the array, performs
the computation for the element c(x + i - 1, y + j - 1) in
submatrix Cj,; thus, once the faulty processor is located,
the set of unreliable elements is located. Furthermore, the
rotations in Step 2) also cause each row of Cf to contain, at
most, one erroneous element similar to the first p rows of
matrix Cf. Therefore, all the errors caused by a faulty processor
can be corrected.

2) Matrix Multiplication Systolic Arrays: Fig. 5 shows
the multiplication of two checksum band matrices Ac and Br.
The matrix AC consists of a band matrix A and a column
summation vector; matrix Br consists of a band matrix B and
a row summation vector. The widths of band matrices A and
B are Wl and W2, respectively. The output matrix Cf is a band
matrix C with its column and row summation vectors. Fig. 6
shows the array structure, the data streams, and the redundant
hardware required by the checksum technique for the matrix
multiplication in Fig. 5. The systolic algorithm used in this
section is the new efficient algorithm presented in [20].
Based on the algorithm, matrix A is fed into the systolic

array from the left top boundary, B from the right top, and C
from both sides of the top. All elements in the bands of
matrices A, B, and C move synchronously through the array
in three directions. Each ci, k is initialized to zero as it enters
the array and accumulates all its partial product terms before
it leaves the array through the bottom boundary.

Fig. 6 shows a large module Gl which consists of WI
inner product processors, WI - 1 full word adders, and
min(Wl, W2) + 1 buffers. The module GI receives the data
streams ai, at the same time as the processor array. Thus, no
extra memory requests are required. The module G1 also
receives the row summation vector of matrix Br via the right-
most processor, and it performs computations with these two

3Assume the last row of a 'submatrix is adjacent to the first row, and the last
column is adjacent to the first column.
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1 1 C 12 0
C 21 22 23
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a n+1.n

b il b 12 b 13 0
b21 b22 b23 b24

b 32 b 33 b 34 b 35

b43 -

0

FBil,n+l

bjn,n+ 1

Fig. 5. The matrix multiplication of two checksum band matrices.

C C C
42 33 24

c32 c23

b21 b22 b23

Fig. 6. A matrix multiplication systolic array operating on two checksum band matrices.

input streams to produce the elements of the row summation
vector of the matrix Cf. Similarly, module G2, consisting of
W2 inner product processors, W2 - full word adders, and
min(Wl, W2) + buffers, produces the column summation
vector of the matrix Cf.
Two more modules, G3 and G4, are also shown in Fig. 6.

Each module consists of Wl + W2 - 1 full word adders,
log2(W2) buffers for the module G3, and log2(Wi) buffers for
the module G4. Each input bus of a module is connected to
a corresponding output bus (in the bottom) of the systolic
array as shown in the figure. Thus, the modules G3 and G4
receive the matrix elements Ci, k from the systolic array to
compute the sum for each column and row of matrix C,
respectively. The outputs of module G3 are compared to the
outputs of module G by a TSC comparator to judge whether
the columns of the matrix Cf satisfy the checksum property.
The outputs of modules G2 and G4 are similarly compared

to check the rows of the matrix Cf. Table II shows the com-

plexities of a nonchecksum matrix multiplication performed
in a systolic array and the redundancy required by the check-
sum technique.

Consider a band matrix multiplication with the checksum
technique using the system shown in Fig. 6. Each column of
processors in the array performs computations for the ele-
ments in a diagonal of matrix C. When a processor is faulty
and located in the sth column from the left of the processor
array, the elements Cmax(qc-s+i,i),max(i,s-qc+i)'4 = 1, ,n are

unreliable. For example, any faulty processor in the fourth
column (the middle one) of the array in Fig. 6 will cause the
diagonal with-elements ci,j of the matrix C to be unreliable.
The pattern of the erroneous matrix elements of a matrix is

4q, is the number of diagonals which contain at least one nonzero element
in the upper triangular matrix, including the main diagonal, of band matrix C.

C 11 C 12 C 13 C 14 0 [Yil.n+l

C 21 C 22 C 23 c 24 C 25

C 31 C 32 c 33 C 34

C 41 C 42

O C52

LI n+l,l *

IH
II n+l,n+ t
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TABLE II
THE COMPLEXITY OF A MATRIX MULTIPLICATION PERFORMED IN A SYSTOLIC
ARRAY AND THE REDUNDANCY REQUIRED BY THE MULTIPLICATION SYSTEM

WITH THE CHECKSUM TECHNIQUE

The complexity The redundancy Redundancya
of the matrix required with ratio
multiplication the checksum
without fault- technique
tolerance
techniques

processor Wl * W2 WI + W2 0(1/Wl)
time n + min(W1,W2) WI + W2
adder t 3(W1+ W2) - 4
buffer Cr 'log2(Wl) + log2(W2)

+ 2min(W1, W2) + 2
TSC comparator 0 2

aAssume O(W1) = O(W2).

shown in Fig. 7(a); "?" shows the unreliable matrix ele-
ments. The value of s can be computed from the inconsistent
row and column with the smallest indexes x and y

s = y - x + q,.

