
Work Stealing

Guillaume Pallez
Inria

M2 CISD, Enseirb-Matmeca,
Automne 2020



1

WS: Context

I A parallel platform with p processors

I A task-graph G tp be executed

I Non-clairvoyant setting : the structure of G and/or the execution times of its
constitutive tasks are discovered online



2

Sharing v Stealing

Batch scheduling
Centralized scheduling

I A single list stores all ready tasks

I All processors retrieve work from that list

Advantage(s)

I Global view and knownledge

Drawback(s)

I Does not scale (contentions, etc.)

Work stealing
Distributed scheduling

I Each processor owns a list of “its” ready
tasks

Advantage(s)

I No contention problem

I Scalable solution

Drawback(s)

I Processors with empty lists do not know
where to retrieve work from.



2

Sharing v Stealing

Batch scheduling
Centralized scheduling

I A single list stores all ready tasks

I All processors retrieve work from that list

Advantage(s)

I Global view and knownledge

Drawback(s)

I Does not scale (contentions, etc.)

Work stealing
Distributed scheduling

I Each processor owns a list of “its” ready
tasks

Advantage(s)

I No contention problem

I Scalable solution

Drawback(s)

I Processors with empty lists do not know
where to retrieve work from.



3

Stealing policies 1/2

Global round-robin
I A global variable holds the identity of the next processor to steal from
I Variable incremented after each steal (successful or not)
I Advantage : eventual progress
I Drawback : centralized solution...

Local round-robin
I Each processor has its own variable indicating the next processor it should try to

steal from
I Variable incremented after each steal (successful or not)
I Advantage : eventual progress ; solution is scalable
I Drawback : all stealing processors may attempt to steal from the same processor ;

arbitrary notion of “distance” between processors



3

Stealing policies 1/2

Global round-robin
I A global variable holds the identity of the next processor to steal from
I Variable incremented after each steal (successful or not)
I Advantage : eventual progress
I Drawback : centralized solution...

Local round-robin
I Each processor has its own variable indicating the next processor it should try to

steal from
I Variable incremented after each steal (successful or not)
I Advantage : eventual progress ; solution is scalable
I Drawback : all stealing processors may attempt to steal from the same processor ;

arbitrary notion of “distance” between processors



Stealing policies 2/2

Random stealing (Blumofe and Leiserson)
I The processor to steal from is randomly and uniformly chosen
I Advantage : decentralized ; scalable ; no notion of “distance” ; low probability of

simultaneous steal from same processor
I Drawback : performance ? ? ?

TODO@home : think about what can be a good model for performance of work
stealing


