
Batch and Gang Scheduling

Arnaud Legrand, CNRS, University of Grenoble

LIG laboratory, arnaud.legrand@imag.fr

March 25, 2009

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling 1 / 41

arnaud.legrand@imag.fr

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling 2 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 3 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 4 / 41

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

time

processors

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 5 / 41

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

time

processors

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 5 / 41

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 5 / 41

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 5 / 41

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 5 / 41

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 5 / 41

Batch Scheduling

Each job is defined as a Number of nodes (qi) and a Time (pi):

I want 6 nodes for 1h

Typically users are “charged” against an “allocation”: e.g. “You
only get 100 CPU hours per week”.
A batch scheduler is a central middleware to manage resources (e.g.
processors) of parallel machines:

I accept jobs (computing tasks) submitted by users
I decide when and where jobs are executed
I start jobs execution

They take into account:
I unavailability of some nodes
I users jobs mutual exclusion
I specific needs for jobs (memory, network, ...)

While trying to :
I maximize resources usage
I be fair among users

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 6 / 41

Batch Scheduling

Typical wanted features:

I Interactive mode

I Batch mode

I Parallel jobs support

I Multi-queues with priori-
ties

I Admission policies (limit
on usage, notions of user
groups, power users)

I Resources matching

I File staging

I Jobs dependences

I Backfilling

I Reservations

I Best effort jobs

I Environment reconfiguration

There are many existing batch schedulers : LSF, PBS/Torque, Maui
scheduler, Sun Grid Engine, EASY, OAR, . . .

These are complex systems with many config options !

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 7 / 41

Main Batch Schedulers Features

OpenPBS SGE Maui Scheduler OAR
(+ OpenPBS)

Interactive mode × × × ×
Batch mode × × × ×
Parallel jobs support × × × ×
Multi-queues with priorities × × × ×
Resources matching × × × ×
Admission policies × × × ×
File staging × × ×
Jobs dependences × × ×
Backfilling × ×
Reservations × ×
Best effort jobs ×
Environment reconfiguration ×
Fair sharing × ×

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 8 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 9 / 41

List Scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics. A %-approximation is an algorithm whose output
is never more than a factor % times the optimum solution.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).

Any strategy that does not let on purpose a processor idle is effi-
cient [Coffman76]. Such a schedule is called list-schedule.

Theorem 1: Coffman.

Let G = (V,E,w) be a DAG of sequential tasks, p the number of
processors, and σp a list-schedule of G on p processors.

Cmax(σp) 6
(

2− 1
p

)
C∗max(p) .

Most of the time, list-heuristics are based on the critical path.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 10 / 41

List Scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics. A %-approximation is an algorithm whose output
is never more than a factor % times the optimum solution.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).
Any strategy that does not let on purpose a processor idle is effi-
cient [Coffman76]. Such a schedule is called list-schedule.

Theorem 1: Coffman.

Let G = (V,E,w) be a DAG of sequential tasks, p the number of
processors, and σp a list-schedule of G on p processors.

Cmax(σp) 6
(

2− 1
p

)
C∗max(p) .

Most of the time, list-heuristics are based on the critical path.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 10 / 41

List Scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics. A %-approximation is an algorithm whose output
is never more than a factor % times the optimum solution.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).
Any strategy that does not let on purpose a processor idle is effi-
cient [Coffman76]. Such a schedule is called list-schedule.

Theorem 1: Coffman.

Let G = (V,E,w) be a DAG of sequential tasks, p the number of
processors, and σp a list-schedule of G on p processors.

Cmax(σp) 6
(

2− 1
p

)
C∗max(p) .

Most of the time, list-heuristics are based on the critical path.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 10 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ

Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

Proof.

p

Cmax(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,
p.Cmax(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)C∗max(p) + p.C∗max(p) = (2p− 1)C∗max(p)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

One can actually prove that this bound cannot be improved.

Proof.

K(p− 1)

K

p
1 K(p− 1)

··
·




p− 1

% >
K(2p− 1)
Kp+ 1

−−−−→
K→∞

2p− 1
p

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

One can actually prove that this bound cannot be improved.

Proof.