Therefore, since the set of erroneous elements is located and
each row of the matrix C consists of at most one erroneous

element, the errors can be corrected.
In the matrix Cf, a fault in module GI or G3 causes all rows

or columns to be inconsistent. This means either that the
erroneous elements are located on the row summation vector
of the matrix Cf or that the module G3 is faulty. In these cases,

by either regenerating the row summation vector or ignoring
the inconsistency, the correct matrix Cf can be obtained.
Similarly, the errors caused by a fault in module G2 or G4
can also be corrected. Fig. 7(b) and (c) shows the pattern
of unreliable elements of the matrix Cf caused by a faulty
module G1 or G2.

If we assume that the complexity of the adder, buffer, and
TSC comparator is 10 percent of the complexity of the pro-

cessor module (which contains a multiplier and other hard-
ware), the redundancy ratios required by the checksum tech-
nique can be computed. For square matrices A and B having
the same dimension n, Fig. 8(a) shows the redundancy ratio
required for a mesh-connected processor array. Fig. 8(b)
shows the redundancy ratio required for a matrix multi-
plication systolic array. These figures show that the redun-
dancy ratio, in fact, asymptotically goes to zero for large
matrices!

3) Lower Bound on the Number of Processors Required to
Produce an Error-Detectable Checksum Matrix: It is obvi-
ous that the errors in a computation may not be detected when
a single processor is used to produce a checksum matrix. In

this section, we investigate the minimum number of pro-

cessors required to produce a full checksum matrix in a ma-

trix multiplication of a column checksum matrix with a row

checksum matrix in which the errors caused by a faulty pro-

cessor can always be detected.
In a full checksum matrix, when an error is located in a row

or a column which does not contain any other error, the error

will cause an inconsistent row or column which can be de-
tected. However, when the errors can be connected to form
a graph, as shown in Fig. 9, the errors may mask each other
and cannot be detected. Such a graph is called a loop here and
is defined as follows.

I - 21 2~~~~~i 1? ? ?? -- 710
(a) (b) (c)

Fig. 7. The errorpatterns caused by (a) a faulty processor module, (b) a failure
in the module GI, (c) a failure in the module G2.

Matrix Dimension Matrix Bandwidth
(a) (b)

Fig. 8. The redundancy ratio required by the checksum technique for matrix
multiplications using (a) a mesh-connectedprocessor array, (b) a systolic array
(assuming the adder, buffer, or comparator has 10 percent of the complexity
of the processor, and the ratio of the execution time for a multiplication to
that for an addition is 2).

X-Xxx x

xx--

Tx -X

(a)

x x

xxXX
(b)

Fig. 9. The error-undetectable patterns in a full checksum matrix.

Definition 5.1: In an n-by-m (n,m > 2) chessboard with
several marked squares (which are the squares with the "x"
as shown in the example of Fig. 9), an edge is a connection
between two marked squares in the same row or in the same
column, a path is a sequence of edges, and a loop is a closed
path (or cycle).
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Lemma 5.1 and Theorem 5.1 show that when a processor
performs the computations for 2n or more elements, these
eldments always form a loop.
Lemma 5.1: In an n-by-m chessboard (n,m . 2), when

each row and column of the chessboard contains at least two
marked squares, the set or a subset of those marked squares
forms a loop.

Proof: Fig. 9(a) shows an example of a loop formed by
marked squares when each row and column consists of at
least two marked squares. Assume there does not exist a loop
formed by the set or subset of the marked squares. This
implies that there exists at least one marked square located on
a row or a column which does not have any other marked
square; this contradicts the assumption that all rows and col-
umns contain at least two marked squares. Therefore, there
exists at least one loop formed by those marked squares in
the chessboard.
Theorem 5.1: In an n-by-n chessboard (n -2), for any

given 2n marked squares, there exists a loop formed by
these 2n squares or a subset of these 2n squares.

Proof: For an n-by-n chessboard with 2n marked
squares, the rows and columns which consist of one or no
marked squares cannot be used to form a loop; therefore,
delete these rows and columns and let the number of remain-
ing rows be nr and the number of remaining columns be nc,
where 0 - nr, nc ' n.
The total number of squares in the nr rows and n, columns

should be greater than or equal to the minimum number of
remaining marked squares. Thus,

nr * nc 2 * n- (n -nr) - (n - nc)
nr*fncfnr+ nc. (3)

Both n, and n, must be larger than 1 in order for (3) to be
true. Therefore, according to Lemma 5.1, a loop exists
formed by these 2n marked squares or a subset of these
2n squares. a
When the results produced by the same processor form a

loop, the errors could mask each other. In order to guarantee
that the errors caused by a single faulty processor can be
detected in a matrix multiplication, according to Theorem
5.1, a processor cannot operate on more than (2 * n - 1)
elements in an n-by-n checksum matrix; therefore, the fol-
lowing theorem is true. 7,
Theorem 5.2: At least 1rn2/(2 * n - 1)1 (n 2) pro-

cessors are required-to produce an n-by-n checksum ma-

trix in which errors caused by a faulty processor can

be detected.
Let the number rn2/(2 * n - 1)] be denoted by Pmin.

Fig. 10 shows examples of using Pmin processors to produce
elements in an n-by-n matrix where the elements performed
by the same processor do not form a loop. The elements
marked with the same number are assumed to be operated on

by the same processor.
The number n2/(2 * n - 1) can be manipulated as shown

in (4).

n2 ((n - 1/2) + 1/2)2
2 *n- 1 2(n - 1/2)

n/2 + 1/4 + 1/(8 * n -4). (4)

1 2 |1 .3 11''

(a) n=5, P min =3

1
2
7
2
'1
2

2
1
2

2
1

1
3
3
2
4
3

3
I
2
3
4

1
2
4
4
3

3
1
3
2
3

(b) n=6, P min =4
Fig. 10. Arrangements using P ,* processors to produce an error-detectable

checksum matrix.

Equation (4) shows that Pmin increases by 1 when n increases
by 2. Equation (4) also implies that

Pmin = (n/2) + 1 if n is even, (5)

Pmin= (n + 1)/2 if n is odd. (6)
In the following, a procedure is given to extend the

arrangement of using Prmn processors for producing error-
detectable n-by-n checksum matrices to using Pmin±l
processors for producing (n + 2)-by-(n + 2) error-
detectable matrices.

1) The arrangement for producing elements ci <i,
j < n, is the same as the arrangement used to produce an
error-detectable n-by-n checksum matrix.

2) Use the (Pmin+i)St processor to perform the com-
putations for the elements C2i-l,n+l, C2j,n+2 Cn+1,2i-1q Cn+2,2i7
Cn+l,n+2, Cn+2,n+l and Cn+2,n+2, where i = 1,2, ,rn/2].

3) Use the ith processor to perform the computations for
elements C2i-1ln+2, C2i,n+1, Cn+2,2i-1, and c,+1,21, where i =
1,2, ,1n/27.
4) The other elements of matrix Cf are produced by the

Pminth processor.
From (5) and (6) and the above procedure, we know the

Pminth processor only performs the computation for Cn+l,t+,
when n is even and for Cn+l n+l? Cnn+2, and cn+2,n when n is
odd. The arrangement of this extension is shown in Fig. 11,
which shows that the elements computed by the (Pmin+i)th
processor do not form a loop, and any other processor only
performs no more than one element in the (n + l)th and
(n + 2)th rows and columns; therefore, the errors can be
detected. Fig. 10 shows arrangements of using Pmin pro-
cessors to produce error-detectable checksum matrices for
the cases of an odd value of n and an even value of n. Thus,
we see that the procedure can be recursively Used to produce
permutations for any value of n to use P processors to
produce n-by-n error-detectable matrices inx matrix multi-
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1

Iq
2

q

q 1 q 2 . . . q-i q
1 q 2, q, . . . q q

q=P .+1
min

Fig. 11. P, ,+. processors producing an (n + 2)-by-(n + 2) error-detectable
checksum matrix.

plication or addition. Also, we know that Pmin is a tight lower
bound of the number of processors required to produce an

error-detectable checksum matrix.

B. Matrix LU Decomposition

From Section IV we know that a full checksum matrix Cf
can be decomposed into a column checksum lower triangular
matrix L and a row checksum upper triangular matrix Ur. The
decomposition of an n-by-n full checksum matrix performed
in an n-by-n mesh-connected processor array is described
as follows.

1) Each element cij of the matri'x Cf is loaded into a

processor P(i, j); let cl j, the value of cij in the first iteration,
be cij.