2K(p− 1) +K = K(2p− 1)

K(p− 1)

K

p
1 K(p− 1)

··
·




p− 1

% >
K(2p− 1)
Kp+ 1

−−−−→
K→∞

2p− 1
p

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

One can actually prove that this bound cannot be improved.

Proof.

1 +K +K(p− 1) = Kp + 1

K(p− 1)

K

p
1 K(p− 1)

··
·




p− 1

% >
K(2p− 1)
Kp+ 1

−−−−→
K→∞

2p− 1
p

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List Scheduling: proving the Coffman result

One can actually prove that this bound cannot be improved.

Proof.

1 +K +K(p− 1) = Kp + 1

K(p− 1)

K

p
1 K(p− 1)

··
·




p− 1

% >
K(2p− 1)
Kp+ 1

−−−−→
K→∞

2p− 1
p

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 11 / 41

List scheduling Anomalies

10

10

5

5

4

2 2

1
2 3 5 7

4 6

MS = 19

T1

T4

T5

T2

T6

T7T3

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 12 / 41

List scheduling Anomalies

9

9

4

4

3

1 1

1
32 7

4 65

MS = 20

T1

T4

T5

T2

T6

T7T3

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 12 / 41

List Scheduling for Parallel Rigid Tasks

Let us assume we have n independent rigid jobs J1 = (p1, q1), . . . , Jn =
(pn, qn) and m machines.
Let us denote by T ∗ the optimal makespan for this instance.

Let us consider a list schedule of makespan T . Let us denote by q(t)
the number of active processors at time t.
We have ∀t1, t2 ∈ [0, T] : t1 6 t2 − T ∗ ⇒ q(t1) + q(t2) > m
(otherwise, the tasks running at time t2 could have been run at
time t1).
Let us assume that T > 2T ∗. Then we have:

mT ∗ >
∑

i

qipi =
∫ T

0
q(t) =

∫ 2T ∗

0
q(t) +

∫ T

2T ∗
q(t)

>
∫ T ∗

0
q(t) + q(t+ T ∗)︸ ︷︷ ︸

>mT ∗

+
∫ T

2T ∗
q(t)︸ ︷︷ ︸

>0

,which is absurd.
Theorem 2.

List-scheduling has an approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 13 / 41

List Scheduling for Parallel Rigid Tasks

Let us assume we have n independent rigid jobs J1 = (p1, q1), . . . , Jn =
(pn, qn) and m machines.
Let us denote by T ∗ the optimal makespan for this instance.
Let us consider a list schedule of makespan T . Let us denote by q(t)
the number of active processors at time t.
We have ∀t1, t2 ∈ [0, T] : t1 6 t2 − T ∗ ⇒ q(t1) + q(t2) > m
(otherwise, the tasks running at time t2 could have been run at
time t1).

Let us assume that T > 2T ∗. Then we have:

mT ∗ >
∑

i

qipi =
∫ T

0
q(t) =

∫ 2T ∗

0
q(t) +

∫ T

2T ∗
q(t)

>
∫ T ∗

0
q(t) + q(t+ T ∗)︸ ︷︷ ︸

>mT ∗

+
∫ T

2T ∗
q(t)︸ ︷︷ ︸

>0

,which is absurd.
Theorem 2.

List-scheduling has an approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 13 / 41

List Scheduling for Parallel Rigid Tasks

Let us assume we have n independent rigid jobs J1 = (p1, q1), . . . , Jn =
(pn, qn) and m machines.
Let us denote by T ∗ the optimal makespan for this instance.
Let us consider a list schedule of makespan T . Let us denote by q(t)
the number of active processors at time t.
We have ∀t1, t2 ∈ [0, T] : t1 6 t2 − T ∗ ⇒ q(t1) + q(t2) > m
(otherwise, the tasks running at time t2 could have been run at
time t1).
Let us assume that T > 2T ∗. Then we have:

mT ∗ >
∑

i

qipi =
∫ T

0
q(t) =

∫ 2T ∗

0
q(t) +

∫ T

2T ∗
q(t)

>
∫ T ∗

0
q(t) + q(t+ T ∗)︸ ︷︷ ︸

>mT ∗

+
∫ T

2T ∗
q(t)︸ ︷︷ ︸

>0

,which is absurd.

Theorem 2.

List-scheduling has an approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 13 / 41

List Scheduling for Parallel Rigid Tasks

Let us assume we have n independent rigid jobs J1 = (p1, q1), . . . , Jn =
(pn, qn) and m machines.
Let us denote by T ∗ the optimal makespan for this instance.
Let us consider a list schedule of makespan T . Let us denote by q(t)
the number of active processors at time t.
We have ∀t1, t2 ∈ [0, T] : t1 6 t2 − T ∗ ⇒ q(t1) + q(t2) > m
(otherwise, the tasks running at time t2 could have been run at
time t1).
Let us assume that T > 2T ∗. Then we have:

mT ∗ >
∑

i

qipi =
∫ T

0
q(t) =

∫ 2T ∗

0
q(t) +

∫ T

2T ∗
q(t)

>
∫ T ∗

0
q(t) + q(t+ T ∗)︸ ︷︷ ︸

>mT ∗

+
∫ T

2T ∗
q(t)︸ ︷︷ ︸

>0

,which is absurd.
Theorem 2.

List-scheduling has an approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 13 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Let us look at the schedule produced by A on an instance I.

S0 jobs
release of

0

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Let us look at the schedule produced by A on an instance I.

release of S1 jobs 

F0
schedule S0

S0 jobs
release of

0

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Let us look at the schedule produced by A on an instance I.

S2 jobs
release of 

F1
schedule S1

release of S1 jobs 

F0
schedule S0

S0 jobs
release of

0

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Let us look at the schedule produced by A on an instance I.

Fk−2
. . .

. . .

S2 jobs
release of 

F1
schedule S1

release of S1 jobs 

F0
schedule S0

S0 jobs
release of

0

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Let us look at the schedule produced by A on an instance I.

 Sk jobs
release of

Fk−1
schedule Sk−1Fk−2

. . .

. . .

S2 jobs
release of 

F1
schedule S1

release of S1 jobs 

F0
schedule S0

S0 jobs
release of

0

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Let us look at the schedule produced by A on an instance I.

 release
no more

Fk
schedule Sk

 Sk jobs
release of

Fk−1
schedule Sk−1Fk−2

. . .

. . .

S2 jobs
release of 

F1
schedule S1

release of S1 jobs 

F0
schedule S0

S0 jobs
release of

0

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Consider I ′ where Sk jobs are re-
leased at time Fk−2. We have:

C∗max(I ′) 6 C∗max(I).

 release
no more

Fk
schedule Sk

 Sk jobs
release of

Fk−1
schedule Sk−1Fk−2

. . .

. . .

S2 jobs
release of 

F1
schedule S1

release of S1 jobs 

F0
schedule S0

S0 jobs
release of

0

I Fk−2 + Fk − Fk−1 6 %C∗max(I ′)
I Fk−1 − Fk−2 6 %C∗max(I ′)

Hence Fk 6 2%C∗max(I ′) 6 2%C∗max(I)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Consider I ′ where Sk jobs are re-
leased at time Fk−2. We have:

C∗max(I ′) 6 C∗max(I).

 release
no more

Fk
schedule Sk

 Sk jobs
release of

Fk−1
schedule Sk−1Fk−2

. . .

. . .

S2 jobs
release of 

F1
schedule S1

release of S1 jobs 

F0
schedule S0

S0 jobs
release of

0

I Fk−2 + Fk − Fk−1 6 %C∗max(I ′)

I Fk−1 − Fk−2 6 %C∗max(I ′)

Hence Fk 6 2%C∗max(I ′) 6 2%C∗max(I)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Consider I ′ where Sk jobs are re-
leased at time Fk−2. We have:

C∗max(I ′) 6 C∗max(I).

 release
no more

Fk
schedule Sk

 Sk jobs
release of

Fk−1
schedule Sk−1Fk−2

. . .

. . .

S2 jobs
release of 

F1
schedule S1

release of S1 jobs 

F0
schedule S0

S0 jobs
release of

0

I Fk−2 + Fk − Fk−1 6 %C∗max(I ′)
I Fk−1 − Fk−2 6 %C∗max(I ′)

Hence Fk 6 2%C∗max(I ′) 6 2%C∗max(I)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

Proof.