2) For j-= to n by 1

a) in the jth row Uj,k = Cj,k
b) in the jth column li, = c ji/uj1, i, k > j
C) CI,k = Ci,k li,j * Uj,k-

Next j.
(Row/column broadcast capability can be used here to help

the data transfer.)
3) After Step 2), the processor P(i,j) obtains the result l jj

when i > i and ui,j when i j.
4) The processor in the (i + 1)th row can be used to verify

the checksum property in the ith row; similarly, the checksum
property in each column can be verified without being
masked by a faulty processor.
When a faulty processor P(x, y) produices an incorrect re-

sult during the computation, the propagation of the error is
described as follows.

a) The erroneous result is confined to an element c,y
before the min(x, y )th iteration.

b) The value of I, and u,,y is obtained at the min(x, y )th
iteration; thus, the xth row and yth column will be the first
inconsistent row and column, and the faulty processo'r is

located at their intersection.

c) After the min(x, y)th iteration, the error is propagated
to all of the x' rows (x' > x) and y' columns (y' > y).
When a checksum band matrix is decomposed into two

checksum matrices using a systolic array, the operation is
similar to the one in [2]; however, redundant hardware is
required to produce the summation vectors and to verify the
checksum property.
The error propagation and the method for faulty processor

location are similar to that of a decomposition performed in
a mesh processor array; the faulty processor can also be
located at the intersection of the first inconsistent row and the
first inconsistent column in Ur and L,, respectively.
C. Matrix Inversion

In this section, the checksum technique is applied for
detecting errors concurrently when matrix inversion is per-
formed in a processor array. The matrix inversion of a band
matrix is usually a dense matrix except when the input matrix
is a triangular matrix. Therefore, only the inversion of dense
matrices is considered.
The matrix inversion of an n-by-n matrix can be performed

using an n-by-(2n + 1) mesh-connected array, as shown in
Fig. 12. The left half n-by-n array stores the matrix A, the
right half n-by-n array stores an identity matrix, and the last
column stores the summation of the elements in the corre-
sponding row. Such a row consisting of 2n information
elements and their summation is called a checksum encoded
vector (CSEV), as defined in Section IV. Then, the Gaussian
elimination method' can be used to eliminate the elements in
the left half of the array (except for the diagonal elements)
and to divide each row by the value of the nonzero element.
An identity matrix is then obtained in the left half of the array
and the inverse of matrix A is obtained in the right half of the
array. The elimination operation is done by repeating (7) for
j= ito = n.
Row j1 = RowJ- ai1/ajla * Row

for I c i ' n and i j. (7)
(RowJ means Row i in the jth iteration. Again, the row/
column broadcast technique can be used to transfer the data
efficiently during the operation.)
From Corollaries 4.1 and 4.2 and (7), we know that under

the fault-free condition, the final information obtained in
each row is a CSEV. When a faulty processor is located in the
left half of the array, the errors will propagate through
the array; however, the errors are not masked as long as the
matrix A is non'sinFular (a singular matrix does not have an

inverse). When the faulty processor is located in the right half
of the array or in the (n + I)th column, the errors are con-

fined to that column. Thus, the errors can be detected. A
modification of the checksum technique can be used to cor-

rect errors during matrix inversion [19]; this is not discussed
here due to lack of space.

D. The Error Coverage of the Checksum Technique Used
with Uniprocessors
When the checksum matrix operations are performed in

uniprocessor systems, a faulty processor could potentially
cause all of the elements of the output matrix to be incorrect.
In this section, we estimate the probability of detecting
errors, and show that it is high.

q
1

q
2

any n-by-n error detectable
checksum matrix
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Fig. 12. Checksum matrix inversion performed in a processor array.

TABLE III
THE MINIMUM ERROR COVERAGE (DETECTABLE ERROR PERCENTAGE) OF

CHECKSUM MATRIX OPERATIONS PERFORMED IN UNIPROCESSORS, WHEN THE
ERRORS ARE GENERATED RANDOMLY

n Pdin (percent)
1 75
3 93.75
5 98.4375
7 99.60937.
9 99.90234

11 99.97558
13 99.99389
15 99.99847
20 99.99995

For a processor, we assume that a given defect causes d
consecutive output bits to be unreliable and these bits are
generated randomly. In a row or column of an (n + 1) *
(n + 1) full checksum matrix, the probability that the error
in one element masks the sum of the errors in the other n
elements is less than 2-d since the errors are generated ran-
domly. Thus, the probability of the undetectable errors in a
column or a row Pu is no more than 2-d and the probability of
undetectable errors of a full checksum matrix Pu is no more
than (pu)(n+i). The worst-case value of p. is ½2 when d = 1;
therefore, P,, is not larger than 2-(n+') and 'the probability of
error detection of a full checksum matrix Pd is not less than
I- P,. Table III shows the relation between Pdmnj, the mini-
mum detection probability, and n. It shows that the checksum
technique also provides a high error detection capability when
the computations are perforrned in uniprocessors.

VI. CONCLUSION
In this paper, the new technique of algorithm-based fault

tolerance has been described and it has been applied to matrix
operations. This technique is especially useful for fault toler-
ance in multiprocessor systems. The technique requires very
low redundancy and covers a broad set of failures.
We hope that this concept of utilizing the information

about the algorithm being performed will lead to new results
in cost-effective fault-tolerance techniques for various
applications.
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