Consider I ′ where Sk jobs are re-
leased at time Fk−2. We have:

C∗max(I ′) 6 C∗max(I).

 release
no more

Fk
schedule Sk

 Sk jobs
release of

Fk−1
schedule Sk−1Fk−2

. . .

. . .

S2 jobs
release of 

F1
schedule S1

release of S1 jobs 

F0
schedule S0

S0 jobs
release of

0

I Fk−2 + Fk − Fk−1 6 %C∗max(I ′)
I Fk−1 − Fk−2 6 %C∗max(I ′)

Hence Fk 6 2%C∗max(I ′) 6 2%C∗max(I)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

I There is a PTAS for 〈Q||Cmax〉. Hence, there is an (2 + ε)-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈Q||Cmax〉. Hence, there is an 4-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈P |sizej |Cmax〉. Hence, there is an
4-competitive online clairvoyant algorithm for 〈Q|sizej |Cmax〉.

I Actually, by doing a slightly finer analysis, on can show that
the list-scheduling algorithm is a (2 − 1/m)-competitive non-
clairvoyant algorithm for 〈P |rj |Cmax〉.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

I There is a PTAS for 〈Q||Cmax〉. Hence, there is an (2 + ε)-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈Q||Cmax〉. Hence, there is an 4-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈P |sizej |Cmax〉. Hence, there is an
4-competitive online clairvoyant algorithm for 〈Q|sizej |Cmax〉.

I Actually, by doing a slightly finer analysis, on can show that
the list-scheduling algorithm is a (2 − 1/m)-competitive non-
clairvoyant algorithm for 〈P |rj |Cmax〉.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

I There is a PTAS for 〈Q||Cmax〉. Hence, there is an (2 + ε)-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈Q||Cmax〉. Hence, there is an 4-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈P |sizej |Cmax〉. Hence, there is an
4-competitive online clairvoyant algorithm for 〈Q|sizej |Cmax〉.

I Actually, by doing a slightly finer analysis, on can show that
the list-scheduling algorithm is a (2 − 1/m)-competitive non-
clairvoyant algorithm for 〈P |rj |Cmax〉.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Going Online

How can we use the previous result when going online?

Theorem 3: [Shmoys91].

Let A be a polynomial-time %-approximation for 〈P |sizej |Cmax〉.
Based on A, we can build a 2%-competitive polynomial-time online
clairvoyant algorithm for 〈P |sizej , rj |Cmax〉.

I There is a PTAS for 〈Q||Cmax〉. Hence, there is an (2 + ε)-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈Q||Cmax〉. Hence, there is an 4-
competitive online clairvoyant algorithm for 〈Q|rj |Cmax〉.

I There is a 2 approximation 〈P |sizej |Cmax〉. Hence, there is an
4-competitive online clairvoyant algorithm for 〈Q|sizej |Cmax〉.

I Actually, by doing a slightly finer analysis, on can show that
the list-scheduling algorithm is a (2 − 1/m)-competitive non-
clairvoyant algorithm for 〈P |rj |Cmax〉.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 14 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 15 / 41

General Principle

TimeNow

Processors

Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 16 / 41

General Principle

TimeNow

Processors

in the queue
(Waiting)

1st job
Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 16 / 41

General Principle

TimeNow

Processors

in the queue
(Waiting)

2nd job

in the queue
(Waiting)

1st job
Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 16 / 41

General Principle

TimeNow

Processors

in the queue
(Waiting)

3rd job

in the queue
(Waiting)

2nd job

in the queue
(Waiting)

1st job
Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 16 / 41

First Come First Served

TimeNow

Processors

in
job
1st

the
queue

Running

I FCFS = simplest scheduling option

I Fragmentation ; need for backfilling

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 17 / 41

First Come First Served

TimeNow

Processors

in the queue
(Stuck)

2nd job

in the queue
3rd job

(Stuck)in
job
1st

the
queue

Running

I FCFS = simplest scheduling option

I Fragmentation ; need for backfilling

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 17 / 41

First Come First Served

TimeNow

Processors

in the queue
3rd job

(Back-filled)

in the queue
(Back-filled)

2nd job in
job
1st

the
queue

Running

I FCFS = simplest scheduling option

I Fragmentation ; need for backfilling

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 17 / 41

Backfilling: Question

I Which job(s) should be picked for promotion through the queue?

I Many heuristics are possible
I Two have been studied in detail

I EASY
I Conservative Back Filling (CBF)

I In practice EASY (or variants of it) is used, while CBF is not.

I Although, OAR, a recently proposed batch scheduler imple-
ments CBF.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 18 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 19 / 41

EASY Backfilling

Extensible Argonne Scheduling System
Maintain only one reservation, for the first job in the queue.
Definitions:

Shadow time time at which the first job in the queue starts execu-
tion

Extra nodes number of nodes idle when the first job in the queue
starts execution

1 Go through the queue in order starting with the 2nd job.

2 Backfill a job if it will terminate by the shadow time, or it needs
less than the extra nodes.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 20 / 41

EASY

TimeNow

Processors

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 21 / 41

EASY

TimeNow

Processors

in the queue
2nd job

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 21 / 41

EASY

TimeNow

Processors

in the queue
2nd job

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 21 / 41

EASY

TimeNow

Processors

3rd job
in the queue

in the queue
2nd job

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 21 / 41

EASY

TimeNow

Processors

3rd job
in the queue

in the queue
2nd job

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 21 / 41

EASY

TimeNow

Processors

3rd job
in the queue

job
in

2nd

the
queue

in the queue
1st job

Running

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 21 / 41

EASY

TimeNow

Processors

job
in

2nd

the
queue

3rd job
in the queue

in the queue
1st job

Running

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 21 / 41

EASY

TimeNow

Processors

4th job
in the queue

job
in

2nd

the
queue

3rd job
in the queue

in the queue
1st job

Running

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 21 / 41

EASY

TimeNow

Processors

4th job
in the queue

job
in

2nd

the
queue

3rd job
in the queue

in the queue
1st job

Running

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 21 / 41

EASY Properties

Unbounded Delay. I The first job in the queue will never be de-
layed by backfilled jobs

I BUT, other jobs may be delayed infinitely!

No Starvation. I Delay of first job is bounded by runtime of cur-
rent jobs

I When the first job finishes, the second job becomes the first
job in the queue

I Once it is the first job, it cannot be delayed further

Other approach. I Conservative Backfilling. EVERY job has a
reservation. A job may be backfilled only if it does not delay
any other job ahead of it in the queue.

I Fixes the unbounded delay problem that EASY has. More
complicated to implement (The algorithm must find holes
in the schedule) though.

I EASY favors small long jobs and harms large short jobs.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 22 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 23 / 41

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 24 / 41

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 24 / 41

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 24 / 41

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).

Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 24 / 41

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 24 / 41

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 24 / 41

How Good is the Schedule ?

All of this is great, but how do we know what a “good” schedule
is? FCFS, EASY, CFB, Random?
What we need are metrics to quantify how good a schedule is. It
has to be an aggregate metric over all jobs

1 Turn-around time or flow (Wait time + Run time).
Job 1 needs 1h of compute time and waits 1s
Job 2 needs 1s of compute time and waits 1h

Clearly Job 1 is really happy, and Job 2 is not happy at all
2 Wait time (equivalent to “user happiness”)

Job 1 asks for 1 nodes and waits 1 h
Job 2 asks for 512 nodes and waits 1h

Again, Job 1 is unhappy while Job 2 is probably sort of happy.

We need a metric that represents happiness for small, large,
short, long jobs.

3 Slowdown or Stretch (turn-around time divided by turn- around
time if alone in the system)
Doesn’t really take care of the small/large problem. Could think
of some scaling, but unclear !

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 25 / 41

How Good is the Schedule ?

All of this is great, but how do we know what a “good” schedule
is? FCFS, EASY, CFB, Random?
What we need are metrics to quantify how good a schedule is. It
has to be an aggregate metric over all jobs

1 Turn-around time or flow (Wait time + Run time).
Job 1 needs 1h of compute time and waits 1s
Job 2 needs 1s of compute time and waits 1h

Clearly Job 1 is really happy, and Job 2 is not happy at all

2 Wait time (equivalent to “user happiness”)
Job 1 asks for 1 nodes and waits 1 h
Job 2 asks for 512 nodes and waits 1h

Again, Job 1 is unhappy while Job 2 is probably sort of happy.

We need a metric that represents happiness for small, large,
short, long jobs.

3 Slowdown or Stretch (turn-around time divided by turn- around
time if alone in the system)
Doesn’t really take care of the small/large problem. Could think
of some scaling, but unclear !

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 25 / 41

How Good is the Schedule ?

All of this is great, but how do we know what a “good” schedule
is? FCFS, EASY, CFB, Random?
What we need are metrics to quantify how good a schedule is. It
has to be an aggregate metric over all jobs

1 Turn-around time or flow (Wait time + Run time).
Job 1 needs 1h of compute time and waits 1s
Job 2 needs 1s of compute time and waits 1h

Clearly Job 1 is really happy, and Job 2 is not happy at all
2 Wait time (equivalent to “user happiness”)

Job 1 asks for 1 nodes and waits 1 h
Job 2 asks for 512 nodes and waits 1h

Again, Job 1 is unhappy while Job 2 is probably sort of happy.

We need a metric that represents happiness for small, large,
short, long jobs.

3 Slowdown or Stretch (turn-around time divided by turn- around
time if alone in the system)
Doesn’t really take care of the small/large problem. Could think
of some scaling, but unclear !

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 25 / 41

How Good is the Schedule ?

All of this is great, but how do we know what a “good” schedule
is? FCFS, EASY, CFB, Random?
What we need are metrics to quantify how good a schedule is. It
has to be an aggregate metric over all jobs

1 Turn-around time or flow (Wait time + Run time).
Job 1 needs 1h of compute time and waits 1s
Job 2 needs 1s of compute time and waits 1h

Clearly Job 1 is really happy, and Job 2 is not happy at all
2 Wait time (equivalent to “user happiness”)

Job 1 asks for 1 nodes and waits 1 h
Job 2 asks for 512 nodes and waits 1h

Again, Job 1 is unhappy while Job 2 is probably sort of happy.

We need a metric that represents happiness for small, large,
short, long jobs.

3 Slowdown or Stretch (turn-around time divided by turn- around
time if alone in the system)
Doesn’t really take care of the small/large problem. Could think
of some scaling, but unclear !

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 25 / 41

Now What ?

Now we have a few metrics we can consider
We can run simulations of the scheduling algorithms, and see how
they fare.
We need to test these algorithms in representative scenarios
Supercomputer/cluster traces. Collect the following for long periods
of time:

I Time of submission

I How many nodes asked

I How much time asked

I How much time was actually used

I How much time spent in the queue

Uses of the traces:

1 Drive simulations

2 Come up with models of user behaviors

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 26 / 41

Sample Results

A type of experiments that people have done: replace user estimate
by f times the actual run time
Possible to improve performance by multiplying user estimates by 2!

EASY CBF

Mean Slowdown

KTH -4.8% -23.0%

CTC -7.9% -18.0%

SDSC +4.6% -14.2%

Mean Response time

KTH -3.3% -7.0%

CTC -0.9% -1.6%

SDSC -1.6% -10.9%

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 27 / 41

Message

I These are all heuristics.

I They are not specifically designed to optimize the metrics we
have designed.

I It is difficult to truly understand the reasons for the results.

I But one can derive some empirical wisdom.

I One of the reasons why one is stuck with possibly obscure
heuristics is that we’re dealing with an on-line problem: We
don’t know what happens next.

I We cannot wait for all jobs to be submitted to make a decision.
But we can wait for a while, accumulate jobs, and schedule
them together.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 28 / 41

Summary

Batch Schedulers are what we’re stuck with at the moment.
They are often hated by users.

I I submit to the queue asking for 10 nodes for 1 hour.

I I wait for two days.

I My code finally starts, but doesn’t finish within 1 hour and gets
killed!!

A lot of research, a few things happening “in the field”.
When you go to a company that has clusters (like most of them),
they typically have a job scheduler, so it’s good to have some idea
of what it is.
A completely different approach is gang scheduling, which we discuss
next.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 29 / 41

Summary

Batch Schedulers are what we’re stuck with at the moment.
They are often hated by users.

I I submit to the queue asking for 10 nodes for 1 hour.

I I wait for two days.

I My code finally starts, but doesn’t finish within 1 hour and gets
killed!!

A lot of research, a few things happening “in the field”.
When you go to a company that has clusters (like most of them),
they typically have a job scheduler, so it’s good to have some idea
of what it is.

A completely different approach is gang scheduling, which we discuss
next.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 29 / 41

Summary

Batch Schedulers are what we’re stuck with at the moment.
They are often hated by users.

I I submit to the queue asking for 10 nodes for 1 hour.

I I wait for two days.

I My code finally starts, but doesn’t finish within 1 hour and gets
killed!!

A lot of research, a few things happening “in the field”.
When you go to a company that has clusters (like most of them),
they typically have a job scheduler, so it’s good to have some idea
of what it is.
A completely different approach is gang scheduling, which we discuss
next.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Batch Scheduling 29 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 30 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 31 / 41

Gang Scheduling: Basis

I All processes belonging to a job run at the same time (the term
gang denotes all processors within a job).

I Each process runs alone on each processor.

I BUT: there is rapid coordinated context switching.

I It is possible to suspend/preempt jobs arbitrarily

; May allow
more flexibility to optimize some metrics.

I If processing times are not known in advance (or grossly erro-
neous), preemption can help short jobs that would be “stuck”
behind a long job.

I Should improve machine utilization.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 32 / 41

Gang Scheduling: Basis

I All processes belonging to a job run at the same time (the term
gang denotes all processors within a job).

I Each process runs alone on each processor.

I BUT: there is rapid coordinated context switching.

I It is possible to suspend/preempt jobs arbitrarily ; May allow
more flexibility to optimize some metrics.

I If processing times are not known in advance (or grossly erro-
neous), preemption can help short jobs that would be “stuck”
behind a long job.

I Should improve machine utilization.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 32 / 41

Gang Scheduling: Basis

I All processes belonging to a job run at the same time (the term
gang denotes all processors within a job).

I Each process runs alone on each processor.

I BUT: there is rapid coordinated context switching.

I It is possible to suspend/preempt jobs arbitrarily ; May allow
more flexibility to optimize some metrics.

I If processing times are not known in advance (or grossly erro-
neous), preemption can help short jobs that would be “stuck”
behind a long job.

I Should improve machine utilization.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 32 / 41

Gang Scheduling: an Example

I A 128 node cluster.

I A running 64-node job.

I A 32-node job and a 128-node job are queued.

Should the 32-node job be started ?
Space-Sharing Time-Sharing

short
32-node

job

long
32-node

job

More uniform slowdown, better resource usage.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 33 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 34 / 41

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 35 / 41

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 35 / 41

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 35 / 41

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 35 / 41

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 35 / 41

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 35 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 36 / 41

Batch Scheduling it is then

So it seems we’re stuck with batch scheduling.
Why don’t we like Batch Scheduling?

Because queue waiting times
are difficult to predict.

I depends on the status of the queue

I depends on the scheduling algorithm used

I depends on all sorts of configuration parameters set by system
administrator

I depends on future job completions!

I etc.

So I submit my job and then it’s in limbo somewhere, which is
eminently annoying to most users.
That is why there is more and more demand for reservation support.
Users build (badly?) the schedule by themselves.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 37 / 41

Batch Scheduling it is then

So it seems we’re stuck with batch scheduling.
Why don’t we like Batch Scheduling? Because queue waiting times
are difficult to predict.

I depends on the status of the queue

I depends on the scheduling algorithm used

I depends on all sorts of configuration parameters set by system
administrator

I depends on future job completions!

I etc.

So I submit my job and then it’s in limbo somewhere, which is
eminently annoying to most users.

That is why there is more and more demand for reservation support.
Users build (badly?) the schedule by themselves.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 37 / 41

Batch Scheduling it is then

So it seems we’re stuck with batch scheduling.
Why don’t we like Batch Scheduling? Because queue waiting times
are difficult to predict.

I depends on the status of the queue

I depends on the scheduling algorithm used

I depends on all sorts of configuration parameters set by system
administrator

I depends on future job completions!

I etc.

So I submit my job and then it’s in limbo somewhere, which is
eminently annoying to most users.
That is why there is more and more demand for reservation support.
Users build (badly?) the schedule by themselves.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 37 / 41

Outline

1 Batch Scheduling
Principles
Theoretical results
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

2 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 38 / 41

Batch Scheduling and Grids

Grids result from the collaboration of many Universities/Computing
Centers.
Everyone runs its own Batch Scheduler that cannot be bypassed.
How to decide where we should submit our jobs?

When in doubt, a brute-force approach is to:

I Do multiple submissions for different numbers of nodes

I Cancel all submissions but the first one that comes back

I Or possibly make some ad-hoc call regarding whether to keep
a potentially poor request in the hope of getting a better one
through shortly after.

What happens if everybody does this?

Other issues:

I File Staging ?

I Load Balancing between sites ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 39 / 41

Batch Scheduling and Grids

Grids result from the collaboration of many Universities/Computing
Centers.
Everyone runs its own Batch Scheduler that cannot be bypassed.
How to decide where we should submit our jobs?
When in doubt, a brute-force approach is to:

I Do multiple submissions for different numbers of nodes

I Cancel all submissions but the first one that comes back

I Or possibly make some ad-hoc call regarding whether to keep
a potentially poor request in the hope of getting a better one
through shortly after.

What happens if everybody does this?

Other issues:

I File Staging ?

I Load Balancing between sites ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 39 / 41

Batch Scheduling and Grids

Grids result from the collaboration of many Universities/Computing
Centers.
Everyone runs its own Batch Scheduler that cannot be bypassed.
How to decide where we should submit our jobs?
When in doubt, a brute-force approach is to:

I Do multiple submissions for different numbers of nodes

I Cancel all submissions but the first one that comes back

I Or possibly make some ad-hoc call regarding whether to keep
a potentially poor request in the hope of getting a better one
through shortly after.

What happens if everybody does this?

Other issues:

I File Staging ?

I Load Balancing between sites ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 39 / 41

Batch Scheduling and Grids

Grids result from the collaboration of many Universities/Computing
Centers.
Everyone runs its own Batch Scheduler that cannot be bypassed.
How to decide where we should submit our jobs?
When in doubt, a brute-force approach is to:

I Do multiple submissions for different numbers of nodes

I Cancel all submissions but the first one that comes back

I Or possibly make some ad-hoc call regarding whether to keep
a potentially poor request in the hope of getting a better one
through shortly after.

What happens if everybody does this?

Other issues:

I File Staging ?

I Load Balancing between sites ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 39 / 41

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . , Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 40 / 41

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . , Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 40 / 41

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . , Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 40 / 41

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . , Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 40 / 41

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . , Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 40 / 41

So Where are we ?

I Batch schedulers are complex pieces of software that are used
in practice.

I A lot of experience on how they work and how to use them.

I But ultimately everybody knows they are an imperfect solution.

I Many view the lack of theoretical foundations as a big problem.

I Some just don’t care. . .

Fools ignore complexity. Pragmatists suffer it. Some
can avoid it. Geniuses remove it.

– ”Epigrams in Programming”, by Alan J. Perlis of
Yale University.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Gang Scheduling 41 / 41

Bibliography

E. G. Coffman.
Computer and job-shop scheduling theory.
John Wiley & Sons, 1976.

D.B. Shmoys, J. Wein, and D.P. Williamson.
Scheduling parallel machines on-line.
Symposium on Foundations of Computer Science, 0:131–140,
1991.

A. Legrand (CNRS-LIG) INRIA-MESCAL Batch and Gang Scheduling Bibliography 41 / 41

	Batch Scheduling
	Principles
	Theoretical results
	Basic idea: FCFS + Backfilling
	EASY
	How Good is the Schedule?

	Gang Scheduling as an Alternative
	Principles
	Drawbacks
	Batch Scheduling it is then
	Batch Scheduling and Grids?

	Bibliography

